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Abstract

Piezoelectric ultrasonic transducers have the potential to operate as

both a sensor and as an actuator of ultrasonic waves. Standard de-

signed transducers have a regular structure and therefore operate effec-

tively over narrow bandwidths due to their single length scale. Biologi-

cal transducers of ultrasound benefit from a wide range of length scales

giving rise to increased bandwidths. In this thesis, one-dimensional

mathematical models are employed to predict the performance of novel

ultrasonic transducers whose designs cover a range of length scales. In

particular, pre-fractal designs are utilised. A variety of fractal struc-

tures have been considered in this thesis. The effect of an infinitely

ramified Sierpinski carpet device necessitates an adaptation on the

renormalization approach so that a Green function renormalization

method can be utilised. The important operating characteristics for the

device are derived, and comparison of metrics between the new device

alongside the standard design (Euclidean) and a previously investigated

Sierpinski gasket device are performed. A model of a three-dimensional

pre-fractal transducer is explored using a similar methodology to pre-

vious pre-fractal devices. The design considered is inspired by the

Sierpinski tetrix fractal. The effectiveness of the design is considered

through comparison with standard designs and an earlier pre-fractal

device. An extension to the Green function renormalization method is

applied to study the behaviour of an ultrasonic wave travelling through

intricate structures that are more connected than the fractal-inspired

designs. The structures considered are the Cartesian product of two



Sierpinski gasket lattices and the Cartesian product of two Sierpinski

carpet lattices. These structures are utilised to obtain the theoretical

operating characteristics for novel devices.
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versus frequency f (Hz) for the Sierpinski carpet model δ transducer

at fractal generation levels one (Ẑ1
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(Ẑ
(π)
γ grey full line, equation (3.70), with the appropriate substitu-

tions), the Sierpinski carpet fractal inspired transducer at genera-

tion level n = 1 (Ẑ1
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Chapter 1

Introduction

1.1 Design and Applications of Ultrasonic

Transducers

Transducers are devices which enable the conversion of one form of energy into

another. Ultrasonic transducers are employed for the generation and detection of

ultrasonic waves [86]. Ultrasound refers to sound waves having frequencies greater

or equal to 20 kHz. A transducer is considered to be ultrasonic if it operates

within this frequency range. These devices are used extensively in fields such as

communication, medicine and non-destructive evaluation [101, 135]. For instance,

ultrasonic transducers are used in SONAR (SOund Navigation And Ranging) to

help with navigation and communication. Moreover, these devices are utilised to

detect subaquatic objects through the emission of ultrasonic sound waves and the

distance is determined by measuring the reverted reflected waves. Submarines

require the use of these devices to determine and gauge the location of enemy

vessels. Additionally, ultrasonic transducers are important instruments that are

used within the medical field. In particular, they safely provide a way to image

internal organs in the abdomen. Although ultrasonic transducers are used for a

vast amount of applications, there are further forms of non-ultrasonic transducers

that can be utilised; pressure transducers, for example, are often used in leak

detection. However, the work undertaken within this thesis concentrates solely on

1



ultrasonic devices.

There are two main types of ultrasonic transducers that are used in gen-

erating and detecting ultrasonic waves; these are electrostatic and piezoelec-

tric transducers. Electrostatic devices employ an oscillating membrane con-

nected to a back-plate which can incorporate resonating conduits and/or cavi-

ties [91, 108, 131, 132, 133, 134]. Electrostatic devices generally have higher sen-

sitivities and bandwidths, however, they suffer from requiring a larger operating

voltage than piezoelectric devices [118]. Furthermore, these devices are much more

vulnerable to the external surroundings, making their use restricted [70]. Conse-

quently, electrostatic devices will not be explored in this thesis.

In this thesis, mathematical models of novel piezoelectric ultrasonic transduc-

ers are investigated. The piezoelectric crystal is the fundamental component of

piezoelectric ultrasonic transducers as it is the active material that enables the

conversion of mechanical energy into electrical energy, and vice-versa.

The phenomenon which causes the conversion of energies is known as the piezo-

electric effect, where the name is derived from the Greek piezein, meaning pres-

sure [128]. Discovered in 1880 by Pierre and Jacques Curie, it was found that the

application of a mechanical strain on certain crystalline materials resulted in the

direct generation of electrical signals [50, 96, 124]. This discovery subsequently led

to the production of piezoelectric ultrasonic transducers. In piezoelectric transduc-

ers, a piezoelectric material is sandwiched between a backing material and front

matching layer [10, 53, 114, 128, 130]. During reception mode, the ceramic expands

and contracts through the application of a mechanical stress causing the creation

of an electrical current; see Figure 1.1 (a). In transmission mode, the continuous

expansion and contraction of the material when an electric current is applied re-

sults in the production of mechanical vibrations; see Figure 1.1 (b). Traditional

piezoelectric ultrasonic transducers are commonly manufactured using the proce-

dure of cutting piezoelectric ceramic and filling the voids with a non-piezoelectric

passive polymer. Preferred design choices are the 1-3 and 2-2 composites. Here,
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Piezoelectric Material 

electrodes

Applied pressure

(a) The piezoelectric element pro-
duces a voltage when subject to
pressure at its plates.

Piezoelectric Material 

Applied voltage

electrodes

(b) The piezoelectric element generates vibrations
when applied with a voltage.

Figure 1.1: Schematic of piezoelectric effect (a) and the reverse piezoelectric effect
(b).

the first digit refers to the connectivity of the active material and the second digit

denotes the connectivity of the passive element. Hence, for the 1-3 structure, the

ceramic phase is continuous in one dimension and the polymer is continuous in all

three [96]. The 1-3 design consists of cutting a ceramic block into a series of cross

strips, with the polymer filling the voids, and 2-2 designs cut the ceramic in ver-

tical strips so that the ceramic and polymer phases are parallel. The illustrations

in Figure 1.2 are of a 1-3 and 2-2 composite transducer, in which the ceramic is

represented in yellow and the polymer in black. Due to their one dominant length

(a) 1-3 Connectivity. (b) 2-2 Connectivity.

Figure 1.2: Schematic of ceramic-polymer composite transducers.

scale, the regular geometry of these designs restricts their effective performance

to a small range of frequencies. The range of length scales is an important aspect

to consider when designing new transducers, since the greater the range of length

scales the wider the operational bandwidth. That is, the range of frequencies in
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which the transducer can operate effectively. Applications of ultrasonic transduc-

ers may require high frequency echoes to be received from the production of low

frequency sound waves. Thus, wide bandwidth devices are essential [126]. In later

chapters, comparisons between current and novel designed transducers will be dis-

cussed in terms of the operating characteristics of the devices. Furthermore, the

effect of increasing the range of length scales can be determined. In contrast to

man-made devices, biological transducers have greater complexity in their struc-

ture, including a range of length scales [35, 86, 105]. These result in more effective

transmission and reception of ultrasonic waves over a wider range of frequencies.

Construction of devices which benefit from a range of length scales, similar to

those found in nature, is therefore of great interest [7, 8, 12, 19, 20, 83, 86]. Cer-

tain types of bats, moths and dolphins, amongst others animals, have naturally

occurring transducers within their biological makeup and use ultrasound to fit their

specific purposes. In particular, bats use echolocation to judge their surroundings

in instances of poor vision [1]. In such occurrences, bats are able to locate their

prey by emitting ultrasonic sound waves and listening out for the returning echoes.

The time it takes for the echoes to return allows the bat to determine the distance

between the prey and itself, as well as determine the direction of the object. The

difference in intensity of the sound received to the bat’s two ears allows for a hor-

izontal angle of targets to be formed [59]. Figure 1.3 (a) demonstrates the process

of echolocation, allowing the bat to create mental images of its surroundings and

Figure 1.3 (b) displays the brown long-eared bat. The visible ridges in the bat ears

may help to focus the ultrasonic sounds waves down onto the tragus [119]. The

tragus is a soft cartilaginous structure and it is assumed to aid sound down onto

the ear canal.

Transducers have several useful metrics for comparison. In particular, the

electrical impedance, reception and transmission sensitivities often are used to

compare different transducer models [7, 8, 11, 12, 19, 20, 32, 48, 82, 86, 132]. The

electrical impedance, defined as the complex ratio of the voltage to the current, is
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(a) (b)

Figure 1.3: Illustrations of (a) returning echoes from the production of sound
waves [116] and (b) the brown long-eared bat [9].

important as it gives information regarding the transducer’s operating character-

istics [96]. The sensitivity of the transducer is given as the ratio of the electrical

output to the mechanical input, in reception mode, and as the ratio of an acoustic

output to the applied voltage, in transmission mode. The sensitivity of the device

is important to consider as it describes the efficiency of energy conversion [31, 54].

Thus, these measures are key indicators into the performance of the ultrasonic

transducers. As such, high sensitivity is a desirable characteristic [2, 15].

The research presented in this thesis is concerned with the effects of embedding

pre-fractal structures into the design of new ultrasonic devices. Pre-fractal designs

are of interest since their structures closely resemble those found in nature. These

structures tend to have more sophisticated geometries than current man-made de-

vices and encompass a range of length scales. Implementing fractal-like structures

into new designs therefore, ought to improve current transducer performance.

The concept of fractal-inspired ultrasonic transducers has previously been de-

scribed and the performance of these designs has shown some improvements over

current piezoelectric ultrasonic transducers. Therefore, there is further scope to
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investigate novel designs incorporating different pre-fractal geometries. Compar-

ison between the standard Euclidean, the novel and a previous fractal-inspired

designs will be implemented as means of determining the most suitable design.

In the following section, an introduction to fractal geometry and their features is

discussed.

1.2 Introduction to Fractals

The term fractal is derived from the Latin fractus, meaning broken [27]. Frac-

tal structures are complex geometrical objects which exhibit structural similarity

across magnification levels. As a result, these structures cannot be described in

Euclidean terms [18, 27, 29, 74, 78]. The formal study of mathematical fractals sets

(a) (b)

(c) (d)

Figure 1.4: Mathematical fractal sets at generation level five for the (a) Cantor
set, (b) von Koch curve, (c) Sierpinski gasket and (d) Hilbert curve.

appears to have started in the 19th century, with the introduction of fractals known

as the Hilbert curve, Cantor set, von Koch curve and Sierpinski gasket [28, 34].

Figure 1.4 illustrates these structures. Fractal structures can vary extensively in
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complexity, where some fractal sets are constructed using a simple iterative pro-

cess. The middle third Cantor set, for example, is formed from the continual

removal of a middle line segment from the previous iteration. Specifically, the

initial structure is of a line segment of unit length, and the following generation

consists of two line segments obtained by the removal of the middle third segment.

Subsequent generations are then found by iteratively applying the same procedure

to each of the line segments. Figure 1.4 (a) presents the fourth generation level of

the middle third Cantor set. Other fractal sets can form into very detailed struc-

tures. One such fractal is the Julia set, for which the constructions begins with the

quadratic function f(z) = z2 + c, where c is a complex number [29]. The iterative

process is then given by zn+1 = z2
n + c [5, 79]. These fractal sets are generated

by initially indicating the complex numbers, initial value z0 and fixed c and then

continually evaluating the equation given above. Furthermore, the iterations must

remain bounded for the associated point to lie in the set. Thus, coloured pixels

represent the iterations of the complex number, zn, that belong to the Julia set.

Figure 1.5 illustrates the Julia set fractal, using the example c = −1.25. Referring

to Figure 1.5, a blue pixel is drawn as it iterates for points of zn that do not tend

to infinity.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Re(z) x

Im(z)

y

Figure 1.5: The Julia set of z2 − 1.25.

The definition of fractals was introduced by Benoit Mandelbrot in 1975 to de-

fine the set of irregular structures. In his essay [74], he highlights the importance of
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irregular structures and explains that there are geometric structures that contain

an infinite number of distinct length scales. In addition to self-similarity, another

important feature of fractals is their dimension. Unlike Euclidean geometry, frac-

tals have non-integer dimensions. It is this property which gives an indication

into the complexity of the fractal shape [29] and can provide information for the

space filling properties of the set [28]. Due to the nature of fractal geometries, sev-

eral different descriptions on the dimension of the set, such as the Hausdorff and

Box-counting dimensions, have been defined [28]. The reason for this is that some

definitions are not appropriate for certain fractals. There is no one definition that

can be applied to every set. References made to the fractional dimension, refers

usually to Hausdorff Besicovitch dimension [74]. For many fractals, the formation

of the self-similar structure is obtained by scaling a segment n by a factor of s.

Using the Hausdorff Besicovitch definition, the fractional dimension Df can be

found from sDf = n. Or, to express this in terms of the dimension,

Df =
log (n)

log (s)
. (1.1)

To illustrate the dimension of some fractal structures, the dimensions of the ge-

ometric patterns shown in Figure 1.4 are obtained. In regards to the Hilbert

curve (Figure 1.4 (d)), this pattern is obtained from the process of mapping a

one-dimensional interval into a two-dimensional plane, and so it has dimension

Df = 2. For the middle third Cantor set the dimension is Df = log (2)/ log (3),

since it is obtained by replacing iterations by two copies that are scaled by a factor

of three. For the von Koch curve, a single line segment is replaced with four line

segments obtained by removing the middle third segment, and replacing it by the

other two sides of the equilateral triangle. Therefore its dimension can be given

by Df = log (4)/ log (3). The Sierpinski gaskets are formed by replacing a two-

dimensional triangle with three copies of itself, that are scaled by a factor of two.

Thus, Df = log (3)/ log (2).

Progressing from mathematical fractal sets, there are natural phenomena that

can be described in terms of fractal features. Natural objects have been shown
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to exhibit self-similarity over a wide range of length scales. In particular, self-

similar geometry can been seen when examining a formation of ice crystals or the

branching of a tree; see Figure 1.6. That is to say, these natural occurrences appear

(a) (b)

Figure 1.6: Images displaying (a) the formation of ice crystals [109] and (b) the
spanning of tree branches [44].

to look the same at any magnification and so they are characterised as fractals.

Mathematical modelling can assist with the construction of new devices that

operate effectively over a larger range of frequencies. Particularly, it is possible

to consider the implementation of fractal-like structures into the design of new

ultrasonic transducers. These novel designs have a greater range of length scales

than traditional designs, and so ought to result in improved transmission and

reception responses.

In previous research [86], a fractal-inspired device had been investigated util-

ising a Green function renormalization technique. Within this thesis, novel pre-

fractal designs will be modelled similarly. Consequently, the subsequent section

discusses the renormalization approach.

1.3 Green Functions Renormalization

Throughout this thesis, each fractal-inspired transducer has been modelled util-

ising the Green function renormalization method (or an adaptation of this). In

9



a collection of papers [38, 39, 40, 41, 110], a renormalization approach was em-

ployed to study transport phenomena in complex structures; in particular fractal

geometries were studied. Green function renormalization is a useful method for

providing physical quantities from the derivation of a small amount of pivotal

Green functions [39]. In these papers, use is made of known Green functions for

a given matrix to derive the exact Green functions of a related matrix [111]. This

involved treating a fractal structure as a graph, G. Then, any structure from the

fractal set was likewise regarded as a graph from the sequence of graphs {G(n)},
where n is in reference to the iteration. A Green function G

(n)
ij , for any fractal

lattice is defined to be the (i, j)th element of the resolvent matrix G(n)(p) [111].

That is,

G(n)(p) = (pIn −H(n))−1, (1.2)

where p is a complex variable and H(n) and In represent the adjacency and identity

matrices respectively.

The Green function renormalization approach was applied to transport phe-

nomena in complex structures by initially considering a discretized representation

of the transport equation [41]. The discretized form is then non-dimensionalized.

The dimensionless equation can then be expressed in two forms; one accounting for

boundary conditions and the other neglecting boundary conditions. The boundary

conditions relate to transport entities that enter and exit the system through the

input and output vertices of the graph. The input/output vertices correspond to

external vertices of the graph G, or more specifically, the lattice representation of

the graph; see Figure 1.7. The process of obtaining pivotal Green functions was

Figure 1.7: Connection process to obtain the second generation from the first
generation for the one-dimensional line. Solid circles represent the input/output
vertices and the empty circles correspond to internal vertices.
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achieved by firstly ignoring boundary conditions. These were later re-introduced

through a suitable algebraic equation. The dimensionless equation was then more

conveniently expressed in the frequency domain rather than in the time domain.

Consequently, taking Laplace transforms of the non-dimensionalized equation re-

sulted in a linear algebraic equation, which encompassed the Green function ma-

trix.

In the following chapters, a similar methodology is taken to derive expressions

for the important operational characteristics of novel transducers designs.

1.4 Thesis Objectives and Organisation

The purpose of this thesis is to investigate the behaviour of ultrasonic transducers

which possess a range of length scales, with the aim of improving on transmission

and reception sensitivities. Designs that implement a fractal-like geometry are

analysed and the important operating characteristics derived. The propagation

of an ultrasonic wave within a pre-fractal structure is analysed using the Green

function renormalization method and the pivotal elements are obtained from the

fractal lattice counterparts. To determine the most appropriate design that can

be used in the manufacture of new devices, comparisons are made between novel

fractal-inspired designs with regular designed transducers.

In Chapter 2, a one-dimensional model for a standard piezoelectric plate trans-

ducer is reviewed. The effect of introducing a polymer phase into the regular design

is then discussed. The design considered is the widely used 1-3 composite trans-

ducer. The performances of the two devices are modelled using the linear systems

model. The constitutive piezoelectric equations are described in this chapter and

are utilised in subsequent chapters. A model for a previously investigated Sierpin-

ski gasket inspired transducer is also presented in this chapter. For each device,

expressions for the non-dimensionalized electrical impedance and the transmission

and reception sensitivities as a function of the operating frequency are presented,

and comparisons of figures of merit are made. Consequently, this chapter presents
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a review of previous related research and provides some new comparisons of trans-

ducer output.

In Chapter 3, models for three devices inspired by the Sierpinski carpet are

introduced and an adapted Green function renormalization method is used to

attain the important relations for each model. For each model, the operating

characteristics are determined for the first three fractal generation levels. To es-

tablish whether there is an improvement in device transmission and/or reception

responses, the results are compared with the Sierpinski gasket inspired device and

the standard Euclidean transducer.

In Chapter 4, a model of a transducer design based on a three-dimensional

fractal, the Sierpinski tetrix, is considered. The Green function renormalization

method is employed to investigate the performance of a Sierpinski tetrix inspired

transducer. Comparisons of the operating responses are performed between the

three-dimensional pre-fractal design along with the Sierpinski gasket inspired de-

vice and standard Euclidean design.

Chapter 5 introduces two new transducer designs inspired by the Cartesian

product of two pre-fractal lattices. For these structures, the behaviour of the

device is analysed at the first fractal generation level. The derivation of the elec-

trical impedance, transmission and reception sensitivities require an extension to

the Green function renormalization method. The extension to the model is out-

lined in this chapter. The efficiency of these devices is considered by comparing

the operating characteristics to the Euclidean transducer, as well as to two pre-

fractal devices. The thesis findings are summarised and potential future research

is discussed in Chapter 6.

In short, this thesis reviews previous piezoelectric ultrasonic transducer designs,

models a range of possible new designs and illustrates the potential benefits of their

construction. A summary of the original contributions is now given. In Chapter 2

all models have been further analysed to obtain the useful figures of merit for each

of the transducers’ operating characteristics. That is, the maximum amplitude,
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3-dB bandwidth and gain bandwidth product. These metrics have also been cal-

culated in subsequent chapters. In addition, Chapter 2 highlights an inaccuracy

made previously on the fractal-inspired device. The correction has been made to

this model within this chapter. The Green function renormalization method is

adapted in Chapter 3 to illustrate the transmission and reception profiles of three

new designs inspired by the Sierpinski carpet fractal. The Green function renor-

malization method is then utilised in Chapter 4 to investigate the transmission and

reception responses of a new Sierpinski tetrix inspired transducer. In Chapter 5,

the Green function renormalization method is extended to determine the likely

behaviour of two new theoretical designs, whose lattice counterparts are obtained

from the Cartesian product of two graphs.
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Chapter 2

Analysis and Extension of
Previous Ultrasonic Research

2.1 Introduction

This chapter reviews published results on the mathematical modelling of piezo-

electric ultrasonic transducers. First, a monolithic piezoelectric plate transducer

is presented in Section 2.2. In Section 2.3, a 1-3 composite transducer, which is

made of piezoelectric ceramic diced and filled with a polymer, is then considered.

Lastly in Section 2.4, the analysis of a transducer benefiting from a pre-fractal

structure is explored. The pre-fractal structure considered in this section is the

Sierpinski gasket.

The derivations of equations reproduced in this chapter were verified, and the

analysis, results and images have been newly produced by the current author to

aid understanding of the work. This has also aided the development of new work

presented in subsequent chapters that has employed a similar methodology. As

such, this is a demonstration of the soundness of the approach adopted through-

out this study. Additionally, these models have been extended to determine the

maximum amplitude (gain), 3-dB bandwidth and the gain bandwidth product for

the important operating characteristics.
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2.2 Monolithic Piezoelectric Plate Transducers

Monolithic piezoelectric plate transducers consist of plane parallel plates that are

formed from a piezoelectric material, such as piezoelectric crystals or ferroelectric

ceramics [99]. These devices are constructed with a backing layer and a front

matching layer to help control vibrations when pulses of electricity are applied to

the piezoelectric element [33, 37, 99, 129, 130]. The passive backing material, which

is positioned to the rear of the piezoelectric element, prevents unwanted vibrations

emanating from the back face of the transducer. The material of this layer is

most commonly constructed out of an epoxy resin [26, 37, 88, 90] due to its good

acoustic impedance matching and high ultrasound absorbency [88]. However, the

incorporation of this backing material generally results in reduced sensitivity [37,

96]. Thus, single or multiple matching layers are included to the transducer’s front

face to help minimise the reduction in sensitivity. These elements are then encased

in a housing to protect them; see Figure 2.1.

Transducer housing 

Backing layer 

Matching front layer 

Piezoelectric element

Figure 2.1: Typical arrangement of a simple piezoelectric ultrasonic transducer.

It has previously been established that the dynamics of thickness mode trans-

ducers can be approximately described by a one-dimensional model. One approach

that has been successful in describing the behaviour of such transducers is the lin-

ear systems model [46]. Previous authors [47, 48, 56, 82, 84, 96, 98, 102] have

utilised or adapted this model to derive an expression for the transducer model

by coupling the piezoelectric equations with the one-dimensional wave equation.
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The linear systems model is used in this section; other approaches include Mason’s

model and the KLM model [64, 67, 76].

The one-dimensional constitutive piezoelectric equations are particularly useful

as they relate elastic variables, stress T and strain S, to the electric variables, field

E and displacement D [57]. These are given as

T = Y S − hD, (2.1)

E = −hS +
D

ε
, (2.2)

where Y represents the Young’s modulus, h is the piezoelectric constant and ε is the

permittivity. The piezoelectric material is the active element of the transducer as

it is the primary component allowing for the conversion between energies. Electric

charges do not flow easily within the piezoelectric material as a result of it being

a good insulator. Thus, according to Gauss’ Law, the displacement component is

constant inside the transducer [96, 130],

∂D

∂x
= 0, (2.3)

where x is the spatial variable. The stress equation of motion is

∂T

∂x
= ρ

∂2u

∂t2
, (2.4)

where ρ is the density, u is the particle displacement and t is time. Using equa-

tions (2.1)-(2.4) the one-dimensional wave equation for the mechanical displace-

ment u(x, t) can be obtained

ρ
∂2u

∂t2
= Y

∂2u

∂x2
. (2.5)

The piezoelectric equations (2.1), (2.2) and wave equation (2.5) are linked since the

strain is defined as

S =
∂u

∂x
. (2.6)

The capacitance of the device is the way in which the transducer is able to store an

electrical charge. Since the piezoelectric material is clamped, (that is movement is
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restricted in response to an applied electric field [26, 117]) the clamped capacitance

is required. This clamped capacitance, C0, is given by the following relationship

C0 =
Arε

l
, (2.7)

where Ar is the cross-sectional area and l is the transducer thickness. It is possible

to solve the one-dimensional wave equation by firstly taking Laplace transforms

with respect to t to give

p2ū = v2∂
2ū

∂x2
, (2.8)

where p is the complex Laplace variable and v is the wave velocity given by

v2 = Y/ρ. Furthermore, it is assumed that initial displacement and velocity are

both zero [96]. As shown in equation (2.8) and throughout the remainder of this

section, an overhead bar will indicate terms in the Laplace domain.

A solution for the particle displacement is then found by solving equation (2.8),

to find

ū(x, p) = αe−
p
v
x + βe

p
v
x, (2.9)

where α and β are the displacement amplitudes which relate to the forward and

backwards travelling waves within the transducer material [71].

The voltage V is obtained by integrating the electrical field over the limits

x = 0 and x = l, where these correspond to the front and rear faces respectively.

Thus, by first expressing the electric field, given in equation (2.2), as

Ē = −h∂ū
∂x

+
Q̄

Arε
, (2.10)

where Q is the electrical charge and D̄ = Q̄/Ar, the voltage across the transducer

may be expressed as

V̄ = −h[α(e−pτ − 1) + β(epτ − 1)] +
Q̄

Arε
l, (2.11)

where τ = l/v is the transit time of the plane wave through the transducer [96].

To obtain an expression for the electrical charge Q, the current I is integrated over
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the time domain t. Then by taking Laplace transforms, the following expression

is defined,

Q̄ =
Ī

p
= − V̄

pZ̄a
, (2.12)

where the current is given by I = V/Za, and Za is the impedance of an arbitrary

electrical load. Thus, a solution for the voltage can be expressed as

V̄ = −h[α(e−pτ − 1) + β(epτ − 1)]Ū , (2.13)

where U is the voltage attenuation factor that is given by

Ū =
pC0Z̄a

(1 + pC0Z̄a)
. (2.14)

The performance of the transducer depends on certain factors, including the

backing material and front matching layer [37, 88, 129, 130]. Vibrations in the

transducer are caused when short pulses of electricity are applied to the piezo-

electric material. It is of interest to only allow vibrations to emanate from the

front face of the transducer. In order to prevent vibrations at the back, a damping

material is attached to the rear face. Without this damping material these vibra-

tions will continue to ring, prohibiting the transducer from listening for returning

echoes [37]. The impedance matching layer of the device is positioned between

the piezoelectric material and the front face of the transducer, with the purpose

of keeping reflected waves within the matching layer in phase when they exit [2].

For the backing material it is desirable that the attenuation parameter is high so

that vibrations at the back are prevented. For that reason it may be assumed

that there is only a wave travelling away from the piezoelectric material. Thus,

the amplitude of the backward propagating wave within the backing material is

zero, that is βB = 0. The application of boundary conditions at the transducer’s

surfaces results in

ū(0) = α + β and ū(l) = αe−pτ + βepτ . (2.15)

18



Thus, continuity of displacement results in

αL + βL = α + β, (2.16)

αe−pτ + βepτ = αBe
−p l

vB , (2.17)

where the subscripts L and B refer to the mechanical load and backing layer,

respectively. The load is simply the generic term referring to the point in the

circuit where power is drawn. The force, F , at the front face of the transducer is

related to the cross-sectional area Ar through

F̄ = ArT̄ . (2.18)

As such equation (2.1) may be expressed as F̄ = Y S̄Ar−hQ̄. Using the definition

for the strain, shown in (2.6), as well as the solution for the particle displacement

found in (2.9), it can be shown that

Y S̄Ar = pZT (−αe−p
x
v + βep

x
v ), (2.19)

where ZT is the mechanical impedance of the device given by

ZT =
√
Y ρAr. (2.20)

Using equation (2.19) along with the relationship for stress, strain and electrical

displacement shown in equation (2.1), the following expression relating force and

particle displacement may be obtained

F̄ + hQ̄ = pZT (−αe−p
x
v + βep

x
v ). (2.21)

Rearranging then gives an expression for the force

F̄ = pZT (−αe−p
x
v + βep

x
v )− hQ̄. (2.22)

Hence, continuity of force gives

pZL(−αL + βL) = pZT (−α + β)− hQ̄, (2.23)
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pZT (−αe−pτ + βepτ )− hQ̄ = pZB(−αBe
−p l

vB ), (2.24)

where ZL and ZB are the mechanical impedances of the load and the backing layer,

respectively. Using equations (2.16)-(2.17) and equations (2.23)-(2.24), solutions

for the amplitudes α and β may be expressed in terms of the forward propagating

amplitude in the load, αL. Initially rearranging equation (2.16) to be in terms of

βL and substituting this expression into equation (2.23), yields

pZL(α + β − 2αL) = pZT (−α + β)− hQ̄. (2.25)

This can then be rearranged resulting in

pα(ZT + ZL)− pβ(ZT − ZL) = 2pαL − hQ̄, (2.26)

and dividing by p(ZT + ZL) gives

α− β(ZT − ZL)

(ZT + ZL)
=

2αL
(ZT + ZL)

− hQ̄

p(ZT + ZL)
. (2.27)

The reflection coefficient, RF , at the front face of the transducer is useful here

since this is given by

RF =
(ZT − ZL)

(ZT + ZL)
. (2.28)

Thus, substituting this into equation (2.27) gives

α− βRF = αL(1−RF )− hQ̄

p(ZT + ZL)
. (2.29)

Equivalently, substituting equation (2.17) into equation (2.24) gives

pZT (−αe−pτ + βepτ )− hQ̄ = pZB(−αe−pτ − βepτ ). (2.30)

This is then rearranged as

pβepτ (ZT + ZB) = pαe−pτ (ZT − ZB) + hQ̄, (2.31)
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and then

βepτ = αe−pτ
(ZT − ZB)

(ZT + ZB)
+

hQ̄

p(ZT + ZB)

= αe−pτRB +
hQ̄

p(ZT + ZB)
, (2.32)

where RB is the reflection coefficient at the back face of the transducer given by

RB =
(ZT − ZB)

(ZT + ZB)
. (2.33)

Multiplying by e−pτ then gives an expression for β as

β = αe−2pτRB +
hQ̄e−pτ

p(ZT + ZB)
. (2.34)

An expression for α can be found by substituting equation (2.34) into equa-

tion (2.29) and rearranging to give

α =

hQ̄RF e
−pτ

p(ZT+ZB)
+ αL(1−RF )− hQ̄

p(ZT+ZL)

1−RFRBe−2pτ
. (2.35)

In a similar manner, β is obtained through the substitution of equation (2.35) into

equation (2.29),

β =

(
hQ̄

p(ZT+ZB)
+ αL(1−RF )RBe

−pτ − hQ̄RBe
−pτ

p(ZT+ZL)

1−RFRBe−2pτ

)
e−pτ . (2.36)

Now that α and β are explicitly known (in terms of the forward propagating

amplitude in the load, αL), the expression for the voltage, found in equation (2.13),

can be rewritten as

V̄ = h

(
K̄F

(
αL(1−RF )− hQ̄

(ZT + ZL)p

)
− K̄BhQ̄

(ZT + ZB)p

)
Ū , (2.37)

where

K̄F =
(1− e−pτ )(1−RBe

−pτ )

(1−RFRBe−2pτ )
, (2.38)

and

K̄B =
(1− e−pτ )(1−RF e

−pτ )

(1−RFRBe−2pτ )
. (2.39)
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The expressions KF and KB are the front and back face reverberation factors

respectively, and these correspond to the occurrence of multiple reflections as a

result of a mechanical wave incident on the front and back faces [71].

From the information obtained, expressions detailing the important operat-

ing characteristics of a monolithic piezoelectric transducer can be derived. The

characteristics of interest are the electrical impedance, transmission and reception

sensitivities. These are then plotted against the operating frequency. Electri-

cal impedance profiles are important as they help determine the efficiency of the

transducer. Experimental models of ultrasonic transducers can be very time con-

suming, particularly when concerning the operational capability of the device. An

alternative is to measure the electrical impedance over a range of frequencies by

connecting the transducer to an electrical circuit [7, 8]. The electrical impedance

of the device is therefore very valuable to engineers as the outcome can help in-

form whether such devices should be pursued further. For the design engineer the

features of interest from the electrical impedance plots are the occurrence of the

electrical and mechanical resonant frequencies. The electrical resonant frequency

fe is the frequency at which there is the least amount of electrical resistance in

the circuit and so is the frequency that should be used in transmission mode. The

mechanical resonant frequency fm is the frequency where the amplitude of the

vibration is at a maximum and so this is the frequency that should be used in re-

ception mode. The electrical and mechanical resonant frequencies are determined

by locating in the plot, the first minimum and maximum respectively [7, 96, 98].

The main operating characteristics of the transducer are the transmission and

reception sensitivities. These are of high importance as they identify the perfor-

mance of a transducer when operating as a transmitter or receiver of ultrasound.

The material presented in this section was previously published and is extended

here to determine the useful figures of merit of the transducer.

When the transducer is transmitting there is no force incident at the front face

of the transducer, and so there is no forward travelling wave in the load. Therefore,

22



αL = 0. Consequently, the previous expressions for α and β reduce to

α =
(RFhQ̄e

−pτ )/((ZT + ZB)p)− (hQ̄)/((ZT + ZL)p)

1−RFRBe−2pτ
, (2.40)

β =

(
(hQ̄e−pτ )/((ZT + ZB)p)− (RBhQ̄e

−2pτ )/((ZT + ZL)p)

1−RFRBe−2pτ

)
. (2.41)

Thus, it is possible to express the voltage in equation (2.37) as

V̄ =
Q̄

C0

(
1− h2C0

(K̄FTF + K̄BTB)

2pZT

)
, (2.42)

where TF and TB are the front and back transmission coefficients given by

TF =
2ZT

ZT + ZL
and TB =

2ZT
ZT + ZB

. (2.43)

An expression for the electrical impedance Z = V/I can then be calculated as

Z̄ =
1

pC0

(
1− h2C0

(K̄FTF + K̄BTB)

2pZT

)
. (2.44)

Non-dimensionalising the electrical impedance results with

Ẑe =
1

pC0Z0

(
1− h2C0

(K̄FTF + K̄BTB)

2pZT

)
, (2.45)

where the subscript e denotes the electrical impedance of the Euclidean (standard)

transducer. Moreover, this subscript will be attached to subsequent expressions for

the operating characteristics of the device. When the transducer is transmitting,

a voltage is applied to create a force at the front face, FF . The current across the

transducer, I, is defined in [96] and is given as

Ī =
aV̄

(Z + b)
, (2.46)

where a = ZP/(Z0 + ZP ) and b = Z0ZP/(Z0 + ZP ). The terms Z0 and ZP

correspond to the series and parallel electrical loads. Continuity of force at the

front face gives

F̄F = pZT
∂ū

∂x
(0)− hQ̄ = pZT

(
−α + β − hQ̄

pZT

)
. (2.47)
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By substituting equations (2.40) and (2.41) into the above equation, the following

is obtained

F̄F =
hQ̄ZT

1−RFRBe−2pτ

×
(

1−RBe
−2pτ

(ZT + ZL)
+

(1−RF )e−pτ

(ZT + ZB)
− 1−RFRBe

−2pτ

ZT

)
, (2.48)

which simplifies to

F̄F = −hQ̄K̄FZL
ZT + ZL

. (2.49)

Substituting equations (2.12) and (2.46) into equation (2.49) gives

F̄F = − haV̄ K̄FZL
p(Z̄ + b)(ZT + ZL)

, (2.50)

and therefore
F̄F
V̄

= − haK̄FZL
p(Z̄ + b)(ZT + ZL)

= − haAF K̄F

2p(Z̄ + b)
, (2.51)

where AF = 2ZL/(ZT + ZL). An expression for the transmission sensitivity can

then be found by substituting equation (2.44) into equation (2.51)

Z̄ + b =
1 + bpC0

pC0

− h2(K̄FTF + K̄BTB)

2p2ZT
, (2.52)

and therefore
F̄F
V̄

=
−ha(AF/2)ȳK̄F

1− h2ȳ(K̄FTF + K̄BTB)/2pZT
, (2.53)

where ȳ = C0/(1 + pC0b). The non-dimensionalised transmission sensitivity, ψe, is

of the form

ψe =
F̄F
V̄ hC0

=
−a(AF/2)ȳK̄F/C0

(1− h2ȳ(K̄FTF + K̄BTB))/2pZT
. (2.54)

The incorporation of the piezoelectric material allows for the conversion of

mechanical vibrations into electrical signals when the transducer is in receiving

mode. In this instance αL 6= 0. An expression for the displacement amplitude at

the front face is found using equation (2.23) and setting βL = 0 since there would

be no backward propagating wave in the load, hence

αL = − F̄F
pZL

. (2.55)
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Thus the substitution of αL together with equation (2.12) into equation (2.37) gives

V̄ = −hF̄F K̄F (1−RF )Ū

pZL
+

h2K̄F V̄ Ū

ZP (ZT + ZL)p2
+

h2K̄BV̄ Ū

ZP (ZT + ZB)p2

=
−2hF̄F K̄F ŪZT/(ZT + ZL)p

ZT − h2
(
K̄FZT
ZT+ZL

+ K̄BZT
ZT+ZB

)
Ū/p2ZP

. (2.56)

An expression for the reception sensitivity is obtained from the rearrangement of

equation (2.56)
V̄

F̄F
=

−2hK̄F ŪZT/(ZT + ZL)p

ZT − h2
(
K̄FZT
ZT+ZL

+ K̄BZT
ZT+ZB

)
Ū/p2ZP

. (2.57)

Thus the non-dimensionalised reception sensitivity, φe, is

φe =
V̄ hC0

F̄F
=

−h2C0TF K̄F Ū/pZT
1− h2(K̄FTF/2 + K̄BTB/2)Ū/p2ZTZP

. (2.58)

Graphical representations for the electrical impedance, transmission sensitiv-

ity and reception sensitivity have been newly produced as they provide impor-

tant information with regards to the transducer’s operating characteristics. Each

of these plots has been plotted as a function of the operating frequency where

p = iω = i2πf . The graphs produced are based on a lead zirconate titanate ce-

ramic transducer (PZT-5H). The material parameters of the ceramic are shown in

Table 2.1.

Description Constant Value Units

Elastic constant cc11 12.6× 1010 N/m2

Elastic constant cc12 7.95× 1010 N/m2

Elastic constant cc13 8.41× 1010 N/m2

Elastic constant cc33 11.70× 1010 N/m2

Dielectric constant εc11 1700× 8.854× 10−12 F/m
Dielectric constant εc33 1470× 8.854× 10−12 F/m

Piezoelectric stress coefficient e31 −6.50 C/m2

Piezoelectric stress coefficient e33 23.30 C/m2

Density ρc 7.50× 103 kg/m3

Table 2.1: Material properties of the PZT-5H ceramic [138].
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The electrical impedance, as shown in Figure 2.2, using equation (2.45), can

give insight into how efficient the transducer is likely to be. The transducer is

most effective when it transmits at the electrical resonant frequency fe and receives

at the mechanical resonant frequency fm [96]. The electrical resonant frequency is

0 2×106 4×106 6×106 8×106 1×107

-5

0

5

10

frequency f (Hz)

Electrical

Impedance

Z


(dB)

Figure 2.2: Non-dimensionalised electrical impedance Ẑe (dB) versus frequency
f (Hz) for a standard piezoelectric ceramic ultrasonic transducer.

determined by locating the first minimum in the graph and the mechanical resonant

frequency is found by locating the first maximum. The electrical and mechanical

resonant frequencies together with the corresponding electrical impedances for the

device are given in Table 2.2.

Electrical Resonant
Frequency

Mechanical Resonant
Frequency

fe (MHz) Ze (dB) fm (MHz) Ze (dB)

2.063 −6.191 2.220 5.218

Table 2.2: Electrical and mechanical resonant frequencies for the Euclidean Trans-
ducer.

The transmission sensitivity of the device, illustrated in Figure 2.3 (equa-

tion (2.54)), can be seen to have a maximum peak at 2.063 MHz, and the re-
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ception sensitivity, in Figure 2.4 (equation (2.58)), is shown to have its first peak

at 2.220 MHz. In addition to previous research, the receiving and transmitting re-

0 2×106 4×106 6×106 8×106 1×107
-25

-20

-15

-10

-5

frequency f (Hz)

Transmission

Sensitivity

ψ

(dB)

Figure 2.3: Non-dimensionalised transmission sensitivity ψe (dB) versus frequency
f (Hz) for a standard piezoelectric ceramic ultrasonic transducer.

sponses were evaluated by determining the maximum amplitude, 3-dB bandwidth

and the gain bandwidth product, which is the product of the maximum ampli-

tude and bandwidth. High amplitude is a desirable attribute, since this relates to

the production of energy; the higher the amplitude the greater the generation of

energy [37]. Other authors have suggested that a useful measure of the effective-

ness of a transducer is the 3-dB bandwidth [43, 77, 82, 84]. The bandwidth of the

device is typically measured at the -3 dB point as this is the frequency range at

which the transducers’ efficiency in converting energies is at least half that of the

maximum [51]. Consequently, it is often used as the cut-off frequency since this

gives the range of frequencies over which the transducer operates efficiently.

Previous research has assessed the effectiveness of a transducer by determining

its gain bandwidth product [43, 84]. This figure of merit is beneficial as it can pro-

vide an estimate for the range of frequencies around a particular centre frequency

that attains a particular amplitude [42]. Using the amplitude, G, and defining the
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Figure 2.4: Non-dimensionalised reception sensitivity φe (dB) versus frequency
f (Hz) for a standard piezoelectric ceramic ultrasonic transducer.

3-dB bandwidth, as BW ,

BW = fu − fl, (2.59)

where fu is the upper frequency and fl is the lower frequency respectively; see

Figure 2.5. The gain bandwidth product, GBP , is given by [94, 95] as

GBP = G×BW. (2.60)

The bandwidth calculations were computed using Mathematica’s FindPeaks com-

mand to initially find the positions (and values) at which the peaks occur. Prior to

this, the operating functions were tabulated to three digit precision. Subsequently,

the FindRoots command is utilised to determine upper and lower frequencies, by

locating the position of values that intercept at the -3 dB point. These values are

then substituted into equation (2.59) to obtain the bandwidths of the transmission

and reception sensitivities.

The figures of merit for the transducer in both transmitting and receiving

mode were calculated and the results are presented in Table 2.3.
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Figure 2.5: Graph illustrating the method for calculating the 3-dB bandwidth
where f0 is the centre frequency (maximum gain), fu is the upper frequency and
fl is the lower frequency.

Euclidean
Transducer

Maximum Amplitude
(Gain)
(dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

Transmission
Reception

−1.414
3.463

0.259
0.263

0.187
0.584

Table 2.3: Figures of merit for the Euclidean transducer.

2.3 1-3 Composite Transducers

Composite transducers comprising a piezoelectric ceramic and passive polymer

are superior to conventional monolithic transducers, in regards to a higher elec-

tromechanical coupling coefficient, reduced acoustic impedance and reduced lateral

vibrations [52, 66, 96, 107]. It is due to these traits that composite transducers

are widely used. In particular, they are the accepted choice within ultrasound

imaging for medical diagnostics, which is the single largest market for 1-3 com-

posite transducers [3, 52, 92, 96]. The majority of composite transducers produced
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at present are the 1-3 and 2-2 connectivity transducers. This section considers

the performance of a 1-3 composite transducer. This type of transducer consists

of a piezoelectric material arranged into a grid of parallel pillars, with a passive

polymer filling in the spaces.

In previous research [96], the linear systems model was utilised in order to de-

scribe the behaviour of the 1-3 composite transducer. However, this approach was

initially used for a single phase device. To apply this technique to the composite

device, it was necessary to derive the effective composite properties. Within this

section the same methodology as used in [96] is applied to the composite and the

research is extended to obtain the useful figures and merit. Furthermore, the im-

pact of varying the volume fraction of the ceramic is performed to determine the

effect this has on each figure of merit.

For elastic materials, Hooke’s law states that a stress tensor Ti causes a pro-

portional strain tensor Sj, related by an elastic modulus tensor cij [57],

Ti = cijSj. (2.61)

The electric displacement can be obtained by rearranging equation (2.2). For the

composite structure, it is more convenient to express the electric displacement in

tensor notation. This is defined as

Di = eijSj + εijEj for i, j = 1, 2, 3, (2.62)

where eij is the piezoelectric stress coefficient, εij is the permittivity and Ej is

the electric field. Equation (2.61) results in 6 equations consisting of 36 elastic

constants if crystal symmetry, poling direction and differentiation order are not

accounted for. The number of constants reduces significantly since the order of

differentiation has no effect on the result, that is, cij = cji [130]. Thus, the 36

constants reduce to 21. Furthermore, by considering the symmetries of the piezo-

electric ceramic the number of independent constants will reduce further. The

poling direction in this case is along the direction of the pillars and so there is
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rotational symmetry around this direction [93]. Moreover, the ceramic is initially

an isotropic material, and it is only during the poling process that the material

is changed to become transversally isotropic. As mentioned, the piezoelectric ce-

ramic is poled in the direction of the pillars, thus the piezoelectric equations within

the ceramic phase are of the form [121],

T c1 = cc11S
c
1 + cc12S

c
2 + cc13S

c
3 − e31E

c
3, (2.63)

T c2 = cc12S
c
1 + cc11S

c
2 + cc13S

c
3 − e31E

c
3, (2.64)

T c3 = cc13S
c
1 + cc13S

c
2 + cc33S

c
3 − e33E

c
3, (2.65)

T c4 = cc44S
c
4 − e15E

c
2, (2.66)

T c5 = cc44S
c
5 − e15E

c
1, (2.67)

T c6 = cc66S
c
6, (2.68)

Dc
1 = e15S

c
5 + εc11E

c
1, (2.69)

Dc
2 = e15S

c
4 + εc11E

c
2, (2.70)

Dc
3 = e31S

c
1 + e31S

c
2 + e33S

c
3 + εc33E

c
3, (2.71)

and

T p1 = c11S
p
1 + c12S

p
2 + c12S

p
3 , (2.72)

T p2 = c12S
p
1 + c11S

p
2 + c12S

p
3 , (2.73)

T p3 = c12S
p
1 + c12S

p
2 + c11S

p
3 , (2.74)

T p4 = c44S
p
4 , (2.75)

T p5 = c44S
p
5 , (2.76)

T p6 = c44S
p
6 , (2.77)

Dp
1 = ε11E

p
1 , (2.78)

Dp
2 = ε11E

p
2 , (2.79)

Dp
3 = ε11E

p
3 , (2.80)
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within the polymer phase [121]. Equations (2.63)-(2.80) are of much simpler forms

as a result of the reduction in the independent variables. Consequently, the piezo-

electric constitutive equations for the ceramic and polymer phases can be given

respectively as

T ci = ccijS
c
j − ec

>
ijE

c
j , (2.81)

Dc
i = ecijS

c
j + εcijE

c
j , (2.82)

and

T pi = cpijS
p
j , (2.83)

Dp
i = εpijE

p
j . (2.84)

See Appendix A for the corresponding tensor forms for equations (2.81)-(2.84).

These tensor equations help illustrate the reduction in the number of independent

variables.

In [121], it was stated that assumptions in the model are sufficient in extracting

the essential physics. Additionally they serve to simplify the analysis considerably

while still providing accurate results. In [121] six simplifying assumptions were

made to the model to reduce equations (2.81)-(2.84) into the one-dimensional ex-

pressions for the composite. In these works the initial assumption is that the strain

and electric field are dependent only upon the spatial variable z in both the piezo-

electric material and polymer. It was also assumed that both the piezoelectric

ceramic and polymer moved uniformly in the poling direction, that is

S̃3 = Sp3 = Sc3, (2.85)

where the tilde refers to an average value for the composite, the superscripts p and

c denote the polymer and ceramic phase respectively, and the subscript 3 refers to

the z-direction (the vertical pillars in Figure 1.2 (a)). Moreover, the electric fields

in each phase are assumed to be equal,

Ẽ3 = Ep
3 = Ec

3. (2.86)
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Furthering the simplification of the model, it was assumed that the transducer is

a large, thin, electrode plate where symmetry is exhibited in the x− y plane. This

leads to the following simplifications of the model,

Ẽ1 = Ẽ2 = 0, (2.87)

T̃1 = T̃2 and S̃1 = S̃2, (2.88)

where the subscripts 1 and 2 represent the x- and y- directions, respectively. The

fifth assumption concerns the equivalence of the lateral stresses in each phase,

more precisely it is given that

T p1 = T c1 = T̃1. (2.89)

Similarly lateral strains are addressed, whereby it is assumed that a complimentary

lateral strain in the polymer is used to compensate the lateral strain in the ceramic.

This is necessary in order for the composite to be wholly clamped along the lateral

directions [96, 121]. This can be expressed as

S̃1 = vfS
c
1 + v̌fS

p
1 = 0, (2.90)

where vf is the volume fraction of the ceramic and v̌f = (1 − vf ) is the volume

fraction of the polymer. Using these assumptions, the piezoelectric constitutive

equations can be reduced to three equations for both the ceramic and polymer

phases. That is,

T̃1 = (cc11 + cc12)Sc1 + cc13S̃3 − e31Ẽ3, (2.91)

T c3 = 2cc13S
c
1 + cc33S̃3 − e33Ẽ3, (2.92)

Dc
3 = 2e31S

c
1 + e33S̃3 + εc33Ẽ3, (2.93)

within the ceramic phase and

T̃1 = (c11 + c12)Sp1 + c12S̃3, (2.94)

T p3 = 2c12S
p
1 + c11S̃3, (2.95)

Dp
3 = ε11Ẽ3, (2.96)
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within the polymer phase. Combining equations (2.91) and (2.94), an expression

for Sc1 is obtained,

Sc1 =
((c11 + c12)Sp1 + (c12 − cc13)S̃3 + e31Ẽ3)

(cc11 + cc12)
. (2.97)

In equation (2.90) it can be shown that

Sc1 = − v̌fS
p
1

vf
, (2.98)

and

Sp1 = −vfS
c
1

v̌f
. (2.99)

Thus substituting equations (2.98) and (2.99) individually into equation

(2.97) gives

Sc1 = v̌f

(
−(cc13 − c12)S̃3 + e31Ẽ3

vf (c11 + c12) + v̌f (cc11 + cc12)

)
, (2.100)

and

Sp1 = vf

(
(cc13 − c12)S̃3 − e31Ẽ3

vf (c11 + c12) + v̌f (cc11 + cc12)

)
. (2.101)

The mean elastic constants c̃13, c̃33, average piezoelectric stress coefficients ẽ31, ẽ33

and the average dielectric constant ε̃33 were given in [121] as

c̃13 =
vfc

c
13(c11 + c12) + v̌fc12(cc11 + cc12)

vf (c11 + c12) + v̌f (cc11 + cc12)
, (2.102)

c̃33 = vf

(
cc33 −

2v̌f (c
c
13 − c12)2

vf (c11 + c12) + v̌f (cc11 + cc12)

)
+ v̌fc11, (2.103)

ẽ31 =
vfe31(c11 + c12)

vf (c11 + c12) + v̌f (cc11 + cc12)
, (2.104)

ẽ33 = vf

(
e33 −

2v̌fe31(cc13 − c12)

vf (c11 + c12) + v̌f (cc11 + cc12)

)
, (2.105)

ε̃33 = vf

(
εc33 +

2v̌f (e31)2

vf (c11 + c12) + v̌f (cc11 + cc12)

)
+ v̌fε11. (2.106)
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The inclusion of equation (2.100) into equation (2.91) gives

T̃1 = v̌f (c
c
11 + cc12)

(
(c12 − cc13)S̃3 + e31Ẽ3

vf (c11 + c12) + v̌f (cc11 + cc12)

)
+ cc13S̃3 − e31Ẽ3

=
(vfc

c
13(c11 + c12) + v̌fc12(cc11 + cc12))S̃3

vf (c11 + c12) + v̌f (cc11 + cc12)

− vfe31(c11 + c12)Ẽ3

vf (c11 + c12) + v̌f (cc11 + cc12)
. (2.107)

Thus using equations (2.102) and (2.104) reduces equation (2.107) to the form

T̃1 = c̃13S̃3 − ẽ31Ẽ3. (2.108)

Similarly, expressions for T c3 , T
p
3 and Dc

3 can be obtained by substituting equa-

tions (2.100) and (2.101) into equations (2.92), (2.93) and (2.95) to give

T c3 =

(
cc33 −

2v̌f (c
c
13 − c12)cc13

vf (c11 + c12) + v̌f (cc11 + cc12)

)
S̃3

−
(
e33 −

2v̌fc
c
13e31

vf (c11 + c12) + v̌f (cc11 + cc12)

)
Ẽ3, (2.109)

T p3 =

(
c11 +

2vf (c
c
13 − c12)c12

vf (c11 + c12) + v̌f (cc11 − cc12)

)
S̃3

− 2vfc12e31Ẽ3

vf (c11 + c12) + v̌f (cc11 − cc12)
, (2.110)

Dc
3 =

(
e33 −

2v̌f (c
c
13 − c12)e31

vf (c11 + c12) + v̌f (cc11 − cc12)

)
S̃3

+

(
εc33 +

2v̌f (e31)2

vf (c11 + c12) + v̌f (cc11 − cc12)

)
Ẽ3. (2.111)

Lastly, it is assumed that the lateral periodicity is sufficiently fine. That is to say,

there is an appropriate amount of spacing between the ceramic pillars. However,

too fine of a structure, although effective, is challenging and costly to manufacture.
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Thus, by assuming the scale is sufficiently fine, long ring-down times are prevented

and the composite can be represented as an effective homogeneous medium [61,

120, 121, 122]. Once the piezoelectric ceramic has a pulse of electricity applied to

it, it will cause the material to vibrate. The continual vibration of the ceramic is

referred to as the ring-down time. Long ring-down times are undesirable as they

increase the spatial pulse length. Thus, reducing the ring-down time will help to

reduce the pulse of ultrasound. This is particularly significant in improving axial

resolution [37]. Following on, the effective total stress and electric displacement

can be expressed by volume averaging the constituent phases, namely,

T̃3 = vfT
c
3 + v̌fT

p
3 , (2.112)

D̃3 = vfD
c
3 + v̌fD

p
3. (2.113)

Thus, substituting equations (2.109) and (2.110) into (2.112), as well as equa-

tions (2.111) and (2.96) into (2.113), gives

T̃3 = c̃33S̃3 − ẽ33Ẽ3, (2.114)

and

D̃3 = ẽ33S̃3 + ε̃33Ẽ3, (2.115)

where c̃33, ẽ33 and ε̃33 are given in equations (2.103), (2.105) and (2.106), respec-

tively.

Considering the consecutive piezoelectric equations for the thickness mode

transducer, it is possible to rewrite equations (2.114) and (2.115) to be of a similar

form to equations (2.1)-(2.2). Rearranging equation (2.115) gives an expression for

the electric field, given by

Ẽ3 =
1

ε̃33

(
D̃3 − ẽ33S̃3

)
= −h̃33S̃3 +

D̃3

ε̃33

. (2.116)

Using this expression, equation (2.114) can be rewritten to give

T̃3 = c̃33S̃3 −
ẽ33

ε̃33

(D̃3 − ẽ33S̃3) = Ỹ33S̃3 − h̃33D̃3, (2.117)
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where h̃33 = ẽ33/ε̃33 and Ỹ33 = c̃33 + (ẽ33)2/ε̃33. These expressions for the electric

field and stress must also be accompanied by the expression for the composite

density, ρ̃, [121],

ρ̃ = vfρ
c + v̌fρ

p, (2.118)

where the density for the composite is dependent on the density of the ceramic,

ρc, and the density of the polymer, ρp [72].

With these equations now derived, the analysis used previously on a mono-

lithic plate transducer may now be applied to conventional 1-3 composite device to

obtain the relevant operating characteristics, through substitution of these effec-

tive material parameters. Previous research [121] was carried out to determine the

transducer parameters of interest. In particular authors obtained expressions for

the composite’s specific acoustic impedance, longitudinal velocity and thickness-

mode electromechanical coupling constant. In this thesis, it is of interest to deter-

mine the transmitting and receiving abilities of novel ultrasonic transducers. Thus,

for comparison, expressions for the non-dimensionalized electrical impedance and

the transmission and reception sensitivities as a function of the operating frequency

are determined for the previously investigated 1-3 composite device. The 1-3 com-

posite transducer has been modelled on the PZT-5H ceramic and the polymer

filler is the HY1300/CY1301 hard setting epoxy [96]. Material parameters for the

polymer resin are shown in Table 2.4.

Description Constant Value Units

Elastic constant c11 7.20× 109 -
Elastic constant c44 1.57× 109 -

Dielectric constant ε 4 -
Density ρp 1.15× 103 kg/m3

Shear modulus G′ 1.57× 109 kg/m s2

Young’s modulus Y ′ 4.28× 109 kg/m s2

Table 2.4: Material properties for polymer phase HY1300/CY1301 [96].

Figure 2.6 illustrates the non-dimensionalised electrical impedance for a 1-3
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composite transducer, with a ceramic volume fraction of vf = 0.5. The electrical

and mechanical resonant frequencies of the device have been calculated and are

presented in Table 2.5.
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Figure 2.6: Non-dimensionalised electrical impedance Ẑc (dB) versus frequency
f (Hz) for a 1-3 composite transducer.

Electrical Resonant
Frequency

Mechanical Resonant
Frequency

fe (MHz) Zc (dB) fm (MHz) Zc (dB)

1.338 −16.8191 1.800 13.780

Table 2.5: Electrical and mechanical resonant frequencies for a 1-3 composite
Transducer

Figure 2.7 shows the transmission sensitivity of the 1-3 composite device plot-

ted against the operating frequency. Similar to the electrical impedance, the ce-

ramic volume fraction was taken to be vf = 0.5. This value was also used for the

reception sensitivity which is plotted in Figure 2.8. The inclusion of the polymer

shows there to be a substantial benefit when considering the figures of merit in

transmission mode. In particular there is more than a two-fold increase in both the

3-dB bandwidth and gain bandwidth product at the device’s resonant frequencies.
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Figure 2.7: Non-dimensionalised transmission sensitivity ψc (dB) versus frequency
f (Hz) for a 1-3 composite transducer.

Additionally, in reception mode there is an increase of 81% in the peak amplitude,

when comparing the composite device to the monolithic transducer. However, in

this operating function the increased amplitudes have likely resulted in reduced

bandwidths and gain bandwidth product. Each figure of merit for the 1-3 compos-

ite transducer have been calculated in both operating modes and these are shown
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Figure 2.8: Non-dimensionalised reception sensitivity φc (dB) versus frequency
f (Hz) for a 1-3 composite transducer.
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in Table 2.6.

1-3 Maximum 3-dB Gain
Composite Amplitude Bandwidth Bandwidth
Transducer (Gain) (dB) (MHz) Product

Transmission −0.839 0.542 0.446
Reception 6.268 0.109 0.463

Table 2.6: Figures of merit for a 1-3 composite transducer.

Further results on the electrical impedance and transmission and reception sen-

sitivities have been gathered to determine the effect of varying the ceramic volume

fraction. These results are illustrated in Figures 2.9, 2.10 and 2.11, respectively.

High values at the mechanical resonant frequency are achieved by lowering the

ceramic volume fraction, in particular the highest magnitude appears to be at a

volume fraction around vf = 0.2 or vf = 0.3. Low amplitudes for the electrical res-

onant frequency are desirable in the electrical impedance profiles, since this relates

to the peak amplitudes of the transmission sensitivity profiles. From observing Fig-

ure 2.9 (b) the lowest value seems to occur at a volume fraction of vf = 0.5. When

increasing the ceramic volume fraction the sensitivity of the device in transmission

mode is reduced. Furthermore, the peak amplitudes occur at higher frequencies

with the increase of the volume fraction. Initially increasing the volume fraction in

reception mode will also increase sensitivity of the device. Yet this is only true up

until a ceramic volume fraction of vf = 0.3. Similar to transmission sensitivity, in-

creasing the volume fraction also increases the resonant frequencies. The electrical

and mechanical resonant frequencies with the corresponding electrical impedances

for the composite device are tabulated in Table 2.7. In this table, the values for

varying the volume fraction between 0.1 and 0.9 are presented. It can be estab-

lished that the sought after minimum in electrical resonant frequency occurs at a

volume fraction of vf = 0.5, and the greatest amplitude in mechanical resonant

frequency arises at a volume fraction of vf = 0.3.
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(a)

(b)

Figure 2.9: Non-dimensionalised electrical impedance Ẑc (dB) versus frequency
f (Hz) and ceramic volume fraction vf (dimensionless) for a 1-3 composite trans-
ducer.

The performance of a 1-3 composite device has been analysed with varying

ceramic volume fractions. The results of these are illustrated in Figures 2.12-2.14

in the form of gain, 3-dB bandwidth and gain bandwidth product, for both oper-

ating modes. Figure 2.12 clearly agrees with the observation that was made from
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Figure 2.10, in that the sensitivity of the device in transmission mode reduces with

Figure 2.10: Non-dimensionalised transmission sensitivity ψc (dB) versus frequency
f (Hz) and ceramic volume fraction vf (dimensionless) for a 1-3 composite trans-
ducer.

Figure 2.11: Non-dimensionalised reception sensitivity φc (dB) versus frequency
f (Hz) and ceramic volume fraction vf (dimensionless) for a 1-3 composite trans-
ducer.
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the increasing ceramic volume fraction. Therefore, this would suggest that trans-

ducers embedded with a composite outperform the ceramic plate devices (vf = 1).

The highest gain in reception mode is achieved at a volume fraction of vf = 0.3.

Akin to the transmission sensitivity, the composite devices have greater sensitivity

than the ceramic plate devices.

Volume
Fraction

(vf )

Electrical Resonant
Frequency

fe (MHz) Zc (dB)

Mechanical Resonant
Frequency

fm (MHz) Zc (dB)

0.1 1.215 7.099 1.501 17.605
0.2 1.270 0.023 1.630 21.350
0.3 1.298 −5.430 1.707 21.389
0.4 1.318 −11.772 1.760 16.225
0.5 1.338 −16.819 1.800 13.780
0.6 1.361 −12.112 1.834 12.112
0.7 1.391 −10.762 1.867 10.804
0.8 1.441 −9.954 1.906 9.615
0.9 1.542 −8.992 1.974 8.272

Table 2.7: Electrical and mechanical resonant frequencies for a 1-3 composite
transducer with varying volume fractions.

The 3-dB bandwidth of the 1-3 composite in transmission mode shows an

increase in this value as the volume fraction is increased. Yet the introduction of

the pure ceramic shows there to be a significant drop in value. A volume fraction

of vf = 0.8 offers the highest value for this figure of merit. Evidence would suggest

through the data analysed that it is the pure ceramic case which provides the

greatest value for the 3-dB bandwidth in reception mode, and that the value of

this metric decreases at lower volume fractions. The lowest value is at a volume

fraction of vf = 0.3. However, this would be expected since at this volume fraction

there is a substantial peak in the device’s gain. Since there is generally a trade-

off between device amplitude and bandwidth, this has consequently led to the

reduction in the bandwidth.
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Figure 2.12: Gain (dB) versus volume fraction for the transmission sensitivity
(blue) and reception sensitivity (orange) for a 1-3 composite transducer.
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Figure 2.13: Bandwidth (MHz) versus volume fraction for the transmission sensi-
tivity (blue) and reception sensitivity (orange) for a 1-3 composite transducer.

Figure 2.14 illustrates the transmission and reception sensitivities in terms of

its gain bandwidth product over varying ceramic volume fraction. By comparing

the behaviour of the operating modes it is clear that increasing the volume fraction

has opposing results. In transmission mode an increase in volume fraction has a

negative effect on the device’s performance, whilst an increase in volume fraction

44



improves reception performance. Thus, for single devices requiring both modes

of operation a mixture of both the ceramic and polymer materials would likely

provide the most suitable composition. That is, when the ceramic volume fraction

is vf = 0.5.
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Figure 2.14: Gain bandwidth product versus volume fraction for the transmission
sensitivity (blue) and reception sensitivity (orange) for a 1-3 composite transducer.

As a whole, the addition of a polymer phase into the design of ultrasonic

transducers was found to present better operational characteristics than the single

piezoelectric plate devices. Although presented with greater amplitudes, the values

of the 3-dB bandwidth and gain bandwidth product of the composite device are

both lower in reception mode than single-phase transducers. Additionally, both

devices are regular in their design with simple periodic resonances. Consequently,

these transducers operate effectively over relatively narrow bandwidths due to their

designs consisting of a single length scale. Therefore, novel designs incorporating

a range of length scales with the aim of improving device bandwidths will be

investigated.
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2.4 Sierpinski Gasket Transducer

To assist the construction of devices that operate efficiently over a larger range

of frequencies, the implementation of fractal-like structures into the design of new

ultrasonic transducers has been considered. Research into the topic of fractal-

inspired transducers is still emerging. Yet, fractals used within the design of

antennas are more widespread. In particular, Sierpinski carpet inspired anten-

nas have previously been investigated [6, 22, 87]. These papers have highlighted

that the performance of antennas inspired by fractal-like structures have resulted

in the design of a multiband antenna. Furthermore, fractal-like geometries have

allowed for the design of miniature antennas. This is as a result of the iterative

process to form the fractal structure. That is, a specific fractal generation level

may be chosen to allow the size of the antenna to be reduced with no affect to its

performance [6]. Due to the continuing progression of the technological industry,

there is the further opportunity to investigate other fractal-inspired transducers.

Previous authors have demonstrated the benefits of implementing pre-fractal trans-

ducers [7, 83, 86, 97]. It was shown in these papers that ultrasonic transducers with

multiple length scales benefited from more resonances and improved operation over

a larger range of frequencies. This section explores the performance of a Sierpin-

ski gasket inspired transducer, which has previously been investigated [86] using a

finite difference model. The fractal-inspired device was further investigated using

a finite element approach [7] and a prototype for a fourth generation pre-fractal

device was constructed [83]. The analysis on the Sierpinski gasket inspired model

is also extended here to determine the important figures of merit which are crucial

in understanding device performance.

The construction of the fractal upon which this type of transducer is designed

begins with an equilateral triangle. The next generation is obtained by replacing

the original triangle by three copies of itself at half its height and width. The sub-

sequent generations are then found by repeatedly applying this procedure to give

the Sierpinski gasket (see Figure 2.15). The structures formed from the iterative
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process are known as pre-fractals as the physical fractal is only formed after an

infinite number of iterations [25]. For the purpose of manufacturing such designs,

it is only the low generation pre-fractals that are of interest.

Figure 2.15: The sequence of Sierpinski gasket inspired transducers where the
piezoelectric element is shown in black and the polymer in white.

A lattice equivalent of the Sierpinski gasket can be obtained by regarding the

fractal structure as a sequence of graphs
{
G(n)

}
parameterised with respect to the

order of generation n [41, 86]. The graph G(n+1) is then obtained by connecting to-

gether three copies of G(n), where each node in the sequence of graphs is the centre

of a triangle of piezoelectric material. This allows for a self-similar structure as

the sequence progresses [111]. A lattice counterpart of the Sierpinski gasket will be

used to investigate the propagation of an ultrasonic wave. The lattice represents

the vibrations of the piezoelectric material of the Sierpinski gasket [7]. By observ-

ing the graphs in Figure 2.16 it is possible to derive the total number of vertices

for any given graph in the sequence. Let Nn denote the total number of vertices

n=0 n=1 n=2 n=3

Figure 2.16: Graphical representations of generations 0 to 3 for the sequence of
Sierpinski lattices.

of G(n), then the nth generation has Nn = 3n vertices. The side length of the

structure Ls is assumed to be fixed throughout the construction process [86]. As
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a result of this condition, the edge length between adjacent vertices will reduce to

zero, as the generation level is increased [40, 82]. For each graph in the sequence

(with the exception of generation level n = 0) the vertex degree is three, exclud-

ing the corner vertices which have degree two. These corner vertices act as the

input and output vertices which will be responsible for interacting with external

loads and so fictitious vertices A, B and C are introduced to accommodate these

boundary conditions [86], see Figure 2.17.

21

3

4 5
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8
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7

A

C

B

Figure 2.17: Sierpinski gasket lattice at generation n = 2, with fictitious vertices
A, B and C.

Each graph of the sequence can be completely described by its adjacency ma-

trix H(n), where the (i, j)th element gives the number of edges connecting vertex

i to j by assigning the value one to connected vertices and zero otherwise. The

recursive relationship of the graphs is then given as

H(n+1) = H̄(n) + V (n), (2.119)

where H̄(n) is a block diagonal matrix which represents the connectivity properties

of the individual sub-graphs of G(n), i.e. its v blocks are equal to H(n). The

connection of these sub-graphs is given by V (n) which is a sparse matrix that

assigns the number one to the connection of sub-graphs. To illustrate this, the

corresponding adjacency matrix for the lattice graph of n = 2 is given by
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H(2) =



0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 1 0
0 0 1 0 0 0 0 1 1
0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1 0


, (2.120)

where

H̄(1) =



0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0


and V (1) =



0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0


. (2.121)

As with standard ultrasonic transducers, the Sierpinski gasket transducer also

relies on the piezoelectric constitutive equations shown in equations (2.1) and (2.2).

The analysis of a propagating ultrasonic wave within the Sierpinski gasket lattice

requires the use of the discretized wave equation [86]

ρT
∂2u

∂t2
=

YT
∆x2

(A(n)u+B(n)u+ c(n)), (2.122)

where ρT and YT are the density and Young’s modulus for the piezoelectric ma-

terial respectively, ∆x is the distance between neighbouring vertices, A(n) is the

matrix representing the discretized Laplacian and B(n) and c(n) are a matrix and

vector containing the boundary conditions at the input and output vertices. In

order to maintain the overall size of the pre-fractal transducer, as the generation

level is increased, the side length of the structure, Ls, is fixed throughout the

construction process. Furthermore, ∆x(n) = Ls/(2
n − 1) and so the distance be-

tween neighbouring vertices will decrease to zero as the generation level increases.

In equation (2.122) the discretized Laplacian matrix is obtained using the second

order central difference approximation. Thus A(n) is given by

A(n) = H(n) − qIn, (2.123)
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where q is the vertex degree, and In denotes the identity matrix for generation

level n.

2.4.1 Green Function Renormalization

Research into the construction of a transducer based on a Sierpinski gasket

inspired design relies on renormalization analysis [83, 86, 111]. Previous re-

search [38, 40, 86, 110] has identified a strategy in solving equations of a similar

form to equation (2.122) by initially ignoring boundary conditions. These bound-

ary conditions are then re-introduced later in the analysis, via suitable matrix

transformations. Thus, by introducing a dimensionless variable

θ =

√
(YT/ρT )t

∆x
, (2.124)

equation (2.122) takes the form

∂2u

∂θ2
= (A(n)u+B(n)u+ c(n)). (2.125)

Transforming equation (2.125) into the Laplace domain gives

p2Inu = (A(n) +B(n))u+ c(n). (2.126)

Thus, rearranging gives

(p2In − A(n) −B(n))u = c(n),

u = G(n)c(n), (2.127)

where G(n) is the Green function matrix given by

G(n) = (p2In − A(n) −B(n))−1. (2.128)

The bare Green function matrix is given as

Ĝ(n) = (p2In − A(n))−1, (2.129)
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since boundary conditions are neglected. The recursion relationship equation may

be obtained by firstly utilising equations (2.123) and (2.129) to give,

Ĝ(n+1) = ((p2 + q)In+1 −H(n+1))−1. (2.130)

Substituting equation (2.119) into the above expression then gives

Ĝ(n+1) = ((p2 + q)In+1 − H̄(n) − V (n))−1,

= (F̄ (n) − V (n))−1, (2.131)

where F̄ (n) = (p2 + q)In+1 − H̄(n), (F̄ (n))−1 = Ḡ(n) and Ḡ(n) is a block diagonal

matrix whose v blocks equal Ĝ(n). Thus, using equation (2.131) along with the

matrix property that (A−B)−1 = A−1 + A−1B(A−B)−1, where A and B are

two arbitrary matrices, the following recursion relationship is obtained [41]

Ĝ(n+1) = (F̄ (n))−1 + (F̄ (n))−1V (n)(F̄ (n) − V (n))−1,

= Ḡ(n) + Ḡ(n)V (n)Ĝ(n+1). (2.132)

Similarly equations (2.119) and (2.128) are used with the same matrix identity to

obtain the following

G(n) = Ĝ(n) + Ĝ(n)B(n)G(n). (2.133)

Due to the symmetries of the lattice structure, it is of interest only to obtain the

pivotal Green functions. The pivotal Green functions are the minimum number of

independent elements required to develop a recursion [41]. Thus in the case of the

Sierpinski gasket there are two pivotal Green functions, Ĝ
(n)
11 and Ĝ

(n)
15 , where for

ease of notation these will be labelled x̂g = Ĝ
(n)
11 and ŷg = Ĝ

(n)
15 . The subscripts

attached refer to vertices connecting the lattice structure to the fictitious vertices

A, B and C [86] and the subscript g relates to the Sierpinski gasket model. While

this method can be used at any generation level, the vertex labelling as illustrated

in Figure 2.17 refers specifically to generation level n = 2. For instance, G
(n)
15

represents the same matrix Green function element at generation level two to

G
(n)
1 14 at generation level three. So for simplicity it is possible to denote both these
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terms as G
(n)
15 . Equally, subsequent chapters will denote Green function elements

using the second generation notation. From symmetry Ĝ
(n)
11 = Ĝ

(n)
55 = Ĝ

(n)
99 and

Ĝ
(n)
15 = Ĝ

(n)
19 = Ĝ

(n)
59 , however it should be noted that this does not hold true when

boundary conditions are re-introduced. These pivotal elements arise due to the

sparsity of the connection matrix V (n). As a result, it is possible to employ only for

the Green function elements associated with external vertices. That is, the vertices

corresponding to the input/ output vertices. Similarly, the boundary matrix B(n)

and vector c(n) are also very sparse since the only non-zero entries occur at the

input/ output vertices. Furthermore, only displacements at the input/ output

vertices, u1, u5 and u9 are of relevance and thus only pivotal Green functions,

G
(n)
11 , G

(n)
15 , G

(n)
55 and G

(n)
59 are required. Using equation (2.132) it is possible to

obtain a recursion for the corresponding pivotal Green functions. The recursion

equations for the Sierpinski gasket inspired transducer are represented with capital

letters, X̂g and Ŷg. Since there are two pivotal elements when boundary conditions

are neglected, these relate to X̂g = Ĝ
(n+1)
11 and Ŷg = Ĝ

(n+1)
15 . Thus, application of

equation (2.132) results in

X̂g = x̂g +
2ŷ2

g(x̂g − x̂2
g + ŷ2

g)

(1− x̂g − ŷg)(1− x̂2
g + ŷg + ŷ2

g)
, (2.134)

Ŷg =
ŷ2
g(1− x̂g + ŷg)

(1− x̂g − ŷg)(1− x̂2
g + ŷg + ŷ2

g)
. (2.135)

The inclusion of boundary conditions suggests that G
(n)
15 = G

(n)
19 = G

(n)
51 = G

(n)
91 ,

G
(n)
55 = G

(n)
99 , G

(n)
59 = G

(n)
95 , G

(n)
11 6= G

(n)
55 and G

(n)
15 6= G

(n)
59 . Thus the pivotal Green

functions for this case are G
(n)
11 , G

(n)
15 , G

(n)
55 and G

(n)
59 which will be labelled respec-

tively as xg, yg, zg and wg. Using equation (2.133) the following four equations are

obtained

xg =
x̂g + 2ŷgygb2

1− x̂gb1

, (2.136)

yg =
ŷg

(1− x̂gb1)(1− b2(x̂g + ŷg))− 2ŷ2
gb1b2

, (2.137)
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zg =
x̂g + ŷgb1yg + ŷgb2wg

1− x̂gb2

, (2.138)

wg =
ŷg(1 + b1yg(1 + b2(ŷg − x̂g)))

(x̂gb2 − 1 + ŷgb2)(x̂gb2 − 1− ŷgb2)
, (2.139)

where b1 = B
(n)
11 and b2 = B

(n)
55 = B

(n)
99 .

Equations (2.134)-(2.139) are all recalculations of the ones presented in [86].

This was performed to familiarise with and understand the renormalization tech-

nique. However, this highlighted an error in the previous research in regards to

equation (2.137). Thus the corrected form of equation (2.137) has been presented

in this thesis and has been subsequently used hereafter.

2.4.2 Application of Boundary Conditions

Given that the transducer is governed by the discretized wave equation, it follows

that the mechanical load at the front face of the device is equally governed by the

wave equation,

ρL
∂2uL
∂t2

= YL
∂2uL
∂x2

L

, (2.140)

where ρL, uL and YL are the density, particle displacement and Young’s modulus

in the mechanical load, respectively. Similarly the backing layer is governed by

the wave equation. A solution to equation (2.140) is found by re-introducing the

non-dimensional variable shown in equation (2.124) to give,

∂2uL
∂θ2

=

(
vL
vT

∆x

)2
∂2uL
∂x2

L

, (2.141)

and then taking Laplace transforms of equation (2.141) gives

∂2ūL
∂x2

L

−
(
pvT

∆xvL

)2

ūL = 0, (2.142)

where vT is the wave velocity in the piezoelectric material and vL is the wave

velocity in the load. Expressions for the displacement in the load and backing

material are given as

ūL = αL exp

(
−pvTxL
∆xvL

)
+ βL exp

(
pvTxL
∆xvL

)
, (2.143)
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and

ūB = αB exp

(
−pvTxB
∆xvB

)
+ βB exp

(
pvTxB
∆xvB

)
. (2.144)

Similar to the standard device, it is assumed that the reflected wave within the

backing layer is damped out, i.e. βB = 0. Applying the conditions of continuity of

displacement at the transducer boundaries gives

ūL(0) = αL + βL, (2.145)

ūB(0) = αB. (2.146)

The fractal-inspired transducer will have a backing layer set at vertex A and two

mechanical loads set at vertices B and C. Hence, due to the symmetry of the

Green transfer matrix, equations (2.145) and (2.146) become

u5 = u9 = uB = uC = αL + βL, (2.147)

u1 = uA = αB, (2.148)

where the subscripts attached to the displacement refers to a specific vertex of

the graph. The force on each vertex is given by the same expression found in

equation (2.18). It is possible to re-write the expression of the force as

F̄ = ArY
∂ū

∂x
− hQ̄. (2.149)

Hence, continuity of force gives

uB − u5 −
hQ̄

YT ξ
=
ZL
ZT

p(−αL + βL), (2.150)

u1 − uA −
hQ̄

YT ξ
=
ZB
ZT

p(−αB), (2.151)

where ξ = Ar/∆x is the ratio of the cross-sectional area of each edge to its

length [86]. Combining equations (2.148) and (2.151) gives an expression for the

mechanical displacement at the fictitious vertex A,

uA =

(
1

1− pZB
ZT

)
u1 −

hQ̄

YT ξ

(
1

1− pZB
ZT

)
. (2.152)
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Similarly, the mechanical displacement at fictitious vertices B and C are obtained

by combining equations (2.147) and (2.150) to give

uB =

(
1

1− pZL
ZT

)
u5 −

hQ̄

YT ξ

(
1

1− pZL
ZT

)
− 2αLp

ZL
ZT

(
1

1− pZL
ZT

)
= uC . (2.153)

Thus, using equations (2.152) and (2.153), it is possible to determine elements of

the boundary condition matrix, B(n),

Bij =


1

1−pZB
ZT

, for Bij = B11

1

1−pZL
ZT

, for Bij = B55 = B99

0, otherwise

, (2.154)

and the vector c(n)

ci =


− hQ̄
YT ξ

(
1

1−pZB
ZT

)
, for ci = c1(

1

1−pZL
ZT

)(
hQ̄
YT ξ
− 2αLp

ZL
ZT

)
, for ci = c5 = c9

0, otherwise

. (2.155)

The derivations in equations (2.154) and (2.155) will be used to determine the

expressions for the electrical impedance and transmission and reception sensitivi-

ties for the Sierpinski gasket inspired transducer.

2.4.3 Transducer Characteristics

Expressions detailing the electrical impedance and transmission and reception sen-

sitivities for the fractal-inspired transducer can be derived. By utilising equa-

tion (2.11), the voltage for this fractal transducer may be described as

V̄ = −h(u5 − u1) +
Q̄

C0

, (2.156)

where u5 = G
(n)
15 c1 + G

(n)
55 c5 + G

(n)
59 c9 and u1 = G

(n)
11 c1 + G

(n)
15 c5 + G

(n)
19 c9 since

u = G(n)c. Substituting u5 and u1 into equation (2.156) gives the voltage as

V̄ =
h2Q̄

YT ξ
(µg + νg)− 2αL

ZL
ZT

phµg +
Q̄

C0

, (2.157)
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where

µg =
2G

(n)
15 −G

(n)
59 −G

(n)
55

1− pZL
ZT

, (2.158)

and

νg =
G

(n)
15 −G

(n)
11

1− pZB
ZT

. (2.159)

The current of the transducer is given by [86]

Ī =
pQ̄YT ξ

ZT
. (2.160)

By recalling that αL = 0 in transmission mode, and that the electrical impedance

of the device is given as Z = V/I, it can be shown that,

Z̄g =
ZT

pC0YT ξ

(
1 +

h2C0(µg + νg)

YT ξ

)
. (2.161)

Thus, non-dimensionalizing the electrical impedance results in

Ẑg =
ZT

pC0YT ξZ0

(
1 +

h2C0(µg + νg)

YT ξ

)
. (2.162)

Since αL = 0, equations (2.147) and (2.150) reduce respectively to

u5 = u9 = uB = uC = βL, (2.163)

uB − u5 −
hQ̄

YT ξ
= βL

ZL
ZT

p. (2.164)

Substituting these new expressions into equation (2.149) gives

F̄ =
YLpvThQ̄

YTvL

(
1

1− pZL
ZT

)(
1 +

G
(n)
55 +G

(n)
59

1− pZL
ZT

− G
(n)
15

1− pZB
ZT

)
. (2.165)

Using equations (2.46) and (2.160), gives

Q̄ =
ZTaV̄

p(Zg + b)YT ξ
. (2.166)

Hence, an expression for the transmission sensitivity can be found by substituting

equation (2.166) into equation (2.165), giving

F̄

V̄
=

haZLK
(n)
g

(Z̄g + b)YT ξ
, (2.167)
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where

K(n)
g =

1

1− pZL
ZT

(
1 +

G
(n)
55 +G

(n)
59

1− pZL
ZT

− G
(n)
15

1− pZB
ZT

)
. (2.168)

Hence, the non-dimensionalized transmission sensitivity is

ψg =
F̄

V̄ hC0

=
aZLK

(n)
g

(Z̄g + b)YT ξC0

. (2.169)

In reception mode the transducer generates an electric charge when its front face

is subjected to external loads, that is, when the output vertices B and C (which

correspond to vertex nodes 5 and 9) receive an external load. The expression for

amplitude of the forward propagating wave is given by [86]

αL = − F̄

pvTZsξ
, (2.170)

where Zs is the specific acoustic impedance. Using this expression for αL, it is

possible to rewrite the expression for the voltage in equation (2.157) to be of the

form

V̄ =
h2Q̄

YT ξ
(µg + νg) +

2hF̄µgAr
ZTvT ξ

+
Q̄

C0

. (2.171)

An expression for the reception sensitivity can be found by substituting the expres-

sion for the electrical charge found in equation (2.166) into the above expression

for the voltage

V̄

F̄
=

2hµg

YT ξ
(

1− aZT
pC0YT ξ(Z̄g+b)

(
1 + h2C0(µg+νg)

YT ξ

)) , (2.172)

The non-dimensionalized expression is thus given by

φg =
V̄ hC0

F̄
=

2h2C0µg

YT ξ
(

1− aZT
pC0YT ξ(Z̄g+b)

(
1 + h2C0(µg+νg)

YT ξ

)) . (2.173)

The graphs displayed in Figures 2.18, 2.19 and 2.20, are of the electrical

impedance, and transmission and reception sensitivities for the Sierpinski gasket

inspired transducer at generation level five (equations (2.162), (2.169) and (2.173),
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respectively) compared to the ceramic plate and 1-3 composite transducers. For

the Sierpinski gasket inspired and standard piezoelectric block transducers, it is

assumed that the ceramic volume fraction is the same for both devices (vf = 1) to

allow for a fair comparison. In later chapters, all novel designs will also have a ce-

ramic volume fraction of vf = 1. Although the investigation of a Sierpinski gasket

inspired transducer has previously been achieved, the graph depicting generation

level five in this thesis differs to its illustration in [86]. This is as a result of the

amendment made to the lattice Green function that represents vertex 5 (where

this vertex is in reference to one of the output vertices at generation level n = 2)

connecting to the fictitious vertex B, i.e. yg. Similar to the standard devices, this

model has been further extended to obtain the figures of merit at interest for the

pre-fractal devices at generation levels one to five.

Z

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Z

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Z

e
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Z


(dB)

Figure 2.18: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski gasket (Ẑ5

g orange full line) transducer at fractal genera-

tion level n = 5, ceramic plate device (Ẑe purple full line) and composite transducer
(Ẑc light blue full line).

Comparisons of the electrical impedance for the three devices are shown in

Figure 2.18. The electrical and mechanical resonant frequencies and corresponding

electrical impedances for the Sierpinski gasket inspired device for fractal generation
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levels one to five are shown in Table 2.8. By observing the table of values, it

is clear that the increasing the fractal generation level increases the electrical

impedance magnitudes. Thus, with fractal-inspired devices it is possible to select

an appropriate fractal generation level design, with the specific characteristics

which are best suited to a particular application.

Generation
(n)

Electrical Resonant
Frequency

fe (MHz) Zg (dB)

Mechanical Resonant
Frequency

fm (MHz) Zg (dB)

1 1.027 −6.306 1.195 −0.166
2 1.564 −2.591 1.780 2.157
3 1.689 1.331 1.896 4.990
4 1.638 5.204 1.822 8.082
5 1.519 9.011 1.680 11.304

Table 2.8: Electrical and mechanical resonant frequencies for the first five fractal
generation levels for the Sierpinski gasket transducer.
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Figure 2.19: Non-dimensionalised transmission sensitivities ψ (dB) versus fre-
quency f (Hz) for the Sierpinski gasket (ψ5

g orange full line) transducer at fractal
generation level n = 5, ceramic plate device (ψe purple full line) and composite
transducer (ψc light blue full line).
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The transmission sensitives for the three devices are plotted in Figure 2.19.

Unfortunately the results for the fractal device are relatively disappointing, at

least in terms of its maximum amplitude. In regards to this figure of merit, there

is a discouraging effect on the value as the fractal generation level is increased.

Additionally, even at its highest peak the fractal device is still outperformed by

the standard devices. However, the device outperforms the standard ceramic plate

transducer in terms of its bandwidth for fractal generation levels four and five. Fur-

thermore, it should be noted that practical transducers fabricated on the design of

the Sierpinski gasket, or any pre-fractal, would be a composition of a piezoelectric

ceramic and polymer filler. For investigatory purposes, the Sierpinski gasket device

explored here is composed entirely of the ceramic material. In reality therefore,

it is expected that pre-fractal devices composed of both a ceramic and polymer

material would provide better operational characteristics. Table 2.9 presents the

metrics describing the transmission characteristics for generation levels one to five

of the Sierpinski gasket pre-fractal transducers.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −5.517 0.077 0.022
2 −3.427 0.113 0.052
3 −6.166 0.217 0.053
4 −8.576 0.276 0.038
5 −10.357 0.280 0.026

Table 2.9: Figures of merit in transmitting mode for Sierpinski gasket transducer.

Evidently from Figure 2.20, which illustrates the reception sensitives of the de-

vices, it is the pre-fractal transducer which outperforms standard designs. More-

over, the gain bandwidth product at fractal generation level five has increased

almost 3-fold over the traditional designs. The fractal-inspired device also con-

tains more resonances which is likely due to the pre-fractal structure containing
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a wider range of length scales. Each of the figures of merit for the reception

sensitivities at fractal generation levels one to five are formulated in Table 2.10.
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Figure 2.20: Non-dimensionalised reception sensitivities φ (dB) versus frequency
f (Hz) for the Sierpinski gasket (φ5

g orange full line) transducer at fractal generation
level n = 5, ceramic plate device (φe purple full line) and composite transducer
(φc light blue full line).

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 0.807 0.331 0.399
2 1.735 0.220 0.265
3 4.098 0.213 0.547
4 6.882 0.200 0.976
5 9.520 0.185 1.657

Table 2.10: Figures of merit in receiving mode for Sierpinski gasket transducer.

In this section a pre-fractal design transducer was compared to traditional

design transducers, one purely ceramic and the other of a ceramic-polymer com-

position. The analysis performed on the pre-fractal device accounted for only
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ceramic properties, while in real-world applications it would also consist of a poly-

mer material. It is understood that composite devices outperform single-phase

transducers. So if pre-fractal single-phase devices outperform standard ceramic

plated transducers, it can be presumed that fractal-inspired transducers composed

of both ceramic and polymer materials would equally achieve better operating

characteristics over tradition design composites.

2.5 Conclusions

In this chapter the performance of a single phase ceramic transducer and ceramic

polymer composite transducer have been investigated. The operating characteris-

tics for the two devices were derived and the analysis of the models was extended

to obtain the figures of merit at interest. The metrics of significance were the

maximum amplitude, 3-dB bandwidth and the gain bandwidth product. Fur-

thering the analyses of the composite device, the ceramic volume fraction has

been varied to determine its impact on each figure of merit, for the transmis-

sion, ψc, and reception, φc, sensitivities of the device. A Sierpinski gasket fractal

inspired transducer was also investigated and the important output parameters,

electrical impedance, Ẑg, transmission, ψg, and reception, φg, sensitivities were

derived and plotted against the operating frequency. These operating characteris-

tics help to determine how well the transducer is likely to perform. Therefore, the

derivation of these parameters is essential for analysing the performance of each

transducer model. The Sierpinski gasket inspired transducer was then compared

against standard (Euclidean) devices. As with the standard devices the relevant

figures of merit were calculated for the first five fractal generation levels. The

research restricted the fractal generation level up to and including level five as

a result of current manufacturing limitations. Pre-fractal devices benefit from a

range of length scales and inherit more complexity in their designs than current

industry used ultrasonic transducers. As the fractal generation level increases, the

lengths between neighbouring vertices decrease and the resulting structure is of
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a complicated multi scaled device, with diminutive length scales. Although these

qualities are advantageous, it is due to these that construction of such devices is

made problematic.

The results indicated an improvement in performance for the pre-fractal de-

vices, with few figures of merit less than the industry standard. Importantly

however, the fractal-inspired design only accounted for the ceramic phase. Thus

it may be of use to further analyse such devices which incorporate the polymer

filler. Research into a Sierpinski gasket inspired transducer that incorporates both

ceramic and polymer phases is considered in [8]. Since pre-fractal transducers have

been found to provide improved operational characteristics over standard designs,

it is of relevance to further study new designs that incorporate other fractal-like

geometries. This may assist in establishing the optimal design that could be used

for ultrasonic transducers.
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Chapter 3

The Sierpinski Carpet Transducer

3.1 Introduction

This chapter seeks to improve on current transducer design by assessing the ben-

efits of incorporating fractal-like geometry into the design of ultrasonic transduc-

ers. This particular research is important as it contributes relevant information on

methods to improve transducer efficiency, furthering the exchange of design ideas

between the theoreticians and experimentalists.

There has been extensive research conducted on piezoelectric ultrasonic trans-

ducers [52, 71, 75, 84, 92, 94, 95, 98, 101, 125, 127]. However, only a small por-

tion of this is based on fractal-designed transducers [7, 83, 86, 97]. In previous

works [7, 86], Green function renormalization has been applied to fractal struc-

tures with the aim of obtaining recursion relations to facilitate expressions for the

transducers’ operating characteristics. In each case the fractal-like designs used

to simulate the features of natural occurring ultrasonic transducers were limited

to finitely ramified structures. Finitely ramified fractals are structures that can

be separated into subparts through the removal of a finite and constant number

of vertices, which is independent of the generation level [17, 40]. Infinitely rami-

fied Sierpinski carpet antennas have previously been investigated [4, 23, 58, 136].

However, very few have studied its potential use in the design of ultrasonic trans-

ducers. In particular the plane wave expansion (PWE) model was employed to
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study the performances of a Sierpinski carpet like and Cantor set transducers [97].

The connection process of the Sierpinski carpet prohibits the isolation of subgraphs

through the removal of a finite and constant number of vertices and so does not

satisfy the conditions of finitely ramified structures. For this reason the Sierpinski

carpet is classified as an infinitely ramified fractal. The renormalization approach

previously used on a Sierpinski gasket inspired transducer [86] is limited to finitely

ramified fractals. However, this form of analysis can be extended to investigate in-

finitely ramified structures [40]. Therefore, the renormalization method is adapted

to obtain expressions for the electrical impedance, transmission and reception re-

sponses for a transducer inspired by an infinitely ramified fractal [19].

In this chapter, three models based on the design of the Sierpinski carpet pre-

fractal are investigated to determine the most appropriate device for ultrasonic

applications. The differences between these models are dependent on the number

of output nodes, i.e. the number of boundary conditions. For each of these models

this chapter will show, that increasing the fractal generation level would result in

an increase in the device’s bandwidth and gain bandwidth product.

Section 3.2 outlines the construction of the Sierpinski carpet pre-fractal along

with the derivation of its lattice counterpart. In Section 3.3, the Green function

renormalization method is tailored to obtain the relevant relations for each trans-

ducer model. In Section 3.4 boundary conditions are obtained to aid the deriva-

tion of the expressions for the important output parameters; these are electrical

impedance, Ẑ, transmission and reception sensitivities (ψ, φ) as outlined in Sec-

tion 3.5. In Section 3.6, the results for the individual Sierpinski carpet transducer

models are compared with the standard Euclidean transducer and the Sierpinski

gasket inspired transducer. The findings are summarised and future research is

discussed in Section 3.7.
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3.2 Formulation of the Model

The fractal used to here imitate the complex geometry found in natural ultra-

sonic transducers is the Sierpinski carpet. The structure of this fractal begins

with a square, which is then copied and scaled into nine congruent sub-squares

with the centre square eliminated. The following generation is then achieved by

replacing the initial square with this newly formed shape. Subsequent generations

are then found by repeatedly applying this procedure to give the Sierpinski car-

pet [27, 28, 115], see Figure 3.1. The fractal known as the Sierpinski carpet was

Figure 3.1: The initial square and first four iterations of the Sierpinski carpet.

first described in 1916 by mathematician Waclaw Sierpinski, a year after he first

introduced the Sierpinski gasket [29]. The fractional dimension may also be defined

using equation (1.1). Since the squares are scaled by a factor of three into eight

sub-squares, the dimension for this fractal is Df = log (8)/ log (3).

The sequence of graphs shown in Figure 3.2 are the lattice counterparts for the

Sierpinski carpet. To study the behaviour of a propagating ultrasonic wave in the

pre-fractal device, the fractal lattices are required. Analogous to the Sierpinski

gasket pre-fractal transducer, the lattice counterpart represents the vibrations of

the piezoelectric material. Thus, the structures are obtained in a similar method

to the Sierpinski gasket lattices, whereby each graph in the sequence is obtained by

connecting together eight copies of the previous one. Unlike the Sierpinski gasket

however, the connection of subgraphs does not only exist at the boundary vertices.

In the instance of the Sierpinski gasket it was possible to make the vertex degree

constant and equal to q = 3 by introducing fictitious vertices at its input/output
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vertices. Although the Sierpinski carpet inspired transducer will also position

fictitious vertices at the input/output nodes, it should be noted that this will

not make the vertex degrees constant and independent of the fractal generation

level. This is as a result of there being an exponential increase in the number

of connection vertices as the generation level is increased. The nth generation

n=0 n=1 n=2 n=3

Figure 3.2: Graphical representations of generations 0 to 3 for the sequence of
Sierpinski carpet lattices.

graph has Nn = 23n vertices, and the side length of the structure Ls is once again

assumed to be fixed throughout the construction process. For this lattice structure

the vertex degree, is dependent on the number of sub-graphs it connects. For any

fractal lattice, a single vertex will not connect more than three sub-graphs. Thus,

the Sierpinski carpet lattice has vertex degree equal to four for vertices connecting

three sub-graphs, three for vertices connecting two sub-graphs and two for non-

connecting vertices. As a result, the input/output vertices have a vertex degree of

two, which remains constant throughout the iteration process. Similar to the work

presented in [86], fictitious vertices A, B, C and D are attached to these vertices

to accommodate the boundary conditions, see Figure 3.3.

In the works proceeding, three models will be investigated, all of which are

based on the design of the Sierpinski carpet. It is thought that the number of out-

put vertices the transducer exhibits will have a direct effect on its performance,

and as such it is desirable to obtain individual models which encompass these

different numbers of output vertices, i.e. the number of boundary conditions. In
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transmission mode, each model will contain a single input vertex that is connected

to fictitious vertex A. At this vertex ultrasonic waves are generated through the

application of an electric field and dependent on the model, one, two or three out-

put vertices will be required. These output vertices will produce the mechanical

vibrations once the wave has passed through the transducer. The graph in Fig-

ure 3.3 (a) defines model η at generation level two. As illustrated, model η contains

two boundary conditions; an input vertex placed at vertex A and a single output

vertex placed at vertex C. The second generation graph of model δ is shown in

Figure 3.3 (b). This model will include three boundary conditions, again with the

input vertex positioned at vertex A and two symmetric output vertices positioned

at vertices B and D. Model γ will refer to the inclusion of four boundary condi-

tions, see Figure 3.3 (c), where an input vertex is placed at vertex A, two symmetric

vertices are to be placed at vertices B and D and an additional output vertex is

placed at vertex C.
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(b) Model δ
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(c) Model γ

Figure 3.3: Sierpinski carpet lattice at generation n = 2. Fictitious vertices A, B,
C and D are introduced to accommodate the boundary conditions. (a) Represen-
tation of Model η with fictitious vertices A and C. (b) Representation of Model δ
with fictitious vertices A, B and D. (c) Representation of Model γ with fictitious
vertices A, B, C and D.
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3.3 Renormalization Analysis: Model Recursive

Relations

Research into a Sierpinski carpet inspired device will utilise a similar analysis to the

Sierpinski gasket inspired transducer. The method used previously has generally

only been applied to finitely ramified fractals; very little has been studied on

infinitely ramified fractals. Such structures have briefly been explored in [39, 40,

111]. In these papers, the entries of the Green function matrix are achieved by

obtaining the Cartesian product of two lattices, with the purpose of assisting the

study of much more complicated structures with spectral dimension greater than

two. In Chapter 5, the possible performance of two new transducers are analysed

by obtaining the Cartesian product of two pre-fractal lattices.

This section develops the Green function renormalization to an infinitely ram-

ified Sierpinski carpet. In the following sections, the derivation of the recursion

equations needed to derive any subsequent generation Green functions will be

presented.

3.3.1 Model η: Single Output Vertex

It is important to obtain the Green functions at the input/output vertices of the

structure for each of the three models as shown is Figure 3.3. Model η requires the

following pivotal elements: G
(n)
1 1 , G

(n)
1 37 and G

(n)
37 37. These can more conveniently

be expressed as xη, zη and vη, respectively, where the subscript η relates to the

transducer model rather than to the vertices of the lattice. For this particular

case, fictitious vertices A and C will be connected to vertices 1 and 37 respectively.

Model η refers to the case in which there are two boundary conditions at vertices

1 and 37, and so it is assumed that vertices 19 and 55 are to be insulated. Since

model η only takes into account boundary conditions placed at vertices 1 and

37, it only requires the recursion relations x̂ and ẑ since vertices 19 and 55 are

presumed to have no interaction with external loads. By utilising equation (2.133),

69



the following set of equations for the pivotal Green functions are obtained

xη = x̂η + x̂ηb1xη + ẑηb2zη, (3.1)

zη = ẑη + ẑηb1xη + x̂ηb2zη, (3.2)

vη = x̂η + ẑηb1zη + x̂ηb2vη, (3.3)

where x̂η = Ĝ
(n)
1 1 and ẑη = Ĝ

(n)
1 37 correspond to the boundary matrix, B(n), being

set to zero, and b1 = B
(n)
1 1 and b2 = B

(n)
37 37 relate to the boundary conditions set at

fictitious vertices A and C. Thus solving these three equations solely in terms of

x̂η, ẑη, b1, and b2, yields

xη =
(ẑ2
η − x̂2

η)b2 + x̂η

∆A

, (3.4)

zη =
ẑη
∆A

, (3.5)

vη =
(ẑ2
η − x̂2

η)b1 + x̂η

∆A

, (3.6)

where

∆A = ((x̂2
η − ẑ2

η)b1 − x̂η)b2 + 1− x̂ηb1. (3.7)

In [40], one of the conditions in order to apply this renormalization method

to a family of graphs is that the process of obtaining G(n+1) from G(n) consists

of connecting together v copies of G(n) solely through the input/output vertices.

As the Sierpinski carpet is an infinitely ramified fractal, the connection process

to form the nth generation level graph consists of connecting v copies of G(n) at

the input/output vertices in addition to internal vertices. Thus the method for

obtaining the subsequent generations of Green functions is not achieved in the

same manner as for the Sierpinski gasket. Since the vertex degrees are fixed for

the Sierpinski gasket, it was possible to use the recursion relation equation, given

in equation (2.132), which connects G(n+1) and G(n) as a way of obtaining the exact

(i, j)th element of the Green function matrix for any given generation level. As a

result of the non-constant vertex degrees in the Sierpinski carpet lattices, it is not

possible to use the relation equation, and only equation (2.133) will be used for
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each model to develop the recursion relationships. Furthermore, it is necessary to

obtain the Green function matrices. Consequently, results for higher generation

levels are computationally intensive and therefore only low generation levels have

been computed. Previous papers have analysed infinitely ramified fractals using

methods such as percolation, random walks and Brownian motion [13, 14, 45].

These give alternative methods for studying the propagation of an ultrasonic wave

within a Sierpinski carpet pre-fractal.

3.3.2 Model δ: Two Symmetric Output Vertices

Model δ is concerned with the inclusion of three boundary conditions; an input

vertex at site 1 and two output vertices at sites 19 and 55. Due to the symmetries

of this lattice, it can be shown that G
(n)
1 19 and G

(n)
1 55 are equal. For this model it

is necessary to determine the relations for x̂δ, ŷδ, t̂δ and ŵδ, as it is assumed that

vertex 37 is to be insulated from the external loads. The need for the addition of

t̂δ and ŵδ is due to the symmetry of this lattice, see Figure 3.3(b). In this instance

Ĝ
(n)
1 1 6= Ĝ

(n)
19 19. Thus using analysis similar to that with model η results with

xδ =

(
1− b2

(
t̂δ + ŵδ

))
x̂δ + 2b2ŷ

2
δ

∆B

, (3.8)

yδ =
ŷδ

∆B

, (3.9)

wδ =
b1

(
1 + 2b2

(
t̂δ − ŵδ

))
ŷ2
δ −

(
ŵδ + b2

(
t̂δ − ŵδ

) (
t̂δ + ŵδ

))
(b1x̂δ − 1)

∆C

, (3.10)

tδ =
t̂δ − b1t̂δx̂δ + b1ŷ

2
δ

∆C

, (3.11)

where

∆B =
(
b2

(
t̂δ + ŵδ

)
− 1
)

(b1x̂δ − 1)− 2b1b2ŷ
2
δ , (3.12)

∆C =
(
1 + b2

(
t̂δ − ŵδ

)) ((
b2

(
t̂δ + ŵδ

)
− 1
)

(b1x̂δ − 1)− 2b1b2ŷ
2
δ

)
(3.13)

and xδ, yδ, wδ and tδ correspond to the pivotal elements G
(n)
1 1 , G

(n)
1 19, G

(n)
19 19 and

G
(n)
19 55 respectively.

71



3.3.3 Model γ: Three Output Vertices

In the case of model γ there are seven pivotal elements, G
(n)
1 1 , G

(n)
1 19, G

(n)
1 37, G

(n)
19 19,

G
(n)
37 37, G

(n)
19 37 andG

(n)
19 55, where for ease of notation these will be labelled respectively

as xγ, yγ, zγ, wγ, vγ, uγ and tγ. From lattice symmetry

Ĝ
(n)
1 1 = Ĝ

(n)
19 19 = Ĝ

(n)
37 37 = Ĝ

(n)
55 55, (3.14)

Ĝ
(n)
1 19 = Ĝ

(n)
1 55 = Ĝ

(n)
19 37 = Ĝ

(n)
37 55, (3.15)

Ĝ
(n)
1 37 = Ĝ

(n)
19 55, (3.16)

however it should be noted that this does not hold true when boundary conditions

are reintroduced. These Green function elements are associated with the internal

structure of the lattice and as a result it is possible to set these elements equal to

one another, as shown in equations (3.14)- (3.16). The introduction of the bound-

ary conditions transforms the bare Green function matrix to take into account the

backing layer and mechanical loads set at the input/output vertices. This therefore

alters the Green function matrix, and thus the inclusion of boundary conditions

suggests that

G
(n)
1 19 = G

(n)
1 55, (3.17)

G
(n)
19 37 = G

(n)
37 55, (3.18)

G
(n)
1 1 6= G

(n)
19 19 6= G

(n)
37 37, (3.19)

G
(n)
1 19 6= G

(n)
1 37. (3.20)

The use of equation (2.133) results in seven equations,

xγ =

(
2b2

(
x̂2
γ − ŷ2

γ

)
+ b2 (x̂γ − ẑγ)

(
4ŷ2

γb2 − ẑγ (x̂γb2 − 1)
)

− b2
2

(
x̂3
γ − ẑ3

γ

)
− x̂γ

)
∆1

, (3.21)

yγ =
ŷγ (1− b2 (x̂γ − ẑγ))

∆1

, (3.22)

zγ =
2ŷ2

γb2 + ẑγ (1− b2 (x̂γ + ẑγ))

∆1

, (3.23)
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wγ =
(
(2x̂2

γ(x̂γb1 − 1)− 2(2ŷ2
γ + ẑ2

γ)b1x̂γ + ŷ2
γ(1 + 4ẑγb1) + ẑ2

γ)b2

−
(
x̂γ(x̂

2
γb1 + x̂γ(ẑγb1 − 1)− (4ŷ2

γ + ẑ2
γ)b1 − ẑγ) + ẑγb1

× (4ŷ2
γ − ẑ2

γ) + 2ŷ2
γ

)
(x̂γ − ẑγ)b2

2 − b1(x̂2
γ − ŷ2

γ) + x̂γ
)

(∆2)−1 (3.24)

vγ =

(
(x̂γ − ẑγ) (x̂γ + 2ŷγ + ẑγ) (x̂γ − 2ŷγ + ẑγ) b1b2

−
(
x̂γ (x̂γ + ẑγ) + 2ŷ2

γ

)
b2 −

(
x̂2
γ − ẑ2

γ

)
b1 + x̂γ

)
∆1

, (3.25)

uγ =
ŷγ (b1 (x̂γ − ẑγ)− 1)

∆1

, (3.26)

tγ =
ẑγ − (x̂γ ẑγ − ŷ2

γ)(b1 + b2) + b1b2(ẑγ(x̂
2
γ − ẑ2

γ)− 2ŷ2
γ(x̂γ − ẑγ))

∆2

, (3.27)

where

∆1 = b1b
2
2 (x̂γ − ẑγ)

(
x̂γ ẑγ − 4ŷ2

γ

)
+
(
2ŷ2

γb1 + x̂γ
)

(b1 + b2)

+ b1b2

(
b2

(
x̂3
γ − ẑ3

γ

)
− (2x̂γ − ẑγ) (x̂γ + ẑγ)

)
− 1, (3.28)

∆2 = ((x̂γ − ẑγ)b2 − 1)(((x̂γ − ẑγ)(x̂γ + 2ŷγ + ẑγ)(x̂γ − 2ŷγ + ẑγ)

− x̂γ(x̂γ + ẑγ) + 2ŷ2
γ)b

2
2(((ẑγ(ẑγ − x̂γ)− 2(x̂2

γ − ŷ2
γ))b1 + 2x̂γ

+ ẑγ)b2 + x̂γb1 − 1)), (3.29)

with b1 = B
(n)
1 1 and b2 = B

(n)
19 19 = B

(n)
37 37 = B

(n)
55 55. For brevity, the system of

equations used to derive the pivotal Green functions for models δ and γ is presented

in Appendix B.

As the pivotal elements for each of the carpet models have been determined,

expressions detailing the electrical impedance and transmission and reception sen-

sitivities for each device can now be calculated.

3.4 Application of Boundary Conditions

Chapter 2 presents the constitutive equations (2.1)-(2.2) required to describe the

interaction between electrical and mechanical properties of the piezoelectric ma-

terial. For each model, mechanical loads are placed at the output vertices and an
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electrical load is positioned at the input vertex. To find the governing equation

for these loads, stress, T , can be expressed as [88]

T =
F

Ar
, (3.30)

where F is the force on each vertex and Ar is the cross-sectional area of each fractal

lattice edge. Using Newton’s Second Law of Motion which describes force to be

the product of mass and acceleration and making the appropriate substitution for

mass, the force may be defined as

F = Arlρ
∂2u

∂t2
. (3.31)

Substituting this into equation (3.30) gives

T = lρ
∂2u

∂t2
, (3.32)

where l is transducer thickness, ρ is the density and u is the particle displacement.

Thus
∂T

∂x
= ρ

∂2u

∂t2
, (3.33)

which is the stress equation of motion, given previously in equation (2.4). Using

the definition of Hooke’s law in equation (2.61), the governing equation is found

to be

ρi
∂2ui
∂t2

= Yi
∂2ui
∂x2

i

, (3.34)

where the subscript i will be suitably substituted with L when concerning the

mechanical load and with B when referring to the backing layer. A solution

to the above is found by re-introducing the non-dimensional variable shown in

equation (2.124)

∂2ui
∂θ2

=

(
vi
vT

∆x

)2
∂2ui
∂x2

i

, (3.35)

and taking Laplace transforms of equation (3.35) to give

∂2ūi
∂x2

i

−
(
pvT

∆xvi

)2

ūi = 0, (3.36)
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where vT is the wave velocity in the piezoelectric material and vi is the wave

velocity in the mechanical load or backing layer. As with earlier devices it is

assumed that the wave only propagates away from the ceramic phase. Thus, a

solution for the displacement in the load and backing layer are given respectively

as

ūL = αL exp

(
−pvTxL
∆xvL

)
+ βL exp

(
pvTxL
∆xvL

)
, (3.37)

and

ūB = αB exp

(
−pvTxB
∆xvB

)
. (3.38)

The solution for the wave equation, found in equations (3.37) and (3.38), is fun-

damental in transducer analysis as the equations are used to obtain the voltage

across the transducer and the force acting on each vertex. The calculation for the

voltage is presented in the following section. Applying the conditions of continuity

of displacement at the transducer boundaries gives

ūL(0) = αL + βL, (3.39)

ūB(0) = αB. (3.40)

There is a possibility to avail of a variety of transducers here, with the option of

having one, two or three mechanical loads. Each of the models being investigated

will have the backing material set at vertex A, and one, two or three mechanical

loads (depending on the model) placed at vertices B, C and/or D. To be more

specific, model γ is the fractal transducer that will have the three mechanical loads

at vertices B, C and D. Hence, due to the symmetry of the Green transfer matrix,

equations (3.39) and (3.40) become

u19 = u37 = u55 = uB = uC = uD = αL + βL, (3.41)

u1 = uA = αB, (3.42)

where the subscripts attached to the displacement u refer to a specific vertex of

the graph. Equation (3.41) can be rewritten for models η and δ respectively as

u37 = uC = αL + βL and (3.43)
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u19 = u55 = uB = uD = αL + βL. (3.44)

In equation (3.30), stress is given in terms of force and area. Using equation (2.1)

and rearranging in terms of force gives

F̄ = ArT̄ = ArY
∂ū

∂x
− hQ̄, (3.45)

where S̄ = ∂ū/∂x and D̄ = Q̄/Ar [86]. The derivative in the above equation can

be defined as
∂ū

∂x
= lim

∆x→ 0

u(x+ ∆x)− u(x)

∆x
. (3.46)

This can then be approximated to give

∂ūi
∂x
≈ u(xi + ∆x)− u(xi)

∆x
=
ui+1 − ui

∆x
. (3.47)

Substituting this into equation (3.45) gives an expression for the force, F̄T , in the

piezoelectric layer as

F̄T = ArYT
ui+1 − ui

∆x
− hQ̄, (3.48)

To obtain the expressions for the force in the backing layer and load the derivative

in equation (3.45) is replaced to give

F̄B = −ArYB
(

pvT
∆xvB

)
αB, (3.49)

for the backing layer and

F̄L = ArYL

(
pvT

∆xvL

)
(−αL + βL) , (3.50)

for the load. Hence, continuity of force gives

F̄T = F̄B = ArYT

(
u1 − uA

∆x

)
− hQ̄ = −ArYB

(
pvT

∆xvB

)
αB

= (u1 − uA)− hQ̄∆x

ArYT
= −pvTYB

YTvB
αB

= u1 − uA −
hQ̄

YT ξ
= −ZB

ZT
pαB, (3.51)
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F̄T = F̄L = ArYT

(
uB − u19

∆x

)
− hQ̄ = ArYL

(
pvT

∆xvL

)
(−αL + βL)

= uB − u19 −
hQ̄

YT ξ
=
ZL
ZT

p(−αL + βL), (3.52)

where ξ = Ar/∆x is the ratio of the cross-sectional area of each edge to its length

[86]. Combining equations (3.42) and (3.51) gives an expression for the mechanical

displacement at the fictitious vertex A,

u1 − uA −
hQ̄

YT ξ
= −pZB

ZT
uA,

u1 −
hQ̄

YT ξ
= uA

(
1− pZB

ZT

)
,

uA = u1

(
1

1− pZB
ZT

)
− hQ̄

YT ξ

(
1

1− pZB
ZT

)
. (3.53)

Similarly, the mechanical displacement at fictitious vertices B, C and D is obtained

by combining equation (3.41) with equation (3.52) to give

uB − u19 −
hQ̄

YT ξ
= p

ZL
ZT

(−2αL + uB),

uB

(
1− pZL

ZT

)
= u19 +

hQ̄

YT ξ
− 2pαL

ZL
ZT

,

uB = u19

(
1

1− pZL
ZT

)
+

(
hQ̄

YT ξ
− 2pαL

ZL
ZT

)(
1

1− pZL
ZT

)
= uC = uD. (3.54)

Thus, using equations (3.53) and (3.54) it is possible to determine elements of the

boundary condition matrix B(n),

Bij =


1

1−pZB
ZT

if i = j = 1

1

1−pZL
ZT

if i = j = 19, 37 or 55,

0 otherwise

(3.55)
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and the vector c(n)

ci =


− hQ̄
YT ξ

(
1

1−pZB
ZT

)
if i = 1(

hQ̄
YT ξ
− 2pAL

ZL
ZT

)(
1

1−pZL
ZT

)
if i = 19, 37 or 55.

0 otherwise

(3.56)

Within this section, expressions detailing the mechanical displacements at the

boundary vertices were derived, and from this the boundary matrix elements as

well as the vector c(n) elements were obtained. The following section will utilise

these calculations to determine expressions for the electrical impedance and trans-

mission and reception sensitivities for the three devices.

3.5 Electrical Impedance, Transmission and

Reception Sensitivities

An expression for the voltage may be obtained by firstly expressing equa-

tion (2.2) as

Ē = −h∂ū
∂x

+
Q̄

Arε
. (3.57)

Integrating, and utilising equation (2.7) then gives

V̄ =

∫ Ls

0

(
−h∂ū

∂x
+

Q̄

Arε

)
dx,

= −h
∫ b

a

(
∂ū

∂x
+
Q̄

C0

)
dx, (3.58)

where a and b are any two points in space. In this instance, a and b are any

two points in the lattice structure. Three cases are being investigated for the

theoretical Sierpinski carpet transducer, each differ from one another depending on

the number of boundary conditions and the location of these boundaries. A charge

Q is applied to the transducer at vertex A and passes through in the direction of

the electric field. The voltage for model η is measured between fictitious vertices A
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and C, thus implementing these parameters into equation (3.58) and using Gauss’

law gives the voltage as

V̄ = −h (u37 − u1) +
Q̄

C0

. (3.59)

In a similar way, the voltage for model δ is found to be

V̄ = −h (u19 − u1) +
Q̄

C0

, (3.60)

since the path taken from A to B (or A to D) is parallel to the electric field;

see Figure 3.4. For model γ the voltage consists of two contributions, one for each

B

D

A

C

Q

Figure 3.4: Electric field lines emanating from a point positive electric charge Q.

lattice edge of the path, these being the path A to B and the path B to C. Since

a positive charge is applied to the transducer at vertex A, electric field lines would

emanate in all directions away from this point. So when moving from vertex A to

B the voltage in this case would just be the difference between vertices u19 and u1

since the path taken is parallel to the electric field. However, the path from vertex

B to C would result in zero voltage as the path in this case is perpendicular to

the direction of the electric field. Thus the voltage for model γ is given as

V̄ = V̄BA + V̄CB

=
(
V̄B − V̄A

)
+
(
V̄C − V̄B

)
= V̄B − V̄A

= −h (u19 − u1) +
Q̄

C0

. (3.61)
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A general term for the voltage can be given by

V̄ = −h (ub − ua) +
Q̄

C0

. (3.62)

It is stated in Chapter 2 that the electrical charge is given by

Q =

∫
Idt. (3.63)

For a transducer based on the design of the Sierpinski carpet, the charge is obtained

by introducing the non-dimensional variable θ in equation (2.124)

Q = ∆x
√
ρT/YT

∫
Idθ, (3.64)

and then taking Laplace transforms to give

Q̄ =

√
ρT/YT∆xĪ

p
. (3.65)

Rearranging in terms of the current gives

Ī =
pQ̄YT ξ

ZT
, (3.66)

where ZT =
√
YTρTAr. The electrical impedance of the device is given by Z = V/I,

so using equations (3.62) and (3.66) results in

Z̄ =
ZT

pC0YT ξ

(
1− hC0(ub − ua)

Q̄

)
. (3.67)

As there are three independent models, it is important to obtain the electrical

impedance for each. So to begin with, the electrical impedance for model η is

found by solving u37 − u1 and substituting this in place of the ub − ua term

found in equation (3.67). Since u = G(n)c then u37 = G
(n)
1 37c1 + G

(n)
37 37c37 and

u1 = G
(n)
1 1 c1 +G

(n)
1 37c37. Utilising equation (3.56) results in

u37 − u1 = − hQ̄
YT ξ

(
G

(n)
1 37 −G

(n)
37 37

1− pZL
ZT

+
G

(n)
1 37 −G

(n)
1 1

1− pZB
ZT

)

+
2pαLZL
ZT

(
G

(n)
1 37 −G

(n)
37 37

1− pZL
ZT

)
. (3.68)

80



Denoting µη =
G

(n)
1 37−G

(n)
37 37

1−pZL
ZT

and νη =
G

(n)
1 37−G

(n)
1 1

1−pZB
ZT

as well as substituting equation

(3.68) into equation (3.67) gives the electrical impedance for model η as

Z̄η =
ZT

pC0YT ξ

(
1 +

h2C0(µη + νη)

YT ξ
− 2hC0pµηαLZL

Q̄ZT

)
. (3.69)

The non-dimensionalized electrical impedance for model η is then found by dividing

through a series electrical load, Z0, resulting in

Ẑη =
ZT

pC0YT ξZ0

(
1 +

h2C0(µη + νη)

YT ξ
− 2hC0pµηαLZL

Q̄ZT

)
. (3.70)

For models δ and γ their respective electrical impedance only differs to model η in

regards to their µ and ν expressions. For model δ these terms are found through

the solution of u19 − u1,

u19 − u1 = − hQ̄
YT ξ

(
2G

(n)
1 19 −G

(n)
19 19 −G

(n)
19 55

1− pZL
ZT

+
G

(n)
1 19 −G

(n)
1 1

1− pZB
ZT

)

+
2pαLZL
ZT

(
2G

(n)
1 19 −G

(n)
19 19 −G

(n)
19 55

1− pZL
ZT

)
, (3.71)

where

u19 = G
(n)
1 19c1 +G

(n)
19 19c19 +G

(n)
19 55c55 = G

(n)
1 19c1 + (G

(n)
19 19 +G

(n)
19 55)c19, (3.72)

u1 = G
(n)
1 1 c1 +G

(n)
1 19c19 +G

(n)
1 55c55 = G

(n)
1 1 c1 + 2G

(n)
1 19c19, (3.73)

thus

µδ =
2G

(n)
1 19 −G

(n)
19 19 −G

(n)
19 55

1− pZL
ZT

, (3.74)

νδ =
G

(n)
1 19 −G

(n)
1 1

1− pZB
ZT

. (3.75)

Therefore, the non-dimensionalized electrical impedance for model δ is given by

Ẑδ =
ZT

pC0YT ξZ0

(
1 +

h2C0(µδ + νδ)

YT ξ
− 2hC0pµδαLZL

Q̄ZT

)
. (3.76)

Similarly, finding the electrical impedance for model γ requires the solution of

u19−u1. Although this gives the impression of having the same solution as model δ,
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it is in fact different due to the addition of a boundary condition set at vertex 37.

In this instance

u19 = G
(n)
1 19c1 +G

(n)
19 19c19 +G

(n)
19 37c37 +G

(n)
19 55c55

= G
(n)
1 19c1 + (G

(n)
19 19 +G

(n)
19 37 +G

(n)
19 55)c19, (3.77)

u1 = G
(n)
1 1 c1 +G

(n)
1 19c19 +G

(n)
1 37c37 +G

(n)
1 55c55

= G
(n)
1 1 c1 + (2G

(n)
1 19 +G

(n)
1 37)c19, (3.78)

hence,

u19 − u1 = − hQ̄
YT ξ

(
2G

(n)
1 19 +G

(n)
1 37 −G

(n)
19 19 −G

(n)
19 37 −G

(n)
19 55

1− pZL
ZT

)

− hQ̄

YT ξ

(
G

(n)
1 19 −G

(n)
1 1

1− pZB
ZT

)

+
2pαLZL
ZT

(
2G

(n)
1 19 +G

(n)
1 37 −G

(n)
19 19 −G

(n)
19 37 −G

(n)
19 55

1− pZL
ZT

)
. (3.79)

Thus, the non-dimensionalized electrical impedance for model γ is

Ẑγ =
ZT

pC0YT ξZ0

(
1 +

h2C0(µγ + νγ)

YT ξ
− 2hC0pµγαLZL

Q̄ZT

)
, (3.80)

where

µγ =
2G

(n)
1 19 +G

(n)
1 37 −G

(n)
19 19 −G

(n)
19 37 −G

(n)
19 55

1− pZL
ZT

, (3.81)

and

νγ =
G

(n)
1 19 −G

(n)
1 1

1− pZB
ZT

6= βδ. (3.82)

Now that the electrical impedances for each of the transducer models have been

calculated, these analytical expressions will be used to derive the necessary trans-

mission and reception sensitivities for each device.
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3.5.1 Transmission Sensitivity

This section derives the equations detailing the transmission sensitivities for each

model for the carpet inspired transducer. These equations, along with the expres-

sions for the electrical impedance (found in the previous section) and the reception

sensitivities, are very significant as they can give useful insight as to the perfor-

mance of the device. The reception sensitivity is derived in the following section.

In transmission mode, the conversion of electrical signal to mechanical vibra-

tion is achieved from the application of an applied voltage [51, 88, 114]. When the

transducer is transmitting there is no force incident at the front face of the trans-

ducer, and so there is no forward travelling wave in the load, i.e. αL = 0 [86, 96];

see Figure 3.5. The current across the transducer can be derived by examining

Figure 3.5 and making use of the generalized Ohm’s law. This form of Ohm’s

Z0

IE

Zp

I

BL

AB

Figure 3.5: Potential transducer arrangement in transmission mode where Z0 rep-
resents the series electrical load, Zp is the parallel electrical load and IE is the
current across the transducer.

law states that the current, I, is expressed to be the voltage, V , divided by the

impedance, Z. The total impedance is calculated using the rules for combining

impedances in series and parallel circuits. That is,

Zeq =
n∑
r=1

Zr, (3.83)

for series combination and
1

Zeq
=

n∑
r=1

1

Zr
, (3.84)
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for parallel combination. The series combination is Zeq = Z0 and the parallel

combination is 1/Zeq = 1/Zp + 1/Z̄ = (Z̄ + Zp)/ZpZ̄. Thus, the total impedance

is

ZI = Z0 +
ZpZ̄

Z̄ + Zp
, (3.85)

resulting in

Ī =
V̄

Z0 + ZpZ̄

Z̄+Zp

, (3.86)

since I = V/ZI . By defining the voltage across the transducer as

V̄E = ĪZ̄ =
V̄

Z0 + ZpZ̄

Z̄+Zp

× ZpZ̄

Z̄ + Zp
,

=
V̄ ZpZ̄

Z0

(
Z̄ + Zp

)
+ ZpZ̄

, (3.87)

an expression for the current across the transducer is determined as

ĪE =
V̄E
Z̄

=
V̄ Zp

Z0

(
Z̄ + Zp

)
+ ZpZ̄

. (3.88)

After some rearrangement, this can be written in the form of

ĪE =
aV̄

(Z̄ + b)
, (3.89)

where a = Zp/(Z0 + Zp) and b = Z0Zp/(Z0 + Zp). Equations (3.85) - (3.89) have

been derived previously in [86, 96]. Theoretically, this transducer is placed in a

circuit similar to that of the Sierpinski gasket and monolithic transducers, and as a

result, the expressions for the voltage, impedances and current would be the same.

In particular, equation (3.89) was seen earlier in equation (2.46). Thus, using the

two expressions for the current in equations (3.66) and (3.89), the input voltage can

be defined as

pQ̄YT ξ

ZT
=

aV̄

(Z̄ + b)
,

V̄ =
pQ̄YT ξ(Z̄ + b)

ZTa
. (3.90)
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The electrical impedance is redefined as

Z̄i =
ZT

pC0YT ξ

(
1 +

h2C0(µi + νi)

YT ξ

)
, (3.91)

where the subscript i will be appropriately substituted with η, δ or γ dependent

on the model. In order to obtain an expression for the transmission sensitivity of

the device it is important to derive the output force, so from continuity of force at

the front face,

F̄ = F̄L = ArYLβL

(
pvT

∆xvL

)
= ξYLβLp

vT
vL
. (3.92)

Using equations (3.41) and (3.54) the above equation is re-written as

F̄ = ξYLp
vT
vL
uC

=
ξYLpvT
vL

(
1

1− pZL
ZT

)(
u37 +

hQ̄

YT ξ

)
, (3.93)

and substituting for u37 gives

F̄ =
hQ̄YLpvT
vLYT

(
1

1− pZL
ZT

)(
1 +

G
(n)
37 37

1− pZL
ZT

− G
(n)
1 37

1− pZB
ZT

)
. (3.94)

This can be simplified by setting

K(n)
η =

(
1

1− pZL
ZT

)(
1 +

G
(n)
37 37

1− pZL
ZT

− G
(n)
1 37

1− pZB
ZT

)
, (3.95)

and hence,

F̄ =
hQ̄YLpvTK

(n)
η

vLYT
. (3.96)

In equations (3.93) - (3.96) the parameters used correspond to model η thus, the

expression for the output force for any given model is given by

F̄ =
hQ̄YLpvTK

(n)
i

vLYT
, (3.97)

where

K
(n)
δ =

(
1

1− pZL
ZT

)(
1 +

G
(n)
19 19 +G

(n)
19 55

1− pZL
ZT

− G
(n)
1 19

1− pZB
ZT

)
, (3.98)
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and

K(n)
γ =

(
1

1− pZL
ZT

)(
1 +

G
(n)
19 19 +G

(n)
19 37 +G

(n)
19 55

1− pZL
ZT

− G
(n)
1 19

1− pZB
ZT

)
, (3.99)

correspond to models δ and γ respectively. Since both the input voltage and output

force have been derived, an expression for the transmission sensitivity is given by

F̄

V̄
=
hYLvTZTaK

(n)
i

vLYT
2ξ(Z̄i + b)

=
haZLK

(n)
i

YT ξ(Z̄i + b)
. (3.100)

For this device the non-dimensionalized transmission sensitivity is given by

ψi =
F̄

V̄ hC0

=
aZLK

(n)
i

YT ξC0(Z̄i + b)
. (3.101)

3.5.2 Reception Sensitivity

In reception mode, the piezoelectric material converts mechanical energy into elec-

trical energy through the contact of sound waves resulting in the production of an

electrical signal [51, 88, 114]. The front face of the transducer will be subjected to

external forces when in receiving mode, hence αL 6= 0. The expression for ampli-

tude of the forward propagating wave can be obtained using equation (3.50) and

applying continuity of force at the load to get

F̄ = F̄L = ArYL

(
pvT

∆xvL

)
(−αL + βL), (3.102)

setting βL = 0 gives

F̄ = YLξp

(
vT
vL

)
(−αL),

αL = − FvL
pYLξvT

. (3.103)

Substituting this into equation (3.69) gives an expression for the electrical

impedance as

Z̄i =
ZT

pC0YT ξ

(
1 +

h2C0(µi + νi)

YT ξ
+

2hC0µiZLF̄ vL
vT Q̄ZTYLξ

)
. (3.104)
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Since Z = V/I and using equation (3.66) the voltage may expressed as

V̄ =
Q̄

C0

+
h2Q̄(µi + νi)

YT ξ
+

2hµiZLFvL
vTZTYLξ

=
Q̄

C0

+
h2Q̄(µi + νi)

YT ξ
+

2hµiArF

vTZT ξ
. (3.105)

Equation (3.90) can then be rearranged to give an expression for the charge as

Q̄ =
aZT V̄

pYT ξ(Z̄i + b)
. (3.106)

Using equations (3.105) and (3.106) gives the voltage as

V̄ =
2hµiArF̄

vTZT ξ
(

1− aZT
pC0YT ξ(Z̄i+b)

− h2(µi+νi)aZT
p(YT ξ)2(Z̄i+b)

)
=

2hµiF̄

YT ξ
(

1− aZT
pC0YT ξ(Z̄i+b)

(
1 + h2C0(µi+νi)

YT ξ

)) . (3.107)

Thus, an expression for the reception sensitivity is given by

V̄

F̄
=

2hµi

YT ξ
(

1− aZT
pC0YT ξ(Z̄i+b)

(
1 + h2C0(µi+νi)

YT ξ

)) , (3.108)

where again i will be substituted accordingly for each model. A description for

the non-dimensionalized reception sensitivity is then given by

φi =
V̄ hC0

F̄
=

2h2C0µi

YT ξ
(

1− aZT
pC0YT ξ(Z̄i+b)

(
1 + h2C0(µi+νi)

YT ξ

)) . (3.109)

Equations (3.101) and (3.109) are similar to those found previously in Chapter 2

for the Sierpinski gasket inspired device. The only differences being in regards

to the µ and ν terms, which account for the Green function elements. With the

re-derivation of the relevant operating characteristics now determined, computer

simulation models can be utilised in order to determine the possible benefits of a

transducer based on the design of the Sierpinski carpet. The electrical impedance,

transmission and reception sensitivities for each of the models are presented in the

following section.
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3.6 Computer Simulation Results

To minimise time and costs involved in manufacturing new ultrasonic transducers,

mathematical computer models are employed to test the performances of hypo-

thetical designs. These models can give an insight as to what benefit, if any, can

be achieved from altering current designs or can suggest the most effective config-

uration of new designs. In regards to a Sierpinski carpet-like transducer it is only

realistically viable to consider the lower generation levels when it comes to potential

manufacture. Incrementing the fractal generation level increases the complexity of

the transducer model, and it is for this reason that constructing higher generation

levels would currently prove to be infeasible. The work presented in this chapter

allows for comparison of the three Sierpinski carpet models with the Sierpinski

gasket and Euclidean transducers, where the ceramic properties are modelled on

a PZT-5H ceramic and each device has a ceramic volume fraction of vf = 1. This

section details the results attained through the computer simulations for each of

the three transducer models.

3.6.1 Model η: Single Output Vertex

To recap, model η is the simplest of the three transducer models in regards to

the number of boundary vertices it incorporates. This model will interact with

electrical loads at vertex A and mechanical loads at vertex C (which is the fictitious

vertex placed at node u37); see Figure 3.3 (a).

Figure 3.6 shows the comparison for the electrical impedance between the stan-

dard (Euclidean) device, and the Sierpinski gasket and Sierpinski carpet devices

at generation level one. To recap, in regards to the electrical impedance, the

device is considered most efficient when it transmits at the electrical resonant fre-

quency and receives at the mechanical resonant frequency. These are located at

the first minimum and first maximum in the plot respectively. Thus, using this

approach the location of the electrical resonant frequency for the carpet device is

at 0.945 MHz with an electrical impedance of −3.534 dB and the location of the
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Figure 3.6: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (Ẑ1

η red dashed line, equation (3.70))

and Sierpinski gasket (Ẑ1
g orange full line, equation (2.162)) fractal inspired trans-

ducers at generation n = 1 and the traditional Euclidean transducer (Ẑe purple
full line, equation (2.45)).

mechanical resonant frequency is at 1.039 MHz with an electrical impedance of

3.687 dB. In comparison to the standard and gasket devices, it can be noted that

the carpet transducer follows a similar trend and resonates at lower frequencies.

Additionally, it may be noted that the Sierpinski gasket device has fewer reso-

nances in comparison to the other devices, suggesting that at fractal generation

level n = 1, the gasket transducer has only one length scale; hence the presence of

a single resonance. In the case of the Sierpinski gasket the location of the electri-

cal resonant frequency is at 1.027 MHz with an electrical impedance of −6.306 dB

and the location of the mechanical resonant frequency is at 1.195 MHz with an

electrical impedance of −0.166 dB. The standard device has its electrical resonant

frequency at 2.063 MHz with an electrical impedance of −6.191 dB and the location

of the mechanical resonant frequency is at 2.220 MHz with an electrical impedance

of 5.218 dB. For each generation level considered, the electrical and mechanical

resonant frequencies, together with the corresponding electrical impedances, for

the three Sierpinski carpet models are further tabulated in Appendix C.
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Figure 3.7: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (ψ1

η red dashed line, equation (3.101)) and
Sierpinski gasket (ψ1

g orange full line, equation (2.169)) fractal inspired transducers
at generation n = 1 and the traditional Euclidean transducer (ψe purple full line,
equation (2.54)).

Figure 3.7 illustrates the comparison in transmission sensitivity for the Sier-

pinski carpet model η device against the standard and Sierpinski gasket (n = 1)

devices. Two important parameters when studying the transmitting and receiv-

ing capabilities of any ultrasonic transducer are the 3-dB bandwidth and max-

imum amplitude (gain). To be an efficient transmitter and/or receiver of ul-

trasound it is necessary for the transducer to have high amplitude and a wide

bandwidth [16, 24, 36]. It was previously mentioned in earlier chapters that the

effectiveness of a transducer can be determined by calculating its gain bandwidth

product. The gain bandwidth product, in this chapter, is used as the principle

figure of merit to establish the optimal device. To distinguish between fractal

generation levels, a superscript is attached to each figure of merit. Likewise a

subscript e, g, η, δ and γ will denote the Euclidean, Sierpinski gasket and Sierpin-

ski carpet model devices, respectively. By examining Figure 3.7 it is evident that

the transmission sensitivity for the carpet device has greater maximum amplitude,

G1
η = 1.218 dB, in comparison to the other two devices. Furthermore this peak

90



is achieved at a frequency of 0.945 MHz. While the gasket device has maximum

amplitude G1
g = −5.517 dB at a frequency of 1.027 MHz and the standard device

has Ge = −1.414 dB at a frequency of 2.063 MHz. The limitation, however, to the

carpet device is its 3-dB bandwidth. This was calculated at BW 1
η = 0.041 MHz,

whereas the gasket was estimated at BW 1
g = 0.077 MHz and the standard device

was BWe = 0.259 MHz. Thus, it may be established that the standard device in

this case is more capable at operating over a larger range of frequencies. In the

same way it is the standard device which has the highest value for the gain band-

width product and the gasket device in this instance has the lowest value. The

values for the figures of merit in both transmitting and receiving mode, for each

Sierpinski carpet model, are also presented in Appendix C. The standard and Sier-

pinski gasket inspired transducer values were previously tabulated in Tables 2.3,

2.9 and 2.10.
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Figure 3.8: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (φ1

η red dashed line, equation (3.109))
and Sierpinski gasket (φ1

g orange full line, equation (2.173)) fractal inspired trans-
ducers at generation n = 1 and the traditional Euclidean transducer (φe purple
full line, equation (2.58)).

Figure 3.8 is the comparison plot of the reception sensitivities for the carpet

device against the gasket device at the same generation level and the standard
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device. The reception sensitivity has a maximum amplitude G1
η = 5.751 dB at a

frequency of 1.039 MHz, in a similar manner to the transmission sensitivity this

again is higher than both the gasket, G1
g = 0.807 dB at 1.195 MHz and the stan-

dard device, Ge = 3.463 dB at 2.220 MHz. In this instance it is the gasket device

which outperforms both the carpet and standard device in terms of its band-

width, which has been calculated at BW 1
g = 0.331 MHz. The carpet model has

the smallest bandwidth in comparison and was calculated at BW 1
η = 0.126 MHz,

and for the standard device was calculated at BWe = 0.263 MHz. In terms of

the gain bandwidth product for each of the devices, the standard device is the

greatest at GBPe = 0.584, with the gasket and carpet devices GBP 1
g = 0.399 and

GBP 1
η = 0.473 respectively. Thus, in regards to device bandwidth it is the gasket

device which has the most promising results and that this particular carpet device

is the poorest in performance. One way of potentially improving device bandwidth

is from the inclusion of two or multiple matching layers [49, 51], as the presence

of these layers increases the amount of energy transmitted into the object. There-

Z

η
2

Z

g
2

Z

e

0 2×106 4×106 6×106 8×106 1×107

-5

0

5

10

15

frequency f (Hz)

Electrical

Impedance

Z

(dB)

Figure 3.9: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (Ẑ2

η red dot-dashed line, equation (3.70))

and Sierpinski gasket (Ẑ2
g orange full line, equation (2.162)) fractal inspired trans-

ducers at generation n = 2 and the traditional Euclidean transducer (Ẑe purple
full line, equation (2.45)).
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fore, it may be possible to increase the operational bandwidth of the device by the

inclusion of these front matching layers.

For generation level two the location of the electrical resonant frequency is

at 1.332 MHz with an electrical impedance of 3.112 dB and the location of the

mechanical resonant frequency is at 1.418 MHz with an electrical impedance of

6.393 dB. The electrical resonant frequency for the gasket device is 1.564 MHz

with an electrical impedance of −2.591 dB and the mechanical resonant frequency

is 1.780 MHz with an electrical impedance of 2.157 dB.
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Figure 3.10: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (ψ2

η red dot-dashed line, equation (3.101))
and Sierpinski gasket (ψ2

g orange full line, equation (2.169)) fractal inspired trans-
ducers at generation n = 2 and the traditional Euclidean transducer (ψe purple
full line, equation (2.54)).

Figure 3.10 plots the transmission sensitivities for the carpet and gasket de-

vices at n = 2 as well as the standard device. The result for the transmission

sensitivity for the carpet device at this generation level gives the maximum ampli-

tude G2
η = −6.717 dB. Unfortunately this is below both the standard and gasket

devices, where the maximum amplitude for the gasket at the same generation level

is G2
g = −3.427 dB. The same can be said regarding the device’s gain bandwidth

product in that the value for this was lower than the gasket and standard devices.

93



This was calculated as GBP 2
η = 0.043, whereas the gasket and standard devices

were GBP 2
g = 0.052 and GBPe = 0.187 respectively. However, there is a signif-

icant improvement to the transducer’s 3-dB bandwidth. This was calculated at

BW 2
η = 0.203 MHz and for the gasket device was calculated at BW 2

g = 0.113 MHz.

When comparing the carpet and gasket devices, there is a relatively good match,

with the carpet device presenting more resonances. This is to be expected as the

carpet device features more complexity in its design, i.e. there is a wider range of

length scales.
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Figure 3.11: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (φ2

η red dot-dashed line, equation (3.109))
and Sierpinski gasket (φ2

g orange full line, equation (2.173)) fractal inspired trans-
ducers at generation n = 2 and the traditional Euclidean transducer (φe purple
full line, equation (2.58)).

Figure 3.11 displays the reception sensitivities plotted against operation fre-

quency for the carpet, gasket and standard devices. Looking at this fig-

ure, the maximum amplitude for the carpet device at generation level two is

G2
η = 5.286 dB. This is again higher than that of the standard and gasket de-

vices, where the maximum amplitude for the gasket at the same generation level is

G2
g = 1.735 dB. The bandwidths at these peaks were given at BW 2

η = 0.162 MHz
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and BW 2
g = 0.220 MHz. In terms of the gain bandwidth product, there is an im-

provement in this figure of merit when comparing against the Sierpinski gasket, but

is lower than that for the standard device. These figures of merit were calculated

as GBP 2
g = 0.265, GBP 2

η = 0.547 and GBPe = 0.584.

Figure 3.12 plots the electrical impedances for the standard, gasket and carpet

devices at generation level three. The electrical resonant frequency was calculated

as 1.416 MHz with an electrical impedance of 9.261 dB for the carpet device and

1.689 MHz with an electrical impedance of 1.331 dB for the gasket device. Simi-

larly the mechanical resonant frequency for the carpet device is 1.456 MHz with

electrical impedance of 10.380 dB and 1.896 MHz with an electrical impedance of

4.990 dB for the gasket device.
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Figure 3.12: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (Ẑ3

η red full line, equation (3.70)) and

Sierpinski gasket (Ẑ3
g orange full line, equation (2.162)) fractal inspired transducers

at generation n = 3 and the traditional Euclidean transducer (Ẑe purple full line,
equation (2.45)).

The transmission sensitivity at this generation has its maximum amplitude

G3
η = −11.441 dB with a bandwidth at this peak of BW 3

η = 0.752 MHz. The

gasket’s maximum amplitude at this same level is G3
g = −6.166 dB with a band-

width of BW 3
g = 0.217 dB. It appears that as the generation level is increased the
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bandwidth of the device widens but at the expense of the maximum amplitude.

The gain bandwidth product of the device was calculated as GBP 3
η = 0.054. This

is unfortunately considerably less than the gain bandwidth product value of the

standard device. Figure 3.13 illustrates the transmission sensitives of the devices

at this generation level.
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Figure 3.13: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (ψ3

η red full line, equation (3.101)) and
Sierpinski gasket (ψ3

g orange full line, equation (2.169)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (ψe purple full line,
equation (2.54)).

There are much more encouraging results when studying the reception sen-

sitivity of the carpet device at generation level three. From Figure 3.14 the

gain bandwidth product, maximum amplitude and the 3-dB bandwidth at this

peak were obtained. These were given as GBP 3
η = 0.917, G3

η = 5.723 dB and

BW 3
η = 0.246 MHz. At this fractal generation level the Sierpinski carpet de-

vice surpasses the Sierpinski gasket transducer in all three metrics. Furthermore

there is a substantial improvement in terms of the maximum amplitude and gain

bandwidth product over standard designs, where this value has increased by 65%

and 57% respectively. The gasket device had a calculated gain bandwidth prod-

uct of GBP 3
g = 0.547, maximum amplitude G3

g = 4.098 dB and 3-bandwidth
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BW 3
g = 0.213 MHz. From these results it can be deduced that higher fractal

generation levels would improve even further.
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Figure 3.14: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model η (φ3

η red full line, equation (3.109)) and
Sierpinski gasket (φ3

g orange full line, equation (2.173)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (φe purple full line,
equation (2.58)).

Figures 3.15 to 3.17 show the comparisons between fractal generation levels for

each of the operating characteristics of interest. In Figure 3.15 there is a notable in-

crease in magnitude of the electrical impedance as the generation level is increased.

This is likely due to a reduction in size of the length scales and by referring back

to Figure 3.2, it is clear to see the length between adjacent vertices will decrease

as the fractal generation level increases.

In terms of the transmission and reception sensitivities, Figures 3.16 and 3.17

suggest higher fractal generation will result in much lower amplitudes. Never-

theless, this generally results in an increased bandwidth allowing the transducer

to perform more efficiently over a larger range of frequencies. Furthermore, an

increase in the gain bandwidth product is evident in the potential transducer’s

receiving mode. This also appears to be the case in transmission mode, although

analysis of higher fractal generation levels would be required to back up this claim.
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Thus, it may be assumed that if the fractal generation level was increased further

still, the operational bandwidth of the device would only improve.

Z

η
1

Z

η
2

Z

η
3

0 2×106 4×106 6×106 8×106 1×107
-10

-5

0

5

10

15

20

frequency f (Hz)

Electrical

Impedance

Z

(dB)

Figure 3.15: Non-dimensionalised electrical impedance Ẑ (dB) (equation (3.70))
versus frequency f (Hz) for the Sierpinski carpet model η transducer at fractal
generation levels one (Ẑ1

η dashed line), two (Ẑ2
η dot-dashed line) and three (Ẑ3

η full
line).
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Figure 3.16: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for the Sierpinski carpet model η transducer
at fractal generation levels one (ψ1

η dashed line), two (ψ2
η dot-dashed line) and

three (ψ3
η full line).
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Figure 3.17: Non-dimensionalised reception sensitivity φ (dB) (equation (3.109))
versus frequency f (Hz) for the Sierpinski carpet model η transducer at fractal
generation levels one (φ1

η dashed line), two (φ2
η dot-dashed line) and three (φ3

η full
line).

In general the carpet device displays more resonances in the same frequency

range when comparing against the gasket and standard devices. This is to be

expected due to a greater range of length scales present in the carpet device. With

the exception of the first fractal generation level, the carpet device outperforms the

gasket and standard devices in terms of its bandwidth when acting as a transmitter

of ultrasound. In the case of reception mode, it is only when the carpet device

is at its third fractal generation level that an improvement in the bandwidth is

achieved.

3.6.2 Model δ: Two Symmetric Output Vertices

Model δ refers to the device incorporating three boundary conditions where there is

a single input vertex placed at site A and two symmetric output vertices positioned

at sites B and D; see Figure 3.3 (b). Continuing in the same procedure as model η,

a discussion of the theoretical transducer’s operating characteristics is presented

below.
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Figure 3.18 illustrates the electrical impedance at generation level one for car-

pet model δ device with comparison to the gasket device at the same generation

level and the standard device. In the case of this model the electrical resonant fre-

quency is 0.995 MHz with an electrical impedance of −1.431 dB and the mechanical

resonant frequency is 1.153 MHz with an electrical impedance of 0.835 dB.
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Figure 3.18: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (Ẑ1

δ blue dashed line, equation (3.76)) and
Sierpinski gasket (Ẑ1

g orange full line, equation (2.162)) fractal inspired transducers

at generation n = 1 and the traditional Euclidean transducer (Ẑe purple full line,
equation (2.45)).

The transmission sensitivities for each device are shown in Figure 3.19. The

maximum amplitude for the carpet model δ device is G1
δ = −6.986 dB with a 3-dB

bandwidth at this peak of BW 1
δ = 0.273 MHz and a gain bandwidth product of

GBP 1
δ = 0.055. The bandwidth is larger than that of both the Sierpinski gasket

and standard devices. In particular there is more than a 3-fold increase over

the Sierpinski gasket pre-fractal device at the same fractal generation level. This

significant increase in bandwidth indicates that the Sierpinski carpet pre-fractal

device is more efficient at operating over a larger range of frequencies when acting

as a transmitter of ultrasound. This gives motive to explore a prototype of a

Sierpinski carpet-like transducer.
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Figure 3.19: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (ψ1

δ blue dashed line, equation (3.101)) and
Sierpinski gasket (ψ1

g orange full line, equation (2.169)) fractal inspired transducers
at generation n = 1 and the traditional Euclidean transducer (ψe purple full line,
equation (2.54)).
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Figure 3.20: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (φ1

δ blue dashed line, equation (3.109)) and
Sierpinski gasket (φ1

g orange full line, equation (2.173)) fractal inspired transducers
at generation n = 1 and the traditional Euclidean transducer (φe purple full line,
equation (2.58)).
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In Figure 3.20 the reception sensitivities are plotted as a function of oper-

ation frequency. From this the maximum amplitude for the carpet device is

G1
δ = −0.182 dB. Although lower than both the comparative devices it achieves

a substantial increase in terms of its bandwidth at its resonant frequency;

BW 1
δ = 0.553 MHz. Furthermore there is a 33% increase in its gain bandwidth

product when comparing against the previously investigated Sierpinski gasket in-

spired transducer.

In Figure 3.21 the electrical impedance of model δ at generation level two is

plotted as a comparison against the gasket at the same fractal generation level

and the standard device. From this the electrical resonant frequency is 2.301 MHz

with an electrical impedance of 4.200 dB and the mechanical resonant frequency

is 2.401 MHz with an electrical impedance of 4.853 dB.
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Figure 3.21: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (Ẑ2

δ blue dot-dashed line, equation (3.76))
and Sierpinski gasket (Ẑ2

g orange full line, equation (2.162)) fractal inspired trans-

ducers at generation n = 2 and the traditional Euclidean transducer (Ẑe purple
full line, equation (2.45)).

Figure 3.22 shows the transmission sensitivities plotted against the operat-

ing frequency. From this plot the maximum amplitude for the carpet device is

G2
δ = −7.525 dB with a 3-dB bandwidth range of BW 2

δ = 0.381 MHz. This gives
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a percentage bandwidth of 46%, while the percentage bandwidth for the gasket

and standard devices are 12% and 13% respectively. This clearly shows a sizable

improvement in regards to the device’s bandwidth when comparing against the

Euclidean transducer and the experimental Sierpinski triangle prototype. This

presents a remarkable improvement on device operating performance when com-

paring against the other two devices. For this reason, fabricating a prototype
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Figure 3.22: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (ψ2

δ blue dot-dashed line, equation (3.101))
and Sierpinski gasket (ψ2

g orange full line, equation (2.169)) fractal inspired trans-
ducers at generation n = 2 and the traditional Euclidean transducer (ψe purple
full line, equation (2.54)).

based the configuration of model δ for the Sierpinski carpet would be worthwhile,

and in doing so it could possibly verify this hypothetical conclusion. Another rel-

evant measure is in regards to the gain bandwidth product. This was found to be

GBP 2
δ = 0.067, which is greater than that for the gasket device, but is still less

than for the standard device.

Figure 3.23 shows the reception sensitivity against frequency for the carpet and

gasket devices at generation level two, as well as the standard device. Comparison

of the maximum amplitude shows that the carpet device has the lowest amplitude

of G2
δ = 1.226 dB. The 3-dB bandwidth for the carpet device is BW 2

δ = 0.468 MHz.
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Figure 3.23: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (φ2

δ blue dot-dashed line, equation (3.109))
and Sierpinski gasket (φ2

g orange full line, equation (2.173)) fractal inspired trans-
ducers at generation n = 2 and the traditional Euclidean transducer (φe purple
full line, equation (2.58)).

This is a significant increase over the two devices. The lessened amplitude is

a possible reason for the increase in device bandwidth. The principle figure of

merit of the carpet model, in receiving mode was calculated as GBP 2
δ = 0.620,

which is more than 2-fold increase against the previously investigated pre-fractal

transducer, and a 6% increase against industry used transducers.

In Figure 3.24 the electrical impedances of each of the devices, at generation

level three, are plotted. For the carpet device, the electrical resonant frequency is

2.381 MHz with an electrical impedance of 9.718 dB and the mechanical resonant

frequency is 2.433 MHz with an electrical impedance of 9.758 dB.

Figure 3.25 plots the comparison in transmission sensitivities for the carpet

and gasket devices at the third generation level and the standard device as a

function of frequency. Looking at this figure the maximum amplitude for the

carpet device is at 2.381 MHz with G3
δ = −11.558 dB. The 3-dB bandwidth at this

peak is BW 3
δ = 0.467 MHz, which is a significant improvement from the other

two devices. Its negative amplitude however, is somewhat discouraging and it
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is considerably lower than its comparable devices. There are also concerns over

the value of its principle figure of merit, as there is a significant drop in value,

GBP 3
δ = 0.033, from its previous fractal generation levels. Additionally, it is

much lower than the values of the gasket and standard devices. Yet this could

simply be an anomaly in its third fractal generation level. This suggests a need to

compute higher fractal generation level results.
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Figure 3.24: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (Ẑ3

δ blue full line, equation (3.76)) and
Sierpinski gasket (Ẑ3

g orange full line, equation (2.162)) fractal inspired transducers

at generation n = 3 and the traditional Euclidean transducer (Ẑe purple full line,
equation (2.45)).

In Figure 3.26 the reception sensitivities of the devices are plotted as a function

of the operating frequency. From this plot, the maximum amplitude of the carpet

device is at 2.433 MHz with G3
δ = 2.660 dB. This gives a decrease in the amplitude

of 35% compared to the gasket and a decrease of 23% compared to the standard

device. However at this peak, the 3-dB bandwidth is considerably greater than

both the standard and gasket devices. Furthermore this increase in bandwidth has

resulted in a 75% and 64% increase in the value of the gain bandwidth value over

the Sierpinski gasket pre-fractal and Euclidean transducers.
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Figure 3.25: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (ψ3

δ blue full line, equation (3.101)) and
Sierpinski gasket (ψ3

g orange full line, equation (2.169)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (ψe purple full line,
equation (2.54)).
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Figure 3.26: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model δ (φ3

δ blue full line, equation (3.109)) and
Sierpinski gasket (φ3

g orange full line, equation (2.173)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (φg purple full line,
equation (2.58)).
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Comparison plots between fractal generation levels for each operating charac-

teristic are shown in Figures 3.27, 3.28 and 3.29. In a similar way to model η it was

found that by increasing the fractal generation level, higher electrical and mechan-

ical resonant frequencies would occur. This effect can be seen in Figure 3.27. In
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Figure 3.27: Non-dimensionalised electrical impedance Ẑ (dB) (equation (3.76))
versus frequency f (Hz) for the Sierpinski carpet model δ transducer at fractal
generation levels one (Ẑ1

δ dashed line), two (Ẑ2
δ dot-dashed line) and three (Ẑ3

δ full
line).

transmission mode the effect of increasing the fractal generation level resulted in a

wider bandwidth. However, this increase in bandwidth consequently resulted in a

reduction in the device’s amplitude. It would be beneficial to obtain more analysis

at higher fractal generation levels to ascertain whether there is usually a compro-

mise between the transducer’s bandwidth and peak amplitude. It was assumed

that by increasing the fractal generation level, an improvement in the model’s

gain bandwidth product would be certain. This was the case when increasing the

generation level from one to two, but at generation level three the value of this

figure of merit fell below the value at generation level one. Again, this highlights

the benefits of obtaining results for the higher fractal generation levels, to see the

effect on the gain bandwidth product. In contrast to transmission mode, the ef-
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Figure 3.28: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for the Sierpinski carpet model δ transducer
at fractal generation levels one (ψ1

δ dashed line), two (ψ2
δ dot-dashed line) and

three (ψ3
δ full line).

fect of increasing the fractal generation level in reception mode resulted with an

improvement in the devices maximum amplitude. This consequently reduced the

value of the operational bandwidth, at least in terms of the first two fractal genera-

tion levels. There was subsequently an increase from generation level two to three,

yet this value is still lower than the initial value (fractal generating level one).

Although the value of the operational bandwidth decreased with increasing fractal

generation level, the opposite happens for the principle figure of merit. Addition-

ally these values were substantially greater than the Sierpinski gasket pre-fractal

and Euclidean transducers. However the analysis performed here only reflects on

the first three fractal generation levels. It would therefore be worthwhile to study

the performance of a Sierpinski carpet-like transducer at higher fractal generation

levels. This can then determine what fractal generation level (if any) outperforms

the standard and gasket devices in terms of maximum amplitude.

As with model η, the model δ device results demonstrate more resonances than

the gasket and standard transducers. Overall it would appear that the carpet

device outperforms the standard and gasket devices in transmission and reception
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Figure 3.29: Non-dimensionalised reception sensitivity φ (dB) (equation (3.109))
versus frequency f (Hz) for the Sierpinski carpet model δ transducer at fractal
generation levels one (φ1

δ dashed line), two (φ2
δ dot-dashed line) and three (φ3

δ full
line).

mode, when evaluating its operational bandwidth. This is most likely due to

an increase in the range of length scales within the Sierpinski carpet’s geometry.

Furthermore its gain bandwidth product supersedes the previous devices when the

transducer is acting as a receiver of ultrasound.

3.6.3 Model γ: Three Output Vertices

Model γ refers to the device having boundary conditions set at each of its four

corners. The input vertex is placed at the fictitious site A, and has three output

vertices at fictitious sites B, C and D, where B and D are the two symmetric

output vertices; see Figure 3.3 (c). This section details the likely performance of a

theoretical transducer based on the parameters of model γ.

Figure 3.30 plots the electrical impedance against operating frequency for the

carpet model γ device and its comparisons to the gasket and standard devices.

There is a good match between all three transducers with further resonances oc-

curring in the carpet device. This is likely due to a wider range of length scales
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presented in carpet structure. For the carpet device the electrical resonant fre-

quency is 0.906 MHz with an electrical impedance of −2.517 dB and the mechanical

resonant frequency is 1.033 MHz with an electrical impedance of 1.132 dB.
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Figure 3.30: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (Ẑ1

γ green dashed line, equation (3.80)) and

Sierpinski gasket (Ẑ1
g orange full line, equation (2.162)) fractal inspired transducers

at generation n = 1 and the traditional Euclidean transducer (Ẑe purple full line,
equation (2.45)).

Figure 3.31 illustrates that the transmission sensitivity for model γ of the car-

pet transducer has maximum amplitude of G1
γ = −9.621 dB. This shows a signif-

icant decrease in amplitude against the standard transducer, as well as a reduc-

tion in amplitude compared to the gasket transducer. However, the bandwidth

at this peak is considerably greater than the gasket and standard transducers,

and found as BW 1
γ = 0.424 MHz. Additionally the gain bandwidth product was

GBP 1
γ = 0.046 which is more than twice of that of the gasket device.

In regards to the reception sensitivity of the device, Figure 3.32 shows a slight

reduction in amplitude against the other two devices, with G1
γ = 0.583 dB. The

bandwidth at this peak is BW 1
γ = 0.130 MHz. This is a decrease of 61% when

comparing against the Sierpinski gasket and a decrease of 50% compared to the

standard device. Furthermore, the carpet model was outperformed in terms of
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Figure 3.31: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (ψ1

γ green dashed line, equation (3.101))
and Sierpinski gasket (ψ1

g orange full line, equation (2.169)) fractal inspired trans-
ducers at generation n = 1 and the traditional Euclidean transducer (ψe purple
full line, equation (2.54)).
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Figure 3.32: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (φ1

γ green dashed line, equation (3.109))
and Sierpinski gasket (φ1

g orange full line, equation (2.173)) fractal inspired trans-
ducers at generation n = 1 and the traditional Euclidean transducer (φe purple
full line, equation (2.58)).

111



its gain bandwidth product by both the gasket and standard devices. This was

calculated as GBP 1
γ = 0.149.

In Figure 3.33 the electrical resonant frequency for the carpet model γ device

at generation level two was taken as 1.347 MHz with an electrical impedance of

3.828 dB. Since this value of the electrical impedance is greater than those for the

gasket and standard devices it may be assumed that the maximum amplitude in

the carpet’s transmission sensitivity would be less than for these two devices. This

is for the reason that, the lower the value of the electrical impedance the greater the

peak will be in the transmission sensitivity [7]. The mechanical resonant frequency

is expected to be the optimal operating frequency in receiving mode, and from

Figure 3.33 this is 1.408 MHz with an electrical impedance of 5.350 dB.
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Figure 3.33: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (Ẑ2

γ green dot-dashed line, equation (3.80))

and Sierpinski gasket (Ẑ2
g orange full line, equation (2.162)) fractal inspired trans-

ducers at generation n = 2 and the traditional Euclidean transducer (Ẑe purple
full line, equation (2.45)).

Figure 3.34 shows the transmission sensitivities of the devices plotted as a

function of operating frequency and Figure 3.35 is the plotted reception sensitives

against frequency. As expected, from the results of the electrical impedance, the
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Figure 3.34: Non-dimensionalised transmission sensitivity ψ (dB) versus fre-
quency f (Hz) for the Sierpinski carpet model γ (ψ2

γ green dot-dashed line, equa-
tion (3.101)) and Sierpinski gasket (ψ2

g orange full line, equation (2.169)) fractal
inspired transducers at generation n = 2 and the traditional Euclidean transducer
(ψe purple full line, equation (2.54)).
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Figure 3.35: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (φ2

γ green dot-dashed line, equa-
tion (3.109)) and Sierpinski gasket (φ2

g orange full line, equation (2.173)) fractal
inspired transducers at generation n = 2 and the traditional Euclidean transducer
(φe purple full line, equation (2.58)).
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maximum amplitude of the carpet device is lower than both the gasket and stan-

dard devices, G2
γ = −9.597 dB, with the 3-dB bandwidth around this peak of

BW 2
γ = 0.465 MHz. As with the first fractal generation level this is again greater

than the gasket and standard devices. Its gain bandwidth product at this genera-

tion level was calculated as GBP 2
γ = 0.051, which is an improvement from its last

fractal generation. However this is less than that of the standard and Sierpinski

gasket pre-fractal transducer. In reception mode, the maximum amplitude for the

carpet device is G2
γ = 1.288 dB. Although this is lower than the gasket and stan-

dard devices, the 3-dB bandwidth at this peak covers a larger range of frequencies.

This was calculated as BW 2
γ = 0.511 MHz. There is a huge improvement in gain

bandwidth product to that of both the gasket and standard devices where its value

of GPB2
γ = 0.688 is more than double that of the gasket device.

In Figure 3.36 the electrical impedance for the standard, Sierpinski gasket and

Sierpinski carpet transducers at the third generation level is plotted. For the car-
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Figure 3.36: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (Ẑ3

γ green full line, equation (3.80)) and

Sierpinski gasket (Ẑ3
g orange full line, equation (2.162)) fractal inspired transducers

at generation n = 3 and the traditional Euclidean transducer (Ẑg purple full line,
equation (2.45)).

pet transducer, the electrical resonant frequency is 1.416 MHz with an electrical
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impedance of 9.609 dB and the mechanical resonant frequency is 1.438 MHz with

an electrical impedance of 10.030 dB. As with the previous two generation levels

the maximum amplitude of the Sierpinski carpet is significantly less than the other

two comparable transducers. From Figure 3.37 this was found atG3
γ = −13.030 dB.

Though, the 3-dB bandwidth at this peak was estimated at BW 3
γ = 0.850 MHz,

leading to a percentage bandwidth of 22%, which compares to just 12% for the

Sierpinski gasket and 13% for the standard device. This represents a substantial

improvement on device performance over both the currently used Euclidean trans-

ducer and the Sierpinski gasket prototype [83]. The results suggest strongly that it
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Figure 3.37: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (ψ3

γ green full line, equation (3.101)) and
Sierpinski gasket (ψ3

g orange full line, equation (2.169)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (ψg green full line,
equation (2.54)).

would be worthwhile for a prototype based on the Sierpinski carpet to be built, to

determine whether experimental results corroborate with these theoretical results.

Furthermore, it would be interesting to explore results at higher fractal generation

levels, to determine whether the Sierpinski carpet still outperforms the other two

devices.
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Figure 3.38: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the Sierpinski carpet model γ (φ3

γ green full line, equation (3.109)) and
Sierpinski gasket (φ3

g orange full line, equation (2.173)) fractal inspired transducers
at generation n = 3 and the traditional Euclidean transducer (φe purple full line,
equation (2.58)).

Figure 3.38 graphically represents the reception sensitivity against the oper-

ating frequency of the third generation level Sierpinski carpet and gasket trans-

ducers and the standard transducer. Comparison between the gasket and carpet

transducers shows a good match with the carpet transducer resonating at lower

frequencies. From this figure the maximum amplitude for the carpet device is

G3
γ = 2.648 dB with the 3-dB bandwidth at this peak of BW 3

γ = 1.528 MHz and a

gain bandwidth product of GBP 3
γ = 2.812. These results for the two metrics are

significantly higher than those for both the gasket and standard devices, and so

would suggest that a transducer based on the design of carpet model γ at fractal

generation level three would perform efficiently in reception mode.

As previously discussed, it was observed that by increasing the fractal gener-

ation level, the bandwidth and gain bandwidth product of the device would also

increase. This, however, led to a reduction in the amplitude in transmission mode.

In addition, this increase in generation level widens the range of length scales and

so results with a more resonant device.
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Figure 3.39: Non-dimensionalised electrical impedance Ẑ (dB) (equation (3.80))
versus frequency f (Hz) for the Sierpinski carpet model γ transducer at fractal
generation levels one (Ẑ1

γ dashed line), two (Ẑ2
γ dot-dashed line) and three (Ẑ3

γ full
line).

Figures 3.39 to 3.41 illustrate the effect of increasing the fractal generation level

for the transducer’s operating characteristics.
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Figure 3.40: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for the Sierpinski carpet model γ transducer
at fractal generation levels one (ψ1

γ dashed line), two (ψ2
γ dot-dashed line) and

three (ψ3
γ full line).
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Figure 3.41: Non-dimensionalised reception sensitivity φ (dB) (equation (3.109))
versus frequency f (Hz) for the Sierpinski carpet model γ transducer at fractal
generation levels one (φ1

γ dashed line), two (φ2
γ dot-dashed line) and three (φ3

γ full
line).

The results for model γ suggest that the Sierpinski carpet transducer contains

more resonances than the Sierpinski gasket and standard transducers. It was

also established that the carpet transducer outperformed the other two devices at

almost all fractal generation levels in terms of its bandwidth, in both transmission

and reception modes, further reinforcing the notion of implementing this particular

design as a workable prototype.

3.6.4 Model Comparisons

In addition to the comparison of the standard, Sierpinski gasket and individual

model Sierpinski carpet transducers, it is also important to ascertain the optimal

device amongst the three carpet models. Starting with the first fractal generation

level, one particular feature that can be observed when studying Figure 3.42 is the

good agreement between the three models. The models follow closely in relation

to their profiles and are resonant at around the same frequencies.

Figure 3.43 shows a comparison between the three carpet transducer models
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Figure 3.42: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for models η (Ẑ1

η red dashed line, equation (3.70)), δ (Ẑ1
δ blue dashed line,

equation (3.76)) and γ (Ẑ1
γ green dashed line, equation (3.80)) at fractal generation

level n = 1.
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Figure 3.43: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for models η (ψ1

η red dashed line), δ (ψ1
δ

blue dashed line) and γ (ψ1
γ green dashed line) at fractal generation level n = 1.

in transmission mode at fractal generation level one. The highest peak amplitude

is present in model η and the lowest (in comparison) in model γ, where there is a

difference of 10.839 dB. However, the bandwidth of the device suffers with larger
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peaks, resulting with model γ having a more desirable bandwidth. This would

potentially allow the device to perform more efficiently over a larger range of fre-

quencies. On the other hand, the principal figure of merit used to determine the
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Figure 3.44: Non-dimensionalised reception sensitivity φ (dB) (equation (3.101))
versus frequency f (Hz) for models η (φ1

η red dashed line), δ (φ1
δ blue dashed line)

and γ (φ1
γ green dashed line) at fractal generation level n = 1.

optimal transducer design is the gain bandwidth product, GBP and this suggests

models η and δ to be the ideal transducer. See Appendix C for the GBP results.

Similarly in reception mode, model η has the highest peak amplitude and is greater

than model δ by 0.5993 dB and by 5.168 dB against model γ. As with the trans-

mission sensitivity, the largest bandwidth is attained in the device which has the

lowest amplitude. Therefore, on this occasion model δ has the largest bandwidth.

The results from the gain bandwidth product suggest that model δ outperforms

models η and γ when operating as a sensor of ultrasound.

Following on from these results is a discussion on the next fractal genera-

tion level. In Figure 3.45 the electrical impedance of each model device is plotted

against the operating frequency. Each transducer model follows a similar profile

to their earlier fractal generation level although at a higher decibel and frequency

range. Another observation that may be noted is the narrowing between the sepa-
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ration of the electrical and mechanical resonant frequencies. For the transmission
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Figure 3.45: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for models η (Ẑ2

η red dot-dashed line, equation (3.70)), δ (Ẑ2
δ blue dot-

dashed line, equation (3.76)) and γ (Ẑ2
γ green dot-dashed line, equation (3.80)) at

fractal generation level n = 2.
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Figure 3.46: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for models η (ψ2

η red dot-dashed line), δ (ψ2
δ

blue dot-dashed line) and γ (ψ2
γ green dot-dashed line) at fractal generation level

n = 2.

sensitivities at the second fractal generational level a notable shift in the ampli-
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tude is clearly evident, particularly when concerning model η, where there is a

drop of 7.935 dB in its maximum peak. Yet for models δ and γ there is only a

small reduction in amplitude. However, it is still a reduction and their initial neg-

ative amplitudes are nevertheless discouraging. On the other hand, model γ has
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Figure 3.47: Non-dimensionalised reception sensitivity φ (dB) (equation (3.109))
versus frequency f (Hz) for models η (φ2

η red dot-dashed line), δ (φ2
δ blue dot-

dashed line) and γ (φ2
γ green dot-dashed line) at fractal generation level n = 2.

the widest bandwidth and model δ achieves the greatest gain bandwidth product

of GBP 2
δ = 0.067, while models η and γ are GBP 2

η = 0.055 and GBP 2
γ = 0.046,

respectively. Figure 3.47 shows the reception sensitivity against frequency for the

three Sierpinski carpet models at fractal generation level two. Comparison of the

maximum peaks between the first and second generation levels shows that a de-

vice based on model η has a reduction in its maximum amplitude of 8% while the

other two have an increase in amplitude of 1.408 dB for model δ and 0.705 dB for

model γ. In regards to the gain bandwidth product model γ has the highest at

a value of GBP 2
γ = 0.688, whilst model η has GBP 2

η = 0.547 and model δ has

GBP 2
δ = 0.620.

Figure 3.48 shows the plotted electrical impedance of the three models as a

function of frequency for the third fractal generation level. By observing the be-
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Figure 3.48: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for models η (Ẑ3

η red full line, equation (3.70)), δ (Ẑ3
δ blue full line, equa-

tion (3.76)) and γ (Ẑ3
γ green full line, equation (3.80)) at fractal generation level

n = 3. Insert figure is a close up of the resonances.

haviour of Figures 3.42, 3.45 and 3.48 it appears that as the fractal generation level

is increased, the electrical and mechanical resonant frequencies approach towards

a closer decibel value. The effect of increasing the generation level results in an

increase in both the electrical and mechanical resonant frequencies. Consequently,
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Figure 3.49: Non-dimensionalised transmission sensitivity ψ (dB) (equa-
tion (3.101)) versus frequency f (Hz) for models η (ψ3

η red full line), δ (ψ3
δ blue

full line) and γ (ψ3
γ green full line) at fractal generation level n = 3.
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this could suggest a decrease in amplitude for the transmission sensitivity, but

an increase in amplitudes for the reception sensitivities. This assumption can be

validated by examining the transmission and reception sensitivities for the third

fractal generation level. These are plotted in Figures 3.49 and 3.50, respectively
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Figure 3.50: Non-dimensionalised reception sensitivity φ (dB) (equation (3.109))
versus frequency f (Hz) for models η (φ3

η red full line), δ (φ3
δ blue full line) and γ

(φ3
γ green full line) at fractal generation level n = 3.

As expected, the maximum amplitude for each of the carpet models has de-

creased from its previous fractal generation level, this effect can be seen in Fig-

ure 3.51. Model η has the highest gain bandwidth product in transmission mode.

This was calculated as GBP 3
η = 0.054 which is 64% greater than model δ, and 29%

greater than model γ. Similarly, the maximum amplitudes in reception sensitiv-

ities have generally increased for all models from their previous generation level.

This behaviour can be observed in Figure 3.52. The gain bandwidth product val-

ues were calculated as GBP 3
η = 0.917 for model η, GBP 3

δ = 0.959 for model δ and

GBP 3
γ = 2.812 for model γ. Evidence would suggest through the data analysed

that generation level one of model η provides the greatest amplitude and that the

value of the amplitude decreases as the generation level is increased. This trend is

also reflected in the model structures, in that model η amplitude surpasses mod-
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els δ and γ at all fractal generation levels. Likewise, model δ exceeds models γ

amplitude in all fractal generation levels. Figure 3.51 and tables C.2, C.5 and C.8

confirms this conclusion. In regards to the amplitude in reception mode, the data
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Figure 3.51: Gain (dB) for transmission sensitivity ψ versus fractal generation level
n for the Sierpinski carpet transducer models η (Gη red full line), δ (Gδ blue full
line) and γ (Gγ green full line).
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Figure 3.52: Gain (dB) for reception sensitivity φ versus fractal generation level
n for the Sierpinski carpet transducer models η (Gη red full line), δ (Gδ blue full
line) and γ (Gγ green full line).
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plotted in Figure 3.52 suggests that the increasing fractal generation level improves

the value of the amplitude; with model η once more exceeding models δ and γ at

all generation levels.

The 3-dB bandwidth for transmission sensitivity is plotted against the fractal

generation level in Figure 3.53. From this plot it is evident that the bandwidth of
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Figure 3.53: The 3-dB bandwidth (MHz) for transmission sensitivity ψ versus
fractal generation level n for the Sierpinski carpet transducer models η (BWη red
full line), δ (BWδ blue full line) and γ (BWγ green full line).

each device improves from increasing the fractal generation. In particular, there is

a significant increase from generation level two to three in models η and γ, while

model δ appears to have a more steady increase. Furthermore the best results are

present in model γ. Based on the gradient of the increase it would appear that

future generation levels of model η could surpass both models δ and γ. However,

as this is only speculative further research on future generation would need to

be conducted. The 3-dB bandwidth in reception mode, plotted in Figure 3.54,

illustrates that model γ outperforms in this figure of merit for generation levels

two and three, and that model δ outperforms the other two models at generation

level one. In this instance, there is a substantial increase in value when increasing

the generation level for model γ. Therefore, it is presumed that this model would
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exceed models η and δ at higher generation levels. Still this is an only assumption

and for this reason the analysis of higher fractal generation levels is necessary.
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Figure 3.54: The 3-dB bandwidth (MHz) for reception sensitivity φ versus fractal
generation level n for the Sierpinski carpet transducer models η (BWη red full
line), δ (BWδ blue full line) and γ (BWγ green full line).
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Figure 3.55: The gain bandwidth product for transmission sensitivity ψ versus
fractal generation level n for the Sierpinski carpet transducer models η (GBPη red
full line), δ (GBPδ blue full line) and γ (GBPγ green full line).

Figures 3.55 and 3.56 illustrate the gain bandwidth product against fractal gen-

eration level for the three models for the transmission and reception sensitivities
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respectively. By observing the behaviour of each device in Figure 3.55, it would

appear that models η and γ have the opposite effect to one another. Due to these

profiles it would be difficult to determine the effect of higher fractal generation

levels. Similar to model γ, model δ mimics this behaviour but with much steeper

gradients.

In Figure 3.56 it is clear to see that model γ overall outperforms models η and

δ. In regards to models η and δ, their values for this figure of merit are very close

to one another at each generation level. As such, it is possible that model η may

exceed model δ at higher fractal generation levels. Although, these assumptions

have not been verified and so this warrants the need to analyse the performance

at higher fractal generation levels.
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Figure 3.56: The gain bandwidth product for reception sensitivity φ versus fractal
generation level n for the Sierpinski carpet transducer models η (GBPη red full
line), δ (GBPδ blue full line) and γ (GBPγ green full line).

3.7 Conclusions

The analysis presented in this section extended earlier research on incorporating

fractal geometry into ultrasonic transducer design. As with previous works, a

renormalisation technique was used to investigate the potential performance of
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a fractal-inspired transducer. The fractal used as inspiration for the transducer

design was the Sierpinski carpet. This was examined by constructing three in-

dividual transducer models all influenced by the design of the Sierpinski carpet.

The variations in models corresponded to the number of the boundary conditions

and for each of the models a lattice counterpart was used to analyse the trans-

ducers’ operating characteristics. Although all three models are relatively similar

in their form, the symmetries of the lattice for model δ resulted with the need for

additional independent Green functions.

Due to the limitations of the computing power available that was used to pro-

duce the results for the theoretical Sierpinski carpet-like transducer, only the first

three fractal generation levels were investigated. Each model has been executed

in Mathematica on a laptop computer. The run times for model γ were 12.453

seconds, 2.698 minutes and 49.713 minutes for generation levels one, two and

three respectively. Whilst only the first three fractal generation levels have been

generated, the computer program used allows for the computation at any fractal

generation level. This opens up the possibility of further investigation for transduc-

ers which incorporate higher generation levels. Alternatively, higher performance

computers are more than capable at producing these operational characteristics

for higher fractal generation levels. However, due to current manufacturing lim-

itations it may not prove to be viable to construct a fractal transducer beyond

generation level three.

To assess the performance of each transducer model the electrical impedance,

and transmission and reception sensitivities were plotted as a function of operating

frequency. These were then compared to a previously investigated Sierpinski gas-

ket transducer as well as standard design transducers that are commonly used in

industry. As expected it was the carpet devices which experienced more resonance

at a wider range of frequencies. In regards to the transmission sensitivities, an

increase in the fractal generation level resulted in an increase in the devices band-

width. Unfortunately this also led to a reduction in the device’s amplitude. For the
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reception sensitivities, an increase in fractal generation level was generally followed

by an increase in both its amplitude and bandwidth. The principal figure of merit

that was used to determine the most efficient transducer was the gain bandwidth

product. The three carpet models were then compared to one another in regards

to their transmitting and receiving capabilities, using this figure of merit. Thus

in transmission mode, it was model η which in general presented the best results.

In reception mode, model γ had overall the highest value, with an average gain

bandwidth product almost two times higher than model δ. On the other hand, the

3-dB bandwidth signifies that model γ outperforms models η and δ at all fractal

generation levels for both transmission and reception. This suggests that model γ

would be suitable in ultrasonic design to enhance current transducer performance,

especially when considering the results in reception mode. Furthermore, increasing

the fractal generation resulted in an increase in the principle figure of merit for all

the carpet models, in reception mode. This was to be expected since the range of

length scales increased with the fractal generation level. Similarly, the same could

be said in transmitting mode, although with a few discrepancies. Thus, given the

opportunity to access greater computing power it would be interesting to see how

this figure of merit changes with increasing fractal generation levels. In addition to

obtaining these results, given the required computing power it would be ideal to be

able compare the convergence of the transmission and reception sensitivities using

the L2 norm, in similar way to the research presented in [86] for the Sierpinski

gasket transducer.

This research investigates the theoretical performance of a Sierpinski carpet

inspired transducer by utilising the Green function renormalization method. For

a comparison it would be beneficial to investigate the carpet structure using the

finite element analysis akin to that done on the Sierpinski gasket pre-fractal in [7].

Another area of interest would be in transducer performance optimization. A

technique for increasing the values for each of the figures of merit at interest (am-

plitude, bandwidth and gain bandwidth product) could be achieved by sampling
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different material parameters. For instance, it is possible to vary the material

parameters such as the piezoelectric constant and Young’s modulus, since these

are simply properties taken from PZT-5H ceramic. This may assist in establish-

ing the optimal material that could be used for ultrasonic transducers. As this

chapter has investigated the propagation of an ultrasonic wave within an infinitely

ramified fractal-like structure, it would be of added interest to analyse a simi-

lar structure by the means of the Cartesian product. The Cartesian product is

a method for extending the Green function renormalization to infinitely ramified

structures, where the Cartesian product of two graphs can be considered as the

sum of the two graphs [111]. In Chapter 5, this extension will be applied to two

Sierpinski carpet-like structures with the aim of obtaining the potential trans-

ducer characteristics. Additionally, the Cartesian product of two Sierpinski gasket

lattices will be investigated.
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Chapter 4

Modelling the Effects of a
Sierpinski Tetrix-Like Transducer

4.1 Introduction

This chapter extends the Green function renormalization method to study the

potential performance of a transducer inspired by the Sierpinski tetrix [20]. Ex-

pressions for the transducer’s operating characteristics are derived and plotted

against the operating frequency. These profiles are then compared against the

standard (Euclidean) and the Sierpinski gasket fractal inspired transducers.

This is an interesting design that may now be considered for potential manu-

facturing, as a result of the development in rapid prototyping techniques. For

example 3-D printers could be used in the manufacturing of the composite

filler. Additionally, research into 3-D printing of ceramic materials has been per-

formed [68, 69, 81, 137] and the results indicated that the ceramic materials still

retained their piezoelectric functionality, which is of utmost importance for ceramic

materials used in electronics.

The Sierpinski tetrix can be classified as the three dimensional equivalent of

the Sierpinski gasket on account of its construction [60, 63, 100]. Its structure is

achieved in a similar way as the Sierpinski gasket but replaces the newly formed

tetrahedrons with four copies of itself at half its original height and width. There-

fore, the dimension for this fractal is Df = log (4)/ log (2) = 2. Similarly, the
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Figure 4.1: Schematic representation of a Sierpinski tetrix transducer at fractal
generation levels zero, one and two, where the piezoelectric element is shown in
black with a centre filled polymer in white.

lattice equivalents are obtained using the technique mentioned previously for the

Sierpinski gasket and carpet pre-fractals, and are once again used to investigate

the propagation of an ultrasonic wave. The interaction between the electrical and

mechanical behaviour of the lattice vertices is described by [138] and is detailed

further in Section 4.2. Figure 4.1 represents the Sierpinski tetrix at fractal at gen-

eration levels zero, one and two and Figure 4.2 illustrates the lattice counterpart.

For the lattice structure, the nth generation graph has Nn = 4n vertices, and is

constructed by assigning a vertex to the centre of the piezoelectric tetrahedrons

and joining these vertices by an edge. The vertex degree for this fractal lattice is

q = 4. However, the vertex degree is not consistent since the corner vertices have

a vertex degree q = 3. These vertices correspond to the input/output vertices as

they will interact with external loads. Analogous to the previous fractal-inspired

transducers, fictitious vertices A, B, C and D are attached to these input/out-

put vertices, thereby resolving the inconsistency of the vertex degrees. This is of

importance since it simplifies the process of obtaining subsequent lattice Green

functions. For the Sierpinski gasket and tetrix fractal inspired transducers it is

possible to obtain the exact (i, j)th element of the Green function matrix using the

recursion relationship given in equation (2.132).

The investigation of the Sierpinski tetrix fractal inspired transducer will be-

gin by deriving the governing wave equation from tensor equations. This is pre-
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Figure 4.2: Graphical representations of generations 0 to 2 for the sequence of
Sierpinski tetrix lattices.

sented in Section 4.2. In Section 4.3, the Green function renormalization method

is utilised to obtain the relevant relations for the transducer model. Boundary

conditions are obtained to aid the derivation of the expressions for the important

output parameters, electrical impedance and transmission and reception sensitivi-

ties in Section 4.4. The steady-state solution of the transducer design is discussed

in Section 4.5. In Section 4.6, the results for the Sierpinski tetrix fractal inspired

transducer are compared with standard Euclidean design and the previously in-

vestigated Sierpinski gasket fractal inspired transducer. The findings are then

summarized in Section 4.7.

4.2 Wave Propagation in the Sierpinski Tetrix

This section analyses the propagation of an ultrasonic wave within the Sierpinski

tetrix lattice. The movement of a wave through the piezoelectric material can be

described using the stress equation of motion

ρT
∂2ui
∂t2

=
3∑

i,j=1

∂Tij
∂xj

, (4.1)

where ρT is the density of the piezoelectric material, ui is the displacement tensor

and Tij is the stress tensor. The three-dimensional constitutive equations describ-
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ing the coupling between electrical and mechanical behaviour of the lattice vertices

are given by

Tij = cijklSkl − ekijEk, (4.2)

Di = eiklSkl + εikEk. (4.3)

In these equations cijkl denotes the stiffness tensor, Skl is the strain tensor, ekij

is the piezoelectric tensor, Ek is the electric field, Di is the displacement and εik

denotes the permittivity tensor. The relationship between the strain tensor and

mechanical displacement is given by

Skl =
1

2

(
∂ul
∂xk

+
∂uk
∂xl

)
. (4.4)

Additionally a relationship between electric field and electric potential, Φ, is ex-

pressed as

Ek = − ∂Φ

∂xk
. (4.5)

The poling direction of the piezoelectric material is parallel to the direction

of the x3-axis and it is assumed that an electric field is only applied in this direc-

tion [30, 139]. This is to ensure that the orientation of the dipoles of the piezoelec-

tric ceramic are aligned and not left in their randomly oriented state. If left in their

original state the piezoelectric effect is disabled. Previous experimental research

on the Sierpinski gasket [83] has shown the dependence of the transducer’s perfor-

mance on the poling direction (which can be chosen in the manufacture process).

Consequently, the assumption made above on the poling direction and from the

electric field essentially allows for the reduction of the three-dimensional coupling

equations in (4.2) and (4.3) to reduce to one dimension. Hence,

E1 = E2 = 0, E3 6= 0 and D1 = D2 = 0, D3 6= 0. (4.6)
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Consequently, from equation (4.1)

3∑
i,j=1

∂Tij
∂xj

=
3∑
j=1

∂T3j

∂xj
=

∂T33

∂x3

+
∂T32

∂x2

+
∂T31

∂x1

=
∂T3

∂x3

+
∂T4

∂x2

+
∂T5

∂x1

, (4.7)

where the components with i = j relate to longitudinal stresses and with i 6= j

indicate the shear stresses. Equation (4.1) can be reduced further since it is as-

sumed that the wave travelling within the transducer is wholly longitudinal along

the x3-axis, that is, the shear waves are negligible in comparison to that of the lon-

gitudinal waves. This assumption can be made due to the poling direction and the

direction of the applied electric field and simplifies the algebra considerably. Lon-

gitudinal waves in the x1- and x2-directions are also neglected due to the direction

of the poling and the applied electric field. Hence,

ρT
∂2u3

∂t2
=
∂T3

∂x3

, (4.8)

where u3 = u3(x3, t). Electric charges do not flow easily within the piezoelectric

ceramic as a result of it being a good insulator. Thus, from Gauss’ law,

∂D3

∂x3

= 0. (4.9)

Using equations (4.2)-(4.6) and (4.9) together with equation (4.8) yields

ρT
∂2u3

∂t2
=

∂

∂x3

(
c33
∂u3

∂x3

− e33E3

)
= c33

∂2u3

∂x2
3

+
e2

33

ε33

∂2u3

∂x2
3

= c33

(
1 +

e2
33

ε33c33

)
∂2u3

∂x2
3

. (4.10)

Equation (4.10) can be reduced into the one-dimensional form by setting the

Young’s modulus of the piezoelectric material, YT = c33 + e2
33/ε33, and temporarily

dropping the subscript attached to the displacement tensor. Thus,

ρT
∂2u3

∂t2
= YT

∂2u3

∂x2
3

. (4.11)
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The one-dimensional equation is subsequently used to derive the boundary condi-

tions and the transducer operating characteristics. It is discretized and by intro-

ducing the non-dimensionalized variable θ, can be written in the form shown in

equation (2.125).

The derivation of the effective one-dimensional model was the technique for

simplifying the analysis of wave propagation within the fractal-like lattice. Lon-

gitudinal waves can propagate in all three forms, solid, liquid and gases, while

shear waves can only propagate through solids [73, 93, 106]. This effective one-

dimensional model accounts only for longitudinal waves in the x3-direction since

the shear waves and longitudinal waves in the x1- and x2-directions are considered

negligible in comparison. This form of analysis, in effect, treats elastic solids as

liquids, simplifying the model while still providing useful results on the likely per-

formance of this transducer. Furthermore, this simplification provides a reasonable

comparison against the previously investigated Sierpinski gasket fractal inspired

transducer which was also modelled using this analysis [86]. Nevertheless, reducing

the system to a one-dimensional model will result in the loss of some nonlinear in-

formation. This could be resolved by using a fully three-dimensional finite element

analysis on the wave propagation. Previously [7], a finite element approach was

applied to a Sierpinski gasket inspired device to analytically produce the discre-

tised equations which underwent a renormalization approach. Additionally, a finite

element model for the same design was built to determine the behaviour of the

device [32]. However, while such models proposed for the Sierpinski gasket will be

more accurate, they are computationally expensive and the finite differences model

proposed previously for the same structure [83] produced similar results without

the computational overheads. Hence, a similar approach was taken here.

4.3 Renormalization

The Green function renormalization method is applied to the Sierpinski tetrix

lattice in the same manner as the Sierpinski gasket. This is enabled as a result
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of it being another example of a finitely ramified fractal. The Sierpinski gasket

and tetrix are of the S(q) family of graphs, whereby the tetrix is simply the three

dimensional Sierpinski gasket. Thus they can be described in terms of a constant

vertex degree, q = 3 for the gasket and q = 4 for the tetrix [40, 41, 110, 112]. In

regards to the number of input/output vertices, both the gasket and tetrix lattices

have this equal to the vertex degree. Hence for the Sierpinski tetrix it is assumed

that there is single input vertex at vertex A and three output vertices; vertices

B, C and D, see Figure 4.3. Similar to the previous fractal transducer models,

fictitious vertices A, B, C and D are attached to the input/ output vertices to

accommodate the boundary conditions.

1
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Figure 4.3: Sierpinski tetrix lattice at generation n = 2. Fictitious vertices A, B,
C and D are introduced to accommodate the boundary conditions.

Figure 4.3 shows the second generation level fractal lattice from the connection

of four copies of the first generation level lattice, i.e. the process of forming G(n+1) is

made from the connection of four copies of G(n). Taking into account symmetry of

the tetrix lattice, there are two pivotal Green functions, where for ease of notation

these will be labelled as x̂t = Ĝ
(n)
11 and ŷt = Ĝ

(n)
66 . The corresponding Green
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functions at the next fractal generation level, X̂t = Ĝ
(n+1)
11 and Ŷt = Ĝ

(n+1)
66, are

found by applying equation (2.132)

X̂t = x̂t + 3ŷtĜ
(n+1)
51 , (4.12)

Ŷt = ŷt

(
Ĝ

(n+1)
21 + Ĝ

(n+1)
71

)
. (4.13)

To obtain X̂t and Ŷt in terms of x̂t and ŷt solely, expressions for Ĝ
(n+1)
21, Ĝ

(n+1)
51 and

Ĝ
(n+1)
71 are required, utilising equation (2.132) results in

Ĝ
(n+1)
21 = ŷt + (x̂t + 2ŷt) Ĝ

(n+1)
51 , (4.14)

Ĝ
(n+1)
51 = x̂tĜ

(n+1)
21 + 2ŷtĜ

(n+1)
71 , (4.15)

Ĝ
(n+1)
71 = ŷtĜ

(n+1)
21 + (x̂t + ŷt) Ĝ

(n+1)
71 . (4.16)

Solving equations (4.12)-(4.16) for the corresponding Green functions gives [112,

113]

X̂t = x̂t −
3ŷ2

t (x̂2
t − x̂t + x̂tŷt − 2ŷ2

t )

(1− x̂t − 2ŷt) (1− x̂2
t + ŷt − x̂tŷt + 2ŷ2

t )
, (4.17)

Ŷt =
ŷ2
t (1− x̂t + ŷ)

(1− x̂t − 2ŷt) (1 + ŷt − (x̂t − ŷt) (x̂t + 2ŷt))
. (4.18)

To account for boundary conditions, equation (2.133) is utilised in a similar man-

ner,

xt = x̂t + x̂tb1xt + 3ŷtb2yt, (4.19)

yt = ŷt + ŷtb1xt + x̂tb2yt + 2ŷtb2yt, (4.20)

zt = x̂t + ŷtb1yt + x̂tb2zt + 2ŷtb2wt, (4.21)

wt = ŷt + ŷtb1yt + x̂tb2wt + ŷtb2wt + ŷtb2yz. (4.22)

Solving these equations simultaneously results in

xt =
x̂t − b2(x̂t − ŷt)(x̂t + 3ŷt)

∆t

, (4.23)

yt =
ŷt
∆t

, (4.24)
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zt =
(1− x̂tb1)(1− b2(x̂t − ŷt))−∆t(1− 3b2(x̂t − ŷt))

3b2(1− b2(x̂t − ŷt))∆t

, (4.25)

wt =
(1− b1(x̂t − ŷt))ŷt
1− (b2(x̂t − ŷt))∆t

, (4.26)

where xt = G
(n)
11 , yt = G

(n)
61 , zt = G

(n)
66 , wt = G

(n)
616 and ∆t = (x̂tb1 − 1)(x̂tb2 − 1) +

2b2(x̂tb1 − 1)ŷt − 3ŷ2
t b1b2.

The pivotal elements calculated in this section can now be utilised to derive

the relevant operating transducer characteristic. This is presented in the following

section.

4.4 Boundary Conditions and Transducer Oper-

ating Characteristics

Similar to the Sierpinski gasket and carpet fractal inspired transducers, this model

is arranged to have mechanical loads placed at the output vertices and an electrical

load at the input vertex. In transmission mode it is assumed that there is only a

wave travelling away from the piezoelectric material. Likewise it follows that the

ultrasonic wave travels towards the transducer in reception mode. The elements

of the boundary matrix B(n) and vector c(n) were found to be the same as previous

fractal-inspired transducers, though these require suitable substitutions in regards

to the particular vertex of the graph. Equations (3.55) and (3.56) are thus re-

derived as

Bij =


1

1−pZB
ZT

if i = j = 1

1

1−pZL
ZT

if i = j = 6, 11 or 16,

0 otherwise

(4.27)

and

ci =


− hQ̄
YT ξ

(
1

1−pZB
ZT

)
if i = 1(

hQ̄
YT ξ
− 2pαL

ZL
ZT

)(
1

1−pZL
ZT

)
if i = 6, 11 or 16.

0 otherwise

(4.28)
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The derivations in equations (4.27) and (4.28) will be used to determine the ex-

pressions for the electrical impedance and transmission and reception sensitivities

for the Sierpinski tetrix fractal inspired transducer. Again due to the arrangement

of the transducer in the circuit, the expression for the non-dimensionalized electri-

cal impedance was calculated previously in equation (3.70), where µη and νη are

replaced with

µt =
3yt − wt − zt

1− pZL
ZT

and νt =
yt − xt

1− pZB
ZT

, (4.29)

for the Sierpinski tetrix fractal inspired device. Following on from the electri-

cal impedance, an expression for the transmission sensitivity is found by setting

αL = 0 (since force is absent at the front face in transmission) and using the ex-

pression of force found in equation (3.92). For the tetrix device the force is given

in equation (3.97) where K(n) is substituted with

K
(n)
t =

(
1

1− pZL
ZT

)(
1 +

2wt + zt

1− pZL
ZT

− yt

1− pZB
ZT

)
. (4.30)

Thus, the non-dimensionalized transmission sensitivity for the Sierpinski tetrix

device is similar to that of equation (3.101) where the relevant substitutions are

to be made for K(n) and Z. In reception mode the expression for amplitude

of the forward propagating wave is given by equation (3.103) and so the non-

dimensionalized reception sensitivity is given in equation (3.109) where µ, ν and

Z are replaced accordingly.

Within this section a brief recap on the derivation of the relevant operating

characteristics for a transducer based on the Sierpinski tetrix design has been out-

lined. This has been kept succinct due to the similarity to the output parameters

found previously for the Sierpinski carpet and Sierpinski gasket fractal inspired

transducers.

4.5 Steady-State and Exact Solutions

For manufacturing purposes it is only the pre-fractal designs that may be con-

sidered for ultrasonic applications. This is due to the complexity of true fractal
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structures. However, from an analytical perspective it is of interest to consider a

situation where a true fractal occurs. This fractal structure is only formed when

the fractal generation level n tends to infinity [8, 25]. Furthermore it is assumed

that the renormalization recursion relationships will converge to a steady state [8].

To distinguish steady state solutions a superscript s will be attached. Thus, the

steady state is found by setting x̂t = X̂t = x̂st and substituting this into equa-

tion (4.17) gives

0 =
3ŷs

2

t

(
x̂st (1− ŷst )− x̂s

2

t + 2ŷs
2

t

)
(1− x̂st − 2ŷst )

(
1 + ŷst − (x̂st + ŷst )

(
x̂st + 2ŷs

2

t

)) . (4.31)

From equation (4.31)

ŷst = 0, (4.32)

or

x̂st − x̂st ŷst − x̂s
2

t + 2ŷs
2

t = 0. (4.33)

If ŷst = 0 then equation (4.18) is satisfied since ŷt = Ŷt = ŷst . As for equation (4.33),

this can be substituted into equation (4.18) to give

1 =
ŷst (1− x̂st + ŷst )

(1− x̂st − 2ŷst )
(
1 + ŷst − x̂s

2

t − x̂st ŷst + 2ŷs
2

t

) . (4.34)

Rearranging equation (4.33) in terms of ŷs
2

t and substituting this into equa-

tion (4.34) results in

1 =
ŷst (1− x̂st + ŷst )

(1− x̂st − 2ŷst ) (1− x̂st + ŷst )
,

1 =
ŷst

(1− x̂st − 2ŷst )
. (4.35)

As a condition of equation (4.35) ŷst 6= 0, as this could otherwise imply that 1 = 0.

Thus, an expression for ŷst is

ŷst =
1

3
(1− x̂st) . (4.36)
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Also from equation (4.33)

ŷst =
x̂st ±

√
9x̂s2 t − 8x̂st
4

, (4.37)

hence
x̂st ±

√
9x̂s2 t − 8x̂st
4

=
1

3
(1− x̂st) , (4.38)

and so

x̂st = −1

2
or x̂st = 1. (4.39)

However, a solution of x̂st = 1 is neglected since this would imply that ŷst = 0

and as previously mentioned this cannot be the case. If x̂st = −1
2

then from

equation (4.36), ŷst = 1
2

and so the recursion relations have two steady states; a

line of stable fixed points at (x̂st , 0) and an unstable fixed point at
(
−1

2
, 1

2

)
, where

the stability of each fixed point was numerically determined by computing the

Jacobian matrix to evaluate the eigenvalues of the matrix. These steady states can

now be substituted into equations (4.23)-(4.26) to derive the boundary equations.

So as follows, inserting (x̂st , 0) into these equations gives

x =
x̂st

1− x̂stb1

, (4.40)

y = 0, (4.41)

z =
x̂st

1− x̂stb2

(4.42)

w = 0. (4.43)

Similarly, inserting
(
−1

2
, 1

2

)
in these equations results in

x =
1− 2b2

2b1b2 − b1 + b2 − 2
, (4.44)

y =
1

2 + b1 − b2 − 2b1b2

, (4.45)

z =
1− (1 + 2b1) b2

(1 + b2) (2b1b2 − b1 + b2 − 2)
, (4.46)

w = − 1 + b1

(1 + b2) (2b1b2 − b1 + b2 − 2)
. (4.47)
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The recursion relations given in equations (4.17) and (4.18) can be reduced

into a simpler form by defining a new set of coordinates (a, u). If (a, u) denotes

the nth generation level, capital letters (A,U) denote the corresponding values at

generation level n + 1. The transformation ζ:(a, u) → (x̂t, ŷt) for the S(p) fractal

lattice family is given in [113]. Thus for the tetrix lattices,

x̂t =
3(1 + a− au) + u(a+ u− au)

4u
, (4.48)

ŷt =
(u− 1)(1 + a+ u− au)

4u
, (4.49)

with inverse ζ−1:(x̂t, ŷt)→ (a, u),

a =
1− x̂2

t + x̂tŷt − 3ŷt(x̂t − ŷt)
4ŷt

, (4.50)

u =
1 + x̂t + 2ŷt
1 + x̂t − ŷt

. (4.51)

The recursion of these new coordinates, Z:(a, u)→ (A,U) is attained using

Z = ζκζ−1 [112, 113], where κ is the mapping of (x̂t, ŷt)→ (X̂t, Ŷt). Therefore,

a→ A(a) = 4a2 − 2a− 1, (4.52)

u→ U(a, u) =
(4a− 2)(a+ 1 + (1 + 3a)u)

(4a+ 2)(a+ 1 + 3(a− 1)u)
. (4.53)

Thus, the recursion A is decoupled since it only depends on a. The initial condi-

tions x̂t0 and ŷt0 are obtained using equation (2.129) with n = 0, that is

x̂t0 = ŷt0 =
1

p2 + 4
, (4.54)

since the renormalization maps begin with a single vertex.

The results for the electrical impedance, transmission and reception sensitivi-

ties for the Sierpinski tetrix model are presented in the following section.
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4.6 Results

Similar to previously investigated fractal-like transducers, it is only realistically

viable to consider the potential construction of designs based on low fractal gener-

ation levels. Current manufacturing limitations do not allow for the construction

of a piezoelectric Sierpinski tetrix at high generation levels at the dimensions re-

quired for an operational frequency in the sub-megahertz range. This is a result

of the increasing complexity in the design as the generation level is increased. (Of

course, the scale of the prototype could be increased, in order to attain higher

generation levels, but the corresponding operating frequency range would be sig-

nificantly reduced). Thus, for manufacturing purposes this section discusses the

results attained via a mathematical computer model, for the performance of a

Sierpinski tetrix fractal inspired transducer for generation levels one to five. As a

result of the consistent vertex degree (q = 4), the renormalization technique used

provides an excellent method for obtaining the results for any fractal generation

level design. A comparison of key operating characteristics between the Sierpin-

ski tetrix and Sierpinski gasket designs at generation level five, and the currently

used Euclidean device is presented. The three devices have been modelled on a

PZT-5H ceramic with the material parameters shown in Table 2.1. The Sierpinski

gasket was used for comparison due to it belonging to the same family of fractal

lattices. Specifically, the Sierpinski gasket belongs to the S(3) lattice family and

the Sierpinski tetrix is part of the S(4) family [41, 113]; where the 3 and 4 indicate

the vertex degree of the fractal lattices.

4.6.1 Transducer Performance at Varying Fractal Genera-
tion Levels

Figure 4.4 shows a comparison in electrical impedance between the first five fractal

generation levels of the Sierpinski tetrix fractal inspired transducer. In this plot

all fractal generation levels show qualitatively similar results and adhere to sim-

ilar patterns with higher fractal generation levels resonating at higher electrical
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Figure 4.4: Non-dimensionalised electrical impedance Ẑ (dB) (equation (3.70),
with the appropriate substitutions) versus frequency f (Hz) for the Sierpinski tetrix
fractal inspired transducer at fractal generation levels one to five.

impedances. This most likely relates to the reduction in the size of the length

scales as the fractal generation level is increased. That is, at fractal generation

level five the length scales within the device’s internal structure would be consid-

erably smaller than the ones present within the first fractal generation level. This

would consequently result in higher values for the electrical impedance. Equally,

the electrical impedance is sure to rise since increasing the fractal generation level

results in the removal of more material. The electrical and mechanical resonant

frequencies together with the corresponding electrical impedances for each fractal

generation level are given in Table 4.1.

Comparison of transmission sensitives are shown in Figure 4.5. From these

results it is evident that the transmission sensitivity for the fractal generation level

two has the highest maximum amplitude and is greater by 3.434 dB than fractal

generation level five, which offers the lowest. Consequently, this has resulted in

a lower bandwidth of BW 2
t = 0.217 MHz at its resonant frequency leading to a

percentage bandwidth of 12%, while fractal generation level five has a percentage

bandwidth of 21%. Additionally, there is a substantial improvement in terms of the
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Generation
(n)

Electrical Resonant
Frequency

fe (MHz) Zt (dB)

Mechanical Resonant
Frequency

fm (MHz) Zt (dB)

1 1.231 −6.211 1.400 −1.449
2 1.683 −1.939 1.875 1.160
3 1.640 2.421 1.807 4.434
4 1.438 6.666 1.573 7.995
5 1.207 10.815 1.312 11.690

Table 4.1: Electrical and mechanical resonant frequencies for the first five fractal
generation levels for the Sierpinski tetrix transducer.
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Figure 4.5: Non-dimensionalised transmission sensitivities ψ (dB) (equa-
tion (3.101), with the appropriate substitutions) versus frequency f (Hz) for the
Sierpinski tetrix fractal inspired transducer at fractal generation levels one to five.

gain bandwidth product when increasing the fractal generation level. See Table 4.2

for all figures of merit in transmission mode. Table 4.2 only illustrates the effective

figures of merit at the resonant frequency for the individual fractal generation

levels. Additional calculations for the bandwidth and gain bandwidth product

have been made using the amplitude of the first peak of fractal generation level

five. This peak amplitude was then used to determine the figures of merit for each
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Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −9.539 0.186 0.021
2 −8.378 0.217 0.032
3 −10.327 1.006 0.093
4 −10.861 2.334 0.191
5 −11.812 1.691 0.111

Table 4.2: Figures of merit in transmitting mode for Sierpinski tetrix transducer.

fractal generation level. In this instance fractal generation level two supersedes any

other in terms of all three figures of merit, and incrementing the fractal generation

level past this point proves not to be worthwhile since all metrics decrease with the

increase of the fractal generation level. These results are presented in Table 4.3.

Generation
(n)

First Peak
Amplitude

(dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −9.539 0.994 0.1105
2 −8.378 1.265 0.184
3 −10.680 0.953 0.081
4 −13.457 0.545 0.025
5 −15.954 0.242 0.006

Table 4.3: Figures of merit in transmitting mode for Sierpinski tetrix transducer
using the first peak amplitude of fractal generation level five.

The reception sensitivity profiles for the proposed device based on the initial

five fractal generations of the Sierpinski tetrix pre-fractals are shown in Figure 4.6.

It is evident from this plot that an increase in the fractal generation level from one

to five results with higher maximum amplitudes. Furthermore, it can be seen that

fractal generation levels three, four and five produce reception sensitivity profiles

with more resonances, within the frequency range, than their generation levels one

and two counterparts. In fact, by increasing the fractal generation level beyond
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Figure 4.6: Non-dimensionalised reception sensitivities φ (dB) (equation (3.109),
with the appropriate substitutions) versus frequency f (Hz) for the Sierpinski tetrix
fractal inspired transducer at fractal generation levels one to five.

level five, it is found that the reception sensitivity profiles show evidence of more

resonances, but this is offset with a reduced maximum amplitude.

The reception sensitivity profiles for the proposed device at generation levels

one, five and fifteen are shown in Figure 4.7. As is evident from this plot, the

initial fractal generation level has far fewer resonances in comparison to other two

devices. This indicates that the device at this generation level has only a single

length scale and hence the presence of a single resonance. The higher the fractal

generation level, the greater the presence of resonances and this is attributed to

increased complexity in the pre-fractal design; to be precise, there is a greater range

of length scales. However, moving beyond a certain fractal generation level results

in a compromise between increased resonances and maximum amplitude. This can

be observed when comparing generation levels five to fifteen. As the generation

level is increased, the size of the length scales decreases, and for very small length

scales, the performance of the transducer, in reception mode, at higher frequencies

is improved. This is expected since the designs of higher generation levels span a
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Figure 4.7: Non-dimensionalised reception sensitivities φ (dB) (equation (3.109),
with the appropriate substitutions) versus frequency f (Hz) for the Sierpinski tetrix
fractal inspired transducer at fractal generation levels one (φ1

t light purple full line),
five (φ5

t black full line) and fifteen (φ15
t burgundy full line).

greater range of length scales.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −0.448 0.397 0.358
2 −0.597 0.386 0.336
3 1.296 0.276 0.372
4 3.825 0.249 0.601
5 5.967 0.215 0.849

Table 4.4: Figures of merit in receiving mode for Sierpinski tetrix transducer.

The bandwidth and gain bandwidth product for each fractal generation level

was initially calculated at the relative resonant frequency. These results are pre-

sented in Table 4.4. From this table it is clear to see that, while the amplitude

and gain bandwidth product, in most instances, both increase with the fractal

generation level, the same cannot be said for the 3-dB bandwidth. This reduc-
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tion in bandwidth is likely a result of the increased sensitivity amplitude. Further

calculations were made on these figures of merit using the same amplitude. That

is, the peak amplitude was taken at the resonant frequency of fractal generation

level two, since this generation level had the lowest maximum amplitude. In this

respect the bandwidth is likely to increase with the fractal generation. To corrob-

orate this, the metrics for each fractal generation level have been calculated and

are tabulated in Table 4.5.

Generation
(n)

First Peak
Amplitude

(dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −0.448 0.415 0.375
2 −0.597 0.386 0.336
3 1.296 0.941 1.269
4 3.825 1.765 4.259
5 5.967 1.521 6.010

Table 4.5: Figures of merit in receiving mode for Sierpinski tetrix transducer using
the resonant frequency of fractal generation level two.

Additional resonances in the sensitivity profiles are desired as they increase the

operational bandwidth of the device. Single length scale devices can only operate

at a single frequency, whilst designs with a range of length scales have the potential

to operate over a wide range of frequencies. Thus, to raise the entire reception

sensitivity output, a device that presents multiple resonances is preferred. The

desirable resonant behaviour of the device is clearly achieved by increasing the

fractal generation level. Furthermore, these resonances occur at lower frequencies.

The added advantage of higher fractal generation level devices is the effect it has

on the reception sensitivity bandwidth. In certain instances, increasing the fractal

generation level improves the operational bandwidth at the resonant frequency

significantly. For example, due to the additional resonances of the fifth generation

level design, the reception sensitivity outperforms the first generation device at

almost every possible frequency. Additionally, the value of the gain bandwidth
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product is much more encouraging, as there is a noticeable increase in this figure

of merit as the fractal generation level is increased. In some instances, this figure

of merit increased more than three-fold over the previous fractal generation level.

To summarise, increasing the fractal generation level resulted in greater electri-

cal impedance magnitudes and more crucially developed the pre-fractal transducer

into a multi-resonant device. When evaluating the figures of merit of the pre-

fractal transducers at their particular resonant frequency in transmission mode,

it was established that the bandwidth around these peaks increased but conse-

quently reduced the peak amplitudes. Yet in reception mode it was found that

the amplitudes increased with the fractal generation level but then the bandwidth

around these peaks decreased. Comparison of fractal generation levels was then

assessed at a particular frequency range. In transmission mode the amplitude was

taken at the first peak of fractal generation level five. The results attained via

this process showed that there was no benefits in increasing the fractal generation

level beyond level two. This was simply for the reason that all other pre-fractal

generation level devices were poorer in all figures of merit. The amplitude in re-

ception mode was taken at the resonant frequency of fractal generation level two.

For the reception sensitivities there was a substantial improvement in increasing

the fractal generation level since all figures of merit improved. Thus, the receiving

capabilities of a transducer inspired by the Sierpinski tetrix fractal appear to only

improve with greater fractal generation levels.

4.6.2 Comparison between Standard and Pre-Fractal De-
vices

The effect of an additional vertex into the design of the Sierpinski gasket, i.e.

the Sierpinski tetrix, on the electrical impedance at fractal generation level five

is shown in Figure 4.8. This plot also illustrates the electrical impedance for the

standard design. From this plot it can be seen that the inclusion of this extra

vertex results with the electrical and mechanical resonant frequencies occurring
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Figure 4.8: Non-dimensionalised electrical impedances Ẑ (dB) versus frequency
f (Hz) for the Sierpinski tetrix (Ẑ5

t black full line, equation (3.70), with the appro-
priate substitutions) and Sierpinski gasket (Ẑ5

g orange full line, equation (2.162))
fractal inspired transducers at fractal generation five and the traditional Euclidean
transducer (Ẑe purple full line, equation (2.45)).

at lower frequencies. Additionally this plot illustrates that there is the significant

increase in magnitude of the electrical impedance when comparing the pre-fractal

devices to the Euclidean transducer. See Tables 4.1, 2.8 and 2.2 for the electrical

and mechanical resonant frequencies for the Sierpinski tetrix, gasket and standard

transducers. The behavioural difference between the Sierpinski tetrix and gasket

pre-fractal devices shows there is a slightly higher magnitude. As with the Sierpin-

ski carpet models this was most likely a result of the pre-fractal lattice containing

more length scales in its design than a transducer based on the design of the Sier-

pinski gasket. Furthermore, the minor rise in magnitude is to be expected since

the key difference between the two devices is the vertex degree.

Comparison of the transmission sensitivities are illustrated in Figure 4.9 for the

standard and pre-fractal devices. While the transducer designs vary in their con-

struction, for a worthwhile comparison, care has been taken with regard to the con-

struction variables to ensure that the designs have their first resonance around the
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Figure 4.9: Non-dimensionalised transmission sensitivities ψ (dB) versus frequency
f (Hz) for the Sierpinski tetrix (ψ5

t black full line, equation (3.101), with the appro-
priate substitutions) and Sierpinski gasket (ψ5

g orange full line, equation (2.169))
fractal inspired transducers at fractal generation five and the traditional Euclidean
transducer (ψe purple full line, equation (2.54)).

same frequency. For instance the value for the cross-sectional area of the Euclidean

device is Ar = 10−4, while pre-fractal devices have Ar = ξ∆x = ξLs/(2
n − 1).

Therefore, the cross-sectional area will decrease as the fractal generation level is

increased. Furthermore, the ceramic volume fractions for all devices are the same

to maintain a fair comparison. As expected due to the range of length scales

present, the pre-fractal designs demonstrate more resonances than the Euclidean

transducer and hence are effective over a wider frequency range. The Sierpinski

tetrix device shows that there is a reduction in peak amplitude when comparing

against the Sierpinski gasket inspired transducer, and that the maximum ampli-

tude occurs at a higher frequency. The Sierpinski gasket device has maximum

amplitude G5
g = −10.357 dB at a frequency of 1.519 MHz and the Sierpinski tetrix

device has G5
t = −11.812 dB at a frequency of 7.941 MHz. As expected, the

tetrix device has a larger bandwidth than the gasket device, at its resonant fre-

quency, with an effective operating range of BW 5
t = 1.691 MHz. The Sierpinski
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gasket fractal inspired transducer has, at its resonant frequency, a 3-dB band-

width of 0.280 MHz. Thus the percentage bandwidths of the two devices are 21%

for the Sierpinski tetrix and 18% for the Sierpinski gasket. This increase in device

bandwidth has led to an improvement in the gain bandwidth product, which is

GBP 5
t = 0.111 compared to that of GBP 5

g = 0.026 for the gasket device. The

Sierpinski tetrix fractal inspired device also outperforms the standard transducer

in terms of the 3-dB bandwidth (at the related resonant frequencies), where the

standard device only has a percentage bandwidth of 13%. However, comparisons

at the first peak amplitudes suggest the Sierpinski tetrix fractal inspired device

is considerably outperformed by both the standard and Sierpinski gasket fractal

inspired transducers in regards to all the figures of merit. This is clearly evident

from the results presented in Table 4.6.

First Peak
Amplitude

(dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

Sierpinski Tetrix −15.954 0.242 0.006
Sierpinski Gasket −10.357 0.933 0.086

Euclidean −1.414 3.569 2.577

Table 4.6: Figures of merit for the Euclidean, Sierpinski gasket and tetrix pre-
fractal transducers at generation level five in transmission mode. The figures of
merit for all devices has been calculated using the amplitude of the first peak of
the Sierpinski tetrix pre-fractal transducer.

Figure 4.10 illustrates the reception sensitivities of the three devices plotted as

a function of the operating frequency. Again the profiles of the pre-fractal devices

are qualitatively similar with the Sierpinski tetrix inspired device displaying lower

amplitudes than the Sierpinski gasket inspired device at all frequencies. The lower

amplitudes present in the tetrix device could suggest that there is a loss in signal

as a result of the additional path the ultrasonic wave has to travel. The amplitude

of the wave diminishes the further it travels through the lattice structure and thus

results in greater attenuation. However, the tetrix device does resonate at lower

155



ϕt
5 ϕg

5

ϕe

0 2×106 4×106 6×106 8×106 1×107

-20

-15

-10

-5

0

5

10

frequency f (Hz)

Reception

Sensitivity

ϕ

(dB)

Figure 4.10: Non-dimensionalised reception sensitivities φ (dB) versus frequency
f (Hz) for the Sierpinski tetrix (φ5

t black full line, equation (3.109), with the appro-
priate substitutions) and Sierpinski gasket (φ5

g orange full line, equation (2.173))
fractal inspired transducers at fractal generation five and the traditional Euclidean
transducer (φe purple full line, equation (2.58)).

frequencies than the gasket device and therefore may allow for greater penetration

depth. It was expected that the pre-fractal Sierpinski tetrix-inspired transducer

would exhibit more resonances than the Sierpinski gasket pre-fractal device on

account of its lattice structure covering more length scales. However, the results

do not validate this initial assumption, since, in Figure 4.10, it is observed that the

gasket device is equally as resonant. This may relate to the simplification of the

tetrix model. The reduction of the three-dimensional model to the one-dimensional

mode only accounts for wave propagation in one direction. Similarly, the model

of the Sierpinski gasket device restricts attention to wave propagation in the same

direction [86]. Performing three-dimensional wave analysis on the Sierpinski tetrix

device may yield better performance characteristics in comparison to the Sierpinski

gasket device. In regards to the maximum amplitude the tetrix device has G5
t =

5.967 dB and the gasket device has G5
g = 9.520 dB. These amplitudes suggests that

the increase in vertex degree from 3, for the gasket lattice, to 4, for the tetrix lattice,
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has reduced the maximum amplitude by 37%. Thus, at each of the transducers

resonant frequencies their related 3-dB bandwidths means that the Sierpinski tetrix

fractal inspired device has a greater bandwidth of BW 5
g = 0.215 MHz than that of

the Sierpinski gasket fractal inspired device, which is BW 5
t = 0.185 MHz. The gain

bandwidth product of the Sierpinski tetrix fractal inspired device was calculated

to be GBP 5
t = 0.849 which is a decrease of 49% compared to the gasket device,

where GBP 5
g = 1.657. This is most likely a result of the lower amplitudes present

in the tetrix device.

Comparisons between the Sierpinski tetrix fractal inspired transducer and Eu-

clidean transducer are much more encouraging. Figure 4.10 shows that the pre-

fractal device contains more resonances than the traditional design. This is to

be expected since the Sierpinski tetrix device benefits from range of length scales

while standard designs generally only have a single length scale. The maximum

amplitude for the standard device is Ge = 3.463 dB, and thus the Sierpinski tetrix

device outperforms the standard device by 72% in terms of this metric. Moreover,

the reception sensitivity bandwidth surpasses standard designs by an additional

0.583 MHz (using the amplitude at the resonant frequency of the Euclidean device).

As a result of the increased amplitudes and bandwidth exhibited in the Sierpinski

tetrix device, the gain bandwidth product is also enhanced; see Table 4.7. Noting

First Peak
Amplitude

(dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

Sierpinski Tetrix 5.967 0.846 3.341
Sierpinski Gasket 9.520 2.022 11.811

Euclidean 3.463 0.263 0.584

Table 4.7: Figures of merit for the Euclidean, Sierpinski gasket and tetrix pre-
fractal transducers at generation level five in reception mode. The figures of merit
for all devices has been calculated using the amplitude at the resonant frequency
of the Euclidean transducer.

Tables 4.5 and 4.7, all fractal generation levels surpass the standard device in terms
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of bandwidth. Here, in order to get a fair comparison, the bandwidths for the pre-

fractal devices have all been calculated using the 3-dB amplitude of the second

generation level. The advantage of pre-fractal designs over Euclidean designs is

the presence of more resonances. It has been observed that the initial three frac-

tal generation levels are not as effective in at least one of the figures of merit as

the standard device. However, as the generation level is increased, so does the

presence of resonances, thus increasing the values of all figures of merit. It was

found that higher fractal generation level devices exhibited additional resonances

at higher frequencies, while such resonances were absent in lower generation lev-

els. Thus, it may be established that devices designed on high fractal generation

levels will most closely resemble those found in nature, for which these systems

are far more efficient in operating over a wider range of frequencies, giving rise to

improved bandwidths. Therefore, the improvement in these values as the genera-

tion level is increased demonstrates that multiple resonances enhance transducer

performance. The amplitude at fractal generation level four exceeds the stan-

dard device, and fractal generation level three shows a significant improvement

in regards to the gain bandwidth product. In particular, there is over a two fold

increase at this fractal generation level over that of the standard device. Thus,

the results in comparison to a standard design suggest strongly that it would be

worthwhile for a prototype based on the Sierpinski tetrix to be built, in order

to determine whether experimental results support these theoretical results, es-

pecially for fractal generation level five. Three-dimensional printing of electronic

sensors and additively-manufactured piezoelectric devices are still emerging tech-

nologies [68, 69, 137]. However, the scope exists for tackling the construction of

these three-dimensional piezoelectric structures.

The effect of increasing the fractal generation level resulted with an improve-

ment in all three metrics with the exception of generation level two. In addition,

there was a decrease in regards to the operational bandwidth and gain bandwidth

product when increasing the fractal generation level from four to five. However,
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there is concern over the Sierpinski tetrix device performance in comparison to the

Sierpinski gasket device at the same fractal generation level. On the other hand,

the tetrix device performs much more effectively than currently favoured designs.

4.6.3 Convergence of the Model

The convergence of the fractal generation level for the transmission and reception

sensitives is presented in this section. This is achieved by computing the summa-

tion of the absolute value of the difference between successive fractal generations,

integrated with respect to frequency, for up to 50 generation levels. That is

ψ̄(n) =
‖ψ(f ;n)− ψ(f ;n+ 1)‖2

maxψ(f ;n)
, (4.55)

for the transmission sensitivities and for the reception sensitivities,

φ̄(n) =
‖φ(f ;n)− φ(f ;n+ 1)‖2

maxφ(f ;n)
, (4.56)

where ψ(f ;n) and φ(f ;n) are the transmission and reception sensitivity, at fre-

quency f and generation level n, respectively. Previous research [7, 86] has also

applied this same technique in order to determine the point of convergence for the

Sierpinski gasket fractal inspired transducer.

Figure 4.11 illustrates the points of convergence for the transmission sensitivi-

ties for both the Sierpinski tetrix and Sierpinski gasket transducers, and has been

normalized between zero and one with respect to their maximum values. From

this plot it is apparent that the Sierpinski tetrix device converges at a lower frac-

tal generation level than the Sierpinski gasket device. Using a 5% tolerance level

the Sierpinski tetrix device convergences by fractal generation level n = 15, while

the Sierpinski gasket device converges by fractal generation level n = 20. At a 1%

tolerance level the convergences are n = 19 and n = 27 for the Sierpinski tetrix

and gasket devices respectively. Similarly Figure 4.12 shows the convergence of

reception sensitivities of the Sierpinski tetrix and Sierpinski gasket devices and is

again normalized between zero and one. It can be seen that significant improve-

ments can be made on the reception sensitivity by increasing the generation level
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full line) and Sierpinski gasket (ψ̄g orange full line) devices as a function of fractal
generation level n, over a frequency range of 0.1− 10 MHz.

from one to five. Thereafter, the differences between each successive generation

level decreases before converging. The Sierpinski tetrix device converges at a lower
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Figure 4.12: Normalized reception sensitivity for the Sierpinski tetrix (φ̄t black
full line) and Sierpinski gasket (φ̄g orange full line) devices as a function of fractal
generation level n, over a frequency range of 0.1− 10 MHz.
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fractal generation level when compared with the Sierpinski gasket device. At the

5% tolerance level, the Sierpinski tetrix device converges by fractal generation

level n = 25, while the Sierpinski gasket device converges by fractal generation

level n = 32. The 1% tolerance level shows the points of the convergences to be

n = 28 for the Sierpinski tetrix device and n = 34 for the Sierpinski gasket de-

vice. From a manufacturing perspective, this is positive as it shows that a device

which incorporates a pre-fractal with a high generation level is not required. The

trade-off between design intricacy and device performance is maximised at around

generation level five, which is possible with the current prototyping technology.

4.7 Conclusions

This chapter investigated a Sierpinski tetrix fractal inspired transducer using the

Green function renormalization technique as a method for obtaining the trans-

ducer operating characteristics, modelled on a PZT-5H ceramic. The electri-

cal impedance, transmission and reception sensitivities for a Sierpinski tetrix-like

transducer were analysed by constructing the lattice equivalents, as was previously

performed for the Sierpinski gasket and carpet devices [7, 19, 20, 86].

As a result of current manufacturing procedures, the construction of pre-fractal

transducers would be restricted to low fractal generation levels. This is as a con-

sequence of the reduction in the size of the length scales as the generation level

is increased. Thus, in this chapter only the performance of the first five fractal

generation levels have been discussed. However, fractal generation level fifteen has

been included to determine what effect higher fractal generation levels have on

the performance of the transducer. The point of convergence of the transducers

performance was also studied. From this analysis it was shown that the transmis-

sion sensitivities converged at around fractal generation level n = 15 at the 5%

tolerance level and at fractal generation level n = 19 at the 1% tolerance level.

The reception sensitivities converged by fractal generation level n = 25 with a

tolerance level of 5% and converged at n = 28 with a 1% tolerance level. However,
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transducers based on the design of fractal generation levels beyond n = 5 would

currently cause manufacturing difficulties.

To assess the performance of a Sierpinski tetrix fractal inspired transducer,

a computer model was utilised to plot each of the operating characteristics as a

function of the operating frequency. This was then compared to a previously in-

vestigated Sierpinski gasket fractal inspired transducer as well as a conventional

designed transducer. As expected, the tetrix device experienced more resonances

at a wider range of frequencies than the standard transducer. Furthermore, an

increase in the fractal generation level led to a more resonant device with the pres-

ence of higher frequency resonances. Thus, fractal-inspired transducers demon-

strate suitability for a various number of purposes. In transmission mode for the

Sierpinski tetrix pre-fractal, an increase in the fractal generation level resulted in

an increase in the device’s bandwidth. However, the increase in device bandwidth

resulted in a reduction in the corresponding maximum amplitudes. Additionally,

the value of the gain bandwidth product also decreased as the fractal generation

level increased. In comparison of the Sierpinski tetrix device with the Sierpin-

ski gasket and Euclidean devices, it was found that a transducer inspired by the

Sierpinski tetrix was less efficient in the transmission of ultrasound. This was con-

cluded since all figures of merit for the Sierpinski tetrix device were calculated to

be less than the other two devices when using the same amplitude. In regards

to the reception sensitivities, an increase in fractal generation level was followed

by an increase in the sensitivity amplitude and gain bandwidth product. Yet the

increase in amplitudes resulted in reduced 3-dB bandwidths at the resonant fre-

quencies. For fractal generation level five, these figures of merit were all reduced in

comparison to the previously investigated Sierpinski gasket fractal inspired trans-

ducer. However, in regards to device performance over traditional designs, the

analysis presented in this chapter indicates a substantial increase in each of these

figures of merit. Comparisons between the Sierpinski tetrix, Sierpinski gasket and

Euclidean devices were evaluated using the amplitude of the Euclidean device at
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its resonant frequency. These results do therefore suggest the possibility that a

Sierpinski tetrix fractal inspired transducer could be suitable in ultrasonic design

to enhance current performance in reception mode.

Given the simplified nature of the model, it could be beneficial to investigate

this structure using finite element analysis akin to that done on the Sierpinski gas-

ket pre-fractal in [7, 32]. Utilising this method would allow for the re-introduction

of longitudinal and shear propagating waves into the model. Transducer perfor-

mance optimization could also be employed with the aim of improving the val-

ues of the bandwidth, amplitude and gain bandwidth product. This could be

achieved by sampling different material parameters, such as the piezoelectric con-

stant and Young’s modulus [12]. This provides an opportunity to ascertain a range

of materials that could be used in the creation of novel fractal-inspired ultrasonic

transducers.

163



Chapter 5

Modelling of Product Lattice
Inspired Transducers

5.1 Introduction

In this chapter, the Green function renormalization method is extended to inves-

tigate the performance of infinitely ramified structures. Previously, in Chapter 3,

the effects of infinitely ramified Sierpinski carpet devices were studied using an

adaptation of the renormalization method. The extension in this chapter obtains

Green functions by considering the Cartesian product of two pre-fractal lattices.

In particular, the Cartesian product of the Sierpinski gasket with itself and the

Cartesian product of the Sierpinski carpet with itself are presented.

In previous research [7, 8, 12, 19, 20, 32, 83, 86, 97], it was concluded that

fractal-inspired ultrasonic transducers were found to be superior to conventional

Euclidean designs in terms of the operating characteristics of the device. This

demonstrated the benefits of multi-length scaled devices. One potential method

of increasing the range of length scales of these new designs is to consider the

product design of two pre-fractal structures that is, the design obtained from

the Cartesian product of two graphs. The results presented within this chapter

are relevant in determining the potential performance of ultrasonic transducers

that are significantly more complex in their design, and which possess a greater

range of length scales. However, the results are merely theoretical, since only the
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structures of the lattice counterparts are discussed. It is important to note that

a lattice structure is used to derive the operating characteristics for a theoretical

device, but it does not necessarily relate to a specific physical object. As such, it

is difficult to illustrate the number of length scales, or even represent the design of

the transducer. Nevertheless, this study is significant in deducing whether there

is motive to investigate more intricate designs. To reiterate, the lattice structures

are only used to study wave propagation. Thus, further research is required to

determine the actual design of the transducer in order for a potential prototype

to be fabricated. However, for the purpose of this chapter it is only of interest to

determine the likely performance of such theoretical designs.

The Cartesian product of two graphs is obtained by employing the usual def-

inition of the Cartesian product of two sets. The Cartesian product of two sets

is the set that takes all ordered pairs, i.e. for the sets A = {a1,a2, · · · ,an} and

B = {b1, b2, · · · , bm}, the Cartesian product A×B is given by

A×B = {(a, b)|a ∈ A, b ∈ B}. (5.1)

Consequently, the Cartesian product of two graphs is achieved in a similar manner.

For instance if G1 is a graph with the vertex set VS(G1) = {u1, u2, ..., um} and G2 is

another graph with the vertex set VS(G2) = {v1, v2, ..., vn} the Cartesian product,

G1⊗G2, is the graph whose vertex set is VS(G1)×VS(G2). In addition, two vertices

(ui, vj) and (uk, vl) are adjacent in G1 ⊗ G2 if and only if

1. ui = uk and vj is adjacent to vl ∈ G2, or

2. vj = vl and ui is adjacent to uk ∈ G1.

To demonstrate this process, it is possible to consider the following simple example;

G1 is a graph with vertex set VS(G1) = {a, b} and G2 is another graph with vertex

set VS(G2) = {1, 2, 3}. Thus, the Cartesian product is the graph whose vertex set is

the set of ordered pairs, VS(G1)×VS(G2) = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.
The initial graphs and resultant graph obtained from the Cartesian product are

shown in Figure 5.1.

165



21G G G G1 2

(b,3)

3

(a,2)

21

(b,1)

a

b

(a,1) (a,3)

(b,2)

x

Figure 5.1: Representation of the Cartesian graph product of two one-dimensional
lines, resulting in a rectangular structure.

While this extension to the Green function renormalization method has not

previously been applied to evaluate the performance of product lattice transducers,

it has previously been implemented to study the Green functions of infinitely ram-

ified fractals [39, 40, 111], particularly to account for spectral dimensions greater

than two. The spectral dimension of a fractal is different to the fractional di-

mension. The fractional dimension refers to the structural properties of the frac-

tal, while the spectral dimension is in reference to the topological (dynamical)

properties of the fractal [55, 123]. To demonstrate the spectral dimension it is

possible to consider the spectral dimension of the Sierpinski gasket. Previously

the fractional dimension was obtained using the Hausdorff Besicovitch descrip-

tion given in equation (1.1). Thus, for the Sierpinski gasket the fractional di-

mension is Df = log (3)/ log (2). Equally the same result may be obtained us-

ing [55, 80, 89, 103, 104],

Df =
log (d+ 1)

log (2)
, (5.2)

where d is the dimension of embedding Euclidean space. For deterministic fractals

the spectral dimension can be obtained exactly [89]. Hence, the spectral dimension

for the Sierpinski gasket is [55, 89, 104]

ds = 2
log (d+ 1)

log (d+ 3)
= 2

log (3)

log (5)
. (5.3)
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Furthermore, for the Sierpinski gasket the following relation holds [89, 103, 104],

d ≥ Df ≥ ds. (5.4)

That is,

2 > 1.585 > 1.365. (5.5)

For the Cartesian product graphs, the fractional and spectral dimensions are twice

those of the fractal graphs [40, 111].

In this chapter the results of a theoretical transducer, whose product lattice

is the Cartesian product of two Sierpinski gasket lattices for generation level one,

is of interest. In addition, the result for the Cartesian product of two Sierpinski

carpet lattices for the same generation level is explored. To begin this investiga-

tion, the product lattices need to be derived. Thus, by applying the definition

of the Cartesian product of two graphs presented above, the resultant Sierpinski

gasket and Sierpinski carpet product lattices can be formed. Figure 5.2 details

ba

c

21

3

21
G G

G Gx1 2

(b,3)
(c,3)

(a,3)

(b,1)

(c,1)

(a,1)

(b,2)

(a,2)

(c,2)

Figure 5.2: The Cartesian graph product G(p)= G1 ⊗ G2, with the vertex set
{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)}, of two Sierpinski gas-
ket lattices at fractal generation level n = 1, where VS(G1) = {1, 2, 3} and
VS(G2) = {a,b,c}.

the process of obtaining the Cartesian product of two Sierpinski gasket fractal

lattices at generation level n = 1 and Figure 5.3 illustrates the resultant Sierpinski
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Figure 5.3: Schematic representation of the Cartesian product of the Sierpinski
carpet lattice at fractal generation level n = 1 with itself.

carpet product lattice obtained from two first generation level lattices. For the

Sierpinski gasket product lattice, the theoretical transducer is assumed to interact

with input voltages at vertex (a, 1) (and so a positive electric charge is applied

to the transducer at this vertex in transmission mode) and mechanical loads at

vertices (a, 2) and (a, 3). The input/output loads have been chosen specifically to

be consistent with the original Sierpinski gasket inspired transducer. Similar to

the Sierpinski gasket fractal lattice, at the first fractal generation level all vertex

degrees are consistent and equal to four (for the Sierpinski gasket fractal lattice

this is equal to two). However, as the generation level is increased the vertex de-

grees become inconsistent. In particular, the Cartesian product of two Sierpinski

gasket lattices at fractal generation level two, have a vertex degree equal to six for

internal vertices, a vertex degree of five for vertices on an edge and a vertex degree

of four for corner vertices. However, the models considered here are only of the

first generation level product graphs.

It should be borne in mind that a transducer configured on the Sierpinski

carpet product lattice is likely to result in manufacturing difficulties. The lattice

168



structure, obtained as the Cartesian product of two Sierpinski carpet lattices at

their first fractal generation level, has a total of 128 edges. In contrast, the struc-

ture of a single Sierpinski carpet lattice for the same generation level has only

8 edges. Nevertheless, the results presented in this chapter are included to fur-

ther support the belief that devices with a range of length scales yield improved

proficiency in the detection and generation of ultrasonic waves, specifically in com-

parison with the traditional designed devices. In contrast, it may be possible to

construct a transducer whose lattice counterpart is the Sierpinski gasket product

lattice prototype. However, this likely only achievable for its first lattice generation

level, as a result of the significant increase in the amount of edges as the generation

level is increased. Likewise, it is assumed that the amount of length scales, within

higher generation levels, would increase considerably. Manufacturing constraints

are therefore to be expected on the assembly of such prototypes.

5.2 Green Function Application to Product Lat-

tices

Both structures investigated in this section are obtained by taking the Cartesian

product of pre-fractal lattice with itself. Therefore, it follows that the product

graph is given by [40]

G(π) = G ⊗ In + In ⊗ G, (5.6)

where In is the Nn-vertex identity graph. As before, the graph G consists of

Laplacian matrix A(n) = H(n)− qIn and boundary matrix B(n). Then by denoting

k(n) = A(n) + B(n) the resulting Green function matrix is G(n) = (p2In − k(n))−1,

where p is a complex variable.

The product graph G(π) has a total of Nn × Nn = Nπ vertices. Thus, for

the Sierpinski carpet and Sierpinski gasket product lattices, the total numbers of

vertices are Nπ = 26n and Nπ = 32n respectively. Yet the side length of the Carte-

sian product lattices remains fixed. As a result of the dimensions of these new

structures, representations of these three-dimensional lattices become extremely
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difficult to represent. To attempt to illustrate this, the front face of the lat-

tice structure depicted in Figure 5.2, would be the triangle whose vertex set is

{(a, 1), (a, 2), (a, 3)}. The adjacency matrix associated with the Green function

matrix of the product graph, Ĝ(π) (where Ĝ(π) indicates the matrix not accounting

for boundary conditions), is expressed as [39, 40, 111]

H(π) = H
(n)
1 ⊗ In + In ⊗H(n)

2 , (5.7)

where H
(n)
1 and H

(n)
2 indicate individual lattice graphs. Of course the matrices

H
(n)
1 and H

(n)
2 do not have to be the same. However, the results presented in this

chapter are modelled on the Cartesian product of a graph with itself, and so the

subscripts can be dropped. Thus,

H(π) = H(n) ⊗ In + In ⊗H(n). (5.8)

Similar to H(π), an expression for k(π) is given by

k(π) = k(n) ⊗ In + In ⊗ k(n). (5.9)

The characteristic equation for the Laplacian matrix A(n) is

A(n)ϕσ = λσϕ
σ, (5.10)

where {λσ}Nnσ=1 is the set of eigenvalues of A(n) with corresponding eigenvectors

{ϕσ}Nnσ=1 and Nn is the total number of vertices of the graph. Thus, the entries of

the bare Green function matrix may be expressed as [40, 111]

Ĝ
(n)
(i,j) =

Nn∑
σ=1

1

p2 − λσ
ϕσi ϕ

σ
j . (5.11)

Equally it follows that {λζ}Nnζ=1 is the set of eigenvalues of a second matrix (i.e.

A
(n)
2 ) with corresponding eigenvectors {ϕζ}Nnζ=1. Therefore, the eigenvectors of A(π)

are obtained by taking the direct product of the eigenvectors of A
(n)
1 and A

(n)
2 (here

A
(n)
1 =A

(n)
2 =A(n)), ϕ

(σ+ζ)
i,j = ϕσi ϕ

ζ
j . Consequently, the corresponding eigenvalues are
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λσ+λζ . Hence, the entries of the bare Green function matrix for the product lattice

are given by [40, 111]

Ĝ
(π)
(i,h)(j,k) =

Nn∑
σ=1

Nn∑
ζ=1

1

p2 − (λσ + λζ)
ϕσi ϕ

σ
jϕ

ζ
hϕ

ζ
k. (5.12)

For the Sierpinski gasket product lattice, the eigenvalues and corresponding

eigenvectors, when boundary conditions are neglected, are

λ1 = −1, ϕ1 =

1
1
1

 , (5.13)

λ2 = −4, ϕ2 =

 0
1
−1

, (5.14)

λ3 = −4, ϕ3 =

 1
0
−1

, (5.15)

where λσ = λζ and ϕσ = ϕζ and equations (5.13)-(5.15) are the eigenvalues and

eigenvectors of A(1). For a theoretical device modelled using the Cartesian prod-

uct of two Sierpinski gasket fractal lattices at generation level one (Figure 5.2),

the input vertex is at (a, 1) and the output vertices are (a, 2) and (a, 3). There-

fore, at the input vertex (i, h) = (a, 1) the pivotal Green function according to

equation (5.12) is

Ĝ
(π)
(a,1)(a,1) =

N∑
σ=1

N∑
ζ=1

1

p2 − (λσ + λζ)
ϕσaϕ

σ
aϕ

ζ
1ϕ

ζ
1

=
N∑
σ=1

(
1

p2 − (λσ − 1)
ϕσaϕ

σ
a(1)(1)

+
1

p2 − (λσ − 4)
ϕσaϕ

σ
a(0)(0)

+
1

p2 − (λσ − 4)
ϕσaϕ

σ
a(1)(1)

)
=

2(2p4 + 20p2 + 41)

(p2 + 8)(p2 + 5)(p2 + 2)
. (5.16)
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To accommodate for boundary conditions at the input/output vertices, the pivotal

Green functions are obtained similarly. That is, by deriving the eigenvalues and

eigenvectors of k(1) and subsequently utilising equation (5.12). Thus, at the input

vertex

G
(π)
(a,1)(a,1) =

2(p2 − b1 − b2 + 5)

p4 − 2p2(b1 + b2 − 5) + 4(b1(b2 − 2)− 3b2 + 4)
.

+
2

p2 − b1 − b2 + 5
(5.17)

In a similar manner, all remaining pivotal elements for both the Sierpinski gasket

and Sierpinski carpet product lattices can be obtained through the application

of equation (5.12). It follows that the required Green functions for the Sierpinski

gasket product lattice are G
(π)
(a,1)(a,1), G

(π)
(a,1)(a,2), G

(π)
(a,2)(a,2) and G

(π)
(a,2)(a,3). However,

the resultant expressions are large and so for brevity these are presented in Ap-

pendix D. Alternatively, a second model based on the Cartesian product of two

Sierpinski gasket lattices is considered. For this model an input voltage is ap-

plied to the device at vertex (a, 1) and two output vertices, (b, 3) and (c, 2), will

convert the ultrasonic wave into mechanical vibrations. Thus, the required Green

functions are G
(π)
(a,1)(a,1), G

(π)
(a,1)(b,3), G

(π)
(b,3)(b,3) and G

(π)
(b,3)(c,2). The differences between

these models are the location of the output vertices. For the first model (hereafter

will be denoted with a subscript g1), ultrasonic waves only enter and leave the

system through a single triangle within the product lattice graph. Thus, the full

effect of the product lattice my not be accounted for. To account for the entirety

of the structure, the output vertices are repositioned onto two other sub-triangles

in the product lattice graph; see Figure 5.2. This positioning describes model 2

and so will be indicated with a subscript g2.

In these instances it has been possible to determine the pivotal Green functions

from inspection of the symmetries of the product lattice. However, for higher frac-

tal generation levels, the resultant product graphs can be extremely complex and

portrayal of them is difficult, even in 3-D [111]. In previous research [39, 40, 111],
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the Green functions in equation (5.12) are further expressed as the convolution

integrals, and the Green functions for G1 and G2 are assumed to be known.

5.3 Results

In this section, the operating performances of two Cartesian product fractal in-

spired transducers are investigated. The results for the two models of the Cartesian

product of a Sierpinski gasket lattice with itself are presented in Section 5.3.1. Only

generation level one is considered due to computer power limitations. Moreover,

higher fractal generation level designs would currently present manufacturing dif-

ficulties. Analogous to earlier transducer models, a mathematical computer model

is employed to test the performance of the Cartesian product of the Sierpinski

gasket inspired transducer at its first generation level. Furthermore, a compari-

son of the transducer model between the previously investigated Sierpinski gasket

inspired transducer, at fractal generation level one, and the standard Euclidean

device is presented.

In Section 5.3.2, the Cartesian product of the Sierpinski carpet lattice with

itself is also investigated. Although manufacturing of such a device is currently

unlikely due to its complexity, it offers an insight into to the expected performance

of ultrasonic transducers that have non-regular geometry and a wide range of

length scales. Similar to previous chapters, the transducer model is compared with

the standard Euclidean model as well as the Sierpinski carpet inspired transducer.

5.3.1 The Sierpinski Gasket Product Lattice Transducer

As previously mentioned two models are considered for which the Cartesian prod-

uct of two Sierpinski gasket lattices, at generation level one, is used to investi-

gate wave propagation. Firstly, the results obtained from model one is presented.

Figure 5.4 illustrates a comparison in electrical impedance profiles between the

Cartesian product of two Sierpinski gasket lattices (Figure 5.2), the Sierpinski gas-

ket pre-fractal transducer and the conventional Euclidean transducer. As with
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Figure 5.4: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency

f (Hz) for the model 1 Sierpinski gasket product lattice inspired transducer (Ẑ
(π)
g1

dark blue full line, equation (2.162), with the appropriate substitutions), the Sier-
pinski gasket fractal inspired transducer at generation level n = 1 (Ẑ1

g orange full

line, equation (2.162)) and the traditional Euclidean transducer (Ẑe purple full
line, equation (2.45)).

earlier results herein and the devices investigated here are modelled on a PZT-5H

ceramic. The structure of the Cartesian product inspired device is the product

graph of the Sierpinski gasket with itself at generation level n = 1. Therefore,

the previously investigated Sierpinski gasket inspired transducer at generation

level n = 1 has been used to provide an appropriate comparison. The electri-

cal impedance profile of the Cartesian product design matches very closely to the

profile of the Sierpinski gasket design with the addition of an extra resonance. This

is as a result of the presence of a greater range of length scales in the modified gas-

ket design. Furthermore, resonances at higher frequencies are absent. This is also

the case in the design of the Sierpinski gasket inspired device and it is not until the

fractal generation level is increased that higher frequency resonant modes occur.

It is presumed that higher fractal generation level designs of the Cartesian product

inspired device would adhere to similar profiles. Whilst it is possible to consider
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analytically the results of higher fractal generation level Cartesian product de-

signs, only the first fractal generation level has been studied. To some extent, this

is as a consequence of manufacturing constraints that would be present in such

designs. Although the predominate reason is as a result of computing limitations.

The electrical and mechanical resonant frequencies together with the correspond-

ing electrical impedances for Cartesian product, Sierpinski gasket inspired and

Euclidean devices are given in Table 5.1.

Electrical Resonant
Frequency

Mechanical Resonant
Frequency

fe (MHz) Z (dB) fm (MHz) Z (dB)

Model 1 Sierpinski
Gasket Product Lattice

0.926 −8.740 1.185 0.380

Sierpinski Gasket 1.027 −6.306 1.195 −0.166

Euclidean 2.063 −6.191 2.220 5.218

Table 5.1: Electrical and mechanical resonant frequencies for the Euclidean, Sier-
pinski gasket inspired (generation level one) and model 1 Sierpinski gasket product
lattice inspired transducers.

As is evident in Figure 5.5, there is a substantial improvement in the transmis-

sion sensitivity, over the standard and fractal-inspired transducers. In particular,

there is an improvement of 20.084 dB in the maximum amplitude when comparing

against the previous Sierpinski gasket inspired transducer. However, this increase

in amplitude has resulted in a reduced bandwidth. While the previously inves-

tigated fractal-inspired device had an operational bandwidth of 0.077 MHz, the

Cartesian product of this pre-fractal structure achieves only a 3-dB bandwidth of

0.002 MHz. Yet in regards to the gain bandwidth product the Cartesian product

device outperforms the Sierpinski gasket inspired device. Table 5.2 presents the

figures of merit for the device in transmission and reception mode.

Comparison between the three transducers in reception mode is illustrated in

Figure 5.6. Similar to the transmission sensitivity of the device, the reception sen-
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Figure 5.5: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency

f (Hz) for the model 1 Sierpinski gasket product lattice inspired transducer (ψ
(π)
g1

dark blue full line, equation (2.169), with the appropriate substitutions), the Sier-
pinski gasket fractal inspired transducer at generation level n = 1 (ψ1

g orange full
line, equation (2.169)) and the traditional Euclidean transducer (ψe purple full line,
equation (2.54)).

Maximum 3-dB Gain
Amplitude Bandwidth Bandwidth

(Gain) (dB) (MHz) Product

Transmission 14.567 0.002 0.070
Reception 1.059 0.157 0.201

Table 5.2: Figures of merit in for the model 1 Sierpinski gasket product lattice
inspired transducer.

sitivity achieves greater amplitudes than the Sierpinski gasket inspired transducer.

However, there is only a slight improvement in this instance. Furthermore, the po-

tential operation of such a device in reception mode compares poorly in all figures

of merit in comparison to the traditional design.

The results of the Cartesian product of two Sierpinski gasket lattices model

suggest that there is a significant improvement in transmission amplitudes. How-

ever, the reception sensitivity of the device is outperformed in all figures of merit
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Figure 5.6: Non-dimensionalised reception sensitivity φ (dB) versus frequency

f (Hz) for the model 1 Sierpinski gasket product lattice inspired transducer (φ
(π)
g1

dark blue full line, equation (2.173), with the appropriate substitutions), the Sier-
pinski gasket fractal inspired transducer at generation level n = 1 (φ1

g orange full
line, equation (2.173)) and the traditional Euclidean transducer (φe purple full line,
equation (2.58)).

in comparison to the Euclidean design, and in almost all when compared to the

Sierpinski gasket inspired device. It appears that the additional edges within the

pre-fractal lattice have resulted in more exaggerated resonances in the transmission

and reception sensitives when comparing to the original Sierpinski gasket lattice.

The results presented thus far on the Cartesian product of two Sierpinski gasket

lattices only considered an ultrasonic wave entering the system at the input vertex

and exiting the lattice at the output vertices, all of which are positioned on the

same triangle. As a result, this leads to narrow bandwidths in both operating

functions compared to the standard and the Sierpinski gasket inspired designs.

One way to increase the operational bandwidth for this theoretical device is to

reposition the input/output vertices. In Section 5.2, the Green functions for an

alternative model were defined and the results for this model are presented below.

The effect of repositioning the output vertices, that is having two output ver-

177



tices positioned at (b, 3) and (c, 2), where there remains a single input vertex at

(a, 1) i.e. model 2, on the electrical impedance of the device is illustrated in Fig-

ure 5.7. As shown in this figure, the change of output vertices has resulted in
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Figure 5.7: Non-dimensionalised electrical impedance Ẑ (dB) versus frequency
f (Hz) for the model 2 Sierpinski gasket product lattice inspired transducer (model

two, Ẑ
(π)
g2 brown full line, equation (2.162), with the appropriate substitutions), the

Sierpinski gasket fractal inspired transducer at generation level n = 1 (Ẑ1
g orange

full line, equation (2.162)) and the traditional Euclidean transducer (Ẑe purple full
line, equation (2.45)).

the shift of the electrical and mechanical resonant frequencies. The occurrence of

these frequencies is presented in Table 5.3 together with the corresponding elec-

trical impedances. Since the electrical resonant frequency is less than the first

Electrical Resonant
Frequency

Mechanical Resonant
Frequency

fe (MHz) Z
(π)
g2 (dB) fm (MHz) Z

(π)
g2 (dB)

2.003 −7.626 2.478 0.525

Table 5.3: Electrical and mechanical resonant frequencies for the model 2 Sierpinski
gasket product lattice inspired transducer.
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model, it is assumed that the amplitude for the transmission sensitivity will be

less for model 2. Whereas the mechanical resonant frequency attains higher elec-

trical impedance than the earlier model and so the amplitudes for the reception

sensitivity ought to be greater.

The transmission sensitivity for model 2 is plotted in Figure 5.8,together with

the Sierpinski gasket inspired device and Euclidean transducer. Clearly, this fig-
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Figure 5.8: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency
f (Hz) for the model 2 Sierpinski gasket product lattice inspired transducer (model

two, ψ
(π)
g2 brown full line, equation (2.169), with the appropriate substitutions), the

Sierpinski gasket fractal inspired transducer at generation level n = 1 (ψ1
g orange

full line, equation (2.169)) and the traditional Euclidean transducer (ψe purple full
line, equation (2.54)).

ure shows that amplitude for the transmission sensitivity exceeds the Sierpinski

gasket inspired and Euclidean devices. Furthermore, the gain bandwidth product

surpasses the fractal-inspired device. However, there is still no improvement in

the bandwidth of the device compared to the Sierpinski gasket inspired and stan-

dard designed transducers. The figures of merit for the transmission and reception

sensitivities for model 2 are presented in Table 5.4.

The reception sensitivities profiles for model 2 and the Sierpinski gasket in-
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Maximum 3-dB Gain
Amplitude Bandwidth Bandwidth

(Gain) (dB) (MHz) Product

Transmission 6.457 0.027 0.119
Reception 1.686 0.347 0.512

Table 5.4: Figures of merit for the model 2 Sierpinski gasket product lattice in-
spired transducer.

spired and Euclidean transducers are shown in Figure 5.9. Unlike the previous

model there is some considerable improvement in the reception sensitivity of the

device. In particular, there is a significant increase in device bandwidth. There

is an increase in the operational bandwidth of 32% against the traditional design

and a 5% increase compared to that of the Sierpinski gasket inspired transducer.

Furthermore, all figures of merit have improved compared to that of the Sierpinski
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Figure 5.9: Non-dimensionalised reception sensitivity φ (dB) versus frequency
f (Hz) for the model 2 Sierpinski gasket product lattice inspired transducer (model

two, φ
(π)
g2 brown full line, equation (2.173), with the appropriate substitutions), the

Sierpinski gasket fractal inspired transducer at generation level n = 1 (φ1
g orange

full line, equation (2.173)) and the traditional Euclidean transducer (φe purple full
line, equation (2.58)).
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gasket inspired device.

The second model of the Cartesian product design presents a substantial im-

provement in transducer performance, when comparing against the Sierpinski gas-

ket inspired design. Though there is also some improvement against the traditional

design. While additional resonances are absent in the device, the bandwidth at

the resonate frequency is larger than the Sierpinski gasket inspired device and the

traditional designed transducer in reception mode. Moreover, the results obtained

for the two models are only illustrative of the product graph of two Sierpinski

gaskets at the first fractal generation level. Consequently, it is assumed that the

product graph at higher fractal generation levels would result in a richer range of

resonating frequencies and increased device performance.

5.3.2 The Sierpinski Carpet Product Lattice Transducer
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Figure 5.10: Non-dimensionalised electrical impedances Ẑ (dB) versus frequency

f (Hz) for the Sierpinski carpet product lattice inspired transducer (Ẑ
(π)
γ grey full

line, equation (3.70), with the appropriate substitutions), the Sierpinski carpet
fractal inspired transducer at generation level n = 1 (Ẑ1

γ green full line, equa-

tion (3.80)) and the traditional Euclidean transducer (Ẑe purple full line, equa-
tion (2.45)).
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The electrical impedance profile for the proposed Sierpinski carpet product

lattice inspired transducer (Figure 5.3) is plotted in Figure 5.10. This figure also

illustrates the electrical impedance profiles for the Sierpinski carpet model γ de-

vice, at generation level n = 1, and the traditional Euclidean design transducer.

The Cartesian product model displays a more resonant behaviour as a result of

the increased range of length scales. Furthermore, the electrical and mechanical

resonant frequencies occur at lower frequencies; see Table 5.5.

Electrical Resonant
Frequency

Mechanical Resonant
Frequency

fe (MHz) Z (dB) fm (MHz) Z (dB)

Sierpinski Carpet
Product Lattice

0.532 2.218 0.990 5.278

Sierpinski Carpet
model γ

0.906 −2.517 1.033 1.132

Euclidean 2.063 −6.191 2.220 5.218

Table 5.5: Electrical and mechanical resonant frequencies for the Euclidean, Sier-
pinski carpet inspired (model γ at generation level one) and Sierpinski carpet
product lattice inspired transducers.

In Figure 5.11 it is clear that the transmission sensitivity of the Cartesian

product design outperforms the standard and Sierpinski carpet model devices at

all frequency ranges in terms of peak amplitude. Although from a frequency range

of around 4 MHz and over, a flat response develops with a declining sensitivity

value. Also, these peak amplitudes have resulted in reduced operating bandwidths,

at the respective resonant frequencies, of 34% against the traditional design and

60% against the Sierpinski carpet model. Even though the increased amplitudes

have caused restricted bandwidths, they have also lead to superior values for the

gain bandwidth product. The figures of merit in transmission and reception mode

for the Cartesian product device are tabulated in Table 5.6.
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Figure 5.11: Non-dimensionalised transmission sensitivity ψ (dB) versus frequency

f (Hz) for the Sierpinski carpet product lattice inspired transducer (ψ
(π)
γ grey full

line, equation (3.101), with the appropriate substitutions), the Sierpinski carpet
fractal inspired transducer at generation level n = 1 (ψ1

γ green full line, equa-
tion (3.101)) and the traditional Euclidean transducer (ψe purple full line, equa-
tion (2.54)).

Maximum 3-dB Gain
Amplitude Bandwidth Bandwidth

(Gain) (dB) (MHz) Product

Transmission 12.171 0.171 2.822
Reception 15.022 0.236 7.516

Table 5.6: Figures of merit in for the Sierpinski carpet product lattice inspired
transducer.

In reception mode the Cartesian product device contains more resonances than

the comparative transducers; see Figure 5.12. As previously mentioned, this is as

a result of the complexity of the structure. That is to say, the device has a wider

range of length scales. Analogous to transmission mode, the reception sensitivity

of the device displays higher peak amplitudes than the Sierpinski carpet inspired

device and the traditional design transducer. In particular the Cartesian product

device has a maximum amplitude that is 11.559 dB greater than the Euclidean de-
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Figure 5.12: Non-dimensionalised reception sensitivity φ (dB) versus frequency

f (Hz) for Sierpinski carpet product lattice inspired transducer (φ
(π)
γ grey full line,

equation (3.109), with the appropriate substitutions), the Sierpinski carpet fractal
inspired transducer at generation level n = 1 (φ1

γ green full line, equation (3.109))
and the traditional Euclidean transducer (φe purple full line, equation (2.58)).

sign and 14.439 dB higher than the Sierpinski carpet inspired device. Moreover the

operational bandwidth of the Cartesian design improves on the Sierpinski carpet

inspired design by 82%. However, it fails to surpass the traditional design band-

width, where there is a 10% drop in efficiency. Nevertheless there is a significant

improvement in regards to the gain bandwidth product over both the Euclidean

and Sierpinski carpet inspired devices.

The results for the Cartesian product of the Sierpinski carpet demonstrated

that the inclusion of a greater range of length scales does result in a more resonant

device, with much higher peak amplitudes compared to the simpler fractal and

Euclidean designs. However, in transmission mode the bandwidth of the new

design was outperformed by the other two devices. Furthermore, the reception

bandwidth was smaller than for the traditional design. Yet the gain bandwidth

product exceeded both designs, which is attributed to the significant increase in

the amplitude.
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5.4 Conclusions

This chapter investigated the operating characteristics of two fractal-inspired de-

vices obtained from the Cartesian product of two fractal lattices. The input/out-

put renormalization method used in earlier chapters was extended to obtain the

individual entries of the Green function matrix. This extension to Green function

analysis has previously been described [39, 40, 111]. However, it has only been

applied to transport properties on fractal structures, whereas this chapter has

utilised this method to predict the theoretical performances of ultrasonic trans-

ducers with novel designs. To keep the results consistent with former chapters, the

hypothetical designs discussed within this chapter have once again been modelled

on a PZT-5H ceramic.

The first structure considered in this chapter was the Cartesian product of

two Sierpinski gasket pre-fractal lattices, at generation level one. Only lattice

structures of the first generation level have been considered. For structures of

generation level two and higher, the complexity of the product lattice increase

considerably and thus present computer difficulties in generating analytical results.

The analysis is then continued to investigate a structure that is obtained as the

Cartesian product of two Sierpinski carpet pre-fractal lattices at generation level

one. In the case of the Cartesian product of the Sierpinski carpet, the results

presented here are purely analytical since the structure of such a device is too

complex.

As with earlier chapters, a computer model was used to produce the operating

characteristics for the Cartesian product inspired devices. That, is the electrical

impedance, transmission and reception sensitivities were evaluated at a given fre-

quency range. Comparisons in performance between these novel designs with that

of the previously investigated Sierpinski gasket and Sierpinski carpet pre-fractal

transducers have been made. These designs were appropriate as the Cartesian

product devices are an extension on the pre-fractal designs. Furthermore, the po-

tential suitability of the devices for ultrasonic design purposes was compared to
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that of the traditional Euclidean transducer.

It was anticipated that the Cartesian product of two Sierpinski gasket lattices

would be more resonant than the single Sierpinski gasket lattice. However, it was

not as resonant as expected since there was merely the addition of a single extra

resonance. This may be due to the arrangement of the transducer in the circuit

being very similar to the arrangement of the Sierpinski gasket inspired device.

Specifically, the input vertex interacts with electrical loads at vertex (a, 1) and

mechanical loads interact with output vertices, (a, 2) and (a, 3). Accordingly, this

seems to have resulted in comparatively similar profiles. Furthermore, there are no

higher frequency resonances in the Cartesian product device (in fact these are ab-

sent in both the Cartesian product and fractal-inspired devices), which most likely

relates to generation level. In previous chapters and published papers [19, 20], it

was apparent that increasing the fractal generation level, the transducer resonated

at many more frequencies. Hence, if the Cartesian product was taken as the

product of two higher generation level fractal lattices, the presence of additional

and higher frequency resonances should occur. Even with the absence of higher

frequency resonances, there is a substantial improvement in the transmission sen-

sitivity amplitudes compared with the fractal-inspired and Euclidean transducers.

However, the increase in amplitude resulted in a reduced bandwidth and gain band-

width product at its resonant frequency compared to the traditional design and

previously investigated fractal-inspired device at their relative resonant frequen-

cies. Moreover, the Cartesian product design is outperformed by the Euclidean

transducer in all figures of merit in reception mode. An alternative arrangement

of the transducer in the circuit was also considered. In this case, the location

of the output vertices changed. For the second model of the Cartesian product

of two Sierpinski gasket lattices, the outputs vertices were (b, 2) and (c, 3). By

varying these output vertices, there was a substantial improvement in all figures of

merit, with the exception of the transmission sensitivity amplitude, compared to

the previous layout. Furthermore, the Cartesian product design outperformed the
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fractal-inspired design in all figures of merit in reception mode, and attains higher

maximum amplitude and gain bandwidth product values in transmission mode.

The extension to the Green function renormalization method was also applied

to the Cartesian product of two Sierpinski carpet lattices at generation level one,

to determine the likely behaviour of a transducer with this design. Of course,

current manufacturing constraints make construction of such designs challenging,

and therefore the results presented are only to determine the possible benefits of

implementing transducers with finer details. The results show that the Cartesian

product design contains more resonances, but resonances at higher frequencies

were absent. This is most likely as a result of the generation level. In trans-

mission mode, it was found that the Cartesian product design outperformed the

fractal-inspired and Euclidean design in terms of peak amplitudes. However, the

operational bandwidth of the device at its resonant frequency is smaller than those

of the other two devices at each of their resonant frequencies. Yet, due to the rise

in peak amplitudes, the gain bandwidth product of the design has significantly

increased. Furthermore, the Cartesian product design outperforms the Sierpinski

carpet inspired design for each figure of merit in reception mode. On the other

hand, in reception mode, the devices bandwidth still fails to supersede the op-

erational bandwidth of the Euclidean transducer. However, the peak amplitude

and gain bandwidth product have considerably increased in comparison to the

Euclidean design.

Within this chapter the performance of two novel theoretical designed trans-

ducers has been studied. In each case, the two fractal structures used to create the

Cartesian product graph only considered the product graph of two matching frac-

tal lattices. This is not a requirement in obtaining the product graphs. Therefore,

it would be interesting to consider new designs, where the lattices used to create

the product graph differ to one another. For example, the Cartesian product of

the Sierpinski gasket at its second generation level with the one-dimensional line is

one such design that could be considered. Furthermore, it would be beneficial to
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be able to obtain higher generation level results for the Sierpinski gasket Cartesian

product lattice for analytical purposes.
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Chapter 6

Conclusions

Ultrasonic transducers are crucial devices in numerous fields with important oper-

ating characterises that determine the efficiency of these devices. Currently, manu-

factured transducers operate effectively over narrow bandwidths as a result of their

regular structures which incorporate a single length scale. With a growing demand

for improved proficiency in the transmission and reception of ultrasonic waves,

there is motive to explore new designs. To increase the operational bandwidth

of ultrasonic transducers, consideration has been given to the implementation of

designs that contain a range of length scales. Possible structures whose geomet-

ric pattern comprises a wide range of length scales are fractals. One-dimensional

models have been executed on several new piezoelectric transducer designs to pre-

dict their performance. In each case the electrical impedance, transmission and

reception sensitivities were the key parameters of interest.

For all the pre-fractal designs considered, the Green function renormalization

method (or an extension on this model) was used to derive the transducers’ output

parameters. Furthermore, the properties of the ceramic phase were modelled on a

PZT-5H ceramic. Although the pre-fractal transducers are to be composed of two

phases, an active piezoelectric element and passive polymer filler, the performance

of these hypothetical designs have been modelled solely on the piezoelectric mate-

rial. This is typical of research in this field [7, 12, 19, 20, 86]. The transmission and

reception sensitivities of these devices generally improve when the transducer is
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composed from the two phases. Thus, the operational characteristics of composite

pre-fractal transducers ought to exceed the single phase devices.

In Chapter 2 the performance of a standard piezoelectric plate transducer is

reviewed using the linear systems model [46]. This is then extended to determine

behaviour of the presently used 1-3 composite device, where the polymer phase is

characterised by the hardset material HY1300/CY1301 [96]. For the two devices,

their respective electrical impedance, transmission and reception sensitivities were

plotted. The performances of the transducers were then assessed by obtaining

the devices maximum amplitude (gain), bandwidth and gain bandwidth prod-

uct. Comparison between these figures of merit found that the composite device

outperformed the piezoelectric plate transducer in amplitude in reception mode,

and there was a significant increase in all figures of merit in transmission mode.

The composite transducer was modelled with an initial ceramic volume fraction

of vf = 0.5. The operating characteristics were further evaluated by varying this

volume fraction, where vf = 1 is the pure ceramic instance.

The analysis of employing a pre-fractal structure into the design of ultrasonic

transducers is also presented within this chapter. The structure considered was

the previously investigated Sierpinski gasket [86]. Green function renormalization

was a method used to determine likely performance of the pre-fractal device and

expressions for the transducers operating features were derived. These were then

plotted against the operating frequency, along with the two homogeneous devices.

On the whole, it was found that the pre-fractal transducer provided better figures of

merit in reception mode, and some improvement in bandwidth at higher generation

levels in transmission mode. The original contributions to this chapter was the

model analysis performed on each of the three devices to obtain the significant

figures of merit; maximum amplitude, operational bandwidth and gain bandwidth

product. Moreover, corrections to the analysis of the Sierpinski gasket inspired

transducer model have been highlighted and addressed.
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In Chapter 3 the Green function renormalization method was adapted to es-

tablish the potential performance of an infinitely ramified transducer. Previously,

this renormalization approach was applied to finitely ramified structures, where

the connection process only involves the input/output vertices. The transmission

and reception responses were investigated for the first three fractal generation lev-

els of a transducer with Sierpinski carpet geometry. The effects of a propagating

ultrasonic wave within the pre-fractal lattice were investigated using three trans-

ducer models, whereby the difference in models corresponded to the number of

output vertices. The non-constant vertex degrees for the Sierpinski carpet pre-

fractals necessitated a more computationally demanding approach to produce the

Green function recurrent relations than was employed for the Sierpinski gasket

inspired transducer. In transmission mode, when increasing the generation level,

it was found that the bandwidth at the resonant frequency also increased. This

increase, however, led to the reduction in amplitude. Importantly, the results indi-

cated that each of the Sierpinski carpet models outperformed the Sierpinski gasket

inspired transducer and standard design. The results demonstrated that increas-

ing the generation level in reception mode, increased the devices’ amplitude and

bandwidth. To determine the most effective device, the gain bandwidth product

was used as the principal figure of merit.

The Green function renormalization method was again utilised to predict the

performance of a three-dimensional pre-fractal transducer in Chapter 4. The frac-

tal used in the design of this novel device was the Sierpinski tetrix, which is the

three-dimensional equivalent of the Sierpinski gasket [60, 63, 100]. By allowing

for a number of assumptions of the propagating wave in the fractal lattice, the

three-dimensional model was reduced to an effective one-dimensional model. This

was relevant in simplifying the model considerably, which led to the rapid analysis

on the performance of the pre-fractal transducer. The behaviour of the device was

determined for the first five generation levels as well as for generation level fif-

teen. Generation level fifteen was analysed simply to determine the effects higher
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generation levels have on the performance of the device. In practical situations

such a design would be too complex to manufacture. Furthermore, analysis of

the convergence for the transducers’ operating characteristics was obtained. The

results suggested that only low generation level (those within manufacturing tol-

erances) pre-fractal designs are required to obtain maximum potential output. It

was found that increasing the generation level resulted in an abundance of res-

onances over a greater operating frequency range. Low generation level devices

demonstrated a flat response after a given frequency. Consequently, to achieve

operation at a high frequency, a specific generation level could be chosen for the

given purpose. However, the generation level would still need to be relativity low

to conform to manufacturing constraints. The transmission sensitives of the de-

vice resulted in greater bandwidths as the generation level was increased, yet the

corresponding amplitudes and the value of the gain bandwidth product decreased.

Unfortunately, both the Sierpinski gasket design and traditional transducers out-

performed the Sierpinski tetrix device in transmission mode. For the reception

sensitives of the device, an increase in generation level resulted in increased am-

plitudes and gain bandwidth product. However, in this function, the bandwidths

at the resonant frequencies were smaller than the previous fractal generation level.

While the Sierpinski gasket device still outperforms the Sierpinski tetrix design in

reception mode, this model does show an improvement in comparison to standard

design transducers.

An extension to the Green function renormalization method was derived in

Chapter 5, to estimate the performance of a transducer whose design is obtained

as the Cartesian product of two identical graphs. The performance of a device

inspired by the Cartesian product of two Sierpinski gasket lattices at their first

generation level was considered. While this is much more detailed than the Sierpin-

ski gasket pre-fractal, construction may be possible but only at the first generation

level. The main differences between this model and previous fractal-inspired trans-

ducers, is the process of obtaining the Green function elements. In this chapter,
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specific Green function entries were obtained by making use of spectral decomposi-

tion of the product Green function matrix. From the results, the profiles between

the Sierpinski gasket pre-fractal and Cartesian product of the Sierpinski gasket

were shown to be qualitatively similar, but importantly the Cartesian product de-

vice presented higher amplitudes. However, similar to the pre-fractal transducer,

higher frequency resonances were absent. This is most probably a result of the

generation level. While the Cartesian product device displays higher transmis-

sion amplitudes than the Sierpinski gasket inspired and Euclidean transducers,

the operational bandwidth at the resonant frequency was significantly reduced.

Furthermore, in reception mode, this new device is outperformed in each figure of

merit by the Euclidean transducer. To increase the values of the figures of merit

in this new design, an alternative circuit layout was considered. This new arrange-

ment resulted in exceptional figures of merit against the Sierpinski gasket inspired

device in reception mode, as well as increased bandwidth and gain bandwidth prod-

uct compared to that of the Euclidean design, in reception mode. Furthermore,

there was an increase in amplitude at the resonant frequency and gain bandwidth

product in transmission mode, when compared to the fractal-inspired transducer.

The extension to the Green function renormalization model was also used to

investigate the Cartesian product of two Sierpinski carpet lattices. This was once

again taken at the first generation level. The resulting graph is a very complex

structure with a significant increase in the number of edges in the product lattice.

As such, construction of such a device would likely be too challenging. It was found

that the Cartesian product design contained more resonances than the Sierpinski

carpet pre-fractal and Euclidean designs. Again higher frequency resonances were

not present. At each of the devices’ resonant frequencies, it was found that the

Cartesian product device had the smallest bandwidth in the transmission model.

In reception mode, the bandwidth of the device was also smaller than the Euclidean

transducer, yet there was an improvement against the Sierpinski carpet pre-fractal

design. Furthermore, the Cartesian product design surpassed the Sierpinski carpet
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pre-fractal and Euclidean transducers in terms of amplitude and gain bandwidth

product in both operation modes.

This thesis has highlighted the benefits of increasing the range of length scales

in ultrasonic transducers. This has been demonstrated by modelling novel devices

whose designs incorporated a fractal-like geometry. For each of the new models it

was assumed that the transducer is composed entirely of a piezoelectric ceramic

material. Currently, ultrasonic transducers are typically manufactured from an

active piezoelectric material and passive polymer filler to improve the transmis-

sion and reception sensitivities of the device. Therefore, the analysis presented in

this thesis can be extended to study the performance of fractal-inspired devices

that encompass the two materials. A further benefit for including the polymer

material is that the ceramic volume fraction can be varied and chosen for optimal

performance. Moreover, each device has been modelled on a PZT-5H ceramic.

Thus, there is further scope to investigate the performance of these novel designs

when the active material properties are changed. Particular material parameters

can be varied to determine the most suitable material to enhance transducer per-

formance [12].

As a result of the one-dimensional model used to predict the potential perfor-

mance of new ultrasonic transducers, only the propagation of longitudinal waves

has been considered. Consequently, the behaviour of shear propagating waves in

the fractal lattices is assumed to have no effect on the performance of the devices.

To study the full behaviour of the transducer, employing finite element analysis

(for example) can account for all directions of the propagating ultrasonic wave [83].

For the Sierpinski carpet transducer models, it may be possible to construct a

system capable of determining the vertex degree for each vertex in the sequence of

lattices. This may enable the application of the Green function renormalization in

a similar manner as used for finitely ramified fractals, employing the recurrent rela-

tion equation to extract the next generation level pivotal Green functions. Hence,

the need to obtain the inverse matrices at each fractal generation level would be
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removed, reducing considerable computational cost. Furthermore, investigating

the inverse problem of finding material and design parameters which produce a

desired output would also be beneficial. Such inverse problems would require the

consideration of the well-posedness of the model [21, 62, 65, 85].

This research is concerned with increasing the operational bandwidth of piezo-

electric ultrasonic transducers by incorporating pre-fractal geometries into their

design. These geometries were of interest as they span a range of length scales.

More fractal-inspired transducers may be designed by implementing other fractal

structures or through the modification of these structures. Specifically modified

Sierpinski carpets could realise improved operating characteristics over conven-

tional designs.

The study of work presented in this thesis contributes to a growing body of

research in the field of fractal-inspired ultrasonic transducers. Furthermore, some

of the results obtained suggest significant improvements over regular designs, as

well as improved performance over a previously investigated fractal-inspired device.

Thus, experimental work on certain designs presented in this thesis would be highly

beneficial.
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Appendix A

Material Properties

The constitutive relations for the ceramic phase in tensor notation are given by
T c1
T c2
T c3
T c4
T c5
T c6

 =


cc11 cc12 cc13 0 0 0
cc12 cc11 cc13 0 0 0
cc13 cc13 cc33 0 0 0
0 0 0 cc44 0 0
0 0 0 0 cc44 0
0 0 0 0 0 cc66




Sc1
Sc2
Sc3
Sc4
Sc5
Sc6

−


0 0 e31

0 0 e31

0 0 e33

0 e51 0
e51 0 0
0 0 0


Ec

1

Ec
2

Ec
3

 , (A.1)

Dc
1

Dc
2

Dc
3

 =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0



Sc1
Sc2
Sc3
Sc4
Sc5
Sc6

+

εc11 0 0
0 εc11 0
0 0 εc33

Ec
1

Ec
2

Ec
3

 , (A.2)

and for the polymer phase,
T p1
T p2
T p3
T p4
T p5
T p6

 =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 cc44




S1

S2

S3

S4

S5

S6

 , (A.3)

Dp
1

Dp
2

Dp
3

 =

ε11 0 0
0 ε11 0
0 0 ε11

E1

E2

E3

 . (A.4)

These forms were given previously in equations (2.81)-(2.84).
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Description Constant Value Units

Transducer thickness l 10−3 m

Transit time τ 3.25× 10−7 s

Mechanical impedance of
the load

ZL 1.50× 106 kg/m2s

Mechanical impedance of
the backing layer

ZB 2.20× 106 kg/m2s

Cross-sectional area for the
Euclidean transducer

Ar 10−4 m2

Front reflection
coefficient

RF 0.65 -

Back reflection
coefficient

RB 0.52 -

Front-face transmission
coefficient

TF 1.65 -

Back-face transmission
coefficient

TB 1.52 -

Table A.1: Properties for the PZT-5H ceramic material and the physical trans-
ducer [96].
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Appendix B

Development of Green Function
Equations

Model δ is concerned with the inclusion of three boundary conditions: one input

vertex and two output vertices. For this model the application of equation (2.133)

resulted in the following four equations

xδ = x̂δ + x̂δb1,δxδ + 2ŷδb2,δyδ, (B.1)

yδ = ŷδ + ŷδb1,δxδ + ŵδb2,δyδ + t̂δb2,δyδ, (B.2)

tδ = t̂δ + ŷδb1,δyδ + ŵδb2,δtδ + t̂δb2,δwδ, (B.3)

wδ = ŵδ + ŷδb1,δyδ + ŵδb2,δwδ + t̂δb2,δtδ. (B.4)

Solving these simultaneously resulted in equations (3.8) - (3.11).

For model γ the use of equation (2.133) results in seven equations,

xγ = x̂γ + x̂γb1,γxγ + 2ŷγb2,γyγ + ẑγb2,γzγ, (B.5)

yγ = ŷγ + ŷγb1,γxγ + x̂γb2,γyγ + ŷγb2,γzγ + ẑγb2,γyγ, (B.6)

zγ = ẑγ + ẑγb1,γxγ + 2ŷγb2,γyγ + x̂γb2,γzγ, (B.7)

uγ = ŷγ + ẑγb1,γyγ + ŷγb2,γwγ + x̂γb2,γuγ + ŷγb2,γtγ, (B.8)

tγ = ẑγ + ŷγb1,γyγ + x̂γb2,γtγ + ŷγb2,γuγ + ẑγb2,γwγ, (B.9)
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wγ = x̂γ + ŷγb1,γyγ + x̂γb2,γwγ + ŷγb2,γuγ + ẑγb2,γtγ, (B.10)

vγ = x̂γ + ẑγb1,γzγ + 2ŷγb2,γuγ + x̂γb2,γvγ (B.11)

which again are solved simultaneously to produce equations (3.21) - (3.27).
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Appendix C

Figures of Merit

In order to determine the potential performance of a fractal inspired transducer, it

is important to obtain numerical expressions of specific parameters. The figures of

merit of interest for the transmission and reception sensitivities are tabulated for

each Sierpinski carpet transducer model for generation’s level one to three. The

electrical and mechanical resonant frequencies for the devices are tabulated also.

Generation
(n)

Electrical Resonant
Frequency

fe (MHz) Zη (dB)

Mechanical Resonant
Frequency

fm (MHz) Zη (dB)

1 0.945 −3.534 1.039 3.687
2 1.332 3.112 1.418 6.393
3 1.416 9.261 1.456 10.380

Table C.1: Electrical and mechanical resonant frequencies of the first three fractal
generation levels for the Sierpinski carpet model η.
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Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 1.218 0.041 0.055
2 −6.717 0.203 0.043
3 −11.441 0.752 0.054

Table C.2: Figures of merit in transmitting mode for Sierpinski carpet model η.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 5.751 0.126 0.473
2 5.286 0.162 0.547
3 5.723 0.246 0.917

Table C.3: Figures of merit in receiving mode for Sierpinski carpet model η.

Generation
(n)

Electrical Resonant
Frequency

fe (MHz) Zδ (dB)

Mechanical Resonant
Frequency

fm (MHz) Zδ (dB)

1 0.995 −1.431 1.153 0.835
2 2.301 4.200 2.401 4.853
3 2.381 9.718 2.433 9.758

Table C.4: Electrical and mechanical resonant frequencies of the first three fractal
generation levels for the Sierpinski carpet model δ.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −6.986 0.273 0.055
2 −7.525 0.381 0.067
3 −11.558 0.467 0.033

Table C.5: Figures of merit in transmitting mode for Sierpinski carpet model δ.
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Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −0.182 0.553 0.530
2 1.226 0.468 0.620
3 2.660 0.520 0.959

Table C.6: Figures of merit in receiving mode for Sierpinski carpet model δ.

Generation
(n)

Electrical Resonant
Frequency

fe (MHz) Zγ (dB)

Mechanical Resonant
Frequency

fm (MHz) Zγ (dB)

1 0.906 −2.517 1.033 1.132
2 1.347 3.828 1.408 5.350
3 1.416 9.609 1.438 10.030

Table C.7: Electrical and mechanical resonant frequencies of the first three fractal
generation levels for the Sierpinski carpet model γ.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 −9.621 0.424 0.046
2 −9.597 0.465 0.051
3 −13.030 0.850 0.042

Table C.8: Figures of merit in transmitting mode for Sierpinski carpet model γ.

Generation
(n)

Maximum
Amplitude

(Gain) (dB)

3-dB
Bandwidth

(MHz)

Gain
Bandwidth

Product

1 0.583 0.130 0.149
2 1.288 0.511 0.688
3 2.648 1.528 2.812

Table C.9: Figures of merit in receiving mode for Sierpinski carpet model γ.
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Appendix D

Green Function Equations for the
Sierpinski Gasket Product Lattice

In this appendix, the Green functions for the Cartesian product of two Sierpinski

gasket lattices are presented. The Green function elements displayed in this section

correspond to model one, where the input vertex is positioned at (a, 1) and the

output vertices are (a, 2) and (a, 3).

G
(π)
(a,1)(a,1) =

2 (p2 − b1 − b2 + 5)

p4 − 2p2 (b1 + b2 − 5) + 4 (b1 (b2 − 2)− 3b2 + 4)
, (D.1)

− 2

p2 + b1 + b2 − 5

G
(π)
(a,1)(a,2) =

1

2

(
b1 − b2 − 1

b1 + b2 − 5− p2
(D.2)

+
2(7 + b2

1 + 3b2 − b1(4 + b2)) + (1− b1 + b2)p2

4(4 + b1(b2 − 2)− 3b2)− 2(b1 + b2 − 5)p2 + p4

)
,
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G
(π)
(a,2)(a,2) =

2

13− b1 − 3b2 + 2p2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2)

(D.3)

+

(
3− b1 + b2 −

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
b2 − b1 − 3 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2)

−

(
3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2)

−

(
3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2))

,

+

(
−3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
−3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (5− b1 − b2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2) + p2)

− 2

−13 + b1 + 3b2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2)− 2p2
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G
(π)
(a,2)(a,3) =

2

2p2 + b1 + 3b2 − 13 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2)

(D.4)

−

(
b1 − b2 − 3 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
b2 − b1 − 3 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2)

−

(
3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2)

−

(
3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (b1 + b2 − 5− p2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2))

.

+

(
−3 + b1 − b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

(
−3− b1 + b2 +

√
9 + b2

1 − 2b1(1 + b2) + b2(2 + b2)
)2

× (5− b1 − b2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2) + p2)

− 2

13− b1 − 3b2 +
√

9 + b2
1 − 2b1(1 + b2) + b2(2 + b2)− 2p2
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