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Birkedal et al. recently introduced dependent right adjoints as an important class of (non-fibered) modalities

in type theory. We observe that several aspects of their calculus are left underdeveloped, and that it cannot

serve as an internal language. We resolve these problems by assuming that the modal context operator is

a parametric right adjoint. We show that this hitherto unrecognized structure is common. Based on these

discoveries we present a new well-behaved Fitch-style multimodal type theory, which can be used as an

internal language. Finally, we apply this syntax to guarded recursion and parametricity.

CCS Concepts: • Theory of computation→Modal and temporal logics; Type theory; Proof theory.

Additional KeyWords and Phrases: Modal types, dependent types, Fitch-style modalities, categorical semantics,

parametricity, guarded recursion

ACM Reference Format:
Daniel Gratzer, Evan Cavallo, G.A. Kavvos, Adrien Guatto, and Lars Birkedal. 2022. Modalities and Parametric

Adjoints. ACM Trans. Comput. Logic 23, 3, Article 18 (April 2022), 29 pages. https://doi.org/10.1145/3514241

1 INTRODUCTION
When using Martin-Löf Type Theory (MLTT), we often wish to reason about structure present in

specific classes of models. Much of this structure—such as notions of time, cohesion, truncation,

proof-irrelevance, and globality—can be captured through the addition of unary modal operators

on types. Unfortunately, the development of modal type theories is fraught with difficulties. The

overwhelming majority of the modalities we are interested in are non-fibered: they send types in

one context to types in a different context, disrupting the usual ‘context-agnostic’ structure of type

theory. Thus, all but a few modal operators require extensive changes to the rules of type theory.

The alteration of the judgmental structure of type theory to account for new modal operators

is no small task, and various methods have been used in the past. Here we focus on Fitch-style

modal type theories [9, 18, 25]. In broad strokes, the modal operators of Fitch-style type theories are

functors which are right adjoints. This criterion is frequently satisfied, so we might expect Fitch-

style type theories to find particular use as internal languages. Unfortunately, while their theory

has absorbed considerable effort, many technical aspects of the Fitch style remain unsatisfactory.

In particular, there seem to be some inexplicably delicate problems relating to substitution. The

purpose of this paper is to research the origin of these problems, highlight a key property that is

missing, and use it to resolve them.
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1.1 On algebra and type theory
In order to simplify our technical development, for the rest of this paper we will systematically blur

the distinction between a Martin-Löf type theory and the generalized algebraic theory (GAT) that

presents it. GATs originate in the work of Cartmell [14], and are often used to present the semantics

of type theory in the guise of categories with families (CwFs) [20, 27]. Our approach replaces the

study of (variable-based) type-theoretic syntax with the study of the (variable-free) CwFs that

support the appropriate connectives. The syntax itself can then be defined as the free algebra over

the signature, and various theorems guarantee the existence and initiality of this object [28].

There are many technical benefits to this approach. Most importantly, it reifies substitutions as

explicit parts of the calculus, which allows us to directly observe their structure rather than treating

substitution as a series of meta-operations. This is particularly helpful in modal type theory where

substitutions interact with the modalities in a highly nontrivial manner.

1.2 Type theory and substitution
The admissibility of substitution is a central property of type theory, and indeed of all logic. By way

of example, suppose we have Γ ⊢ 𝐴 ≜ (𝑥 : 𝐴0) → 𝐴1 type, and a substitution 𝜎 : Δ→ Γ. Consider
the type Δ ⊢ 𝐴[𝜎] type. At the very least, we expect that this is again a dependent product: there

should exist 𝜎0 and 𝜎1 such that 𝐴[𝜎] = (𝑥 : 𝐴0 [𝜎0]) → 𝐴1 [𝜎1]. In variable-based presentations of

type theory, equations of this sort are part of the definition of an external substitution operation

on syntax; this operation is then is validated by proving that substitution is admissible in the type

system. In variable-free presentations, such as CwFs, such equations are part of the definition of

the generalized algebraic theory, which postulates a number of naturality equations that allow the

pushing of substitutions under connectives.

Each of the standard connectives of type theory is understood to satisfy a property of this

sort. Collectively, these equations ensure that type theory behaves in a predictable and usable

manner. This global property is variably referred to as admissibility of substitution, naturality,

associativity, or stability under substitution. It is unimportant whether this property is realized

through meta-operation for substitution or through a sufficient number of naturality equations

governing explicit substitutions, but the property itself is of paramount importance. For example,

it is a direct consequence that we can prove a theorem in one context and then use it in another

without worrying that the ‘shape’ of the theorem has unpredictably changed (e.g. from a universal

to an existential quantification).

1.3 Substitution and the Fitch style
It is therefore troubling that the admissibility of substitution for Fitch-style calculi, such as DRA [9]

or MLTTµ [25], comes with a caveat. There is no obvious way to write down naturality equations

for modal types akin to those for other connectives. Indeed, examining the proof of admissibility for

both languages in loc. cit., we discover something unusual: substitution in a term is not defined by

induction over the term, but over the substitution itself! In other words, where we would normally

reduce 𝐴[𝜎] by examining the form of 𝐴, here we must also examine the form of 𝜎 .

This might seem like a small technical point, but in practice it is a crucial failing. The problem

arises when we try to use a Fitch-style type theory T as an internal language. Suppose we have a

category C with enough structure to interpret the types of T. Then any theorem we can prove in T
holds in C. However, we may also wish to prove theorems that speak about particular morphisms

of C. To do so, we can construct the free type theory TC , which in addition to the terms of T also
includes the morphisms of C as substitutions. We call this the internal language of C. Using this
extended theory we can reason about C in type-theoretic terms.
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Nevertheless, if we try to adapt the admissibility proof to TC we find ourselves in a predicament:

we can no longer induct on substitutions. While the substitutions of the free algebra over T by and

large consist of a list of terms definable in T, the substitutions of TC also contain ‘exotic’ cases

arising from the morphisms of C. As C is a parameter to this construction, these need not be

inductively generated. It is therefore no longer evident that the theorems of the logic retain their

‘shape’ under substitution.

This difficulty is compounded in multimodal type theories: while there have been a few type

theories equipped with a single Fitch-style modality, none have managed to support more than one.

Even one of the simplest multimodal settings that are desired in practice, i.e. the combination of

the □ and ▷ modalities of guarded type theory [19], has so far resisted attempts to be reformulated

into a Fitch-style system that admits substitution.

1.4 Rectifying the problem
This deficiency of Fitch-style systems is well-known, and Gratzer et al. [22] attempted to address it

by introducing a multimodal type theory calledMTT, which replaces the elimination rule by an

indirect variant. The resultant theory is weaker: neither of the aforementioned Fitch-style theories,

namely DRA [9] nor MLTTµ [25], can be embedded in it. The present paper aims to rectify the

issue of substitution without weakening the intuitive and powerful Fitch-style elimination rules.

We begin by observing that the secret ingredient that makes substitution admissible in the free

model of DRA is that the modal context operator is a parametric right adjoint (PRA). To illustrate

the mechanics of this we show that the admissibility of substitution for (non-dependent) function

types follows from a similar property. Based on this and the other examples provided by prior

Fitch-style type theories, we observe that PRAs underlie the stability of a wide variety of rules

which modify the context by applying an operator.

Starting from this idea, we introduce a new Fitch-style type theory which assumes from the

outset that its modal context operator is a PRA. This new system, which we call FitchTT, can readily

be used as an internal language: as the assumption of PRA structure is baked into the theory, any

model C will also support it, and so the same proof of admissibility that applies to FitchTT can be

‘replayed’ for the internal language FitchTTC .
The type-theoretic rules we introduce for parametric right adjoints appear unusual at first sight,

in part because they involve strange substitutions of type Γ 𝐹 (1) whose codomain is a functor

applied to a terminal object. However, we discover that ‘extra-logical’ structures found in several

prior type theories can be seen as instances of these rules. For example, we show that the extension

of a context by an affine dimension variable, as used in internalizing parametricity [7, 16], forms a

PRA. Furthermore, the ‘tick variables’ used in clocked type theory [4] can also be seen as arising

from a PRA. We show that recognition of this fact can be used to provide a ‘rational reconstruction’

of the rule for the tick constant which is simpler, and evidently implementable.

Both of these applications—viz. parametricity and guarded recursion—essentially require the

formulation of the internal language of a categorical model: most non-trivial results depend on

‘importing’ structure from the model into the type theory, which is then used for further reasoning.

For instance, while the modal apparatus of guarded recursion can be captured by FitchTT directly,

it is necessary to extend the theory to include the Löb induction principle to perform definition

by guarded recursion. Previous Fitch-style type theories were incompatible with this step, and

thus could not be used for either application. Thus, our work is more than just a technical exercise

on the admissibility of substitution: it is a necessary stepping stone for the formulation of richer,

practical type theories that encapsulate the logical principles found in many models of interest.
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Finally, and most remarkably, we see that the structure of PRAs immediately scales to multiple

modalities. Thus, FitchTT can be effortlessly parameterized by an arbitrary collection of modalities

and natural transformations between them, with only minimal changes to the rules.

1.5 Contributions
In summary, we make the following contributions:

• We recognize parametric right adjoints as the key ingredient for validating substitution in

modal type theories.

• We propose a newmodal dependent type theory FitchTTwhich uses parametric right adjoints

to generalize DRA to a setting with multiple modes and modalities.

• We prove that an appropriate instance of FitchTT constitutes a conservative extension of

DRA, and investigate its more complex relationship to MLTTµ [25].

• We show that this extra structure of parametric right adjoints allows FitchTT to emulate the

convenient syntax of handcrafted type theories for internalized parametricity [7, 16] and

guarded recursion [4, 5].

1.6 Notation
We will use standard notation for CwFs. We write Γ,Δ, etc. for contexts and 𝜎,𝛾, 𝛿 for substitutions

Δ→ Γ. We also write 1 for the terminal context, and Γ.𝐴 for the extension of Γ by Γ ⊢ 𝐴 type. If
𝜎 : Δ→ Γ and Δ ⊢ 𝑀 : 𝐴[𝜎], we can extend 𝜎 to 𝜎.𝑀 : Δ→ Γ.𝐴. There is a weakening substitution
↑ : Γ.𝐴→ Γ, and we write ↑𝑛 for the composition of 𝑛 of them. The last element in an extended

context is accessed by the term Γ.𝐴 ⊢ v0 : 𝐴[↑]. Finally, substitutions 𝜎 have an action on types

and terms that is denoted by 𝐴[𝜎] and𝑀 [𝜎] respectively.

2 MODALITIES AND SUBSTITUTION
Suppose we have a type theory on a category C, and some endofunctor □ : C → C of interest. Our

objective is to internalize □ in the type theory. Adopting the rule

Γ ⊢ 𝐴 type

Γ ⊢ □𝐴 type

amounts to assuming that the functor □ is fibered [37, §2], i.e. has an action on types whose output

lives in the same context as its input. Most of the functors that we are interested in are not.

If we do not wish to assume that □ is fibered, we may formulate rules that only assume its

functoriality, like so:

ty/functorial-form

Γ ⊢ 𝐴 type

□Γ ⊢ □𝐴 type

ty/functorial-intro

Γ ⊢ 𝑀 : 𝐴

□Γ ⊢ mod (𝑀) : □𝐴

Unfortunately, these rules do not admit substitution. Suppose that Γ ⊢ 𝑀 : 𝐴 and 𝜎 : Δ→ □Γ, so
that Δ ⊢ (□𝐴) [𝜎] type. For □ to be natural, there should be a substitution 𝜎 ′ for which

Δ ⊢ (□𝐴) [𝜎] = □(𝐴[𝜎 ′]) type

This is constitutionally impossible: the right hand side is typable only in a context of the form □Γ′,
not a general Δ.
To obtain a usable type theory one must repair this. There are three standard solutions.
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Delay substitutions. Instead of propagating substitutions under modal constructs, we may choose

to absorb them. We can do so by building a delayed substitution into the modal introduction rules

for both types and terms:

𝜎 : Γ → □Δ Δ ⊢ 𝑀 : 𝐴

Γ ⊢ mod (𝑀)𝜎 : □𝜎𝐴

Substitution is then effected by absorbing a morphism into this cut: for any 𝜎 ′ : Γ′ → Γ we have

Γ′ ⊢ mod (𝑀)𝜎 [𝜎 ′] = mod (𝑀)𝜎◦𝜎 ′ : □𝜎◦𝜎 ′𝐴
This method was pioneered by Bierman and de Paiva [8].

Split the contexts. Another approach, originally due to Davies and Pfenning [34], replaces the

usual judgments by a form that involves two or more contexts. The dual context Δ; Γ stands for the

object □Δ × Γ. The introduction rules are

1;Δ ⊢ 𝐴 type

Δ; Γ ⊢ □𝐴 type

1;Δ ⊢ 𝑀 : 𝐴

Δ; Γ ⊢ 𝑀 : □𝐴

The semantics of these rules is clear: if 1;Δ ⊢ 𝐴 type is interpreted by a family 𝜋𝐴 : Δ.𝐴 Δ, then
□𝐴 is interpreted by the family □𝜋𝐴 × idΓ which is over the object □Δ× Γ. This rule is well-behaved
under substitution, but with a caveat: we must adapt the structure of substitutions in a way that

follows the structure of contexts. We must take our ‘primitive’ substitutions (𝛿 ;𝛾) : Δ′; Γ → Δ; Γ
to be morphisms 𝐹 (𝛿) × 𝛾 : □Δ′ × Γ′ → □Δ × Γ of C.

Factorize the substitution. A third way to push a substitution 𝜎 : Δ → □Γ under a modality is

to assume that it factorizes in a convenient way. For example, we may assume that for every Δ
there is a universal arrow from Δ to □, i.e. an object Δ.µ and a morphism [Δ : Δ→ □(Δ.µ) through
which every substitution 𝜎 : Δ→ □Γ into a modal context factorizes uniquely:

Δ □(Δ.µ) Δ.µ

□Γ Γ

[Δ

𝜎 □�̂� �̂�

This does not quite solve the substitution problem for ty/functorial-form, but it canonically

simplifies it: it allows us to find a ‘maximal’ substitution �̂� that we can push under the modality, so

that Δ ⊢ (□𝐴) [𝜎] = □(𝐴[�̂�]) [[Δ] type. In a sense, this is a case of carrying a ‘canonical delayed

substitution’ [Δ.

A simple observation allows us to make [ invisible. It is a well-known fact from category theory

that if such a universal arrow exists for every Δ, then −.µ extends to an endofunctor which is left

adjoint to □. We can promote this to an additional operator on contexts, and replace the introduction

rules with

Γ.µ ⊢ 𝐴 type

Γ ⊢ □𝐴 type

Γ.µ ⊢ 𝑀 : 𝐴

Γ ⊢ mod (𝑀) : □𝐴
These are called Fitch-style rules [18].

All three approaches have their strengths and weaknesses. The Bierman-de Paiva style of delayed

substitutions is conceptually clear, but difficult to use and implement. Moreover, it does not readily

adapt to support multiple modalities, at least not when they interact in a nontrivial way. On the

other hand, the split-context approach has proven practical whenever the modalities interact in

certain convenient ways (see e.g. Shulman [36]). However, this is the exception and not the rule.
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In contrast, the Fitch-style approach is supported by a single universal property which fully

determines the modality up to isomorphism—just as with standard connectives, like dependent

products and sums. Thus, one might be led to believe that Fitch-style calculi are the preferred

formalism. Alas, it is not difficult to see that they suffer from a number of technical disadvantages.

We illustrate these using a specific theory, viz. the calculus of dependent right adjoints.

2.1 The calculus of dependent right adjoints
The calculus of dependent right adjoints (DRA) [9] consists of standard Martin-Löf type theory

extended with an operation on contexts—denoted by µ—and a single modality □ on types. In

addition to the usual CwF structure, DRA postulates a dependent adjunction.

Definition 1. A dependent adjunction consists of

(1) an endofunctor −.µ on the category of contexts

(2) an assignment □ from types to types, such that

dra/ty/mod

Γ.µ ⊢ 𝐴 type

Γ ⊢ □𝐴 type

(3) a bijection mod (−)/unmod (−) on terms, such that

dra/tm/mod

Γ.µ ⊢ 𝑀 : 𝐴

Γ ⊢ mod (𝑀) : □𝐴

dra/tm/unmod

Γ ⊢ 𝑀 : □𝐴

Γ.µ ⊢ unmod (𝑀) : 𝐴
All of □, mod (−), and unmod (−) must be natural in Γ.

While −.µ has an action on the entire category of contexts, the modality □ acts only on types,

which are a distinct sort (depending on contexts).
1
The fact that mod (−) and unmod (−) form a

bijection yields the following 𝛽 and [ laws for □.

Γ.µ ⊢ 𝑀 : 𝐴

Γ.µ ⊢ unmod (mod (𝑀)) = 𝑀 : 𝐴

Γ ⊢ 𝑀 : □𝐴

Γ ⊢ mod (unmod (𝑀)) = 𝑀 : □𝐴

Do these rules admit substitution? In the case of the introduction rule dra/tm/mod, the naturality

required of □ and mod (−) solves the problem: for any Γ.µ ⊢ 𝑀 : 𝐴 and 𝜎 : Δ→ Γ it implies that

Δ ⊢ mod (𝑀) [𝜎] = mod (𝑀 [𝜎.µ]) : □(𝐴[𝜎.µ])
where 𝜎.µ is the action of the functor −.µ on 𝜎 . The same cannot be said of the elimination rule

dra/tm/unmod: there is no evident way to commute a substitution with unmod (−). Indeed, we
cannot use naturality, as a general substitution 𝜎 : Δ→ Γ.µ need not be of the form 𝛾 .µ.

In order to address this the original paper on DRA replaces dra/tm/unmod with a rule involving

additional weakening:

dra/tm/unmod*

Γ ⊢ 𝑀 : □𝐴

Γ.µ.𝐴0. · · · .𝐴𝑛−1 ⊢ unmod (𝑀) : 𝐴[↑𝑛]
This rule has an ‘exorbitant privilege’: it is stable under substitution in the free algebra. Every

𝜎 : Δ → Γ in the free algebra is a substitution that is definable in the pure type theory with no

constants. One can then prove that for every such 𝜎 : Δ→ Γ.µ.𝐴 there is a Δ′ such that Δ = Δ′ .µ.𝐴,

1
This gap disappears if we can blend types and contexts. For example, if the CwF is democratic, i.e. if for every context Γ
there is a ⊢ Γ̃ type such that Γ � 1.Γ̃, then □ can be extended to a right adjoint of −.µ [9, §4.1].

ACM Trans. Comput. Logic, Vol. 23, No. 3, Article 18. Publication date: April 2022.



Modalities and Parametric Adjoints 18:7

and a 𝜎 ′ : Δ′ → Γ such that 𝜎 = 𝜎 ′ .µ.v0. This enables us to extract 𝜎 ′ from 𝜎 , and push that under

unmod (−).
This is all well and good if we just want a syntax for dependent adjunctions: we can write

proofs in the free algebra, and interpret them in any dependent adjunction [9, §3.1]. One can even

implement this syntax, following an approach similar to that of [25] forMLTTµ. Nevertheless, there
is something unsatisfying about this state of affairs. The aforementioned factorization property of

substitutions is proven by performing an induction on the substitution 𝜎 . As a consequence, it only

works in the free algebra: it is not in general possible to decompose substitutions by induction

in an arbitrary CwF. In other words, the stability of unmod (−) depends on the absence of certain

substitutions.

This may seem like a small price to pay, but in fact it has grave consequences: it prohibits

the use of DRA as the internal language of an arbitrary dependent adjunction. In models of

DRA, dra/tm/unmod* may not respect substitution, leading to unwelcome surprises. For example,

the truth of a theorem of the type theory might depend on the precise context in which it is proven.

Unfortunately, such models are not uncommon: for instance, MLTTµ [25] is a proper extension

(and hence a model) of DRA, yet the unmod (−) form of DRA is not stable under substitution in

MLTTµ. In short, Fitch-style type theories à la DRA cannot play the rôle of internal languages.

2.2 Parametric right adjoints
It is natural to wonder if there is a special property of the pure syntax which confers stability under

substitution. If we were to identify and axiomatize it, we would have a chacterization of dependent

adjunctions that support it.

To this end, it is instructive to consider a particular example. Suppose that ⊢ 𝔄 type, i.e. that
𝔄 is a closed type. (What follows does not work if 𝔄 is not closed.) Then context extension by 𝔄

coincides with − × 𝔄, and has a dependent right adjoint 𝔄 → (−) [9, §5]. Writing out the rule

dra/tm/mod yields the usual introduction rule for the function space:

tm/lam

Γ.𝔄 ⊢ 𝑀 : 𝐵

Γ ⊢ _(𝑀) : 𝔄 → 𝐵

However, the elimination rule dra/tm/unmod looks unfamiliar:

tm/unlam

Γ ⊢ 𝑀 : 𝔄 → 𝐵

Γ.𝔄 ⊢ unlam(𝑀) : 𝐵
This rule suffers from the same issues as the more general dra/tm/unmod. Given a closed term

⊢ 𝑁 : 𝔄, there is no evident way to push the corresponding substitution 1 1.𝔄 under unlam(−).
In fact, the traditional elimination rule

tm/app

Γ ⊢ 𝑀 : 𝔄 → 𝐵 Γ ⊢ 𝑁 : 𝔄

Γ ⊢ 𝑀 (𝑁 ) : 𝐵 [id.𝑁 ]
is a kind of closure of unlam(−) under substitution: we may define 𝑀 (𝑁 ) ≜ unlam(𝑀) [id.𝑁 ].
Conversely, using tm/app we can define unlam(𝑀) ≜ 𝑀 [↑] (v0). Thus, tm/unlam and tm/app are

interderivable rules, but we can only write a naturality equation for the latter.

On the surface, tm/app does not seem to be the most general closure of tm/unlam under substi-

tution: that would include an arbitrary 𝜎 : Δ→ Γ.𝔄 in the premise, which the conclusion would

carry it in a delayed form. However, this is not necessary: as 𝔄 is closed, every such 𝜎 is determined

by a substitution Δ Γ and a term Δ ⊢ 𝑁 : 𝔄.
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Lemma 1. Let ⊢ 𝔄 type. Any substitution 𝜎 : Δ Γ.𝔄 can be uniquely decomposed into a pair of

substitutions

𝜎0 ≜ ↑ ◦ 𝜎 : Δ→ Γ 𝑟 ≜ (!Γ)+ ◦ 𝜎 : Δ→ 1.𝔄

where 𝛾+ ≜ (𝛾 ◦ ↑) .v0 : Δ.𝔄 → Γ.𝔄 for any 𝛾 : Δ Γ.

Thus, if we fix a substitution 𝑟 : Δ → 1.𝔄 (i.e. a term), substitutions 𝜎 : Δ → Γ.𝔄 such that

(!Γ)+ ◦ 𝜎 = 𝑟 correspond to substitutions Δ→ Γ. Regarding 𝑟 as an object in the slice over 1.𝔄, this

equation then shows that 𝜎 is a morphism 𝑟 → (!Γ)+ in the slice category over 1.𝔄. Accordingly,
we obtain a bijection between substitutions Δ→ Γ and morphisms 𝑟 → (!Γ)+ in the slice category.

With this observation in hand, the decomposition provided by Lemma 1 can be sharpened into a

more familiar categorical structure:

Definition 2. Let C have a terminal object 1C . A functor 𝐺 : C D is a parametric right adjoint

if the induced functor 𝐺/1 : C D/𝐺 (1C) is a right adjoint.

See Carboni and Johnstone [13] and Weber [40, §2] for the origins of PRAs.

Specializing to 𝐺 = −.𝔄, the functor 𝐺/1 = (−.𝔄)/1 maps Δ to (!Δ)+ : Δ.𝔄 → 1.𝔄, and
this has a left adjoint given by 𝐹 (𝑟 : Γ 1.𝔄) ≜ Γ. Unfolding, we see that Lemma 1 precisely

states that these functors are adjoints. The unit and counit of this adjunction have recognizable

forms: the unit at 𝑟 : Γ 1.𝔄 is the substitution [ [𝑟 ] ≜ id.v0 [𝑟 ] : Γ Γ.𝔄, and the counit at Γ is

𝜖 [Γ] ≜ ↑ : Γ.𝔄 Γ.
Using these parts we may precisely restate the application rule tm/app without actually changing

any of its ingredients:

tm/pra-app

𝑟 : Γ 1.𝔄 𝐹 (𝑟 ) ⊢ 𝑀 : 𝔄 → 𝐴

Γ ⊢ 𝑀 ⟨𝑟 ⟩ : 𝐴[[ [𝑟 ]]

This formulation only uses two facts: that 𝔄 → (−) is a dependent right adjoint to (−) .𝔄, and that

(−) .𝔄 is itself a parametric right adjoint with left adjoint 𝐹 . One naturally wonders whether we

can adapt this maneuver to a general dependent adjunction: can an ill-behaved elimination rule

(like tm/unlam) always be replaced by an equivalent well-behaved rule (like tm/app) if we assume

that the modal context operator is a parametric right adjoint? The answer is positive: we will in

fact show that the adjunctions automatically guarantee the admissibility of substitution!

Indeed, suppose −.µ has a dependent right adjoint □. Suppose furthermore that −.µ is a para-

metric right adjoint, and write Γ/𝑟 for the application of the left adjoint to 𝑟 : Γ → 1.µ. Recalling
that [ [𝑟 ] : Γ → (Γ/𝑟 ).µ, we can write down a rule

dra/tm/pra-unmod

𝑟 : Γ 1.µ Γ/𝑟 ⊢ 𝑀 : □𝐴

Γ ⊢ 𝑀@ 𝑟 : 𝐴[[ [𝑟 ]]

Theorem 2. dra/tm/pra-unmod and dra/tm/unmod are interderivable.

Proof. Under the hypotheses of dra/tm/pra-unmod, we define𝑀@ 𝑟 by

𝑀@ 𝑟 ≜ unmod (𝑀) [[ [𝑟 ]]

We now show that this rule is equivalent to dra/tm/unmod. Given Γ ⊢ 𝑀 : □𝐴, we recall that
𝜖 [Γ] : Γ.µ/(!Γ .µ) → Γ, so we have

Γ.µ/(!Γ .µ) ⊢ 𝑀 [𝜖 [Γ]] : (□𝐴) [𝜖 [Γ]]
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By naturality, this type is equal to □(𝐴[𝜖 [Γ] .µ]). Hence, we can define

unmod (𝑀) ≜ Γ.µ ⊢ 𝑀 [𝜖 [Γ]]@(!Γ .µ) : 𝐴[𝜖 [Γ] .µ] [[ [!Γ .µ]]

The type of this term is equal to 𝐴, as 𝜖 [Γ] .µ ◦ [ [!Γ .µ] is the identity by one of the triangle laws of

the adjunction. □

Therefore, the PRA structure allows us to equivalently restate dra/tm/unmod as dra/tm/pra-

unmod. It remains to prove that, unlike the former rule, the latter can be made to admit substitution.

Given any 𝜎 : Δ→ Γ, we may see it as an arrow 𝑟 ◦ 𝜎 → 𝑟 in the slice category over 1.µ. Applying
the left adjoint gives 𝜎/µ : Δ/𝑟 ◦ 𝜎 → Γ/𝑟 . This substitution acts on𝑀 to yield Δ/𝑟 ◦ 𝜎 ⊢ 𝑀 [𝜎/µ] :
(□𝐵) [𝜎/µ]. But (□𝐵) [𝜎/µ] = □(𝐵 [(𝜎/µ).µ]), so we have

Δ ⊢ 𝑀 [𝜎/µ]@(𝑟 ◦ 𝜎) : 𝐵 [(𝜎/µ).µ] [[ [𝑟 ◦ 𝜎]]

This type is equal to 𝐵 [[ [𝑟 ]] [𝜎] by the naturality of [. Hence, we can postulate that

(𝑀@ 𝑟 ) [𝜎] = 𝑀 [𝜎/µ]@(𝑟 ◦ 𝜎)

In fact, this equation can be derived from𝑀@ 𝑟 ≜ unmod (𝑀) [[ [𝑟 ]] by the naturality of [ and of

unmod (−).
Some version of Lemma 1 has been shown en passant for all prior Fitch-style calculi in the

process of proving the admissibility of substitution [4, 9, 16, 25]. In each case the modal elimination

rules can be derived by unfolding the components of the parametric adjunction in the general rule

dra/tm/pra-unmod. We choose the notation𝑀@ 𝑟 to emphasize the connection with the application

rule.

To recap: we have addressed the issue of admissibility of substitution. In the case of connectives

which modify the context—like context extension and (Fitch-style) modalities—we have found

that the structure that essentially underlies the admissibility of substitution is that of a parametric

right adjoint. We continue by introducing a general type theory, capable of supporting multiple

interacting modalities, which requires that each of its modal context operators is a PRA.

3 A MULTIMODAL FITCH-STYLE TYPE THEORY
In this section we introduce a modal type theory for dependent adjunctions whose left adjoints are

also parametric right adjoints, which we call FitchTT. Remarkably, by the reasoning explored in

Section 2, this type theory readily scales to not only admit substitution with a Fitch-style modality,

but to admit substitution in the presence of an arbitrary collection of modalities and natural

transformations between them. The step from a single modality to multiple modalities in the

presence of parametric right adjoints is almost mechanical, which is surprising: it was previously

unknown how to properly support two distinct Fitch-style modalities in one system.

3.1 Multimode and multimodal aspects
While our definition of dependent adjunction involved only a single category, adjunctions in general

connect two possibly distinct categories. In order to obtain the most expressive theory, we therefore

allow for multiple categories in FitchTT. We call each such category a mode, making FitchTT a

multimode type theory. Each judgment of FitchTT is annotated by the mode it lives in. We denote

modes by𝑚,𝑛, 𝑜 , etc.

Accordingly, the modalities of FitchTT are no longer operators on types in a single category, but

map types across categories. Each modality ` : 𝑛 𝑚 induces an operation ⟨` | −⟩ from types at

mode 𝑛 to types at mode𝑚. As we allow many modalities between each pair of modes, FitchTT is a

multimodal type theory. We denote modalities by `, a, b , etc.
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fitch/cx/mex

` : 𝑛 𝑚 Γ cx@𝑚

Γ.{`} cx@𝑛

fitch/ty/mod

` : 𝑛 𝑚 Γ.{`} ⊢ 𝐴 type@𝑛

Γ ⊢ ⟨` |𝐴⟩ type@𝑚

fitch/tm/mod

` : 𝑛 𝑚 Γ.{`} ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod` (𝑀) : ⟨` |𝐴⟩@𝑚

Fig. 1. Introduction and formation for modal types.

Viewing modalities as functors suggests that modes and modalities should form a category: there

should be a composite modality ` ◦ a : 𝑜 𝑚 for every ` : 𝑛 𝑚 and a : 𝑜 𝑛. To this structure

we add one more layer, namely 2-cells between modalities. These induce natural transformations:

a 2-cell 𝛼 : ` ⇒ a enables the definition of a function ⟨a |𝐴⟩ → ⟨` |𝐴⟩ for a type 𝐴. We denote

2-cells by 𝛼, 𝛽,𝛾 , etc.

We follow prior modal type theories in recognizing that the modes, modalities, and 2-cells

together constitute a strict 2-category, a mode theory [22, 29, 30], for which we usually writeM.

No rule changes the mode theory: it is a parameter to the type theory.

Notation 3. Given a pair of 2-cells 𝛼 : `0 ⇒ a0 and 𝛽 : `1 ⇒ a1, we write 𝛽 •𝛼 : `1 ◦ `0 ⇒ a1 ◦ a0
for the horizontal composition of these 2-cells.

3.2 The mode-local fragment
Each judgment of FitchTT is indexed by a mode. For instance, we indicate that Γ is a well-formed

context at mode𝑚 by writing Γ cx@𝑚. Modes interact with each other only through modal types.

In other words, if we do not include any modal rules, each typing derivation remains in a single

mode. We call the collection of non-modal rules the mode-local fragment of FitchTT. This fragment

is given parametrically in the mode𝑚, and consists of the usual rules of MLTT with products, sums,

and intensional identity types.

3.3 The modal fragment: formation and introduction
The modal rules of FitchTT mediate between the different modes of the type theory. They closely

follow the DRA calculus described in Section 2, but incorporate slight generalizations to allow for

the multimodal structure. We will examine the rules for modal types in FitchTT discursively, but

the reader may refer to Appendix A to see the full collection of rules.

The formation and introduction rules are given in Fig. 1. For each modality ` : 𝑛 𝑚, there is

both a modal context operator −.{`} as well as an operator ⟨` | −⟩ on types. Like in DRA, the idea
is that −.{`} is the left adjoint, and ⟨` | −⟩ is its dependent right adjoint. However, a modality may

now cross between different modes. Thus, if Γ cx@𝑚 is a context at mode𝑚 and ` : 𝑛 𝑚, then

we obtain a context Γ.{`} cx@𝑛 at mode 𝑛. This action is contravariant by convention: the mode

theoryM covariantly specifies the structure of the modalities ⟨` | −⟩, so their left adjoints −.{`}
act with opposite variance.

The introduction rule for modal types, fitch/ty/mod, is a slight variation on dra/ty/mod which

accounts for passing between modes. The same is true for the modal term introduction rule

fitch/tm/mod: given 𝑀 of the appropriate type at mode 𝑛, it ensures that mod` (𝑀) is a term at

mode𝑚.
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fitch/cx/mres

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑚

Γ/(𝑟 : `) cx@𝑚

fitch/sb/counit

` : 𝑛 𝑚 Γ cx@𝑚

𝜖 [Γ] : Γ.{`}/(m` : `) Γ@𝑚

fitch/sb/unit

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑚

[ [𝑟 ] : Γ Γ/(𝑟 : `).{`}@𝑚

Fig. 2. Selected rules for modal restriction.

fitch/tm/unmod

` : 𝑛 𝑚 Γ/(𝑟 : `).{`} ⊢ 𝐴 type@𝑛 𝑟 : Γ {`}@𝑛 Γ/(𝑟 : `) ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ ⊢ 𝑀@ 𝑟 : 𝐴[[ [𝑟 ]]@𝑛

fitch/tm/unmod-mod

` : 𝑛 𝑚 Γ/(𝑟 : `).{`} ⊢ 𝐴 type@𝑛 𝑟 : Γ {`}@𝑛 Γ/(𝑟 : `).{`} ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod` (𝑀)@ 𝑟 = 𝑀 [[ [𝑟 ]] : 𝐴[[ [𝑟 ]]@𝑛

fitch/tm/mod-unmod

` : 𝑛 𝑚 Γ.{`} ⊢ 𝐴 type@𝑛 Γ ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ ⊢ 𝑀 = mod` (𝑀 [𝜖 [Γ]]@m`) : ⟨` |𝐴⟩@𝑚

Fig. 3. The full elimination rule for modal types

3.4 The modal fragment: the elimination rule
Unlike the case of introduction, the well-behaved elimination rule of the DRA calculus does not

readily adapt to a multimodal setting. We must hence design an elimination rule anew, using the

insights we acquired in Section 2.

First, we introduce some notation.Whenever ` : 𝑛 𝑚, wewrite {`} for the context 1.{`} cx@𝑛.

We will also write m` ≜ !Γ .{`} : Γ.{`} {`}@𝑛. Consider the multimodal analogue of the

elimination rule of the dependent adjunction, viz.

fitch/tm/unmod-dra

` : 𝑛 𝑚 Γ ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ.{`} ⊢ unmod` (𝑀) : 𝐴@𝑛

Now suppose that −.{`} (for ` : 𝑛 𝑚) is a parametric right adjoint. This means that we are

given a modal context operator which maps a Γ cx@𝑛 and a substitution 𝑟 : Γ {`}@𝑛 to a

new context Γ/(𝑟 : `) cx@𝑚. The unit for this adjunction gives for each such 𝑟 a substitution

[ [𝑟 ] : Γ → Γ/(𝑟 : `).{`}@𝑛. Using fitch/tm/unmod-dra, we can derive a rule

𝑟 : Γ {`}@𝑛 Γ/(𝑟 : `) ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ ⊢ 𝑀@ 𝑟 : 𝐴[[ [𝑟 ]]@𝑛

by setting 𝑀@ 𝑟 ≜ unmod` (𝑀) [[ [𝑟 ]]. Just as in Section 2.2, this new rule is equivalent to

fitch/tm/unmod-dra and admits substitution. We take this as the definitive elimination rule for

modal types. The basic rules for −/(− : `) are given in Fig. 2 while the elimination rule for modal

types along with its 𝛽 and [ principles are given in Fig. 3.
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fitch/cx/id

Γ cx@𝑚

Γ.{id𝑚} = Γ cx@𝑚

fitch/cx/comp

a : 𝑜 𝑛 ` : 𝑛 𝑚 Γ cx@𝑚

Γ.{` ◦ a} = Γ.{`}.{a} cx@𝑜

fitch/sb/mex

` : 𝑛 𝑚 𝛿 : Γ Δ@𝑚

𝛿.{`} : Γ.{`} Δ.{`}@𝑛

fitch/sb/coe

`0, `1 : 𝑛 𝑚 𝛼 : `0 ⇒ `1 Γ cx@𝑚

{𝛼}Γ : Γ.{`1} Γ.{`0}@𝑛

fitch/sb/mres

` : 𝑛 𝑚 𝛿 : Γ Δ@𝑛 𝑟 : Δ {`}@𝑚

𝛿/` : Γ/(𝑟 ◦ 𝛿 : `) Δ/(𝑟 : `)@𝑚

fitch/sb/unit-slice-eq

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑚

!.{`} ◦ [ [𝑟 ] = 𝑟 : Γ {`}@𝑛

fitch/sb/first-triangle-eq

Γ cx@𝑛 ` : 𝑛 𝑚 𝑟 : Γ {`}@𝑛

𝜖 [Γ/(𝑟 : `)] ◦ ([ [𝑟 ]/`) = id : Γ/(𝑟 : `) Γ/(𝑟 : `)@𝑚

fitch/sb/second-triangle-eq

Γ cx@𝑚 ` : 𝑛 𝑚

(𝜖 [Γ] .{`}) ◦ [ [1.{`}] = id : Γ.{`} Γ.{`}@𝑚

Fig. 4. Selected rules for multiple modalities and modal substitutions.

The presence of multiple modalities does not complicate the elimination rule, unlike in other

multimodal calculi, e.g. Gratzer et al. [22]. Instead, the interaction of modalities in FitchTT is

governed purely by the substitution calculus.

3.5 The substitution calculus
The substitution calculus for FitchTT can be divided into the mode-local part—the standard substitu-

tion operations of MLTT in each mode—and the part concerning modal operations. For instance, at

each mode𝑚 there are identities and compositions of substitutions, as well as a unique substitution

!Γ : Γ 1@𝑚 for each Γ cx@𝑚. Mode-local substitutions are thus standard [27], so we focus on

the novel modal ones.

As we mentioned before, the mode theoryM is a strict 2-category. We mirror this fact within

the type theory by postulating that the assignment of modal context operators −.{`} to modalities

` is 2-functorial in the mode theory. This is established by some of the rules of Fig. 4.

Furthermore, each one of these operators −.{`} is itself a functor between context categories.

For each ` : 𝑛 𝑚 there is a functorial action on substitutions, which to 𝛿 : Γ Δ@𝑚 assigns a

substitution 𝛿.{`} : Γ.{`} Δ.{`}@𝑛. This assignment respects identity and composition. For

example, (𝛾0 ◦𝛾1).{`} = 𝛾0 .{`} ◦𝛾1 .{`}. It is also functorial inM, so we have 𝛾 .{` ◦a} = 𝛾 .{`}.{a}.
In short, we have a functorial assignment of functors to modalities.

We previously also mentioned that −.{`} sends a 2-cell 𝛼 : a ⇒ ` to a natural transformation.

This is effected by postulating a natural transformation with components {𝛼}Γ : Γ.{`} Γ.{a}@𝑛
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at Γ cx@𝑚. Notice that the action on 2-cells is also contravariant, so that the substitution {𝛼}Γ
induces a function ⟨a |𝐴⟩ → ⟨` |𝐴⟩ in the type theory.

Finally, FitchTT requires that each −.{`} be a parametric right adjoint. We have already discussed

the left adjoint −/(− : `) on contexts as well as the unit and counit of the nascent parametric

adjunction (Fig. 2). It therefore only remains to extend the substitution calculus with the functorial

action of −/(− : `) (fitch/sb/mres) and to ensure that the unit and counit satisfy the triangle

equalities (fitch/sb/first-triangle-eq and fitch/sb/second-triangle-eq). These rules are complicated

by the fact that −/(− : `) is a functor not into the category of contexts and substitutions, but rather

into the slice category above 1.{`}. This explains the appearance of 𝛿 in the domain of 𝛿/` in the

fitch/sb/mres as well as fitch/sb/unit-slice-eq which states that [ [𝑟 ] is a map between two objects

in a slice category and therefore part of a commuting triangle.

3.6 Some simple examples
As an example of using the type theory, we show that we can construct type-theoretic equivalences

[38, §4] that weakly mirror the structure of the mode theoryM within FitchTT. In particular, we

show that ⟨` ◦ a |𝐴⟩ ≃ ⟨` |⟨a |𝐴⟩⟩ and ⟨id𝑚 |𝐴⟩ ≃ 𝐴 for appropriate modalities and modes `, a,𝑚.

Finally, we show that each 2-cell 𝛼 : a ⇒ ` ofM induces a natural transformation ⟨a |𝐴⟩ → ⟨` |𝐴⟩.
We can straightforwardly construct a function

comp`,a : ⟨` ◦ a |𝐴⟩ → ⟨` |⟨a |𝐴⟩⟩

by using fitch/tm/unmod-dra and, crucially, fitch/cx/comp:

comp`,a ≜ _(mod` (moda (v0 [𝜖]@m`◦a )))

This can be shown to be an equivalence. Similary, triv (−) : ⟨id |𝐴⟩ ≃ 𝐴 follows from fitch/cx/id:

triv ≜ _(v0 [𝜖]@mid )

To construct a natural transformation ⟨` |𝐴⟩ → ⟨a |𝐴⟩, we must use the 2-functorial features of

the substitution calculus. Specifically, given a 2-cell 𝛼 : ` ⇒ a , recall that there is a substitution

{𝛼}Γ : Γ.{a} Γ.{`}@𝑛 which serves as the crucial component of the coercion function:

coe[𝛼] : ⟨a |𝐴⟩ → ⟨` |𝐴⟩
coe[𝛼] = _(mod` (v0 [𝜖 ◦ {𝛼}/`]@ma ◦ {𝛼}))

Already with definitions like coe[𝛼], the explicit core calculus syntax can become unwieldy.

When working on paper, it is often convenient to repurpose constructs like dra/tm/unmod, which

are ill-behaved, as derivable rules. These operations cannot be internalized—they are not stable

under substitution—and we do not expect them to be directly incorporated into the surface syntax

of an implementation of FitchTT. Rather than developing a user-friendly syntax in the present

work, however, we opt to treat work rules like dra/tm/unmod as convenient shorthands or ‘macros’

for common patterns. For instance, we may generalize dra/tm/unmod to bake in a 2-cell directly:

` : 𝑜 𝑚 a : 𝑚 𝑛 b : 𝑜 𝑛

𝛼 : a ◦ ` ⇒ b Γ.{a} ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ.{b} ⊢ unmod`,𝛼 (𝑀) ≜ unmod` (𝑀) [{𝛼}Γ] : 𝐴@𝑜

With this macro to hand, we can quickly define the modal composition operator coe[𝛼] (𝑀) ≜
moda (unmod`,𝛼 (𝑀)).

ACM Trans. Comput. Logic, Vol. 23, No. 3, Article 18. Publication date: April 2022.



18:14 Daniel Gratzer, Evan Cavallo, G.A. Kavvos, Adrien Guatto, and Lars Birkedal

4 SEMANTICS
FitchTT is already given as a generalized algebraic theory and so automatically induces a category

of models (algebras and strict homomorphisms). In this section, we aim to restructure that definition

in terms of more malleable categorical gadgets. We immediately reap the rewards of this effort

by showing how to construct models of FitchTT from adjunctions between presheaf categories,

which we use to present various instances of the type theory in Sections 5 and 6. Finally, we relate

FitchTT to previous Fitch-style type theories. More specifically, if we equip it with the mode theory

generated by a single endomodality, FitchTT is a conservative extension of DRA. We are able to

prove this in a syntax-free manner using only the algebraic and categorical structure of the model.

4.1 Natural models of type theory
Each mode of FitchTT includes a completely independent Martin-Löf type theory. There are many

equivalent ways of presenting a model of MLTT, but for the purposes of this paper we use natural
models [3, 21], which are a categorical reformulation of categories with families [20]. This choice has

no essential impact on our results. However, the language of natural models allows for a succinct

approach to models of FitchTT, encoding numerous equations as a handful of commuting squares.

Natural models are based around the concept of a representable natural transformation.

Definition 4. A representable natural transformation over C is a morphism 𝑢 : ¤𝑈 𝑈 : PSh (C)
such that the pullback of 𝑢 along any morphism y(Γ) 𝑈 is representable.

A representable natural transformation of presheaves over a context category is a concise way of

encoding the type and term families of CwFs. The category C represents contexts and substitutions.

Each𝑈 (Γ) is the set of types in context Γ : C. These sets organise into a presheaf under the action of
substitution on types. Similarly, the sets ¤𝑈 (Γ) of terms in context Γ also constitute a presheaf under

substitution. The morphism 𝑢 projects a term onto its type, and is thus natural under substitution.

Finally, the pullback condition encodes the universal property of context extension.

Remarkably, this basic vocabulary enables a concise encoding of the various requirements for

interpreting the connectives of type theory in a highly categorical style. Just as with CwFs, the

various connectives may be specified independently on top of the representable natural transfor-

mation. Thus, a natural model of type theory in C is given by a particular representable natural

transformation 𝑢 : ¤𝑈 𝑈 in PSh (C) equipped with various additional pieces of structure.

Further expository material as well as an in-depth discussion of natural models may be found in

the paper by Awodey [3]. In the rest of the section we will focus on the novel modal types.

4.2 Natural models and dependent adjunctions
Dependent adjunctions can be phrased in the language of natural models [23, §7.1]. First, notice

that the restriction to one category in the original definition of dependent adjunctions is artificial:

the same definition works between any two natural models of type theory. Fix two natural models,

𝑢 : ¤𝑈 𝑈 in PSh (C) and 𝜐 : ¤𝑉 𝑉 in PSh (D). The left adjoint of the dependent adjunction is

a functor 𝐿 : D C. On the other hand, the dependent right adjoint from 𝑢 to 𝜐 has actions on

types and terms which may be exactly encoded by a pullback square in PSh (D):

𝐿∗ ¤𝑈

𝐿∗𝑈

𝐿∗𝑢

¤𝑉

𝑉

mod

𝜐

Mod
(1)
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The left adjoint 𝐿 induces a functor 𝐿∗ : PSh (C) → PSh (D) by precomposition. Applying this to

the family 𝑢 yields a family of types and terms in contexts of the form Γ.µ ≜ 𝐿(Γ) for Γ ∈ D. The

formation rule and introduction rule, which are interpreted byMod and mod respectively, map

such types and terms to types and terms of the family 𝜐. The requirement that mod andMod be

natural transformations encodes that these operations respect substitution.

The universal property of the pullback suffices to interpret the elimination rule. Fix a context

Γ : D, and consider the representable presheaf y(Γ) : PSh (D). By the Yoneda lemma, morphisms

𝑀 : y(Γ) ¤𝑉 and 𝐴 : y(Γ) 𝐿∗𝑈 correspond to a term𝑀 over context Γ in D and a type 𝐴 over

context 𝐿(Γ) in C. Now, suppose that the following square commutes:

𝐿∗ ¤𝑈

𝐿∗𝑈

¤𝑉

𝑉

mod

Mod

y(Γ)

𝐴

𝑀

𝑁

The outer square encodes that the term𝑀 has typeMod (𝐴) in context Γ.
The universal property of the pullback square yields a morphism 𝑁 : y(Γ) 𝐿∗ ¤𝑈 which, by

Yoneda, is precisely a term in context 𝐿(Γ). The leftmost triangle says that 𝐿(Γ) ⊢ 𝑁 : 𝐴, whereas

the top triangle ensures that Γ ⊢ mod (𝑁 ) = 𝑀 : Mod (𝐴). Thus, 𝑁 is the ‘transpose’ of𝑀 , and we

write unmod (𝑀) ≜ 𝑁 . In this notation, commutation of the top triangle is the [ law, as it encodes

that mod (unmod (𝑀)) = 𝑀 . The 𝛽 law follows by the uniqueness of 𝑁 : if𝑀 = mod (𝑁 ′), then 𝑁 ′

fits into the above diagram, and hence unmod (𝑀) = 𝑁 = 𝑁 ′.
In fact, requiring that the above square is a pullback is not too strong. As limits are computed

pointwise in presheaf categories, a square is a pullback square if and only if it satisfies the universal

property with respect to all representable presheaves. Therefore, Diagram 1 is a pullback square

if and only if the model satisfies the transposition-style elimination rule for the modality. We

have already shown that in the presence of a PRA structure on the left adjoint, this transposition

elimination rule is equivalent to the full elimination rule for FitchTT modalities. Therefore, we can

summarize the full set of requirements of a FitchTT modality in a model as (1) a PRA 𝐿 between

context categories and (2) the existence of Mod and mod fitting into Diagram 1.

We note that this is strongly reminiscent of Voevodsky’s notion of universe morphism [39, §4].

4.3 Models of FitchTT
The definition of a model of FitchTT assembles mode-local models and modalities into a 2-functor:

the 0-dimensional component selects the mode-local model, the 1-dimensional action selects the

modal context operators, and the 2-dimensional action selects appropriate natural transformations.

Eachmodal context operator comes with a dependent right adjoint and is required to be a parametric

right adjoint.

Definition 5. Amodel of FitchTT over themode theoryM consists of a 2-functor J−K : Mcoop Cat
such that

• For each𝑚 :M, there is a natural model𝑢𝑚 : ¤𝑈𝑚 𝑈𝑚 in PSh (J𝑚K) closed under dependent
products, sums, identity types.
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• For each ` : 𝑛 𝑚, there is a dependent right adjoint from𝑢𝑛 to𝑢𝑚 as explained in Section 4.2

whose left adjoint is given by J`K.
• Finally, each J`K is a parametric right adjoint.

The category of models of FitchTTwithM has models for objects, and strict morphisms preserving

all connectives and operations on-the-nose for morphisms.

As this definition of model is a repackaging of the standard notion of model given by the definition

of FitchTT as a generalized algebraic theory, we know that

Example 6. There is an initial model S[−] of FitchTT given by derivations in the GAT quotiented

by definitional equality, which we call the syntax. More precisely, S[𝑚] is the category of contexts

and substitutions at mode𝑚, while S[`] and S[𝛼] respectively become −.{`} and {𝛼}− .

4.4 Relationships to other Fitch-style type theories
The initiality of syntax is a powerful tool for relating FitchTT with other type theories. More

specifically, if we are able to show that another type theory T is a model of FitchTT withM, then

initiality induces a unique morphism from the syntax of FitchTT to that type theory. This morphism

is then a translation of FitchTT into T.
For example, we can relate the DRA calculus to FitchTT. First, generate the free mode theory of

a single modality: start with a single mode𝑚 and a single morphism ` : 𝑚 𝑚 and generate the

free (strict) 2-category. Then,

Theorem 3. FitchTT with a single endomodality ` is a conservative extension of DRA.

Proof. By definition, a model of DRA is a model of FitchTT if and only if the functor −.µ is

a parametric right adjoint. Thus, every model of FitchTT is a model of DRA. Moreover, every

morphism of FitchTT models is a fortiori a morphism of DRA models (as the latter is a weaker

theory than the former).

Consider the free algebra of DRA. While not explicitly stated as such, −.µ is a parametric right

adjoint. The left adjoint to this parametric adjoint is given by “deleting up to a µ” so that explicitly

we send Γ.µ.Δ to Γ (with µ ∉ Δ). The definition of non-standard definition of substitution given by

Birkedal et al. [9], Γ Δ are silently given this type, so −.µ is a PRA with the identity substitution

serving as both unit and counit. Showing that this overloading is coherent and that substitution

can be given an action on the syntactic model proven by induction on substitutions [9, Lemma

10]. Therefore, the syntax of DRA is a model of FitchTT with −.{`} ≜ −.µ. This induces a unique
morphism 𝐹 from the syntax S[−] of FitchTT into the syntax of DRA.

Conversely, there is a unique morphism𝐺 from the syntax of DRA into S[−]. But by our previous
observation, 𝐹 is also a morphism of DRA models, so 𝐹 ◦𝐺 is a morphism of DRA models from the

syntax of DRA to itself and therefore must be the identity. Hence, 𝐺 faithfully embeds DRA into

FitchTT. □

Consequently, the addition of the −/(− : `) operator on contexts does not change the strength

of the type theory in the case of a single endomodality.

This technique extends to other Fitch-style type theories. For example, consider the mode theory

M□ consisting again of a single mode𝑚 and endomodality ` : 𝑚 𝑚, but force ` ◦ ` = ` and

include a 2-cell ` ⇒ id such thatM□ is the walking idempotent comonad. The exact same technique

can be used with the type theory MLTTµ [25] to prove that

Theorem 4. FitchTT with the mode theoryM□ can be embedded into MLTTµ.

This again relies on the fact −.µ is a parametric right adjoint, which was once more a lemma of

the metatheory [26, Lemma 1.2.11]. However, FitchTT withM□ is not a conservative extension
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of MLTTµ, for the latter proves some nonstandard theorems of modal logic, e.g. (𝐴 → □𝐵) →
□(𝐴→ 𝐵). In particular, FitchTT instantiated withM□ is not a model forMLTTµ, so only one of

the two morphisms of models used in the proof of Theorem 3 can be recovered in this case.

4.5 Presheaf models
We now give a theorem for constructing the most important class of non-syntactic models of

FitchTT, viz. presheaf categories with adjunctions between them. First, we recall from Hofmann

[27] that any presheaf category PSh (C) supports a model of Martin-Löf type theory. Accordingly,

we only need to show how various well-known adjunctions that are induced between presheaf

categories can be used to model FitchTT.
To begin, we recall some standard facts about presheaves. Any functor 𝑓 : C D induces an

adjoint triple 𝑓! ⊣ 𝑓 ∗ ⊣ 𝑓∗. The middle functor 𝑓 ∗ : PSh (D) PSh (C) is defined by precomposition,

i.e. 𝑓 ∗ (𝑋 ) (𝑐) ≜ 𝑋 (𝑓 (𝑐)). The other two functors 𝑓! and 𝑓∗ are given by Kan extension [2, §9.6].

We will show that the two left adjoints 𝑓! and 𝑓 ∗ may be used to interpret the context operator

−.{`}. We have shown in previous work that their corresponding right adjoints 𝑓 ∗ and 𝑓∗ extend
to dependent right adjoints [23, §7]. Thus, to satisfy Definition 5 it remains to show that the left

adjoints themselves are PRAs. This is trivial for 𝑓 ∗, as every right adjoint is a PRA. On the other

hand, 𝑓! is not always a PRA, but it is whenever 𝑓 itself is a PRA between C and D:

Lemma 5. If 𝑓 : C D is a PRA then so is 𝑓! : PSh (C) PSh (D).

When putting these together into a model of FitchTT a coherence problem arises. The definition

requires J`K◦ JaK = J` ◦aK, but in general we only have 𝑓! ◦𝑔! � (𝑓 ◦𝑔)!. This means that a putative

model in which −.{`} and −.{a} are interpreted by 𝑓! and 𝑔! will not satisfy fitch/cx/comp.

This strictness mismatch is addressed by a strictification theorem for MTT [24] adapted to

FitchTT. This strictification theorem is considerably simpler than strictification of substitution,

and it essentially follows from the standard categorical result replacing a pseudofunctor by a strict

2-functor up to 2-equivalence.

These considerations lead us to the following theorem,which states that well-behaved adjunctions

of the form 𝑓! ⊣ 𝑓 ∗ and 𝑓 ∗ ⊣ 𝑓∗ are models of FitchTT.

Theorem 6. Fix a pseudofunctor 𝐹 : Mcoop Cat such that 𝐹 (𝑚) = PSh (C𝑚) for each𝑚 :M, and

for each ` : 𝑛 𝑚 the functor 𝐹 (`) satisfies one of the following two conditions:
(1) 𝐹 (`) = 𝑓! for a PRA 𝑓 : C𝑚 C𝑛 .
(2) 𝐹 (`) = 𝑓 ∗ for an arbitrary functor 𝑓 : C𝑛 C𝑚 .

Then there exists a model of FitchTT with mode theory M where each mode 𝑚 is modelled by

𝐹 (𝑚) = PSh (C𝑚) and each modality ` by the dependent right adjoint of 𝐹 (`).

5 PARAMETRIC TYPE THEORY AND FITCHTT

As we saw in Section 2.2, a simple source of parametric right adjoints is the cartesian product:

given a closed type ⊢ 𝔄 type, the context extension operator −.𝔄 is a parametric right adjoint, and

we have get types in the form of the function type former 𝔄 → (−). In this section we examine

how this picture generalizes to substructural function types from a fixed object. Concretely, we

examine Bernardy et al.’s parametric type theory [7], which relies on affine variables supporting

weakening and exchange but not contraction. We find that their parametricity types can be seen

as modal types in FitchTT. Although completely capturing all aspects of parametric type theory

requires more than modal types, FitchTT neatly resolves the issues of substitution that arise from

the new variables.
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5.1 Parametric type theory
Bernardy et al.’s parametric type theory extends Martin-Löf type theory with new primitives that

make parametricity theorems internally provable. As an example, it becomes possible to showwithin

the type theory that any polymorphic function (𝐴 : U) → 𝐴→ 𝐴 is identified with the polymorphic

identity function. This is possible in part due the introduction of a form of substructural variable,

variously called a color or dimension variable. These variables are affine: they support weakening

and exchange but not contraction.

In this theory we may extend a context Γ by a dimension variable 𝑖 : I. Given a context of the

form (Γ, 𝑖 : I) we may think of the assumptions in Γ as being separated from 𝑖 . In particular, we

cannot use one dimension variable to instantiate two: there is no ‘diagonal’ substitution from

Γ, 𝑖 : I Γ, 𝑗 : I, 𝑘 : I, as this would invalidate the separation of 𝑗 from 𝑘 . Finally, in any context,

we have a dimension constant Γ ⊢ 0 : I.
A family Γ, 𝑖 : I ⊢ 𝐴 type is to be thought of as a predicate on its ‘endpoint’ 𝐴[0/𝑖]. Likewise, an

element Γ, 𝑖 : I ⊢ 𝑀 : 𝐴 is a witness that its endpoint𝑀 [0/𝑖] satisfies the predicate 𝐴. Dimension

quantification is internalized by parametricity types, whose elements are abstracted terms with a

fixed endpoint. The formation and introduction rules for these types are given as follows.
2

Γ, 𝑖 : I ⊢ 𝐴 type Γ ⊢ 𝑀 : 𝐴[0/𝑖]
Γ ⊢ Pred(𝑖 .𝐴,𝑀) type

Γ, 𝑖 : I ⊢ 𝑀 : 𝐴

Γ ⊢ _𝑖. 𝑀 : Pred(𝑖 .𝐴,𝑀 [0/𝑖])
The idea is that an element of Pred(𝑖 .𝐴,𝑀) is a witness that𝑀 belongs to the predicate represented

by 𝑖 .𝐴. This intuition that types over I correspond to predicates is justified by an equivalence

Pred(𝑖 .U, 𝐴) ≃ (𝐴 → U), the inverse map of which is effected by an additional colored type pair

connective [7, Theorem 3.1]. The fact that predicates may be represented by affine functions from I
then implies that all constructions on types have an action on predicates, a form of parametricity.

The application rule given for parametricity types in Bernardy et al. [7] enforces the ‘no-diagonal’

restriction by assuming a fresh variable in the conclusion.

Γ ⊢ 𝑃 : Pred(𝑖 .𝐴,𝑀)
Γ, 𝑖 : I ⊢ 𝑃 @ 𝑖 : 𝐴

Γ ⊢ 𝑃 : Pred(𝑖 .𝐴,𝑀)
Γ ⊢ 𝑃 @0 = 𝑀 : 𝐴[0/𝑖]

One is thus prevented from writing (𝑃 @ 𝑖)@ 𝑖 . As we have seen with the corresponding rule

dra/tm/unmod, this creates a theory where substitution is not admissible.

Cavallo and Harper [16] introduce a cubical parametric type theory with a dimension restriction

operator, following Cheney’s approach to nominal type theory [17].

Γ ⊢ 𝑟 : I Γ/(𝑟 : I) ⊢ 𝑃 : Pred(𝑖 .𝐴,𝑀)
Γ ⊢ 𝑃 @ 𝑟 : 𝐴

When 𝑟 is a variable the restriction Γ/(𝑟 : I) removes 𝑟 and terms succeeding it from the context.

When it is a constant, the restriction is the identity i Γ/(0 : I) ≜ Γ. The admissibility of substitution

then relies on the existence of a functorial action by restriction: given 𝜎 : Γ Δ and Δ ⊢ 𝑟 : I,
there is some 𝜎/I : Γ/(𝑟 [𝜎] : I) Δ/(𝑟 : I) computed by induction on 𝜎 .

5.2 Recovering parametric type theory
We now show that the judgmental structure of parametric type theory—viz. dimension variables and

a parametricity type internalizing them—can be recovered as an instance of FitchTT. On its own, this
instance is insufficient to reconstruct, for example, the proof that all functions (𝐴 : 𝑈 ) → 𝐴→ 𝐴

are equal to the identity. It does, however, provide the basis on which the necessary additional

2
In Bernardy, Coquand, and Moulin’s notation, the type Pred(𝑖 .𝐴,𝑀 ) is written 𝐴 ∋𝑖 𝑀 .
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structure can be specified, resolving the technical issues around substitution and affine dimension

variables. The remainder may be found in [15, Chapter 11].

To cast the kernel of parametric type theory as an instance of FitchTT, we first decompose

Pred(𝑖 .𝐴,𝑀) into a combination of an identity type and an affine function type, (𝑖 : I) ⊸ 𝐴, similar

to Pred(𝑖 .𝐴,𝑀) but with no fixed endpoint:

Pred(𝑖 .𝐴,𝑀) ≜ (𝑝 : (𝑖 : I) ⊸ 𝐴) × Id𝐴[0/𝑖 ] (𝑝@0, 𝑀)

This encoding will not satisfy the definitional [-principle enjoyed by primitive parametricity types,

but it suffices for proving parametricity theorems.
3
The (𝑖 : I) ⊸ − connective is then specified by

the following rules:

ptt/ty/aff-form

Γ, 𝑖 : I ⊢ 𝐴 type

Γ ⊢ (𝑖 : I) ⊸ 𝐴 type

ptt/tm/aff-intro

Γ, 𝑖 : I ⊢ 𝑀 : 𝐴

Γ ⊢ _𝑖. 𝑀 : (𝑖 : I) ⊸ 𝐴

ptt/tm/aff-elim

Γ ⊢ 𝑟 : I Γ/(𝑟 : I) ⊢ 𝑃 : (𝑖 : I) ⊸ 𝐴

Γ ⊢ 𝑃 @ 𝑟 : 𝐴

We formulate (𝑖 : I) ⊸ 𝐴 as a modal type in FitchTT specialized with the mode theoryMaff , for

which see Fig. 5. We use a single mode𝑚 with a modality ` : 𝑚 𝑚, intending to replace context

extension by I with −.{`}. The choice of 2-cells and equations corresponds to the structural rules

supported by dimension variables: we have 2-cells for weakening (𝑤 ) and exchange (𝑒) but none

for contraction. Note that the presentation in the mode theory is the ‘reverse’ of what one might

expect, because we axiomatize the behavior of affine functions. For instance, weakening is a 2-cell

𝑤 : id ⇒ ` and not𝑤 : ` ⇒ id. We add a ‘face map’ 𝑓 : ` ⇒ id to induce the dimension constant

0, then obtained as 0 ≜ {𝑓 }1 ◦ !Γ : Γ {`}@𝑚. Equations specify the interactions among the

structural rules and face map. For example, the equation 𝑓 ◦𝑤 = id states that weakening and

then substituting 0 for the new variable has no effect, while the Yang-Baxter equation on 2-cells

` ◦ ` ◦ ` ⇒ ` ◦ ` ◦ ` relates two patterns of overlapping exchanges. This theory gives (𝑚 𝑚)op
the structure of a symmetric monoidal category with terminal object id [32, Proposition 3.1].

4

Indeed, it is the free such category generated by an object ` with face map 𝑓 : ` ⇒ id.
The affine function type is now given by I ⊸ 𝐴 ≜ ⟨` |𝐴⟩ (here we switch to a variable-free

presentation). With this definition, the operations and equations for the affine line I ⊸ 𝐴 can be

recovered directly from the rules of modal types in FitchTT, with the modal restriction operation

induced by the PRA structure on −.{`} playing the role of dimension restriction. More precisely,

ptt/ty/aff-form becomes fitch/ty/mod, ptt/tm/aff-intro becomes fitch/tm/mod and ptt/tm/aff-

elim becomes fitch/tm/unmod.

Note that the correspondence between Cavallo and Harper’s Γ/(𝑟 : I) and the modal restriction

operation of FitchTT is not exact. In Parametric FitchTT, we can only show that Γ is a retract of

Γ/(0 : `), which is weaker than the equation Γ/(0 : I) = Γ of [16]. The lack of this equation is not

however an obstacle to the practice of internal parametricity.

5.3 Models
We can straightforwardly obtain a presheaf model for this instance of FitchTT by way of Theorem 6.

In fact, the model we construct will interpret not only dimension variables but also additional

axioms necessary to obtain internal parametricity theorems. In Bernardy et al. [7], these theorems

rely on the fact that the canonical map Pred(−,−) : Pred(_.U, 𝐴) → (𝐴 → U) is an equivalence.

3
We conjecture that we could have our cake and eat it too by generalizing FitchTT’s modal types to match Riehl and

Shulman’s extension types [35], allowing them to require a definitional equality on some boundary. We could then encode

Pred(𝑖 .𝐴,𝑀 ) directly instead of going through (𝑖 : I) ⊸ 𝐴.
4
This structure could be disrupted by further additions to the mode theory, for example of a second modality not commuting

with `.
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Modes and modalities:

𝑚

dimension

` : 𝑚 𝑚

2-cells:

weakening

𝑤 : id ⇒ `

exchange

𝑒 : ` ◦ ` ⇒ ` ◦ `
face

𝑓 : ` ⇒ id

Equations:

𝑒 ◦ (id •𝑤) = 𝑤 • id : ` ◦ ` ⇒ ` 𝑒 ◦ 𝑒 = id : ` ⇒ `

(𝑒 • id) ◦ (id • 𝑒) ◦ (𝑒 • id) = (id • 𝑒) ◦ (𝑒 • id) ◦ (id • 𝑒) : ` ◦ ` ◦ ` ⇒ ` ◦ ` ◦ `

𝑓 ◦𝑤 = id : id ⇒ id (id • 𝑓 ) ◦ 𝑒 = 𝑓 • id : id → id

Fig. 5. Maff : a mode theory for affine functions

In fact, it is sufficient for many purposes to work with a ‘weak inverse’ that cancels it only up to

equivalence rather than equality. By asking only for a weak inverse, we are able to give a simpler

model than that constructed in Bernardy et al. [7]. In particular, contexts may be taken to be

presheaves over the following category, rather than the ‘refined presheaves’ over the same used

there.
5

Definition 7. Define pI to be the category whose objects are finite sets and whose morphisms

𝑆 → 𝑇 are functions 𝑔 : 𝑇 → 𝑆 + 1 that, when restricted to the preimage of 𝑆 , are injective.

We think of a set 𝑆 as standing for a context of |𝑆 | dimension variables; a function 𝑔 as above is a

substitution assigning to each variable in 𝑇 either a variable in 𝑆 or the dimension constant.

The empty set ∅ is a zero object of pI: it is both initial and terminal. There is a functor

𝐹 : pI pI which takes a set 𝑆 to 𝑆 + 1; by extending this to a functor on the presheaf category

𝐹! : PSh (pI) PSh (pI) we can interpret extension by a dimension variable as JΓ.{`}K ≜ 𝐹!JΓK. To
apply Theorem 6, it remains to show that (1) the 2-cells exist and their equations are satisfied and (2)

𝐹 is a PRA, so that 𝐹! is as well. The first is a routine calculation: the 2-cells for weakening, exchange,

and the face map are induced via (−)! by natural transformations 𝑤 : id ⇒ 𝐹 , 𝑒 : 𝐹 ◦ 𝐹 ⇒ 𝐹 ◦ 𝐹 ,
and 𝑓 : 𝐹 ⇒ id in pI respectively. The second follows by defining a left adjoint 𝐺 : pI/𝐹 (∅) pI
as follows:

𝐺 (𝑠 : 𝑆 → 𝐹 (∅)) ≜
{
𝑆 \ 𝑠 (★) if 𝑠 (★) ∈ 𝑆
𝑆 if 𝑠 (★) ∈ 1Set

Note that 𝑠 above is a set-theoretic function 1Set 𝑆 + 1Set.
Now we can apply Theorem 6 together with the results of Bernardy et al. [7] and Cavallo and

Harper [16] to obtain:

Theorem7. There is amodel of Parametric FitchTT in PSh (pI) which interprets−.{`} by 𝐹!. Moreover,

in this model there is a weak inverse to the canonical map Pred(−,−) : Pred(_.U, 𝐴) → (𝐴→ U).

5
The refined presheaf model is a model of this instance of FitchTT, but not as a consequence of Theorem 6.
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Summarizing, this model ensures that one may soundly postulate a weak inverse to the canonical

projection Pred(_.U, 𝐴) → (𝐴→ U) in FitchTT and, with this in hand, reproduce examples from

Bernardy et al. [7] in Parametric FitchTT.

6 GUARDED TYPE THEORY AND FITCHTT

One of the motivations for modal type theories is to obtain a syntax for guarded recursion [11, 33]. In

this section we show not only that FitchTT can be a flexible guarded type theory, but that the extra

structure of parametric right adjoints gives rise to a rationalization of the tick variables introduced

in Clocked Type Theory (CloTT) [4].
Guarded type theories support guarded recursive definitions. This is achieved by using modalities

that explicitly control productivity, such as the later modality (▷). Intuitively, ▷𝐴 classifies data

which can only be accessed after ‘one step of computation’ has taken place. This fine control serves

a similar purpose to the syntactic productivity checks used in coinductive definitions. In dependent

guarded type theory, both recursive types and functions follow from a single principle, viz. Löb

induction, an axiom of type (▷𝐴→ 𝐴) → 𝐴 [10]. For instance, we can define the type of guarded

streams gStr𝐴 � 𝐴 × ▷gStr𝐴 by using Löb induction on the universe.

The ▷modality and Löb induction comprise a useful framework for guarded definitions. However,

the functions definable in this setting are causal, in that they proceed in lockstep with time. For

example, the guarded type gStr𝐴 does not admit a function tail𝐴 : gStr𝐴 → gStr𝐴: we can always

project out the tail of a guarded stream, but it will have type ▷gStr𝐴 instead, and we can only access

that in the next step. The need to obtain fully defined, total objects (i.e. perform a definition by

coinduction) dictates the introduction of a second modality, the always modality □. Intuitively, □𝐴
classifies fully defined coinductive data (i.e. global sections). The usual type of streams is given by

Str𝐴 ≜ □gStr𝐴. Moreover, we expect an equivalence □𝐴 ≃ □ ▷𝐴.
This combination of modalities has been explored previously [19], but a simple syntax that

combines them had proved elusive until recently [22, §9]. In the meantime a number of papers

focussed on generalizing ▷ to a system of ticks and clocks [1, 4, 12, 31]. These systems are flexible,

but have complicated semantics [31]. On the other hand, CloTT [4] presents an enticing syntax for

guarded recursion, where the ▷ operator behaves almost like a function. However, these approaches

are far from a parsimonious setting of two interacting modalities.

Here we show that instantiating FitchTT with a mode theory for guarded recursion gives

rise to another practicable guarded type theory. Moreover, we observe that the extra structure of

parametric right adjoints is precisely what is required to account for tick variables and the functional

presentation of ▷. In fact, the tick constant introduced by Bahr et al. [4] emerges naturally from the

2-cell inducing the equivalence □▷𝐴 ≃ □𝐴. Hence, we obtain the first purely algebraic presentation

of CloTT (though limited to a single clock) and give a semantics that is simpler than that of Mannaa

et al. [31]. In order to focus on the purely modal aspects of guarded type theories, we will set aside

considerations of Löb induction. We mention that it cannot be recovered through modal machinery

in any known framework, so must be added axiomatically and justified externally. Moreover, the

specialized modifications in CloTT to ensure normalization in the presence of Löb induction can be

applied to this instantiation of FitchTT.

6.1 Guarded type theory in FitchTT

In Fig. 6 we present a mode theory for guarded recursion in FitchTT. The mode theory is similar to

that used withMTT in Gratzer et al. [22, §9], but it only uses one mode to facilitate comparison

with CloTT. Note also that it is only poset-enriched: there is at most one 2-cell between any pair of

modalities.
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Modalities:

ℓ : 𝑚 𝑚 𝑏 : 𝑚 𝑚

2-cells :

𝑏 ≤ id 𝑏 ◦ 𝑏 = 𝑏 id ≤ ℓ 𝑏 ◦ ℓ ≤ 𝑏

Fig. 6. A mode theory for guarded recursion

Instantiating FitchTT with this mode theory yields a modal type theory with modalities ▷𝐴 ≜
⟨ℓ |𝐴⟩, and □𝐴 ≜ ⟨𝑏 |𝐴⟩. When used with the (in)equations of the mode theory, the combinators of

Section 3.6 induce standard operations. The most important is the ‘cancellation’ of ▷ by □:

now ≜ comp-1
𝑏,ℓ
(−) : □ ▷𝐴→ □𝐴

The standard model of guarded recursion in PSh (𝜔) [11] is also a model of FitchTT with this mode

theory.

Theorem 8. FitchTT with the guarded mode theory is soundly modelled by PSh (𝜔), where the
modality 𝑏 is interpreted by the global sections comonad, and ℓ by the ▷ endofunctor.

As both ▷ and □ have left adjoints given by precomposition [23, §9.2], the result follows from

Theorem 6(2).

6.2 Tick variables
Clocked type theory alters the context structure of MLTT to introduce tick variables. A tick variable

provides the capability to discard a ▷ modality. We begin by considering a simplified clocked type

theory, the Ticked Type Theory (TTT) of Mannaa et al. [31]. TTT extends MLTT with the following

rules:

ctt/later-form

Γ.✓ ⊢ 𝐴 type

Γ ⊢ ▷𝐴 type

ctt/later-intro

Γ.✓ ⊢ 𝑀 : 𝐴

Γ ⊢ _(𝑀) : ▷𝐴

ctt/later-elim

|Γ2 | = 𝑘 Γ1 ⊢ 𝑀 : ▷𝐴

Γ1.✓.Γ2 ⊢ 𝑀 (𝜶𝑘 ) : 𝐴[↑Γ2 ]
The first two rules insinuate that ▷ is a dependent right adjoint to a tick. The elimination rule

ctt/later-elim allows us to eliminate a ▷ by consuming a tick. We write 𝜶𝑘 to refer to the tick

variable at the 𝑘th position in the context. This rule weakens the context by some additional

assumptions Γ2, which may contain additional tick variables. Consequently, ctt/later-elim enforces

an affine discipline on tick variables.

We can embed TTT into guarded FitchTT. First, we interpret Γ.✓ as Γ.{ℓ}. ctt/later-form and

ctt/later-intro are just fitch/ty/mod and fitch/tm/mod respectively. The elimination rule is less

immediate: ctt/later-elim is not exactly fitch/tm/unmod, but it is very similar to the elimination

rule dra/tm/unmod* of the DRA calculus. We may thus obtain it as fitch/tm/unmod followed by

weakening:

𝑀 (𝜶𝑘 ) ≜ unmodℓ (𝑀) [↑Γ2 ]
There is one important qualitative difference with DRA: the weakening Γ2 may also include tick

variables, while in DRA the rest of the context may not include further locks. Thus in defining ↑Γ2
we may have to use the substitution Γ.{ℓ} Γ induced by the inequality 1 ≤ ℓ to eliminate ticks.

We have therefore established that

Theorem 9. Ticked Type Theory can be embedded in FitchTT.
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6.3 Tick constants
As mentioned previously, the combination of ▷ and Löb induction is not sufficiently expressive. We

thus need some way of obtaining totalized, coinductive objects. Rather than introducing a second

modality such as □, the clocked type theory CloTT parameterizes ▷ by a clock symbol ^. Clock

symbols may be quantified over with clock quantification, denoted ∀^.𝐴. Intuitively, each clock

represents a distinct stream of time, and ▷^ only affects the clock ^. The clock quantifier is then

used to ‘cancel a ▷’, much like □ does:

∀^. ▷^ 𝐴 ≃ ∀^.𝐴 (2)

The pivotal insight behind CloTT is this: clocks allow us to recast a semantic check (‘this context

is constant in time’) into a syntactic check (‘this context does not mention a clock’). This check is

performed in the rule for the tick constant, which in turn induces Eq. (2):

ctt/tm/now

Δ, ^; Γ ⊢ 𝑀 : ▷^𝐴 ^ ∉ Γ ^′ ∈ Δ
Δ; Γ ⊢ 𝑀 (⋄) [^′/^] : 𝐴[id.⋄] [^′/^]

The syntactic check ^ ∉ Γ ensures that nothing in Γ depends upon the clock ^. Hence, it is safe

to eliminate ▷^ , as the ticking of ^ will not interfere with the term𝑀 . While this rule is sound, it is

difficult to implement. Notice that ^ does not appear at all in the conclusion of the rule. Accordingly,

it is difficult to see how one might write down an algorithmic version of it: we would in fact need

to conjure ^,𝑀 and 𝐴 from just𝑀 [^′/^] and 𝐴[^′/^].
The same result can be achieved in guarded FitchTT in a more direct manner. Just as the ▷

modality replaces syntactic productivity checks, the □ modality can be used to supplant syntactic

constancy checks. In particular, a context of the form Γ.{𝑏} is ‘semantically constant’. A term

depending on Γ.{𝑏} cannot depend on any temporal aspects of data in Γ, as the −.{𝑏} operator
prohibits access to anything which may change over time.

Moreover, the unique 2-cell 𝛼 : 𝑏 ◦ ℓ ⇒ 𝑏 induces a substitution {𝛼}Γ : Γ.{𝑏} Γ.{𝑏}.{ℓ}@𝑚,

which allows us to absorb any occurrences of ℓ following a𝑏. This substitution and term now replace

⋄ and Eq. (2) respectively. Using this encoding of ⋄we obtain a ‘rationalization’ of ctt/tm/now:

Γ.{𝑏} ⊢ 𝑀 : ▷𝐴@𝑚

Γ.{𝑏} ⊢ 𝑀 (⋄) ≜ unmodℓ,𝛼 (𝑀) : 𝐴[{𝛼}Γ]@𝑚

The encoding reconstructs a ‘single-clock’ variant of CloTT. It is rich enough to allow definition

by coinduction inside guarded type theory while also retaining the convenient functional syntax of

CloTT. Moreover, the ingredients used to simulate ctt/tm/now do not suffer from the same issues

as the original rule in CloTT, so that an algorithmic version of this syntax now seems achievable.

Using the primitives of FitchTT, we have shown that the more convenient syntax of (single-clock)

CloTT can be systematically elaborated into semantically well-understood and well-behaved modal

combinators. While prior work in guarded recursion was often centered around different sets of

modal combinators, there was no translation procedure showing that the flexible and convenient

‘tick’ syntax introduced by CloTT could be reconstituted in this form. By encoding a single-clock

variant of CloTT in FitchTT, we show that one may have the best of both worlds: convenient syntax,

and a simple set of modal operations.

This elaboration also provides a model in the standard semantics of guarded recursion and

avoids the need for more complex clock categories. Finally, we note that non-dependent variants of

(single-clock) CloTT have proven useful for modelling reactive programming [5, 6]; these calculi

can also be encoded in Guarded FitchTT.
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7 RELATEDWORK
As it was designed to be a unifying Fitch-style modal type theory [18], FitchTT is closely related to

many prior modal type theories.

The Fitch-style approach to modal types begins with the simply-typed system of Clouston [18],

which was quickly adapted to the dependent type theory DRA [9]. The other two dependent

systems in existence, namelyMLTTµ [25] and CloTT [4], have already been discussed at length.

FitchTT serves as either a rationalization or a generalization of each of these type theories: the

PRA structure and the induced ‘functional’ syntax given in this paper is entirely novel.

Other Fitch-style type theories, which were crafted for more specialized applications, have a

weaker relationship with FitchTT. For example, RaTT [5, 6] can be encoded in FitchTT, but this
encoding would fail to capture many restrictions placed on modalities in order to ensure domain-

specific theorems about RaTT (e.g. freedom from space leaks). We believe that, while FitchTT does

not directly capture these restrictions, it can be manually adapted to give a dependent generalization

of RaTT. As with Löb induction in guarded type theory, it would be necessary to extend FitchTT
with specific constants.

By recognizing the central rôle of PRAs, the relationship between nominal type theory [17]

and Fitch-style type theories that is suggested in Birkedal et al. [9] can be made more precise and

extended to include parametric type theories [7, 16]. In particular, the discussion in Section 5 adapts

mutatis mutandis to show that nominal type theory can be encoded in FitchTT.
Recently, MTT [22] also attempted to generalize DRA to support multiple modes and modali-

ties, but without recognizing the PRA structure. Instead, it adopted a ‘pattern-matching’ modal

elimination rule, which is strictly weaker than dra/tm/unmod.
6
In addition to being weaker, this

pattern-matching eliminator introduces a prohibitive overhead in certain crucial examples. For

instance, there is no way to elaborate the systematic ‘_-notation’ used in Section 5 to treat the

modality I ⊸ 𝐴 as a function. As a result, terms which are simple to write down in FitchTT must

be elaborated into complex manipulations of 2-cells inMTT. For instance, consider the following
term of Parametric FitchTT:

_𝑖. _ 𝑗 . _𝑘. _𝑙 . 𝑀@ 𝑙 @𝑘

Attempting to replicate it in MTT yields

let mod` (𝑥0) ← 𝑀 in let mod` (𝑥1) ← 𝑀 in

let mod` (𝑥2) ← 𝑀 in let mod` (𝑥3) ← 𝑀 in

mod` (mod` (𝑥 (𝑒 • ` • ` )◦(` • ` •𝑒 )◦(` •𝑒 • ` )◦(` • ` •𝑤 •𝑤 )
3

))
Moreover, it is unclear that such a translation can be done systematically. As theMTT elimination

rule is weaker than the corresponding FitchTT rule, it is necessary to make some ‘non-local’

modifications to a term. Worse, there is no MTT term corresponding to the FitchTT term 𝑓 :

⟨` |𝐴⟩.{`} ⊢ unmod` (𝑓 ) : 𝐴@𝑚. Thus, any potential elaboration algorithm must impose further

restrictions on the input to ensure that such terms can be dealt with by a candidate non-local

transformation.

8 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced the notion of parametric right adjoints as a desirable universal

property for context-modifying operations in type theory. We have shown that this extra property

is essential for obtaining workable calculi based around dependent right adjoints. Through this

observation we have generalized DRA to FitchTT, which supports multiple modes and modalities.

6
Note that the pattern-matching elimination rule of MTT can be expressed in FitchTT, so MTT can be embedded in it.
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Finally, we have shown that FitchTT can be instantiated to recover existing type theories for

parametricity and guarded recursion. In the latter case, we provide a conceptual explanation

and well-behaved syntax for ticks and the tick constant. In the future, we plan to develop these

applications further.

Normalization and decidability of type-checking in FitchTT also offer interesting avenues for

future work, and would possibly aid with implementing single-clock CloTT.
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A COMPLETE DEFINITION OF FITCHTT

We include the new rules of FitchTT. We have elided rules for dependent products, dependent

sums, (intensional) identity types, because these are unchanged from MLTT.

A.1 Contexts, types, and terms

Γ cx@𝑚

1 cx@𝑚

Γ cx@𝑚

Γ.𝐴 cx@𝑚

Γ cx@𝑚 ` : 𝑛 𝑚

Γ.{`} cx@𝑛

Γ cx@𝑛 ` : 𝑛 𝑚 𝑟 : Γ {`}@𝑚

Γ/(𝑟 : `) cx@𝑚

Γ cx@𝑚 ` : 𝑛 𝑚 a : 𝑜 𝑛

Γ.{`}.{a} = Γ.{` ◦ a} cx@𝑜

Γ cx@𝑚

Γ.{1} = Γ cx@𝑚

Γ ⊢ 𝐴 type@𝑚 Γ ⊢ 𝑀 : 𝐴@𝑚

Γ.{`} ⊢ 𝐴 type@𝑛 ` : 𝑛 𝑚

Γ ⊢ ⟨` |𝐴⟩ type@𝑚

Γ.{`} ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod` (𝑀) : ⟨` |𝐴⟩@𝑚

Γ/(𝑟 : `) ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚 𝑟 : Γ {`}@𝑛

Γ ⊢ 𝑀@ 𝑟 : 𝐴[[ [𝑟 ]]@𝑛

Γ/(𝑟 : `).{`} ⊢ 𝑀 : 𝐴@𝑛 𝑟 : Γ {`}@𝑛

Γ ⊢ mod` (𝑀)@ 𝑟 = 𝑀 [[ [𝑟 ]] : 𝐴[[ [𝑟 ]]@𝑛

Γ ⊢ 𝑀 : ⟨` |𝐴⟩@𝑚

Γ ⊢ 𝑀 = mod` (𝑀 [𝜖]@ 1.{`}) : ⟨` |𝐴⟩@𝑚
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A.2 The substitution calculus
Given its complexity, we have separated the rules for the substitution calculus into several distinct

blocks. First we have rules covering the formation of substitutions.

𝛿 : Γ Δ@𝑛 ` : 𝑛 𝑚

𝛿.{`} : Γ.{`} Δ.{`}@𝑚

𝛿 : Γ Δ@𝑛 ` : 𝑛 𝑚 𝑟 : Δ {`}@𝑚

𝛿/` : Γ/(𝑟 ◦ 𝛿 : `) Δ/(𝑟 : `)@𝑚

Γ cx@𝑚 ` : 𝑛 𝑚

𝜖 [Γ] : Γ.{`}/` Γ@𝑚

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑚

[ [𝑟 ] : Γ Γ/(𝑟 : `).{`}@𝑛

Γ cx@𝑚 `, a : 𝑛 𝑚 𝛼 : a ⇒ `

{𝛼}Γ : Γ.{`} Γ.{a}@𝑛

The operations sending −.{`} and −/` assemble into functors. We therefore require the following

equations guaranteeing functoriality:

` : 𝑛 𝑚 Γ cx@𝑚

id.{`} = id : Γ.{`} Γ.{`}@𝑛

Γ,Δ,Ξ cx@𝑚 ` : 𝑛 𝑚 𝛿 : Γ Δ@𝑚 b : Δ Ξ@𝑚

(b ◦ 𝛿).{`} = b .{`} ◦ 𝛿.{`} : Γ.{`} Ξ.{`}@𝑛

Γ,Δ,Ξ cx@𝑛 ` : 𝑛 𝑚 𝑟 : Ξ {`}@𝑛 𝛿 : Γ Δ@𝑛 b : Δ Ξ@𝑛

(b ◦ 𝛿)/` = b/` ◦ 𝛿/` : Γ/(𝑟 ◦ b ◦ 𝛿 : `) Ξ/(𝑟 : `)@𝑚

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑛

id/` = id : Γ/(𝑟 : `) Γ/(𝑟 : `)@𝑚

We impose further equations on −.{`} to ensure that not only is each −.{`} a functor, but the
entire collection of −.{−} is a 2-functor:

Γ,Δ cx@𝑚 ` : 𝑛 𝑚 ` : 𝑜 𝑛 𝛿 : Γ Δ@𝑚

𝛿.{a ◦ `} = 𝛿.{a}.{`} : Γ.{a ◦ `} Δ.{a ◦ `}@𝑜

Γ,Δ cx@𝑚 𝛿 : Γ Δ@𝑚

𝛿.{1} = 𝛿 : Γ Δ@𝑚

Γ cx@𝑚 `0, `1, `2 : 𝑛 𝑚 𝛼0 : `0 ⇒ `1 𝛼1 : `1 ⇒ `2

{𝛼1 ◦ 𝛼0}Γ = {𝛼0}Γ ◦ {𝛼1}Γ : Γ.{`2} Γ.{`0}@𝑛

Γ cx@𝑚 a0, a1 : 𝑜 𝑛 `0, `1 : 𝑛 𝑚 𝛽 : a0 ⇒ a1 𝛼 : `0 ⇒ `1

{𝛼 • 𝛽}Γ = {𝛼}Γ .{a1} ◦ {𝛽}Γ.{`0 } : Γ.{`0 ◦ a0} Γ.{`1 ◦ a1}@𝑜
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Γ cx@𝑚 ` : 𝑛 𝑚

id = {1`}Γ : Γ.{`} Γ.{`}@𝑛

Γ,Δ cx@𝑚 `, a : 𝑛 𝑚 𝛿 : Γ Δ@𝑚 𝛼 : a ⇒ `

{𝛼}Γ ◦ (𝛿.{`}) = (𝛿.{a}) ◦ {𝛼}Δ : Γ.{`} Δ.{a}@𝑛

The final set of equations ensure that −/(− : `) and −.{`} encode a parametric adjunction. In

particular, we impose the two triangle inequalities on the unit and counit of the adjunction.

` : 𝑛 𝑚 Γ cx@𝑛 𝑟 : Γ {`}@𝑚

!.{`} ◦ [ [𝑟 ] = 𝑟 : Γ {`}@𝑛

Γ,Δ cx@𝑛 ` : 𝑛 𝑚 𝛿 : Γ Δ@𝑛 𝑟 : Γ {`}@𝑛

[ [𝑟 ] ◦ 𝛿 = 𝛿/`.{`} ◦ [ [𝑟 ◦ 𝛿] : Γ Δ/(𝑟 : `).{`}@𝑚

Γ,Δ cx@𝑚 ` : 𝑛 𝑚 𝛿 : Γ Δ@𝑚

𝛿 ◦ 𝜖 [Γ] = 𝜖 [Δ] ◦ 𝛿.{`}/` : Γ.{`}/` Δ@𝑚

Γ cx@𝑛 ` : 𝑛 𝑚 𝑟 : Γ {`}@𝑛

𝜖 [Γ/(𝑟 : `)] ◦ [ [𝑟 ]/` = id : Γ/(𝑟 : `) Γ/(𝑟 : `)@𝑚

Γ cx@𝑚 ` : 𝑛 𝑚

𝜖 [Γ] .{`} ◦ [ [1.{`}] = id : Γ.{`} Γ.{`}@𝑚
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