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Abstract 

Gas Chromatography - Mass Spectrometry (GC-MS) has been used for a long time in fingerprint analysis. 

We present a workflow of univariate statistical treatment of compound by considering their type of 

response variables. Two data sources were used: (i) comparative data from two Brazilian Amazon soils, 

and (ii) the Nitrogen-dose response experiment involving two Ilex paraguariensis clones. During type of 

response variables selection, the following assumptions were tested: normality and homogeneity of 

variances. After defining a strategy to select the type of response variables, the compounds were 

classified according to the statistical test that must be used to evaluate them: analysis of variance 

(ANOVA, LM), generalized linear model (GLM), and a non-parametric (NP) test. The developed workflow 

allows individual compound and class comparisons, and a couple examples that illustrate a wider range 

of similar datasets are open to the readers to test either their own data or ours. 

 

Keywords analytical chemistry, biological markers, plant physiology, biogeochemistry. 

 

                  



Specifications Table 

Subject area Analytical chemistry 

Compounds  Analyte peak areas or heights of Gas Chromatography - Mass Spectrometry 
(GC-MS) fingerprint analysis 

Data category Numerical data matrices of semi-quantitative compounds 

Data acquisition format mass-to-charge features 

Data type Raw, filtered, and analyzed 

Procedure mass-to-charge aligned molecular feature intensities (height or area) were 
normalized to IS, and sample amount. Threshold were stablished according 
to percentage distribution. 

Data accessibility https://github.com/FAHansel/Stats_Fp_GC 

 

1. Rationale 

 

Gas Chromatography - Mass Spectrometry (GC-MS) has been used for long time as fingerprint analysis in 

many different fields of science, such as organic geochemistry and metabolomics [1,2,3–6]. In such 

profiling studies, information on most response variables in statistical terminology (i.e., a data item that 

can be measured or counted), or in the terminology of metabolomic analyses (i.e., a molecular features) 

is qualitative, e.g., present or absent, or a relative change compared to a reference condition [7]. As a 

routine, relative quantification (i.e. semi-quantification) of the variables is supported by addition of at 

least one internal standard (IS), such as an isotope-labelled or xenobiotic reference compound. Analyte 

peak areas or heights are normalised proportional to the IS and corrected for a measure of initial sample 

amount [5,8]. In the case of GC-MS profiling partially automated mass spectral deconvolution and 

matching software are key to the annotation task, such as AMDIS [9] or Tagfinder [10]. After annotation 

the semi- quantification and statistical analysis process can be carried out based on numerical data 

matrices of chromatographically and mass-to-charge aligned molecular features [8,10]. 

 

For screening and data reduction purposes multivariate analyses (MVAs), such as principal components 

analysis (PCA) and hierarchical cluster analyses (HCA), are frequently used to differentiate between 

groups of analysed samples in order to cluster groups of alike response variables according to a 

predefined similarity or dissimilarity metric. Such MVAs provide a rough overview of general sample 

distribution at the cost of data/variable reduction [11].  Univariate analyses of response variables and 

their distributions are an extension to MVA and allow class comparison, and may even be seen as the 

basic toolbox of data mining. 

 

Univariate statistics including t-tests and analyses of variance (ANOVA) for pairwise comparisons of  

control and treatment conditions, in combination with post-hoc and its non-parametric test (NP) versions 

are the most popular statistical methods for metabolomics and biomarkers analyses [11,12]. T-tests and 

ANOVA are used when the response variable has a normal distribution (LM). Modified non-parametric 

procedures (NP) are available for cases of with non-normal distributed response variables [13,14]. 

Interestingly, the generalized linear model (GLM) as an alternative to NP testing has been applied to GC-

MS data that are non-normally distributed [15]. 

 

                  



According to Vinaixa et al. (2012) [16] response variables, including GC-MS technology, may include both 

parametric (normally) and non-parametric (non-normally) variables. In this paper we propose a workflow 

or in other words a practical guide to the statistical treatment of single response variables using LM, 

GLM, or NP approaches. The statistical data analysis workflow is illustrated using two experiments that 

differ in nature and scope: (i) resulting from a biomarker analysis dataset of different soil aggregates 

from two amazonian soils macroaggregates and, (ii) a metabolome dataset of Ilex paraguariensis (“erva 

mate” plant) clones that were grown with five different levels of nitrogen (N) fertilization. 

 

2. Procedure 

 

2.1 Biomarkers in two amazonian soils macroaggregates 

 

2.1.1 Soil Samples 

The Amazonian Dark Earth (ADEs) soils are characterized by a high content of nutrients and organic 

matter [17]. The origin of the fertility ADE soils has been attributed in part to the incorporation of 

biochar into the mineral soil [18], and the bioturbation by ecosystem engineers (e.g. earthworms) that 

may play an important role in such incorporation [19]. Briefly, the experiment was conducted in order to 

understand the distinction of below ground behaviour of ecosystem engineers and their interactions with 

physical and root aggregates considering two contrasting amazonian soils, ADE and control soil. Soil 

samples were taken from ADE and a control soil (non-ADE adjacent soil) in the Brazilian Amazon Basin 

(Teotônio, Porto Velho). Five 10 x 10 cm blocks were collected from the 0-10 cm topsoil horizon in each 

soil using an X-shaped sampling design, with four samples in each corner (distant 60 m from each other) 

and one in the center. The soils at the site were classified as Pretic Clayic Anthrosol (ADE) and Xanthic 

Dystric Plinthosol (control soil) according to the World Resource Base/Food and Agriculture Organization 

classification [20, 21]. Each soil sample was divided into three aggregates fractions: (i) fauna-produced 

(n=10), physical (n=10) and, root (n=9), resulting in a total 20 ADE samples and 19 control soil samples 

[22]. 

 

2.1.2 Sample preparation, solvent extraction, and derivatization 

For the analysis, 2 g of each samples and 0.79 μg of 5α-cholestane (IS) was extracted with a solution of 

chloroform: methanol (2: 1 v / v, 5 mL, 3 x 15 min) in an ultrasound bath. Each extract was centrifuged 

for 10 min at 3000 rpm and the supernatants combined in a glass flask.  A rotary evaporator was used to 

remove the excess solvent, while the remaining solvent was dried with a micro-column with 2 g of 

anhydrous sodium sulfate, and the eluate transferred to a glass vial (2.0 mL). Nitrogen was used to 

remove the remaining solvent. The extracts were stored at -20 ° C until analysis on GC-MS. Dry samples 

were trimethylsilylated with 50 μL of BSTFA: TMCS (99: 1 v / v, 60°C, 2h), the excess of BSTFA was 

removed using a low flow of nitrogen, then 400 μL of hexane was added and vortexed for 30 s for GC-MS 

analysis. 

 

2.1.3 Gas chromatography – mass spectrometry 

                  



The samples were analyzed using  an Agilent Technologies GC (7890B) coupled to the MS from Agilent 

Technologies (5977A), with a PAL System (CombiPAL RSI model) autosampler, with splitless injection 

mode into a HP-5ms column , 30 m, 0.25 mm, 0.25 µm film thickness (J&W Ultra Inert column),  with the 

following oven program: 50 °C (3 min), heating rate at 10 °C min−1 to 300 °C (3 min), and the injector 

temperature at 280 °C. Helium was used as the carrier gas (1.0 ml min−1). The GC–MS interface and the 

ion source temperatures were 300 °C and 200 °C, respectively. The mass spectrometer was operated in 

the positive electronic mode at 70 eV with the range of 50–650 Da. The program used for CG-MS data 

analysis was the MassHunter (version B.07.00.1413), while the semi-quantification was performed using 

MSD ChemStation (version E.02.02.1431), both of Agilent Technologies. The mass spectral deconvolution 

and the automated calculation of retention indices (RI) were performed using AMDIS (v. 2.72 build 

140.24, NIST / DTRA / OPCW). Compounds were identified from deconvoluted mass spectra in 

comparison to mass spectra and RI provide by the NIST MS software (version 2.2). Guidelines for 

manually supervised analyte identification were the presence of at least three specific mass fragments 

per compound and a RI deviation of less than 1.5% [23]. Analytes intensities were normalized to IS peak 

area, and dried soil sample weights. 

 

2.2 Nitrogen nutrition Ilex experiment 

 

2.2.1 Biological material, plant nutrition, and harvesting 

Ilex paraguariensis A. St.Hill. (“erva mate”) leaf tissue has been outstanding as raw material in different 

sectors, due to the production of bioactive compounds [24–26]. Comparing different genotypes to 

evaluate the distribution of bioactive substances in relation to their nutrition is an important factor to 

support the breeding programs [27–29]. Thus, the changes in plant metabolite levels were evaluated in 

relation to N nutrition level of Ilex paraguariensis [30]. Epicormic shoots were collected and rooted from 

two 10-year-old mother plants from Ivaí-PR-Brazil (genotypes EC22 and EC40) [31]. The cuttings were 

established as stumps after ca. 120 days with 15 cm height, and maintained in a semi-hydroponics 

system in a non-acclimatized greenhouse. Five biological replicate samples of each clone (EC22 and 

EC40) were fertilized with five concentrations of inorganic N (NH4+ + NO3-) 114, 206, 380, 761, and 1142 

mg L-1. The metabolite analysis of mature leaves was performed after 8 months of plant establishment. 

 

2.2.2 Sample preparation, solvent extraction, and derivatization 

The extraction and profile analysis of metabolites were performed as previously described [35]. In detail, 

the extraction was carried out at 450 rpm for 15 min at 70 ° C, with 20 mg (± 5 mg) of fresh frozen and 

ground vegetable material and 300 μL of pre-cooled methanol, previously transferred to a 

microcentrifuge tube of 2 mL and vortexed and enriched with 30 μL of 13C6-sorbitol (IS, 0.2 mg mL-1 in 

methanol) and 30 μL of n-nonadecanoic acid, extraction control (2 mg mL-1 in chloroform). The samples 

were then cooled to room temperature and 200 μL of chloroform added. The solution was vortexed and 

then heated again in the thermomixer at 450 rpm for 5 min at 37 ° C, 400 μL of ultrapure water was 

added and the tubes were vortexed for 20 seconds and centrifuged for 7 min at 12,000 rpm. Two 160 μL 

aliquots of the polar phase were transferred to two 1.5 ml conical microcentrifuge tubes (that is, one 

aliquot for each tube), and the extracts were vacuum dried. Methoximation was performed in a 

thermomixer at 950 rpm for 90 min at 30 ° C, adding 40 μL of solution containing 4- (dimethylamino) -

                  



pyridine (5 mg) and methoxyamine hydrochloride (40 mg) in pyridine (1 ml) to the dry extract. 

Trimethylsilylation was achieved by adding 70 μL of BSTFA, vortexing and incubating at 37 ° C in a 

thermomixer at 950 rpm for 30 min. Soon after, the eppendorf tubes were centrifuged at 14000 rpm for 

5 min and an 80 μL aliquot was transferred to a conical bottom vial and the sample was analyzed by GC- 

TOF/MS. 

 

2.2.3 Gas chromatography – mass spectrometry 

The profiling of polar metabolite by GC-TOF/MS was performed by an 6890N24 gas chromatograph 

(Agilent Technologies, Germany), with splitless injection onto a capillary column VF-5 MS, 30 m, 0.25 

mm, 0.25 µm film thickness (Agilent Technologies, Santa Clara, CA, USA), connected to a Pegasus III TOF 

(LECO Instrumente GmbH, Mönchengladbach, Germany), with the following oven program: 70 °C (1 min), 

heating rate at 9 °C min−1 to 350 °C (5 min) ), and the injector temperature at 230 °C. Helium was used as 

the carrier gas (0.6 ml min−1). The GC–MS interface and the ion source temperatures were 250 °C and 

200 °C, respectively. The mass spectrometer was operated in the positive electronic mode at 70 eV, with 

the range of 70–600 Da. Chromatograms were acquired, visually controlled, baseline corrected and 

exported in NetCDF file format using ChromaTOF (v. 4.22; LECO, St. Joseph, USA). Compounds were 

identified by mass spectral and RI matching to the reference collection of the Golm Metabolome 

Database (GMD [32,33]) under manual supervision using TagFinder software [10]. Guidelines for 

manually supervised metabolite identification were as described above [23]. Metabolite intensities were 

normalized to IS peak height, and sample fresh weight. 

 

2.3 Interaction experiments and data treatment 

 Interaction experiments were considered to assess the relationship between two independent variables 

(factors - F) whereby the magnitude of one variable moderates the effect of the other. The workflow for 

univariate statistical data treatment was illustrated in two data sources that include interaction 

experiments: (i) the comparative data from the Brazilian Amazon, including two soil types (F1; i.e., ADE 

and control) and three types of aggregates (F2; i.e., fauna-produced, roots and physical), and (ii) the N-

dose response experiment involving two Ilex clones (F1; EC22 and EC40) and five inorganic N doses (F2) 

(dataset in https://github.com/FAHansel/Stats_Fp_GC). Compounds at concentration higher than of 

0.1% in soil aggregates, and 0.01% in N nutrition in the replicates were included in the quantification 

analyses.  The data were pre-processed following the guide of Yang et al., 2015 [34] and Wei et al., 2018 

[35].  

 

The variables were statistically tested using R and Rstudio (Version 1.1.453 – © 2009-2018 RStudio, Inc.). 

The packages used were stats [36], xlsx [37], multcomp [38], lattice [39], agricolae [40], hnp [41], ExpDes 

[42], effects [43] and, imputeMissings [44]. Variables with normal distributions were analysed using 

ANOVA with F-test (p> 0.05), and in the sequence GLM with a CHISQ test (p <0.05) were applied. During 

selection of the GLM distribution model, the shapes of the response variable distributions were plotted 

(i.e., kurtosis and square of skewness) for both data sources (i.e., the comparative and dose dependent 

experiments). Simultaneously, several random vectors with specific distributions (i.e. normal, logis, beta 

and gamma) were constructed and the same parameters were plotted in lines to see how the 

observations approximate the model distributions (Fig 1, R function in 

                  



https://github.com/MSeidelFed/RandodiStats). The parameterizing of the response variables with the 

link function negative inverse (µ = -(Xβ)-1) of the gamma or beta family in the GLM appeared to be the 

best mathematical decision. Therefore, in this study the GLM gamma family was used in the exemplified 

variables, and if the response variables differed from a gamma distribution needed a NP treatment, and 

hence were analysed using the Kruskal-Wallis test (dataset in 

https://github.com/FAHansel/Stats_Fp_GC). The post-hoc tests adopted the critical probability value of 

5% for statistical significance, and regression analyses were tested using 1st, 2nd, and 3rd order 

equations, using excel® to plot the equations provided by R software. 

 

3. Data, value and validation 

 

In all univariate statistical tests the three assumptions must be satisfied to apply parametric tests (e.g. 

analysis of variance (ANOVA)): normality, homogeneity of variances (homoscedasticity) and 

independence assumptions (often addressed during study design) [12], and if not satisfied nonparametric 

tests (NP) may be applied (e.g. Kruskal-Wallis test). However, considering that parametric tests are more 

powerful than NP tests [16], before the use of Kruskal–Wallis test, we tried to satisfy variable normality 

and homogeneity of variances assumptions by parametrizing the mean and variances using GLM with 

gamma distribution [15]. 

Thus, it is important to define a strategy to select how well the response values of a given variable fit an 

expected/assumed analytical non-systematic error distribution, and for such purpose the four residual 

plots provided by R software were used (Fig. 2) [36]. Residuals vs fitted plots are used to verify the 

distribution of the residuals and indicate if they are randomly distributed  around zero (with no obvious 

patterns), further indicating the homoscedasticity (Fig. 2A). In the case of n-eicosanoic acid, a conical 

pattern of the residuals was detected confirming the lack of homoscedasticity (Fig. 2G). The residuals 

that follow a straight line as in the case of the shikimic acid, quantile-quantile plot (normal Q-Q plot; Fig. 

2B) indicate normal distribution, contrasting with the Q-Q plot for 2-hydroxy-glutaric acid, that has 

residual values moving off the line considerably, resembling an outlier behaviour (Fig. 2E). A half normal 

plot with simulation envelopes is an alternative plot to check if the residual are normally distributed: if a 

large number of residuals are off the two solid lines, it indicates that they do not follow a normal 

distribution (Fig. 2F).  A scale-location plot is a classical plot to test the assumption homoscedasticity, 

and residuals with equal variance are distributed along the horizontal line without significant distortion 

(Fig. 2C). An example for data with lack of homoscedasticity (heteroscedasticity) in the scale location plot 

is depicted for n-eicosanoic acid (Fig. 2H). The residual vs. leverage plot is used to find influential cases in 

the dataset, and their inclusion or exclusion should be considered in the analysis. A sample with high 

residuals and low leverage does not fit the model well. The third case is a sample with high residual and 

leverage and represents most likely a true outlier; it appears inside the line that indicates the Cook’s 

distance, and its exclusion from the analysis must be considered. Figure 2D shows that all samples fit the 

model well, thus that no outlier was detected during analysis of shikimic acid. 

Compounds can be classified in three types of response variables according to the statistical test that 

must be used to evaluate them: LM, GLM and NP (Fig. 3A). Three types of response variables may be 

                  



observed in GC-MS fingerprint univariate statistical analysis with different proportions (Fig. 3A). The flow 

diagram for univariate statistical data treatment using is summarized in Fig. 3B. In the first step the 

normality assumption was evaluated using a Shapiro-Wilk test. Secondly, for each dataset it was always 

necessary to evaluate the four residual plots to assess normality, heteroscedasticity, and outliers. This 

prompted the decision of whether to use parametric (LM or GLM) or NP tests, and to follow the same 

approach throughout the rest of the data analysis procedure. It is worth mentioning that NP methods 

were not used to analyse interaction between factors [45]; rather during the evaluation of NP type 

response variables the main effects (F1 and F2) were analysed separately, and if differences occurred in 

both (p<0.05) the tests were further dissected into the levels. 

Results of comparative experiment (Amazonian soils x aggregates) are showed in the Table 1 and Figure 

4. Seven compounds were exemplified: two with interaction (F1 x F2), two only aggregates were 

significant (F2), three with only soils were different (F1). The NP and GLM response variables were 

depicted. 

 The compounds regression curves of N-dose fertilization study are depicted in figure 5, two with 

interaction (F1 x F2) and two dose dependent (F2) and include both LM and GLM type of response 

variables. Ilex clones should be compared when only the F1 main effect is significant. Tyramine (GLM) 

and myo-inositol (LM) showed an interaction effect, and in the clone EC40 a linear regression curve fitted 

both compounds (Fig. 5 A,B). For tyramine a third order regression curve fitted data of the clone EC22 

(Fig. 5A). For the compounds shikimic and succinic acids, no difference was detected between the clones; 

only the N doses were significant, so that mean values of the clones were plotted against the N doses 

(Fig. 5C,D). Shikimic acid distribution followed a second order curve (Fig. 5C), similar to that of tyramine 

in the clone EC22 (Fig. 5A). A linear increase on succinic acid with increase of N fertilization was observed 

(Fig. 5D). 

 

4. Conclusion 

A simple guideline for univariate statistical treatment of GC-MS fingerprint analyses is reported. The 

process of data analysis is applicable to comparative and dose dependent study designs. The criterion 

comprises a defined strategy to select and guide the statistical treatment according to the nature of the 

response variables that are evaluated by LM, GLM or NP statistical tests. The addition of GLM represent 

a gain to the statistical analysis of data, mainly in respect to the dose dependent experiment in which the 

number of NP type of response variables limits the number of regression curves. The developed workflow 

allows chemical classes and individual variables comparisons, and it can be considered as an essential 

and basic toolbox for data mining. In order to facilitate and standardize the criterion application all 

statistical analyses should be carried out using R free software. 
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Figure captions 

 
Figure 1. Random response variables with specific distribution shapes, as determined by kurtosis and 

square of skewness parameters, were used to determine the regression family model for a GLM 

evaluating both N dose response (A, n=7617) and comparative Amazonian soils (B, n=3393) datasets.  

Kurtosis was plotted in the ordinates and square of skewness in the abscissa and the random vectors 

with specific distributions (i.e. normal, logis, beta and gamma) were simplified by average-linearization 

and plotted in the curves. The R function used to build the distributions is reported in RandodiStats 

GitHub repository (https://github.com/MSeidelFed/RandodiStats).  

                  



 
Figure 2. Diagnostic plots; residual vs fitted (A), quantile-quantile (B), scale-location (C), residual vs 

leverage (D) quantile-quantile (E), and half-normal plot with simulation envelopes (F) residual vs fitted 

(G), and scale-location (H). Featuring shikimic acid (C17) (A-D) plots that fulfils the underlying 

                  



assumptions for GLM evaluation with a gamma family distribution. Secondly, 2-hydroxy-glutamic acid 

(C8) (E-F) plots that shown a violation of the assumption of normal distribution of the residuals and 

hence must be evaluated with a non-parametric test (NP). The last ones, eicosanoic acid (C15) (G-H) 

plots indicating that the variable should be treated as NP since the residual violates the assumption of 

homoscedasticity of variance across experimental conditions. Numbers in the plots indicate the extreme 

variables in the model, according to variable position in dataset (row number).  Dotted lines indicates 

the ideal distribution of the residues, and solid line show the real distribution of the residues. 

 
Figure 3. Histogram of the types of response variables (i.e. LM, GLM and, NP) counted in the 

comparative (Amazonian soils) and the N-dose fertilizer datasets (A). Flowchart showing how to select 

response variable to be used in the statistical analysis (B). The R scripts used are reported in 

Stats_Fp_GC GitHub repository (https://github.com/FAHansel/Stats_Fp_GC). 

                  



 
Figure 4. Histograms of selected GLM response variable compound exemplifying the results of the 

comparative study of Amazonian soils (ADE and control) and aggregates (root, physical and fauna-

produced), comparing all samples (A), and analysing the main effects (F1 and F2) separately with 

comparisons within the levels (B). According to the Tukey contrasts (p<0.05), mean values followed by 

the same letter do not differ statistically, in B plot capital letters refer to F1 (soil, ADE x control) 

comparison and, lowercase letters are associated to F2 (aggregates root x physical x fauna-produced) 

comparison in F1 separately (ADE or control). Interestingly, for ADE soils, no differences was detected in 

the aggregates (A), but when the main effects were analysed separately (soil and aggregates), and the 

comparison was made between soils and between aggregates in the same soil a differences was 

observed in the ADE soil aggregates (B). 

                  



 
Figure 5. Regression curves (dot lines) and mean values (symbols) of selected compounds exemplifying 

the Ilex N-fertilizer dose study using interaction statistic treatment (F1 (clones x F2 (N-dose). GLM and 

LM response variables with interaction (F1xF2, A and B) with both clones plotted separately, and no-

interaction (only F2 significant, C and D) with the mean values of both clones considered. Cx refers to 

the compound abbreviations used in R software. 

 

  

                  



Table 1. Selected compounds exemplifying the results
a
 of the Amazonian soils comparative dataset using 

interaction statistic treatment. 
        F2     

    
Root Physical 

Fauna-
produced   

Compound 
R 

codeb 
Response 
variablec 

F1 µg g-1 
Main 
effect 

Significance
d 

n-eicosanoic acid C15 NP - 17.2 ± 7.6a 8.1 ± 2.3b 8.6 ± 6.9b F2 ** 

n-docosanol C51 NP 
ADE 16.3 ± 7.8Aa 5.6 ± 3.3Bb 4.1 ± 0.7Bb 

F1 & F2 
** 

contro
l 

24.3 ± 5.9Aa 
34.0 ± 
15.6Aa 

9.4 ± 2.8Ab * 

n-hexadecanol C53 GLM 
ADE 14.1 ± 7.3ab 3.8 ± 2.2b 3.8 ± 2.3b 

F1xF2 * contro
l 

20.7 ± 
16.8a 

18.7 ± 12.5a 3.1 ± 1.8b 

Compound R code Response variable F1 
Soils (µg g-

1) 
        

phosphoric acid C5 NP 
ADE 9.5 ±  5.9A - - 

F1 *** contro
l 

0.8 ± 0.0B - - 

hexadec-9-enoic 
acid 

C8 GLM 
ADE 

90.2 ± 
68.8A - 

- 
F1 ** 

contro
l 

40.8 ± 
30.1B 

- - 

n-docosanoic acid C13 GLM 

ADE 8.8 ± 6.7B    - - 

F1 * contro
l 

16.3  ± 9.3A 
- 

- 

According to the post hoc tests, mean values followed by the same letter do not 
differ statistically, capital and lowercase letter refer to F1 (ADE x control, 
column) and, F2 (root x physical x fauna-produced, row) comparisons, 
respectively; a: the raw data were used for statistical treatment, in case of 
transformed data (e.g. log10) the same criteria presented in figure 2 must be 
followed after transformation; b: compound abbreviations used in R software; c: 
NP – non-parametric, GLM – general linear model, the response variable with 
normal distribution (LM) did not result in statistical differences; d: significance 
levels in the statistical analyses: *p < 0.05, **p < 0.01, ***p < 0.001. 
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