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The concept of energy in the analysis
of system dynamics models
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Abstract

This paper applies for the first time the Newtonian concept of energy to stock–flow systems and
employs it to relate system behaviour to model structure. Kinetic energy and work done are
defined analytically using the concepts of loop impact and force from the Newtonian Interpreta-
tive Framework and are examined numerically within system dynamics simulations. The energy
analogy is used to analyse models by understanding how loops of different orders and types act
as energy sources, sinks and exchange, using the system dynamics equivalent of the work–
energy theorem. It is shown that energy describes the cumulative effects of feedback on stock
behaviour, in contrast to the instantaneous description given by existing methods of loop domi-
nance. This approach gives additional insight over that of existing dominance methods, captur-
ing the dynamical influence of loops even when not dominant. The analogy’s explanatory
power provides quantitative and informal analysis.
Copyright © 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd
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Introduction

An important feature of dynamical modelling, whatever the methodology, is
the ability to relate the model’s structure to its behaviour. The model struc-
ture is an explicit representation of the hypotheses and assumptions of the
model, usually expressed in variables, equations and diagrams, with rules
that act as a framework for model construction and interpretation. The
behaviour of the variables over time can then be examined in the light of the
structure, providing tests for model validity and also insight into the prob-
lem being analysed. A good modelling methodology is one that is not only
capable of numerical and analytic computation, but also allows for informal
explanations of behaviour using metaphorical concepts that appeal to a wide
audience.
In system dynamics, model structure is expressed in stocks, flows, auxiliary

variables and the causal connections between these elements (Forrester, 1961).
In a given model, stock behaviour can be rigorously computed from the model
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structure. A further level of structure is the concept of feedback, where a stock
level exerts control on one of its own flows, either directly, or via other stocks.
Model behaviour may then be explained in terms of the relative importance of
feedback loops, such as the shifting loop dominance narrative of the S-shaped
growth in the limits-to-growth model (Barlas, 2002, sec. 4.4; Senge, 2006,
pp. 95–104). Such informal explanations of model behaviour are widespread
throughout the field.

The value of the feedback dominance narrative has led to the development
of methods that quantify the effect of loops on stock behaviour at any given
point in time (Kampmann and Oliva, 2020). For example, pathway methods,
such as the Pathway Participation Metric (PPM) (Mojtahedzadeh et al.,
2004), Loop Impact (Hayward and Boswell, 2014) and Loops That Matter
(LTM) (Schoenberg et al., 2020), determine how changes in stock values are
propagated through the system. Although their pathway measures are differ-
ent, these three methods are related and provide the same dominance analy-
sis when applied to a single stock (Schoenberg et al., 2021). LTM goes
further and determines a single dominance explanation for a whole system
of stocks using a loop score. However, in common with PPM, the loop mea-
sures are relative to each other and have no transparent conceptual interpre-
tation. By contrast, loop impact is an absolute measure and directly related
to the curvature in stock behaviour (Hayward and Boswell, 2014; Hayward
and Roach, 2017).

The main alternative to pathway methods is Eigenvalue elasticity analysis
(EEA), where loop gains are related to system behaviour using a linearised
matrix representation of the system (Forrester, 1982; Kampmann, 2012;
Oliva, 2020). Like the pathway methods, EEA produces similar dominance
analyses of stock behaviour with a distinct explanation of oscillations, con-
necting it with loops through complex eigenvalues. However, EEA’s reliance
on eigenvalues means this explanation has no easy conceptual connection
with a variable’s behaviour. By contrast, PPM identifies dominant structures
in oscillations using complex numbers and half-cycles to determine metrics
associated with pathway stability and frequency, thus avoiding the computa-
tion of eigenvalues (Mojtahedzadeh, 2008, 2011). The Loop Impact method
has taken a different approach, explaining oscillations by using the average
value of loop impact over one cycle to reduce complexity (Hayward and
Roach, 2019). The resulting analysis examined behaviour over a period—a
cumulative view, in contrast to the instantaneous view given by the existing
methods. Likewise, LTM has introduced a total loop score over a period to
explain oscillations (Schoenberg, 2020, pp. 189–194).

A rich understanding of the relationship between structure and behaviour
is unlikely to be enabled by analytical tools using a single measure alone,
and it is proposed here that the use of loop dominance analysis is enhanced
by consideration of a cumulative measure in addition to an instantaneous
one. Previous work has established the value of the Newtonian Interpretative
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Framework for quantifying the effect of one stock on another while offering
an intuitive narrative interpretation of this effect as analogous to a force
(Hayward and Roach, 2017, 2019). System behaviour may then be described
using the equivalent of Newton’s three laws of motion, relating them to loop
dominance analysis using the Loop Impact method. In mechanics, energy
measures the total effect of a force, thus giving a cumulative view of the
influence of a force over a time interval (Leech, 1965, p. 6). The quantifica-
tion of energy in system dynamics models derives naturally from the under-
pinning mathematics of stock–flow systems, extending the Newtonian
Interpretative Framework. Energy provides a cumulative view of feedback
that augments the instantaneous interpretation of system behaviour, enabling
a richer narrative explanation.
The energy perspective offers three additional benefits for model construc-

tion and analysis. First, energy conservation provides a powerful explana-
tory principle for change-of-state variables, both numerical and informal.
Second, in systems where energy is not conserved, a consideration of possi-
ble energy sources and dissipative sinks, identified with feedback loops, can
assist model development. Third, a consideration of the rate of change of
energy, called power, will enable a system-wide comparison of loops
through different stocks.
This paper will introduce the concept of energy in a system dynamics

model that provides a numerical description of the cumulative effects of
feedback loops on stock behaviour. This extension to the framework will
enable a new analytical dominance method that measures the influence of
loops by the energy they transfer to a stock–flow subsystem over an interval
of time, an approach not previously used in system dynamics analysis, com-
plementing existing dominance methods.

Structure and behaviour

As an example of the relationship between system structure and behaviour,
consider a model with overshoot and collapse (Figure 1) (Breierova, 1997;
Ford, 2010; Kunsch, 2006). The reinforcing loop R1, due to births, drives the
deer’s growth, balanced by deaths, loop B1, whose effectiveness depends on
the availability of food, loop B3. The vegetation follows a limits-to-growth
model, where R2 drives growth, with B2 representing capacity resistance due
to the limited area and vegetation density. The second-order loop B3 reduces
vegetation through consumption, controlling the deer population due to the
limited food availability. Overconsumption by the deer leads to the collapse
of vegetation and, subsequently, the deer’s extinction (Figure 2).
A narrative can be constructed that explains the stock behaviour (Figure

2), using the five loops of the model (Figure 1). For example, Breierova
ascribes the slowdown and decline of deer numbers initially to loop B3 then
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to the death process B1 (Breierova, 1997, p. 24). Sterman states that the early
behaviour is driven by R1 and that the later collapse is caused by the gain in
strength of the balancing loops (Sterman, 2000, p. 123). In her 1977 talk,
Donella Meadows describes the later model behaviour as dominated by the
whole vegetation subsystem, adding that this part of the system takes over
and runs everything for a little while (Meadows, 2017). Meadows elaborates
that loop R2 is also important at this stage, running in a bad direction. These

Fig. 1. Overshoot and
collapse model.
Equations in Appendix C

Fig. 2. Overshoot and
collapse model of
Figure 1. Deer numbers
and vegetation biomass.
Parameter values in
Appendix C
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examples connect feedback loop influence with different time intervals of
the simulation, with the transitions between loop dominance occurring at
specific times. These are the types of descriptions that the aforementioned
current loop dominance methods attempt to quantify, providing instanta-
neous measures of the strength of the loops.
However, other questions could be asked that connect structure with

behaviour. Two notable questions follow. (Q1) Which part of the system
should be modified to avoid collapse and produce the stable and oscillatory
modes noted by Meadows (2008, p. 69)? (Q2) Is it possible to attribute domi-
nance to a part of the system, as indicated by Meadows, cited earlier?
Answers to these questions require a view of a loop’s influence over the
whole simulation period, not just at particular moments in time. It is this
cumulative quantification of loop influence that the proposed concept of
energy is intended to capture. This paper will define energy within the New-
tonian Interpretative Framework (Hayward and Roach, 2017), further devel-
oping the concept of loop impact. The subsequent definitions will then be
applied to model analysis, before the two questions above are answered in
the context of this model.

The concept of energy in a stock–flow system

Force and the Newtonian Interpretative Framework

The Newtonian Interpretive Framework uses the concept of force as a
quantitative measure of the effect of one stock on another via one of its
flows. Following Hayward and Roach (2017), a force between two stocks
occurs when a source stock has a causal pathway to a target stock, such
that changes in the source cause the target stock to accelerate—that is, to
deviate from linear behaviour. A causal pathway is an individual connec-
tion from a stock to a flow, which may be composed of any number of con-
verters, but not other stocks. This pathway represents cause and effect—the
effect that one stock, the source, has on another, the target. Thus a causal
pathway does not contain stocks. For example, in Figure 3 (Eqs (1) and
(2)), there is a causal pathway from source stock y to target stock x via flow
f 2. Thus y exerts a force on x, provided that y is changing; that is, its flow
g tð Þ≠ 0, where t is time:

_x¼by (1)

_y ¼ g tð Þ (2)

Differentiating Eq. (1) by t puts the equation for x in Newtonian, second-
order, form:
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€x¼ b _y ¼ bg tð Þ (3)

If g tð Þ¼0, then the change in x is uniform, €x¼0, which is the system
dynamics equivalent of Newton’s first law (Hayward and Roach, 2017). If
g tð Þ≠ 0, then Eq. (3) is the equivalent of Newton’s second law, where b�1

represents the mass of x with respect to y . In system dynamics, mass con-
verts the force of the source stock into the acceleration of the target stock.
The value of y measures the amount of momentum imparted by stock y to x.
The larger the value of y , the greater the rate of change of x, for a fixed
mass b�1.

The impact of a force is its contribution to a stock’s acceleration divided
by the net rate of change of that stock (Hayward and Boswell, 2014). Divid-
ing Eq. (3) by _x gives the impact equation:

€x
_x
¼ b

_y
_x
¼ Iyx (4)

where Iyx ¼b _y= _x is the impact of y on x (Hayward and Roach, 2017). The

underline subscripts indicate the causal pathway, reading from left to right.
The impact measures the curvature of stock behaviour over time, dimensions
T�1, such that a constant impact results in exponential stock behaviour
(Hayward and Roach, 2019). As this model only has a single force, the
impact Iyx is responsible for the whole of the acceleration of x.

Figure 4a shows the behaviour of stock x for a constant negative force,
given by g tð Þ¼�1. The target stock x is initially growing as it has an initial
positive momentum given by y0 ¼15. The force from y opposes this growth,
bringing x to rest momentarily at t¼15. The impact of the force along the
pathway from y to x is negative during this phase where change is resisted,
becoming infinite at x’s maximum. After x has peaked, the impact of y is
positive, accelerating x downwards. This narrative is an example of the use
of the force metaphor in system dynamics (Hayward and Roach, 2017, 2019).

Fig. 3. Stock x subject to
a single force from y
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Energy, power and work done

The Newtonian Interpretative Framework is now extended to include the
concept of energy. In mechanics, energy is usually defined by integrating the
equations of motion over distance and determining the energy conservation
law (Leech, 1965; Tymms, 2015). The same procedure can be used in system
dynamics by integrating the second-order form of the stock–flow equations
over the stock value. For the model in Figure 3, integrate Eq. (3) by x from
its initial value x0, at time t0, to its final value, xf at time tf . The integral of
the left-hand side of Eq. (3) provides a definition of the kinetic energy of
stock x:

ΔKEx ≜
ðxf

x0

d2x
dt2

dx¼ 1
2
_xf

2�1
2
_x0

2 (5)

Unlike mechanics, the equivalent of mass, b�1, is not included in the stock–
flow version of kinetic energy. This definition ensures that the kinetic energy
of a stock measures attributes of the stock alone, rather than its interaction
with other system elements1. Thus energy has dimensions X2T�2.
The integral of the right-hand side of Eq. (3) represents the work done by

the force from y on the stock x:

Fig. 4. Stock x subject to a constant, conservative force from stock y ; Figure 3, (Eqs (1) and (2)), b¼0:1, g tð Þ¼�1, x0 ¼0,
y0 ¼15. (a) Stock behaviour and force impact; (b) change in kinetic energy (ΔKE) and potential energy (ΔPE) of stock x. The
dashed line indicates the change in kinetic energy required to make x stationary, ΔKE = �1.125

1In the Newtonian Interpretive Framework, mass is viewed as converting the effect of a source stock on a tar-
get stock; that is, force is converted into acceleration F=m! €x. Thus, the stock–flow equivalent of mass is a
property of the stock’s interaction with other stocks, rather than of the stock itself.
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WDyx ≜
ðxf

x0

b
dy
dt

dx (6)

In mechanics, work done measures the total or cumulative effect of a force,
as indicated by the integral Eq. (6) (Leech, 1965). Rewriting this expression
in terms of impact, Eq. (4)

WDyx ≜
ð tf

t0
Iyx _x2dt (7)

shows that in a stock–flow system, work done represents the cumulative
effect of a causal connection between stocks. Equation (7)—the time integral
of the impact multiplied by the net flow squared—gives a general formula
for the numerical and analytical computation of the work done by one stock
on another (see Appendices A and C). The integrand in Eq. (7) describes the
rate at which energy is injected or removed into the stock. In mechanics this
concept is called power (Tymms, 2015). Thus, the power of the causal link
between the stocks can be defined as

Pyx ¼ Iyx _x2 (8)

It follows from Eqs (5) and (7) that the equation of motion, Eq. (1), for the sin-
gle force model of Figure 3 may be represented by the energy balance equa-
tion for the stock x:

ΔKEx ¼WDyx (9)

The invariant Eq. (9) is called the work–energy theorem in mechanics, and it
states that the work done by an external force is turned into changes in
kinetic energy (Tymms, 2015). However, in contrast to its expression in
mechanics, the definition of work done in a stock–flow system in Eq. (6)
includes the mass of x with respect to y , ensuring the units of a stock’s
energy balance equation are independent of all units external to that stock.
In summary, kinetic energy and work done in stock–flow systems measure
the activity of stocks and the causal connections between stocks,
respectively.

For the single force model (Figure 3), stock y performs work on x. Figure
4b plots the change in kinetic energy of stock x. This kinetic energy is easily
computed in stock–flow simulation from the net flow of x. Initially, x has a
kinetic energy of 1

2 _x0
2 ¼ 1

2 by0

� �2 ¼ 1:125, because of the initial value of y .
Thus, the work done by y has reduced x’s kinetic energy by 1.125 by t¼15,
when the flow of x is momentarily zero. Thus, x has been brought to “rest”—
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that is, to a stationary state. Subsequently, y injects energy into x indefi-
nitely, giving a positive change in kinetic energy compared with its initial
value for t >30. The single force model is unstable because the stock y is
always performing work on x, increasing its kinetic energy.
In general, the expression for the work done by y on x is dependent on the

values of x between the beginning and end time, the path of the stock
WDyx ¼

Ð tf
t0
b _y _xdt. This integral can be evaluated in stock–flow simulation

using an accumulation (see Appendix A). However, under certain circum-
stances, this work done may be independent of the path of x, enabling the
integral to be computed exactly without such knowledge. In such cases the
stock y represents a conservative force, and a potential energy for y on x can
be defined, turning the work–energy theorem into the conservation of energy
of x. The change in potential energy is defined as the negative of the work
done and represents the capacity of the force to do work.
The single force model (Figure 3), with a constant force, is conservative.

Let g tð Þ¼ k, a constant. Then the change in potential energy of x due to the
force from y , called ΔPEyx, is, from Eq. (6):

ΔPEyx ¼�WDyx ¼�
ðxf

x0

bkdx¼�bk xf �x0
� �

(10)

In this case, the change in potential energy depends only on the beginning
and end value of x. Thus energy for x is conserved by y making energy avail-
able for x, ΔKExþΔPEyx ¼ 0.

Figure 4b compares the change in potential energy with that of kinetic
energy for the specific value of k¼�1. Initially, x loses kinetic energy, stor-
ing it as the potential energy of the force from y . Once x is stationary
(t = 15), the kinetic energy starts increasing, as x loses its potential energy.
When the potential energy returns to its initial value at t¼ 30, ΔPEyx ¼0,

stock x has returned to its initial value, because of the conservative nature of
the force from y . The stock x increasingly becomes more negative, gaining
kinetic energy from the effect of y . In practice, most forces will not be con-
servative with an associated law of energy conservation. However, if they
are conservative, the exchange of energy between kinetic and potential ener-
gies provides an additional explanation of stock behaviour in terms of model
structure, as will be shown for the single second-order balancing loop
(Figure 12).
Generally, the system dynamics model of Figure 3 (Eqs (1) and (2)), is not

conservative, even when g tð Þ is constant. Whereas the kinetic energy of x
changes, that of y is constant. Stock x does not gain kinetic energy in a trans-
fer of energy from stock y , but from the effect of y via the causal pathway;
that is, y does work on x. The action of one stock on another injects energy
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into a system, creating instability rather than equilibrium. In order to dissi-
pate a stock’s energy, an energy sink is required. Such a sink is provided by
first-order feedback, as will be demonstrated by extending the single force
model (Figure 3) with a draining process (Figure 7).

Sources, sinks and first-order feedback

In first-order feedback, a stock’s value influences its flows directly without any
other intermediate stocks in the loop. Consider a generic birth–death model,
composed of two first-order loops: a compounding process R and a draining
process B (Figure 5). From an energy perspective, the stock x is doing work
on itself. From Eq. (6), the work done via R is WDxx Rð Þ¼ Ð xf

x0
a _xdx >0. Thus,

the reinforcing loop is adding energy to the stock, provided that the initial
kinetic energy is not zero. By contrast, the balancing loop is removing energy
from the stock, WDxx Bð Þ¼�Ð xf

x0
b _xdx <0. The Newtonian Interpretative

Framework interprets first-order balancing loops as frictional processes
(Hayward and Roach, 2017); thus it is natural to think of these as energy
sinks. By analogy, first-order reinforcing loops can be interpreted as energy
sources.

Consider the case where a> b, so that x grows exponentially (Figure 6a).
Applying the work–energy theorem to this system gives the energy balance
equation ΔKEx ¼WDxx Rð ÞþWDxx Bð Þ (compare with Eq. (9)). Thus, compar-
ing the kinetic energy of the stock with the work done by both feedback
loops shows that the kinetic energy of x is growing because more work is
being done on x by R than dissipated by loop B (Figure 6b). That is, the
stock’s energy source R is larger than the energy sink B due to the frictional
force. Because power is proportional to impact (Eq. (8)), R is a more powerful
loop than B because it has the greater impact, delivering more energy per
unit time. Thus, the concept of energy provides a new way of explaining
stock behaviour in terms of model structure. Although potential energy can-
not be defined in this non-conservative system, the energy balance can still
help interpret system behaviour by examining how work done is transferred
into a stock’s kinetic energy.

As the stock–flow system is linear, the loop impacts (values a and �b) are
constant (Figure 6a). However, the work done by each loop is not constant,

Fig. 5. Compounding R
and draining B processes
(energy source and sink
respectively), _x¼ax�bx

10 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr



as work done describes a cumulative effect rather than the instantaneous
effect represented by loop impact. Nevertheless, because of the constant
impact, the energy sink will never exceed the energy source. If instead b> a,
then the stock would undergo exponential decline as more energy is being
dissipated than being generated. Thus, the presence of a first-order balancing
loop provides the possibility of stability to a system, depending on parame-
ter values.
To further examine the role of first-order balancing feedback in energy

removal, consider a stock x with a force from y (Figure 3), now also subject
to a draining process, an opposing force (Figure 7). Let g tð Þ>0. The force
from y is injecting energy into x, whereas loop B is removing energy. Figure
8a shows the growth in x slowing. Comparing the impacts, it is clear that the
force from y is greater than that of loop B but is tending to the same value as
time progresses. Thus, the forces balance and the change in x becomes uni-
form, the equivalent of Newton’s first law. From an energy perspective, B is
removing much of the energy imparted by y , rather than it being turned into

Fig. 7. External force and
draining process B
(energy sink).
_x¼�axþby , _y ¼ g tð Þ

Fig. 6. Stock x subject to a compounding and draining process; Figure 5, a¼0:15, b¼0:1, x0 ¼1. (a) Stock behaviour and
impact; (b) change in kinetic energy and work done for x
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x’s kinetic energy (Figure 8b). Nevertheless, kinetic energy becomes constant
and is not reduced to zero. Thus, although the addition of a first-order
balancing loop has given the possibility of stability, it has not guaranteed it.

The above definitions of kinetic energy and work are next applied to a
single-stock system dynamics model. Two associated analysis techniques
will be presented. First, a new approach to feedback loop dominance that
compares the energy injected into the system by reinforcing loops with that
removed by balancing loops—a cumulative approach to loop dominance.
This approach applies the concept of dominance to work done in a similar
way that the Loop Impact method applies dominance to the forces exerted
by loops. Second, energy balance is examined by comparing kinetic energy
with work done, treating initial kinetic energy and reinforcing loops as
input, and the stock’s kinetic energy and balancing loops as output.

Limits to growth with harvesting

An examination of energy balance can be used to enhance the Newtonian inter-
pretation, and loop dominance analysis, of models. Consider a limits-to-growth

Fig. 8. Single stock x subject to a constant, conservative force from stock y ; Figure 7, a¼0:1, b¼0:1, g tð Þ¼1, x0 ¼0, y0 ¼0.
(a) Stock behaviour and impact; (b) change in kinetic energy and work done for x

Fig. 9. Limits-to-growth
model with harvesting
(polarities added).
Equations in Appendix C
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model with harvesting (Figure 9). The growth of the animal population is
driven by the reinforcing loop R1 and opposed by limited population capac-
ity, balancing loop B1. The interaction of the two loops makes the model
nonlinear. Without harvesting, the population reaches equilibrium at popu-
lation capacity, falling short of that limit if harvesting is introduced, loop B2.
In the Newtonian Interpretative Framework, the three loops are viewed as

three forces acting on the stock with their regions of dominance determined
by the Loop Impact method (Figure 10a) (Hayward and Boswell, 2014). Ini-
tially, the driving force R1 is dominant, accelerating the population’s
growth. However, the impact of this driving force is falling as that of the
opposing force B1 is increasing in magnitude. With the help of the harvesting
loop B2, the opposing forces exceed R1, slowing the growth in the population
by applying friction. For most of the simulation, the capacity loop B1 has
more impact than the harvesting loop B2 (Figure 10a). There is only a brief
period in the loop impact analysis, 37 < t <43, where B2 is involved in domi-
nance (with B1). It is not clear from this instantaneous approach to domi-
nance analysis why the effect of loop B2 prevents the population from
reaching capacity. This shortfall is usually explained using stability analysis,
a mathematical rather than a conceptual explanation.
From the cumulative perspective provided by energy, the population sys-

tem in Figure 9 has one energy source, R1, and two energy sinks, B1 and B2,
representing diffusion processes. The loop B1 removes energy from the pop-
ulation, limiting its growth. The harvesting loop B2 is an additional drain of
energy on the population, preventing it from reaching its carrying capacity.
The loop R1 can be viewed as input energy, along with the initial kinetic
energy, with the balancing loops and kinetic energy the outputs. Figure
10b displays the energy balance on the stock, showing R1 injecting energy

Fig. 10. Limits-to-growth model with harvesting; Figure 9, Growth Rate = 10%, Population Capacity = 5000, Harvesting
Rate = 2%, Initial Population = 200. (a) Population with regions of dominance indicated by vertical lines for loop impact and
shaded areas for work done; (b) change in kinetic energy and work done for x
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into the system, with the change in kinetic energy of the population being
the largest recipient early on—hence the accelerating growth. Both balancing
loops are doing work to take energy away from the population. By t¼ 31, B2

has removed as much input energy as B1, reducing the change in kinetic
energy and thus slowing population growth. By the time equilibrium has
been reached, and the balancing loops have removed all the input energy, a
third of that energy has been taken by the harvesting loop B2.

The regions of dominance for the work done by the three loops are indi-
cated by the shaded area in Figure 10a.2 This new technique compares the
cumulative effects of the feedback loops on the system and contrasts it with the
instantaneous effects of loop impact indicated by the vertical dashed lines. The
shaded area in Figure 10a shows that to overcome R1, B1 requires the cumula-
tive effect of B2, whose contribution is not evident in the dominance of loop
impact (except for a brief period around t¼ 40). Figure 10b shows that by
t¼100, B2 has dissipated approximately one third of the energy of the sys-
tem. Thus, over the entire time horizon, B2 is having a more significant
cumulative effect on the system than that indicated by the loop impact anal-
ysis. Although the effect of B2 on the curvature of stock x at a given instant,
represented by loop impact, is relatively small, its long-term effect, represen-
ted by work done—the accumulation of loop impact—is much higher. The
energy drains from both balancing loops are required to exceed the energy
deposited by the reinforcing loop in order to bring the population to rest.

The significance of the effect of the harvesting loop B2 on energy
depletion can be examined by comparing the kinetic energy with the energy dif-
fused by the balancing loops. Rearranging the energy balancing equation,
ΔKEx ¼WD R1ð ÞþWD B1ð ÞþWD B2ð Þ, allows inputs and outputs to be
compared:

Inputs¼WD R1ð ÞþKEx0 ¼KExþ WD B1ð Þj jþ WD B2ð Þj j ¼Outputs (11)

where KEx0 is the initial kinetic energy. At t¼0, the loops have done no
work, and all the initial energy is kinetic (Figure 11a). Up to t¼ 30, the
harvesting loop is diffusing most of the energy. The early reduction in
kinetic energy slows after t¼ 10 as the balancing loops have to diffuse an
increasing amount of energy from R1; however, the early effect of harvesting
has significantly slowed the population growth. This effect depends on the
harvesting rate. Figure 11b compares the relative amount of energy diffused
by B2 with B1 for different harvesting rates. The greater the harvesting rate,
the greater the proportion of energy diffused by B2, from 18% for 1%
harvesting up to 57% for 4% harvesting. The corresponding shortfall of the
equilibrium population from capacity ranges from 10% to 40%. The

2Loop dominance using work done utilises the same algorithm to describe multiple loop influence as the
Loop Impact method (Hayward and Boswell, 2014).
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additional energy removed by harvesting reduces the maximum possible
value of the population. It can be proved analytically that the shortfall in
equilibrium population from capacity is directly related to the fraction of
energy removed by harvesting (Appendix C).

Energy and higher order feedback

General considerations

In the previous section, it was shown that in a system with more than one
stock, such as the single force model (Figure 3), there is an energy balance
equation for each stock–flow subsystem—for example, Eqs (9) and (11).
However, although the change in kinetic energy of a given stock is equal to
the work done on the stock by its first-order feedback loops and through the
influence of other stocks, in general, there is no single energy invariant for
the whole system. That is, a general dynamical system is not conservative
(Strogatz, 2018). Instead, the influence of a source stock y injects energy into
a target stock x. If there is feedback from the target back to the source, there
is no guarantee that the work done by y on x balances with that from x to y
as, in general, the energy units of the source and target stocks are different.
Nevertheless, the two techniques already introduced—work done domi-
nance and energy balance—can be applied to individual stock–flow subsys-
tems and reveal a useful interpretative narrative. Further, the two-stock
conservative system considered next, the single second-order balancing loop
of Figure 12, will help link the energy narratives of connected subsystems.

Fig. 11. Limits-to-growth model with harvesting; Figure 9, Growth Rate = 10%, Population Capacity = 5000, Initial
Population = 200. (a) Energy balance (Eq. (11)), energy absorbed by kinetic energy, and diffused by B1 and B2 from inputs R1

and initial kinetic energy as a percentage of total, for Harvesting Rate = 2%. (b) Energy diffused (work done) by B2 as a
percentage of the total energy diffused by B1 and B2 for harvesting rates 1–4%
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Energy conservation and second-order balancing loops

A model with a single second-order balancing loop is given in Figure 12, with
the two causal links between the stocks interpreted as forces. The stock values
oscillate with the loop B2 responsible for the whole of the behaviour (Figure
13a). Turning points in stock behaviour are explained by the loop impact becom-
ing momentarily infinite and changing sign as the associated flow becomes zero
(Hayward and Boswell, 2014). The frequency of oscillation is determined by the
loop gain jG j¼bc. In the Newtonian Interpretive Framework, the inverse of
the loop gain describes the mass of the loop. A lower frequency oscillation is
explained by the loop having a greater mass and giving more inertial resis-
tance to the two mutual forces (Hayward and Roach, 2017).

Although a consideration of forces at each instant explains the curvature
of the stock values, it does not provide a reason for the indefinite bounded
oscillation behaviour. From an energy perspective, the total kinetic energy is
conserved, KEx=bþKEy=c¼ 0, with appropriate unit conversion. As such, no
energy is lost from the system, which is only possible with undamped

Fig. 13. Single second-order balancing loop of Figure 12; b¼0:1, c¼0:15, x0 ¼ y0 ¼0:2. (a) Stock behaviour and impact of y
on x over one cycle; (b) change in kinetic energy and potential energy of x; power of stocks on each other, showing loop
power is zero, Pyx þ b

cPxy ¼0

Fig. 12. Model with a
single second-order
balancing loop.
_x¼�by , _y ¼ cx
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oscillations. Both stocks have well-defined potential energies with respect to
each other. Thus, for example, the kinetic energy of y makes potential energy
available for x, ΔKEx ¼�ΔPEyx. As y loses kinetic energy, potential energy

is transferred to x in the form of its kinetic energy (Figure 13b). Once y is at
rest, and all the kinetic energy is in x, energy then flows back from x to y .
The oscillatory behaviour follows from the conservation law preventing the
stocks from growing indefinitely or finding rest simultaneously.
Thus, a second-order balancing loop exchanges energies between two

stock–flow subsystems in a conserved manner. Although this result has been
demonstrated for a linear system, it is also true for nonlinear second-order
loops (Appendix B). One corollary is that, unlike a first-order balancing loop,
the second-order equivalent does not, on its own, bring stability or long-term
control to a system.
The conservative nature of this loop can also be demonstrated by compar-

ing the rate at which energy is injected and removed from the stocks—that
is, the power of the two causal links in loop B2 (Figure 12). These powers
are equal and opposite once they are placed in the same units Pyx ¼�b

cPxy

(Figure 13b). It follows that a single power can be defined for the second-
order loop by adding the two link powers together. For a balancing loop this
power is zero, P B2ð Þ¼Pyxþ b

cPxy ¼ 0. Thus, in the whole system, energy is

neither added nor removed by this loop.
It is easy to show that a second-order reinforcing loop injects energy into a

system, like its first-order equivalent. For this loop, energy is not conserved,
the power of the loop is non-zero and potential energy cannot be defined.
Thus, neither type of second-order loop can dissipate energy from a system.
For energy removal at least one first-order balancing loop is required, as is
shown in the next example.

Second-order linear system with first-order loops

The usefulness of a cumulative measure in loop dominance analysis and of
an energy perspective for narrative explanation can be demonstrated by

Fig. 14. Linear second-
order system,
_x¼�ax�by , _y ¼ cxþdy
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considering a second-order linear system (Figure 14), where first-order loops
have been added to the second-order balancing loop of Figure 12. This
model is a special case of the general linear system (Hayward and Roach,
2017, 2019). Before proceeding further, it is clear that stability is possible for
this system as it contains a first-order balancing loop—the only means by
which energy can be removed from the system. Any other feedback structure
either exchanges energy between the stocks or injects energy. Thus, the
energy perspective can indicate the possible behaviour of a system before a
simulation or analysis has taken place.

In the Newtonian Interpretive Framework, each stock exerts two forces:
one associated with a first-order loop, B1 on x and R1 on y , and the other
force a part of the second-order loop B2. The influence of these forces can be
compared using their loop impacts (Figure 15a). The damped oscillation is
caused by shifts of loop impact dominance between the first- and second-
order loops over one cycle, with the second-order loop B2 responsible for
the turning points. Although this is an accurate description of the rise and
fall of stock behaviour from an instantaneous viewpoint, it does not suc-
cinctly explain the oscillatory or damped behaviour of the system.

The energy balance on each stock, the cumulative view of loop influence,
provides further clarity to the system behaviour (Figure 15b). The oscillation
is due to the exchange of energy between the two stock–flow subsystems via
the balancing loop B2 as in the case of the single second-order balancing
loop (Figure 12). Although the model in Figure 14 is not a conserved
system, the work done by B2 on stock x balances that on y ,
WDyx B2ð Þ¼�b=cWDxy B2ð Þ, allowing for unit conversion, (dotted curves in

Figure 15b). Loop B2 removes energy from y while injecting it into x and

Fig. 15. Linear second-order system of Figure 14; a¼0:1, b¼0:15, c¼0:2, d¼0:06, x0 ¼2, y0 ¼0. Reinforcing loop R1,
balancing loops B1, B2. (a) Stock behaviour and regions of dominance in loop impact over one cycle, period 41; (b) kinetic
energy and work done for stocks (in units of x’s energy), with regions of dominance in work done given by the shaded area

18 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr



vice versa. The opposing signs of the two expressions for work done describe
a mutual flow of energy that results in oscillation.
Regions of dominance for the work done by each loop on each stock are

given in Figure 15b, indicated by the shaded area. The energy transferred
from y to x by B2 always dominates over the energy source, R1, reducing the
kinetic energy of y over one cycle (period 41). Thus, y is damped. Loop B1 is
an energy sink, which is larger than the energy transferred from y by B2 over
the cycle. The brief change in dominance for the work done on x during the
cycle results from transients. Thus, the system is damped because the sink,
loop B1, removes more energy than is input by the source, loop R1.
The energy balance can be further illustrated by considering the power of

the loops. The power of B2 on the system is zero as it removes as much
energy from y as it injects into x. Thus, only the two first-order loops need
to be compared. Although power dominance changes between the two loops
during the cycle, the average power of B1 over the cycle is numerically
larger than that of R1 (Figure 16a). The system stabilises because B1 is more
powerful than R1, as it has the greater influence on the energy of the system
and, therefore, on the rate of change of the stocks. This result supports Hay-
ward and Roach’s (2019) assertion that oscillations are best understood by
averaging over one cycle. It also demonstrates the explanatory value of
cumulative measures as, although power is an instantaneous measure, aver-
age power over the cycle is an accumulation, the work done divided by the
period.
It follows that the dominance of the loops on the system can be displayed

in a cumulative form, (Figure 16b, top). The chart shows B1 responsible for
65% of the energy change over one cycle, displaying clearly the system’s sta-
bility. Loop B2 is excluded as it is only transferring energy within the

Fig. 16. Loop power over one cycle for the linear second-order system of Figure 14. (a) Power on system over time of R1, B1, B2

and average powers; (b) average powers on system (energy injection and removal) and on stocks (including energy transfer)
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system. Additionally, it is possible to compare the work done by the loops
on all the stocks using the average power of all the causal links (Figure 16b,
bottom). This chart shows that B1 is more powerful than B2 with R1 the
weakest. Loop B2 is transferring more energy between stocks than R1 is
injecting into y ; thus, y ’s rate of change is reduced. Likewise, B1 is removing
more energy than B2 is transferring; thus, x’s rate of change is reduced and
the system stabilises. This latter result can be compared with the total loop
score provided by the LTM method, which is also cumulative. Over one
cycle, the total loop scores are weighted R1 :B1 :B2 ¼24% : 33% : 43%, indicat-
ing B2 has the largest effect. However, it is unclear how this result can be
interpreted. The energy perspective has the advantage of explaining domi-
nance by the loop that does the most work in changing stock behaviours.

Feedback loops higher than second order

Systems composed solely of a third-order loop, or higher, are unstable. Such
loops contain a dominant positive eigenvalue, leading to the stocks increasing
exponentially, or with growing oscillations (Cinquin and Demongeot, 2002;
Hayward and Boswell, 2014; Mojtahedzadeh and Richardson, 1995; Moxnes
and Davidsen, 2016). Energy is not conserved in any of these loops, and in the
limit, as time goes to infinity, they are always net energy sources. The only loop
structure that removes energy from a system in the long term is the first-order
balancing loop. It follows that a system dynamics model can only be stable if it
contains at least one first-order balancing loop. A related result connecting
balancing loops with stability was proved by Sato (2016, theorem 6.1), stating
that in any system, one or more balancing loops are dominant in the region of a
stable equilibrium point. The energy viewpoint suggests that care is needed in
ensuring all first-order loops are correctly included in the model.

In summary, every feedback loop in a system dynamics model is associ-
ated with an energy source, sink or conserved exchange, as summarised in
Table 1. These identifications form part of the Newtonian Interpretative
Framework, outlined in the glossary.

Overshoot and collapse

The overshoot and collapse model of Figure 1 can now be examined
using the concept of energy to quantify the accumulated influences of its

Table 1. Energy
implications for feedback
loops of different order

First order Second order Third and higher order

Balancing loop Sink Exchange Source
Reinforcing loop Source Source Source

20 System Dynamics Review

© 2022 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr



loops. The model equations follow those of Breierova (1997), with graphical
relationships replaced by matching analytical functions to improve the com-
putational accuracy of the loop analysis (see Appendix C). The model is first
analysed for a constant per capita consumption rate of vegetation, referred to
as Model A. This model will be compared with Model B, given later, where
the per capita consumption depends on vegetation availability.
Before discussing a quantitative analysis of the model, consider an infor-

mal examination of its loop structure. The model has two sources, R1 and
R2, and two sinks, B1 and B2. Thus, energy will be drained from each stock–
flow subsystem making stability possible. Further, the second-order loop, B3,
will exchange energy from one stock–flow subsystem to the other. Therefore,
even if diffusion through one of the sinks is insufficient to counteract the
energy source in one stock–flow subsystem, excess energy could be trans-
ferred to the other stock–flow subsystem. For example, the deer could be sta-
bilised through diffusion in the vegetation system.
First, an instantaneous view of the influence of the loops is considered. In

the Newtonian Interpretative Framework, each stock in model A is subject to
three forces associated with the feedback loops (Figure 1). The loop domi-
nance, given by the Loop Impact method, is superimposed on the stock
behaviour (Figure 17). The initial growth in vegetation is slowing down as
the capacity loop B2 dominates (Figure 17a). The change from growth to
decline is determined by the consumption loop B3 acting as an accelerating
force, with R2 dominating later. This reinforcing loop is accelerating the veg-
etation’s decline, confirming Meadow’s description cited earlier: running in
a bad direction. Although there is a short period where B3 is resistive (from

Fig. 17. Overshoot and collapse of Figure 1, model A. Regions of dominance in loop impact are indicated by vertical dashed
lines, with the plus sign on B3þ denoting a force with positive impact (minus sign is negative impact). Regions of dominance
in work done are given by the shaded area, with the plus sign on B3þ indicating the loop is an energy source (minus sign
denoting a sink). Loop names are placed under the axis where needed. (a) Vegetation biomass; (b) Deer numbers. Parameter
values in Appendix C
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23 years), this control on the vegetation’s decline occurs too late to prevent
collapse.

The deer numbers grow through R1, then slow down through the second-
order loop B3, changing growth to an accelerating decline (Figure 17b). The
only resistive force on the deer, B1, slows the decline until extinction is
reached at 24.8 years. This pattern confirms Sterman’s informal description
that the balancing loops are gaining in strength, cited earlier (Sterman, 2000,
p. 123). Although the loop impacts have successfully explained the curva-
ture in stock behaviour—an instantaneous view—they have not completely
explained why both stocks collapse to zero, as the same impact dominance
pattern occurs with recovery and oscillation when, for example, the natural
death rate of deer is increased (Ford, 2010; Hayward and Roach, 2019;
Meadows, 2008). The collapse is not a consequence of an effect that happens
in an instant, but an accumulation of effects over the cycle.

Comparing the work done by the energy sources and sinks on each stock
provides a cumulative dominance pattern (shaded areas in Figure 17). For
the vegetation, energy diffusion through B2 dominates until year 22.2, when
a net energy injection occurs through R2 and B3. Although the balance shifts
back to energy diffusion at year 23.4, the vegetation becomes extinct by
24.8 years. For the deer, energy sources dominate until year 25.5, after the
extinction of the vegetation, showing that loop B3 has failed to bring stability
to the deer subsystem, a necessary requirement for their numbers to recover.

The failure of control by B3 is also demonstrated by comparing the powers of
the loops, averaged over the entire collapse cycle (Figure 18a, model A).3 The

Fig. 18. Overshoot and collapse models A and B compared over one cycle. Average powers on system (energy injection and
removal), and on stocks (including energy transfer). (a) Model A, Figure 1; (b) model B; Figure 1 modified by Figure 19.
Parameter values in Appendix C

3Although the units of energy in the two subsystems cannot be harmonised due to the nonlinearities of the
system, loop powers can always be placed in the same units (see Appendix B).
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top diagram shows that the total energy injected into the system through R1 and
R2 is less than that removed by balancing loops, P R1ð ÞþP R2ð Þ¼ 39%<50%;
thus, system stability is possible. The stock view (bottom diagram) shows
that most of the vegetation’s input energy is being removed through
transfer to the deer subsystem, P B3ð Þ, rather than through diffusion, P B2ð Þ.
The energy transferred into the deer stock, together with that injected
by the deer’s growth, R1, exceeds that removed by death, B1,
P R1ð ÞþP B3ð Þ¼ 41:5%> P B1ð Þj j ¼41:2%. Collapse occurs because the system
has failed to diffuse all the energy injected through the reinforcing loops. In
particular, too much vegetation energy has been transferred to the deer sub-
system rather than being removed through diffusion. Although the falling
vegetation numbers effectively increase the deer deaths, there is insufficient
control on vegetation decline, leading to the energy imbalance. Thus, the
behaviour of the vegetation subsystem has dominated the dynamics, provid-
ing a cumulative view of Meadows’ (2017) comment: this part of the system
takes over and runs everything for a little while. Although B3 is responsible
for deer behaviour from 20 to 23 years (Figure 17b)—an instantaneous view
of the loop dominating for a little while—the energy viewpoint goes further,

Fig. 20. Overshoot and
collapse model B,
Figures 1 and 19. Deer
numbers and vegetation
biomass. Parameter
values in Appendix C

Fig. 19. Overshoot and
collapse model B;
changes from model A,
Figure 1
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showing that it is the cumulative effect of the vegetation subsystem which is
responsible for the ultimate instability in the deer subsystem. This result
answers question (Q2) (proposed earlier) for this system.

For recovery to take place, the vegetation subsystem needs to remove
energy more effectively. This effect is demonstrated by adding a further
energy sink to the vegetation—model B (Figure 19)—and comparing it with the
original—model A (Figure 1). The additional loop, B4, captures the hypothesis
that the ability of deer to consume is reduced when vegetation biomass falls
to a low level. The behaviour mode now changes to one of cycles, avoiding
collapse (Figure 20). The average loop powers over one oscillatory cycle are
compared in Figure 18b. The system view (top diagram) still shows a net
energy outflow. The stock view (bottom diagram) shows that a smaller pro-
portion of energy is transferred from the vegetation subsystem to the deer by
B3 compared with model A (Figure 18a). Instead, energy is being diffused
through the new loop B4 as per capita vegetation consumption is reduced for
lower deer numbers. This lower energy transfer just tips the balance in the
deer subsystem, P R1ð ÞþP B3ð Þ¼ 35:913%< P B1ð Þj j ¼ 35:914%, with more
energy diffused than injected over one cycle. Thus, both vegetation and deer
numbers have been controlled and collapse is averted. The behaviour con-
tinues in undamped cycles. If average power over a later cycle had been
used, the sink B1 would have exactly balanced R1 and B3 as the earlier tran-
sients have decayed.

The energy analysis over one cycle (Figure 18) has helped indicate which
loop could be modified in order to avoid collapse, addressing question (Q1),
posed earlier. This cumulative viewpoint has reinterpreted the model struc-
ture using energy sources, sinks and internal transfer, using them to describe
model behaviour and inform structural modifications for alternative behav-
ioural scenarios. Further, the approach has highlighted that an entire stock–
flow subsystem is a suitable structure to explain behaviour in another sub-
system, providing a quantitative way of describing its effect in terms of
energy transfer.

Discussion and conclusion

This paper has introduced the Newtonian concept of energy into system
dynamics modelling, employing it, in a narrative manner, to relate system
behaviour to model structure. A form of kinetic energy was defined for a
stock–flow subsystem (Eq. (5)) and shown to be in balance with the total
work done on the stock obtained by summing the contribution from each
stock-to-stock causal pathway. Work done was defined as an integral over an
interval of time, and related to the accumulated effect of the force of one
stock on another (Eqs (6) and (7)), where force is measured by stock and loop
impact as defined by Hayward and Boswell (2014). The power of a feedback
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loop was defined as the rate of energy exchange between its stocks (Eq. (8)),
given suitable unit conversions. This concept of energy extends the Newto-
nian Interpretative Framework of Hayward and Roach (2017), picturing first-
order reinforcing loops as energy sources and first-order balancing loops as
sinks, with the connections between stocks exchanging energy from one
stock–flow subsystem to another. This energy perspective furnishes a cumu-
lative understanding of loop influence on the system, augmenting the instan-
taneous interpretation of the Loop Impact method. Whereas the latter
attributes stock acceleration at points in time to the balance of feedback
loops, regarded as forces, the energy approach describes stock and system
behaviour over a whole period, using the accumulated effects of the loops.
In particular, the work done by a feedback loop measures its contribution to
the final state of a stock compared with its initial state. Cumulative loop
dominance was displayed alongside stock graphs, indicating the progress of
the accumulation of energy over time (e.g., Figure 17) and as a bar chart of
the average loop power over a period (e.g., Figure 18). This paper has illus-
trated five ways in which the energy perspective is useful in system dynam-
ics modelling.
First, the cumulative measure of energy can highlight loops that have a

greater influence on behaviour than would have been indicated by loop
impact, or any other instant measure of a loop such as PPM or LTM. For
example, the harvesting loop B2 in the limits-to-growth model (Figure 9) has
a significant effect on the final state of the system. Although this loop is
never a dominant force, it is a significant drain of energy from the system
(Figure 11), lowering the equilibrium value of the population. Likewise, in
the model with overshoot and collapse (Figure 1), the cumulative effect of
the deer birth loop, R1, has a more significant influence on the long-term
behaviour than that suggested by a loop impact analysis (Figure 17). Further,
the energy balance over the whole cycle (Figure 18) highlights the weakness
of the vegetation capacity loop, B2, with too much energy being transferred
to the deer subsystem, leading to collapse. This insight suggests collapse
may be avoided by adding an additional loop on vegetation to increase
energy diffusion, controlling its decline through reducing consumption by
the deer.
Second, the cumulative measure of loop influence given by work done pro-

vides a useful way of describing oscillations, avoiding the use of complex
numbers as in EEA and PPM (Kampmann, 2012; Mojtahedzadeh, 2008).
Energy is conserved in a system composed of a single second-order balancing
loop (Figure 12), with the rate of energy transfer, or power, along the two
causal links of the loop being equal and opposite (Figure 13b). Thus, the net
power of this second-order balancing loop is zero, determining the
undamped oscillatory behaviour. When first-order loops are added, (Figure
14), the effect of the second-order balancing loop is to transfer energy from
one stock–flow subsystem to the other over one cycle (Figure 16). Stability, or
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otherwise, is determined by the relative powers of the sources and sinks. The
same approach can be applied to nonlinear systems, such as the model with
overshoot and collapse (Figure 1), where energy transfer over a cycle helps
determine the final state by simplifying the description of the oscillation. A
similar cumulative approach was taken by Hayward and Roach (2019), where
the behaviour of an oscillating predator–prey system was explained by con-
sidering the average value of loop impacts over one cycle. This method gen-
eralises into the energy definition introduced in this paper, giving the
concept a natural physical analogy in the Newtonian Interpretative Frame-
work, with the added advantage of an associated conservation law.

Third, the energy perspective enables loops through different stocks to be
compared by considering their power once adjustments are made for differ-
ent stock units. This system-wide approach eliminates energy transfers that
balance each other and can help determine stability over a period by com-
paring the average powers of the sources and sinks (e.g., Figures 16b and
18). Thus, power as a measure of loop influence across a system augments
loop impact, which is tied to individual stock–flow systems.

Fourth, the energy concepts are supported by formulae derived mathemat-
ically from the system dynamics equations, giving quantitative confidence to
the narrative explanation of behaviour. The kinetic energy of a stock and the
work done by each feedback loop have numerical values with well-defined
units, giving precise descriptions of energy flows in a stock–flow system. For
example, in the limits-to-growth model with harvesting, the change in
energy diffusion due to the two balancing loops can be measured and com-
pared for different harvesting rates (Figure 11b). Also, analytical results can
be proved, such as the relationship between energy exchange in a second-
order balancing loop (Figure 12; see Appendix B). Thus, the use of energy as
an explanation of model behaviour can be supported by precise formulae
and computations.

Fifth, and perhaps even more useful, is the informal explanation of behav-
iour using energy. For example, a system with a first-order reinforcing loop,
an energy source, cannot stabilise unless sufficient energy is removed by
sinks in the form of balancing loops. Thus, the linear system shown in
Figure 5, with a> b, cannot stabilise as its sink is always less than its source,
illustrated in Figure 6. By contrast, a nonlinear system, such as the limits-to-
growth model with harvesting, stabilises because its sink, loop B1, can drain
more energy than that deposited through the source as capacity resistance
increases with population size. Describing the drop in equilibrium due to
harvesting by an additional drain of energy is another example of the infor-
mal explanatory power of the energy concept. A non-quantitative, informal
examination of model loop structure, viewed as energy sources, sinks and
transfers, can provide useful pointers to possible behaviour, as was indicated
earlier for the overshoot and collapse model.
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Further, an informal energy consideration of a system dynamics model
may also assist model construction. An examination of potential first-order
balancing loops in the model would check that appropriate energy sinks
have been included and, if required, are correctly formulated. For exam-
ple, in the overshoot and collapse model version B, the inclusion of the
loop B4, which models the reduction in per capita vegetation consumption
as food becomes scarce, helps avoid the collapse of the deer population
through its additional diffusion of energy. To correctly model real-world
behaviour, a modeller needs to ensure that this effect is justified. More-
over, the type of functional response is important as a linear dependence
on deer numbers (e.g., Kunsch, 2006) will remove more energy than a
nonlinear response (e.g., Breierova, 1997), thus making collapse less likely.
These considerations will be particularly relevant if the archetype is
applied to a different scenario where the population and resource may be
of completely different types. In summary, an informal energy viewpoint
can help challenge model assumptions and boundaries at the construction
phase.
It is unlikely that any single measure of loop influence can completely

explain system behaviour due to the complexities caused by nonlinearities
and model size. Instead, multiple measures will be needed to interpret dif-
ferent behaviour patterns. Extending the Newtonian Interpretative Frame-
work to include energy and work done provides such an additional measure,
whose cumulative properties complement and augment the instantaneous
measure of loop impact. In both the cumulative and instantaneous
approaches, the loop structures explain behaviour. The force analogy of loop
impact describes stock curvature—behaviour at points in time. In contrast,
the energy analogy is used to explain the structural origins of oscillation,
damping and equilibrium—behaviour over intervals of time. This cumula-
tive viewpoint reveals new insights into the connection between system
structure and behaviour, enhancing existing dominance methods. The
authors will investigate the scope of applicability of this framework using
additional models in a future publication.

Glossary

Force: If stock y influences a stock x then the force of y on x is the net rate
of change of y (e.g., Figure 3). Force represents the ability of one stock to
cause acceleration in another stock.

Impact: The impact of a stock y on a stock x is the ratio of the acceleration
of x due to the force from y compared with the net rate of change of x
(e.g., Figure 3; Eq. (4)). Impact measures the curvature in the behaviour of
x imparted by y in units per unit time, and represents the ability of a force
to change motion—that is, the rate of change of a stock.
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Mass: The mass of a stock x with respect to a stock y is inversely propor-
tional to the sensitivity of x to changes in y (e.g., b�1 in Figure 3). In feed-
back loops, the inverse of the loop gain represents the mass of the loop
(e.g., bcð Þ�1 in Figures 12 and 14) (Hayward and Roach, 2017).

Kinetic energy: The kinetic energy of a stock represents the energy contained
in its change of value, a half of its net flow squared (Eq. (5)).

Work done: If a stock y influences a stock x then the work done by y on x is
the change in the kinetic energy of x induced by y . Work done is the
cumulative effect of loop impact (e.g., Eq. (7)).

Work–energy theorem: The theorem states that the work done on a single
stock–flow system by all its loops and external influences is turned into
changes in the kinetic energy of the stock.

Energy balance: The energy balance equation is an invariant resulting from
the work–energy theorem containing the stock’s kinetic energy and the
work done on the stock by loops and external influences (e.g., Eqs (9)
and (11)).

Energy source: A first-order reinforcing loop is an energy source, injecting
energy into a stock–flow subsystem, increasing the kinetic energy of the stock.

Energy sink: A first-order balancing loop is an energy sink, removing energy
from a stock–flow subsystem, reducing the kinetic energy of the stock. See
Diffusion.

Diffusion: The process of removing energy from a stock–flow subsystem through a
first-order balancing loop—an energy sink. This loop acts like a frictional, or
dissipative, force, where the stock acts on itself to resist its own changes.

Potential energy: When a system is conservative its total energy is con-
served. This allows for the work done by one stock on another to be
expressed as a potential energy source. The potential energy in one stock–
flow subsystem can then be transferred into the kinetic energy of another
stock–flow subsystem (e.g., Figures 4, 12 and 13).

Power: Power is the rate of energy injected into, or removed from, a stock–
flow system by the action of another stock (Eq. (8)). In a second-order
balancing loop, units can be chosen so that its net power into the system
is zero. Average power over a period is equivalent to work done.

Energy transfer: Energy is transferred between stock–flow subsystems in a
conserved way if the whole system is conservative. However, the concept
of transfer can be used in a non-conserved system where there is a second-
order balancing loop (e.g., Figure 16).
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Appendix A: Numerical computation of energy and work done

The kinetic energy of a stock (Eq. (5)) is computed from its net flow. For
example, the calculation for stock x in the second-order model (Figure 14) is
given in Figure 21 and Table 2. The stock Initial KEx captures the kinetic
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energy at t¼0, so that the change in kinetic energy over the run can be com-
puted. The net flow dx=dt is computed from copies of the flows f 1 and f 2,
f1_copy = a*x, f2_copy = b*y. (The flows are required in the calculations of
the loop impacts where the use of copies avoids the computational errors
introduced by differentiating actual flows.)
The work done by a feedback loop is calculated numerically using the

integral over time of its loop impact multiplied by the net flow squared (Eq.
(7)). (The loop impact is computed using the numerical method of Hayward
and Boswell (2014).) The integral is computed by accumulating into a stock
for work done. For example, the work done by y on x, part of loop B2 (see
Figure 14), is given in Figure 21 and Table 3. Again, the form of the net flow
dx=dt must be based on copies of the flows to avoid numerical inaccuracies
in the integration of the stock for work done. Also, the Euler integration
method is required as Runge–Kutta methods will introduce inaccuracies due
to the use of derivatives in the loop impact. The actual work done, WD y on
x, is this integral stock minus the stock’s initial value. This initial value is
an arbitrary reference point and has no effect on the energy balance.
Alternatively, loop impacts may be computed analytically and coded into

the simulation model (Hayward and Roach, 2017). The work done may be
computed from Eq. (6). For the example above, the right-hand side of

Table 3. Model equations
for loop impact and work
done

Impact_y_on_x = SAFEDIV(DERIVN(f2_copy, 1), "dx_/_dt")
change_WD_y_on_x = Impact_y_on_x*"dx_/_dt"^2
Initial_WD_y_on_x = 0
WD_y_on_x_integral(t) = WD_y_on_x_integral(t - dt) +

(change_work_done_y_on_x)*dt
INIT
WD_y_on_x_integral

= Initial_WD_y_on_x

WD_y_on_x = WD_y_on_x_integral-Initial_WD_y_on_x

Fig. 21. System dynamics
diagram for energy
computation

Table 2. Model equations for change in kinetic energy

"dx_/_dt" = f1_copy+f2_copy
KEx = 0.5*"dx_/_dt"^2
INIT Initial_KEx = KEx
x_Kinetic_Energy_Change = KEx-Initial_KEx
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WDyx ¼�Ð xf

x0
b _ydx¼ Ð tf

t0
b cxþdyð Þ axþbyð Þdt can be coded into the simula-

tion. The advantage of analytical coding is numerical accuracy.

Appendix B: Balancing loops and energy

A first-order balancing loop removes energy from a single stock–flow system,
even if the loop is nonlinear. Consider the system _x¼�f xð Þ, where f xð Þ is
monotonically increasing, f 0 xð Þ>0, to ensure the feedback is balancing. Dif-
ferentiating the equation by t, and integrating by x gives the energy balance.
Thus, the work done by the balancing loop is shown to be negative:

WDxx Bð Þ¼�
ðxf

x0

f 0 xð Þ _xdx¼
ð f xfð Þ
f x0ð Þ

fdf ¼1
2

f xf
� �2� f x0ð Þ2

h i
<0

as f xf
� �

< f x0ð Þ due to xf < x0 in a declining system. If the loop is part of a
more complex system where the stock may grow, _x >0, then expressing the
work done as a time integral WDxx Bð Þ¼�Ð tf

t0
f 0 xð Þ _x2dt shows the expression

is invariant under a sign change in _x, and thus remains negative.
A system with a single second-order balancing loop conserves energy regard-

less of the nonlinearity of the loop. Consider a systemwith a single second-order
loop: _x¼ f yð Þ, _y ¼ g xð Þ, where f ,g are monotonic functions. The Jacobian of
such a system has zero in its diagonals due to the absence of first-order loops.
Thus, the stability of the system depends solely on the determinant of the Jaco-
bian: �f 0 yð Þg0 xð Þ (Strogatz, 2018). In general, this gives either neutral stability
or instability, depending on the sign. Thus, the system cannot be stable, and
therefore no energy diffusion is possible with a second-order loop.

For a balancing loop, the two functions’ gradients will have opposing
signs, for example, f 0 yð Þ<0, g0 xð Þ>0. Thus, the determinant is positive, and
the system is neutral with energy conserved. Kinetic energy is exchanged
between the two stocks without gain or loss subject to a conserved invariant.
The powers of the two causal links can be placed in the same units using the
conversion factor j f 0 yð Þ=g0 xð Þ j on y’s power. Thus, a single power for a
second-order loop may always be found, whatever its nonlinearity, with a
unit transformation that gives the balancing loop zero power. However, it
will only be possible to harmonise the units of work done in a nonlinear
loop in a limited number of cases due to its integral definition.

For an example of a nonlinear second-order loop with an invariant consider
_x¼�by3, _y ¼ cx. The system has a single balancing loop with invariant

KEy �KEy0
¼�bc

4 2KEx

b2

� �2=3
þ bc

4 2KEx0

b2

� �2=3
. There is an equivalent relationship

between the work done on each stock: WDyx ¼4b1=2c�3=2WD3=2
xy , demonstrat-

ing the conserved flow of energy between each stock, though in a far from
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straightforward manner. Energy transfer is easier to demonstrate using the

link powers as Pyx ¼�3by2

c Pxy .

It is important to note that energy conservation is ensured only if the two
functions in the causal links remain monotonic. For example, the single loop
in _x¼�by2, _y ¼ cx is only balancing while y >0. Once y becomes negative,
the loop becomes reinforcing. The system is then unstable, energy is no lon-
ger conserved, and the kinetic energies of both stocks increase indefinitely.
For systems with a single balancing loop of order three or above, there is

always at least one positive eigenvalue, and such systems are unstable
(Mojtahedzadeh and Richardson, 1995). Therefore, in all loops of order higher
than two, energy is injected into the system in the long term. Thus, in a system
dynamics model, energy is only diffused through first-order balancing loops.
Their presence is essential if equilibrium or long-term control is required.

Appendix C: System equations

Limits to growth with harvesting

Let the variables in Figure 9 be represented by the symbols in Table 4. The
model equations are given by

dx
dt

¼ G�H G ¼ gcx c ¼ 1� f

f ¼ x
xm

H ¼ hx

Thus, the causally connected differential equation is given by

dx
dt

¼ gxG 1�
xfcG

xm

� �
�hxH (12)

where the underlined subscripts identify the causal pathways (Hayward and
Roach, 2017), all feedback loops in this case. The only stable equilibrium
is xeq ¼xm 1�h=gð Þ.

Table 4. Variables of the
limits to growth model Variable Symbol Variable Symbol

Population x Population capacity xm

growth G Growth rate g
harvesting H Harvesting rate h
Population fraction f Capacity effect on growth rate c
Time t
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The impacts for the forces associated with the loops are derived by path-
way differentiation on Eq. (12):

IxGx R1ð Þ¼ ∂ _x
∂x

����
G
¼ g 1� x

xm

� �
(13)

IxfcGx B1ð Þ¼ ∂ _x
∂x

����
fcG

¼� gx
xm

(14)

IxHx B2ð Þ¼ ∂ _x
∂x

����
H
¼�h (15)

where, for example, the pathway derivative is the partial derivative along
the specified pathway ∂ _x

∂x

��
G ¼ ∂ _x

∂xG
(Hayward and Roach, 2017, 2019). The

impacts, used to determine loop dominance, can also be estimated using the
numerical method of Hayward and Boswell (2014).

The work done by a first-order feedback loop is computed by integrating
the loop’s impact multiplied by the net flow squared (Eq. (7)). Although
work done can be estimated numerically, following Appendix A, in the
limits-to-growth model it can be computed analytically by changing the inte-
gration variable to x. For example:

WD B1ð Þ¼
ð tf

t0
IxfGx B1ð Þ _x2dt¼�

ðxf

x0

gx
xm

gx�g
x2

xm
�hx

� �
dx

Assuming x0 is small compared with the population capacity, the work done
by each of the two balancing loops becomes

WD B1ð Þ¼� 1
12

g2x2
m 1�h

g

� �4

WD B2ð Þ¼�1
6
ghx2

m 1�h
g

� �3

With some rearrangement, the shortfall from capacity of the equilibrium
population, xeq, is related to the ratio of the energy removed by the two
balancing loops:

xeq

xm
¼ 2

2þWD B2ð Þ
WD B1ð Þ

� �
showing that if more of the energy removed is taken by the harvesting loop
B2, the more the population falls short of capacity.
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Overshoot and collapse

Let the variables in Figures 1 and 19 be represented by the symbols in
Table 5. The model equations for model A (Figure 1) are given by

dD
dt

¼ B�E
dV
dt

¼ R�C

B ¼ bD E ¼ dD

R ¼ rVρe C ¼ caD

α ¼
V
Vh

1þ V
Vh

σ ¼ 1�α¼ 1

1þ V
Vh

ρe ¼ 1�ν2 ν ¼ ρ

ρm

ρ ¼ V
A

d ¼ dnþ dh�dnð Þσ

The actual death rate, d, and the density effect on vegetation, ρe, are often
modelled by graphical converters (Breierova, 1997). Here, both have been
replaced by continuous functions with similar behaviour patterns (Turchin,
2003, Ch. 4), to allow for smoother values of loop impact.
Thus, the causally connected differential equations are given by

dD
dt

¼ bDR1 � dnþdh�dn

1þVB3

Vh

0
@

1
ADB1 (16)

Table 5. Variables of the
overshoot and collapse
model

Variable Symbol Variable Symbol

Deer Population D Vegetation V
births B deaths E
regeneration R consumption C
birth fraction b normal death rate dn

vegetation for half availability Vh high death rate dh

normal vegetation consumed per deer cn death rate d
vegetation consumed per deer ca Area A
vegetation density ρ maximum vegetation density ρm
density effect on regeneration ρe normalised vegetation density ν
vegetation availability α vegetation scarcity σ
ideal regeneration fraction r Time t
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dV
dt

¼ rVR2 1� VB2

Aρm

� �2
" #

�caDB3 (17)

where, for brevity, pathways have been labelled by the feedback loop name
associated with the sequence of variables in the pathway.

The parameter values used for model A in Figures 2, 17 and 18a are:
D0 ¼50deer, V0 ¼65,000biomass, b¼0:5yr�1, dn ¼ 0:067yr�1, dh ¼4yr�1,
ca ¼6biomass deer�1 yr�1, r¼ 0:5yr�1, A¼1000km2, ρm ¼ 100 biomass
km�2, Vh ¼5000biomass.

For model B (Figures 18b and 20), the vegetation consumed per deer, ca, is
determined by vegetation availability α: ca ¼ cnα, where the normal vegeta-
tion consumed per deer cn ¼ 6biomass deer�1yr�1. Thus, the last term of Eq.
(17) is replaced by

�cn

VB4

Vh

1þVB4

Vh

0
@

1
ADB3

which ensures per capita consumption tends to zero as V ! 0. It follows that
vegetation cannot become zero in a finite time and the variables cycle rather
than collapse.

As with the limits-to-growth model, loop impacts and work done can be
computed analytically or numerically. The analytic computations are given
in the model simulation file.

Supporting information

Additional supporting information may be found in the online version of
this article at the publisher’s website.

Appendix S1: Supporting Information
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