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Abstract

In this paper, the design problem of recursive state estimator is discussed for a class of coupled nonlinear dynamical networks
with randomly switching topologies and multiple missing measurements under the event-triggered mechanism. A sequence of
random variables obeying the Bernoulli distribution with certain occurrence probabilities is adopted to model the multiple
missing measurements and the random change manners of the network topologies. The event-based communication protocol
is introduced to adjust the transmission frequency, thereby improving the energy utilization efficiencies of the communication
networks. The objective of the addressed variance-constrained estimation problem is to construct a recursive state estimator
such that, in the simultaneous presence of event-based transmission strategy, randomly switching topologies as well as multiple
missing measurements, a locally optimal upper bound is guaranteed on the estimation error covariance by properly determining
the estimator gain, where the desired estimator gain matrix is formulated via the solutions to certain recursive matrix equations.
Besides, theoretical analysis is conducted on the monotonicity regarding the missing probabilities of degraded measurements and
the obtained upper bound matrix. Finally, some simulations with comparisons are carried out to demonstrate the effectiveness
and feasibility of proposed event-triggered state estimation method.
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1 Introduction

During the past few decades, particular research atten-
tion has been paid to the dynamics analysis issues of
complex networks due to their widespread applications
in a variety of domains such as sensor networks, social
networks, electric power grids and so on [9,15,40]. So
far, a number of efficient methods have been available
to address the stability, synchronization, consensus and
estimation problems for complex dynamical network-
s [3,19,32,43]. Accordingly, several effective estimation
strategies under different requirements/constraints have
been developed to provide the desired estimation for the
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node states of complex dynamical networks [1,5,20]. For
example, the finite-horizon state estimation scheme with
satisfactory Ho, performance has been given in [32] for
time-varying uncertain dynamical networks by employ-
ing the recursive matrix inequality method, where the
effects from nonlinear disturbances and degraded mea-
surements have been examined simultaneously.

Owing to the possibly harsh network environments and
severe interferences from other external factors, it is of
vital significance to discuss the dynamical topologies
structures when analyzing the behaviors of the com-
plex networks [7,25,30,37|. In fact, the issue of dynam-
ically changing topology has recently received some ini-
tial research interest from the complex network com-
munity. For instance, in [25], the H., state estimation
scheme has been proposed for a class of nonlinear time-
invariant dynamical networks subject to uncertain cou-
pling strength and incomplete observations. In addition,
the non-fragile Ho, quantized estimation method has
been developed in [37] for nonlinear dynamical network-
s subject to switching topologies and missing measure-
ments, where the switching manner of the communica-
tion topology in the coupled configuration matrix has
been characterized by the Markov chain. Regarding the
time-varying case, in [19], the random coupling strength
depicted by some variables obeying the uniform distri-
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bution has been examined and a recursive estimation ap-
proach of time-varying feature has been proposed. Very
recently, a new state estimation algorithm has been de-
veloped in [7] for nonlinear time-varying dynamical net-
works in the presence of randomly varying topologies
characterized by the Markovian jumping parameters and
Kronecker delta function, where both the upper-bound
variance constraint and H., performance requiremen-
t can be achieved simultaneously if some recursive ma-
trix equalities are solvable. So far, it should be point-
ed out that few methods can be available to deal with
the stochastic fluctuations induced by the dynamical-
ly changing topologies, which deserves further investi-
gation in order to better understand and analyze the s-
patial evolution behaviours of addressed dynamical net-
works.

As is well known, in a networked infrastructure, the
phenomenon of missing measurements is unavoidable
and, if not adequately handled, would seriously degrade
or even invalidate the corresponding estimation/control
performance [11,12,39]. As such, quite a few method-
ologies have been proposed in the literature to tackle
the missing/degraded measurements [29, 33]. When it
comes to the state estimation, in order to improve the
algorithm performance, it is imperative to compensate
the effects from the phenomenon of missing measure-
ments during the course of estimator design for com-
plex dynamical systems. So far, a rich body of literature
has been available with a focus on the investigation of
missing-measurement-induced effects on the state esti-
mation performance [2,4,28,41]. To mention just a few,
in [21], the distributed state estimation strategy has been
developed for sensor networks subject to missing mea-
surements and randomly varying nonlinearities. In [22], a
robust state estimation algorithm has been proposed for
two-dimensional delayed stochastic systems with miss-
ing and saturated measurements. Nevertheless, it should
be noticed that the recursive state estimation problems
have not yet gained adequate research attention for dy-
namical networks catering for the time-varying circum-
stances [7,41]. Very recently, a new recursive method
has been given in [10] to deal with the state estimation
problem under the variance-constraint for time-varying
nonlinear dynamical networks subject to missing mea-
surements. In contrast to the existing results, we aim to
extend the proposed recursive state estimation method
to examine the impacts from multiple missing measure-
ments, where each sensor could have individual missing
probability, with hope to better reflect the engineering
practice.

On another research frontier, it is worth noting that
neither the transmission capacities of the communi-
cation channels nor the data processing capability of
the devices/components are unlimited [8, 31, 42]. Con-
sequently, the event-based communication mechanism
has aroused initial yet prevailing research attention due
to its advantage in reducing unnecessary data trans-
missions and saving limited network resources [34]. In
general, an event-based communication protocol pro-
vides certain communication criterion by means of the
pre-defined threshold so as to adjust the transmission
frequencies [18]. So far, many event-triggered conditions
have been utilized in the literature and much work has
been done on the event-based state estimation problem,

see e.g. [13,23,27]. For example, an efficient steady-
state Kalman estimation approach based on the event-
triggered mechanism has been given in [18] for linear
time-invariant stochastic systems subject to unknown
inputs, where the increment of innovation vectors with
pre-defined threshold has been employed to determine
the transmission frequencies. In [13, 14], new remote
state estimation algorithms have been developed for lin-
ear systems under stochastic event-triggered conditions.
Besides, efficient optimal estimation approaches under
two-point event-triggered scheme have been presented
in [24,26] for linear stochastic systems subject to hybrid
measurements. Based on the differences with regard to
the absolute error of measurements, the event-triggered
estimation strategy under different performance indices
have been presented in [18,36] for nonlinear dynamical
systems. Recently, in [31], the event-triggered state es-
timation algorithm via the argumentation method has
been presented for time-invariant nonlinear dynami-
cal networks with stochastic disturbances and mixed
time-delays. However, the event-triggered recursive s-
tate estimation problem under variance-constraint has
not been thoroughly addressed for time-varying com-
plex dynamical networks, not to mention the situation
where the addressed dynamical networks are subject
to randomly switching topologies and multiple missing
measurements simultaneously.

In light of the above discussions, in this paper, we en-
deavor to develop an event-based state estimation ap-
proach for coupled nonlinear dynamical networks in the
presence of randomly switching topologies and multiple
missing measurements. Here, we make one of the first few
attempts to examine how the multiple missing measure-
ments, randomly switching topologies as well as event-
triggered protocol affect the overall estimation perfor-
mance. Compared with the existing methods, the ma-
jor difficulties encountered are: i) How to better under-
stand and appropriately characterize the behaviours of
the randomly switching topologies? ii) How to reflect the
impacts caused by randomly switching topologies, mul-
tiple missing measurements and event-triggered commu-
nication strategy comprehensively and present an effi-
cient estimation scheme accordingly? iii) How to show
the decreasing characteristic of the estimation accuracy
regarding the degraded measurements from the theoret-
ical viewpoint? Hence, our main objective is to design a
new state estimation scheme that recursively computes
a certain locally optimized upper bound on the estima-
tion error covariance and then analytically provide the
estimator gain by solving some matrix difference equa-
tions. The major contributions can be summarized as
follows: 1) the design problem of event-triggered state
estimator under variance constraint is addressed, for the
first time, for a class of nonlinear time-varying stochas-
tic dynamical networks subject to randomly switching
topologies and multiple missing measurements; 2) the
expression of the desired time-varying estimator gain is
characterized by seeking a certain upper bound of the
error covariance and minimizing such an upper bound
recursively; 3) the rigorously theoretical analysis is con-
ducted with regard to the monotonicity of proposed es-
timation method; and 4) a new event-triggered estima-
tion algorithm is proposed and outlined, which has a
recursive way applicable for online implementations. Fi-
nally, some comparative simulations are carried out to



demonstrate the validity of new event-based estimation
approach presented in the paper.

Notations. The notations are generally standard in this
paper. The set of n x m matrices is described by R™*".
The n-dimensional Euclidean space is denoted by R™.
Q7 and Q7! represent the transpose and the inverse
of Q, respectively. U > 0 means that the matrix U is
symmetric and positive-definite. I is an identity matrix
of appropriate dimension. o stands for the Hadamard
product. E{y} is the expectation of the random variable
y. Besides, if the dimensions of involved matrices are
unknown, these matrices are supposed to be compatible
for algebraic calculations.

2 Statement of The Problem

Consider the following class of discrete-time nonlinear
coupled dynamical networks with randomly switching
topologies and multiple missing measurements:
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where z; , € R™ represents the system state of the i-th

node to foe estimated with initial value z; o, y; , € R™
stands for the measurement output of the i-th node,

w@ = {wgl.)} and W® = {w@)} are the
NXxN NXN

ij
coupling strength matrices with wS ) and wl(f) (i #79)
being not all zero, and T' = diag{ry,rs, - ,r,} is a
known inner-coupling matrix. f(x;y) is a continuous-
ly differentiable nonlinear function. §; , € R is a zero-

mean white noise sequence with variance E{¢?,} = 1,

w;r € RP represents the process noise with mean 0
and covariance W; ;. v; 1, € R™ denotes the zero-mean
measurement noise with covariance V;j > 0. 1I;, =

dlag{ﬂl W T 22,3, e ,77533)} with wz(l,)c (l=12---,m) be_—
ing the Bernoulli distributed random variables. B; j, I'
and C; j, are known coeflicient matrices.

The phenomena of randomly switching topologies
and multiple missing measurements are modelled by

Bernoulli distributed variables «; x € R and ﬂgl; eR
satisfying

Prob{ai)k = 1} = E{ai7k} = Q k, (3)

l l _(l

Prob{n) = 1} =E{n{}} = 7"}, (4)
where &; 1, € [0,1] and 7 _(l) € [0,1] are known constants.
In what follows suppose that Ok, Wiks &ik Viks Ti0
and Wfl,)c (l=1,2,-
Remark 1 In (1), the stochastic inner-coupling phe-
nomenon is considered, where the matrices I', I' and the

m) are mutually independent.

white noise &; 1, are employed to model this phenomenon.
In particular, the scalars r; (i = 1,2,--+ ,N) stand for
the inmer coupling strength of node states. It is worth-
while to mention that the coupling strengths among the
node elements could be different iof ; # r;. Moreover,
the stochastic inner-coupling modelling errors are char-
acterized by utilizing I' and &; ,, which could raise more
flexibility on the mathematical modelling of dynamical
networks.

In the sequel, the event-based communication mechanis-
m is employed to save limited network resources and re-
duce the power consumption. Specifically, the following
signal transmission strategy is employed:

(yi,k+s - yi,km)T(yi,k—i-s - yi,km) > 0y, (5)
where d; > 0 is the triggered threshold, y; 1+s and y; k.,
represent the current measurement output and the latest
transmitted measurement, respectively. For the event-
triggered time k,, with kg = 0, the transmitted signal

can be denoted as follows:
gi,k = Yikpm > k € {kma km + 17 e akYrL-‘rl - 1}

For the i-th node, the following recursive state estimator
based on the available measurements is constructed:
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where Z; x4 1% and Z; p11jx41 stand for the prediction
estimation and state estimation of z;j respective-

ly, i1 = E{llig41} = dlatg{wl(lk)7 52]37 —(m)}

with 77() being the mathematical expectation of 7r(l)

(= 1,2, m), and K; p4+1 represents the deslred
state estimator parameter matrix to be determined.
Let the prediction error and estimation error be de-
noted by €; k+11k = Tik+1 — Ligt1k and € g1jkt1 =
Tik+1 — Tiks1k+1, respectively. Moreover, let the
prediction error covariance matrix be X;piin =
T . . .
]E{ei,k+1‘kei7k+1|k} and the estimation error covariance

matrix be X; p1jk41 = E{ei7k+1|k+1efk+1|k+l}, respec-
tively. In the following, we aim to construct a variance-
constrained estimator of recursive form (6) and (7) such
that: 1) there exists an upper bound covariance matrix
Xi kt+1jk+1 Of Xi py1)h41; and 2) such an upper bound
covariance matrix X 4 1|x41 is minimized by choosing
the estimator parameter matrix K; 41 properly. In ad-
dition, we aim to illustrate the monotonicity regarding
the occurrence probabilities of missing measurements
as well as the optimized upper bound.

Remark 2 The time-varying estimator (6) and (7) pos-
sesses the following features and advantages: a) the de-



signed state estimator includes the prediction and inno-
vation updating steps, which has certain error correction
ability; b) the dimension of new state estimator is con-
sistent with the one of original node state; ¢) the con-
structed state estimator is in a distributed way without u-
tilizing the state augmentation method, thereby avoiding
the issue of computational burdens; d) the available in-
formation of randomly switching topologies and multiple
missing measurements is employed during the estimator
design, hence those induced effects will be well examined
in the presented estimation algorithm; and e) the time-
varying characteristic is well reflected in (6) and (7),
therefore the new recursive estimation scheme designed
later is applicable for online implementations.

3 Design of Estimation Algorithm

In this section, the covariance matrices of prediction er-
ror and estimation error are firstly calculated based on
corresponding definitions. Next, the recursion equation
of an optimal upper bound on the estimation error co-
variance matrix is established and the state estimator
gain is appropriately determined to optimize the trace

of X; kt1jkr1-
To begin with, we calculate the prediction error e; j |-
Subtracting (6) from (1) leads to
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where &; ) = a; — @k For the nonhnearlty [z k)
taking the Taylor series expansion around Z; z|x as in

[38], we obtain

f@ir) = f(@ige) + Asreirr + olle k), 9)

where A; ;, = 0f(xi)/0%ik i p=q - 1t follows from
[38] that the resultant high-order term is approximately
estimated, which takes the following form

o(lei wikl) = FikSikLi ke gk (10)

where L; . is utilized to adjust the freedom degree so as
to tune the state estimator, F;j is a known problem-
dependent matrix, and the unknown time-varying ma-
trix 35 is adopted to describe the linearization errors

satisfying S x ST, < I.
Substituting (9) and (10) into (8), we know that
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Next, the zero term K; p41¥i k+1 — Ki k+1Yi k+1 is added
to the right-hand side of equation (7) and then the esti-
mation error can be described by:

Citifk1 = (I = Ki g1 1l k1G5 g1 € k1)
—Ki k4111 5 +1C5 k4124 k41

—KCi k1 (i k1 — Yisk+1)
— K ke 1V ot 1, (12)

where f[i’k-+1 =1L py1 — ﬂi7k+1. Here, it is easy to know
that E{ﬁi,k+1} =0.

To facilitate the subsequent theoretical developments,
the following Lemmas are introduced.

Lemma 1 [85] For given matrices A, H, E and M
satisfying MMT < I,ifU > 0 and T > 0 satisfy 7711 —
EUET >0, then

(A+ HME)U(A+ HME)T
<AU ' —7ETE)'AT 4 7 'HHT,

Lemma 2 [16] Let A = [aij]nxn be a real-value matriz
and D = diag{dy,ds, - ,d,} denotes a stochastic ma-
trix. Then, the following equation holds:

E{d}} E{dids} --- E{did,}
2 .
E{DADT}= E{d?dl} E%} _ ]E{d?dn} oA,
E{d;dl} E{d;dz} E{;l%}

where o represents the Hadamard product with [Jo L);; =
Now, based on the definitions of the covariance matrices
of prediction error and state estimation error, we aim
to obtain the recursion equation of upper bound on the
estimation error covariance matrix.

Theorem 1 Consider the nonlinear time-varying cou-
pled complex dynamical networks (1)-(2) with the recur-
sive estimator given by (6)-(7). The prediction error co-
variance matriz X; pqx 95 described by:

Xi kt1lk

N
- —— ] T T
=T E E wwwlsE{eLers,klk}F
j: s=1

N N
Z Z ]- — k)wmwst{xj kL k}r



(1)

s
M-
Pglz

<
Il
—
w
Il
-

M=
(=1

IE{:E kT, k}FT

+I (1-—a k)w( w ]E{m] kT, rarT

<.
Il
-
Il
-

S

+(Ai g + Fi S o Lie) X e (Aip + Fy oSk Lik) "

+B; ;Wi B, + 94 + 07,
where
WGij = ay, kW( b - @i,wwﬁ), Wij = Wz(;) - ‘*’z(?)’
N
N =T Z CvijE{ej7k|kez:k|k}(Ai,k + Fi,k%i,kLi,k)T'
j=1

(13)

Proof: In terms of the covariance definition of prediction

error, we have
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Recalling the

independence property of all involved ran-

dom variables and together with E{&; 1} = 0, E{&; »} =

0 and E{w;

} =0, it is easy to see that 91, = 0 (i =

2,--+,10) and the proof is then complete.

Theorem 2
networks (1)-

Consider the nonlinear coupled dynamical
(2) with the recursive estimator given by

(6)-(7). The recursive equation of estimation error co-
variance matriz X; 1|x41 1s described as follows:
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My = (I — Ki g1 1L k4 1Cipr1 )EL €4 o1 5 o
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Similarly, it is readily known that 9%, = 0 (¢ = 4,5, 6)
and (14) holds. Then, the proof is complete.

Remark 3 So far, the covariance matrices of prediction
error and estimation error are given in Theorem 1 and
Theorem 2, respectively. Generally, it is expected to min-
imaze the estimation error covariance and design the es-
timator parameter matric K; 41 simultaneously, there-
by presenting a globally optimal solution. Unfortunately,
it 1is extremely difficult to obtain the accurate values of
X,»7k+1|k and Xi7k+1|k+1 because of some unknown terms
in (13)-(14), which are induced by the random changes
of the network topologies, the event-based communica-
tion protocol and the linearization errors. In the sequel,
a local optimization approach is proposed to obtain the
upper bound on the estimation error covariance and the
recursive form of the state estimator parameter. Hence, a
sub-optimal estimation scheme is obtained to retain ad-
missible estimation performance.

Theorem 3 Consider the recursion equations of the
prediction error covariance matriz in (13) and the es-
timation error covariance matriz in (14). For oo > 0
(t=1,2,---,8) and v, > 0, suppose that the following
two recursive matriz difference equations
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Then, it can be shown that X; jy1|x41 s an upper bound
of Xi ky1|ky1, @€,

Xikrtkt1 < Xt 1|hy1-

Furthermore, if the estimator parameter matriz K; j41
is characterized by

Ki k1
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then it can be testified that tr (Xi’k+1‘k+1) s minimized
at every sampling step.

Proof: This theorem is proved by utilizing the mathe-
matical induction method and the proof process includes
the following three steps.

Step 1: Let us deal with the cross and unknown terms in
(13). In terms of the following preliminary inequality

wy’ +yx’ < oxa” + 07 lyy” (20)
with z,y € R™ and p > 0 being a scalar, one has

Ny + NY
N N

<ol > @y@iB{e;prel pu T + 01 ' (Aik

j=1s=1
+F; oS Li ) X g (Aie + Fip S Lig)”
(21)
where g1 > 0. From (13) and (21), it follows that

Xi kt1|k
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Recalling (20), we have
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where &J; and &; are defined in (18). Moreover, it is s-

traightforward to know that

]E{l‘j,kl'g:k} < (1 + QQ)Xj’k“f + (1 + Q;l)iﬁj7k‘kig:k‘k,(25)

where g2 > 0 is a scalar. Substituting (25) into (24)

results in
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Similarly, we have the following inequalities:
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where o3 and g4 are positive constants, wgl)

()

and w;

(28)

are

given in (18). Taking (23) and (26)-(28) into considera-

tion, we obtain
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+(L+ 07 ) (Aik + FipSinLin) X kpn
X (Ai g+ FiiSinLig)” (29)

ij
Step 2: The recursion equation of upper bound matrix
for estimation error covariance matrix X; 41|41 is pre-
sented. Recalling the inequality in (20), one has

" 1" .
where w; ;, w;; and w;; are denoted in (18).

-y — T

< 05(I = Ki k1 i o1 Ci ko 1) X o1 o (1 — K g
XTI 3 1Cs k1) ™ 4 05 " Kikr 1B (Fik1 — Yikr1)
X (Gi k1 — yi,k+1)T}ICg:k+1v (30)
My + M3

< 06 k1 B{(Yi k1 — Yi k1) (Wi ket1 — yi,k+1)T}’CZk+1
+Qg1’Ci,k+1]E{ﬁi,k+1Ci7k+lxi,k+1xz:k+1

XCZk+1ﬁi,k+1}ng+lv (31)
M3 + M3

< 07Ki k1 B{(Ti k+1 — Yi kt1) (Fi k1 — yi,k+1)T}ICZk+1
07 Ki 1 Vi1 K g1 (32)

where g5, 0 and p;7 are positive scalars. Substituting
(30)-(32) into (14) leads to

Xikt1lkt1

<1+ 05)( = Ki o1 1L 51 Cl o) Xi s 111
X (I = Ki 11 541Ci p01) + (1 + 051 + 06 + 07)
XK k1 B (Fi k1 — Yisor1) Wisprr — Yik1)
+(1+ 96_1)Ki,k-i-lE{ﬁi,k—i-lOi,k+1$i,k+1xzk+1cgk+1
) e 1} 1 + (L4 07 D1 Vi1 K g1 (33)

In light of (5), we arrive at
E{(Fik+1 — Yi k1) Ti k1 — yi,k+1)T} < ;1. (34)
According to Lemma 2, the following relationship is de-
rived:

]E{ﬁi,kJrlCi,k+1$i,k+1xz:k+1Cngrlﬁi,kJrl}

=Zjk+10 E{Ci,k+1xi,k+1$g:k+1C¢T,k+1}a (35)

where Z; 541 is denoted in (18). Similar to (25), one has

E{%le?fkﬂ}
= E{(eshr1ik + ipr1pp) €opriie + Fiprrp) }
< (14 08) X prape + (1 4+ 08 )& k1 (k] g
=Y k11, (36)

where gg is a positive scalar. Therefore, we have

. - r -
E{IL; 5 11Ci k12 k1% g1 Ci prr Wi k1 }
- T

<Zikt10 (Cikr1Vikt1C; g 11)- (37)

Taking (34) and (37) into consideration results in

Xik+1]k+1
< (14 05)(I = Ki g1 11 11 Cs 1) X o1 |
x(I = Ki g1 jp31Cipr1)”

+lCz-,k+1{(1 +o5 + 06+ on)dil + (1+ 07 Vi

+(1+ 05 )Eipt1 0 (Ci,k+1‘1’¢,k+1CiT,k+1)}’CiT,k+1~(38)

Combining (15)-(16) and (29) with (38) implies that
X1kl < X pr1hy1

Step & Finally, we are in a position to provide the pa-
rameterization of the desired estimator gain matrix that
minimizes Xj py1jx+1- Taking the partial derivative of
tr(A; k41]k+1) W.r.t the estimator parameter KC; 11, one
obtains

Ot (X kg 1)kt 1)
OK; k41

==2(1+ 05)( = Ki k111 1 Ci k1) X 1 16 Ci g
xI; g1 + 2/Cz',k+1{(1 + 05" + 06 + 07)
X601 + (1+ 07 Wik + (14 0 )Zi k41
O(Ci,k+1\i/i,k+lcgk+1)}- (39)

Ot (X g1 jkr1)

O = 0, we obtain the following esti-

Letting
mator gain

Kik+1

=(1+ Qs)Xi,k+1|kCiT,k+1fIi,k+1{(1 + 05)1L; 5 41Ci k11
XXi,k+1\kCgk+1ﬁi,k+l +(1+ 05" + 06 + 07)0:1
H(1+ 07 Wik + (14 05 H)Ei ki

1
= T
O(Ci,k+1‘1’i,k+1ci,k+1)} )

which is the same as the one in (19). Consequently, the
assertions in this theorem are true.

Remark 4 The randomly switching topologies are mod-
elled in (1) to reflect the stochastic fluctuations and the
inevitable modelling errors with regard to network topolo-
gy structure. In particular, the Bernoulli distributed vari-
ables a; ; are used to model this phenomenon, where the
parameters &; . in (3) representing the occurrence prob-
abilities of the randomly switching topologies could be
obtained according to the extensive statistical tests. It
should be noted that the existence of the randomly switch-
ing topologies brings essential difficulties when analyzing
the dynamics behaviours of the complex networks and es-
timating the state of each node. For example, there is a
need to better understand and appropriately characterize



the randomly switching topologies. Moreover, the effect-
s caused by randomly switching topologies should be re-
vealed when designing the state estimation method and
those effects should be compensated efficiently in the pro-
posed estimation algorithm. In order to overcome those
difficulties and improve the estimation accuracy, addi-
tional effort has been made and some terms involved the
corresponding information regarding randomly switching

topologi ity Wais Whry wr s @iy G5, W, w0
pologies (e.g. Qi g, W;j, Wi, Wi;, Gi, Wiy w; 5 w;~ and
') have been explicitly reflected in the developed state es-
timation scheme as shown in Theorem 3.

Remark 5 The solutions to recursive matriz difference
equations in (15) and (16) represent the covariance ma-
trices of the prediction error and estimation error, respec-
tively. Due to the existence of the different type noises,
randomly switching topologies, degraded measurements
and event-triggered communication protocol, it is not dif-
ficult to find the corresponding positive definite solution-
s, which is same with the case as made in the classical
Kalman filtering method. On the other hand, it is worth
mentioning that the positive scalars v; 1 are introduced
when dealing with the high-order terms of the Taylor se-
ries expansions. During the algorithm implementation,
we can fix the values of vy; ;. and adjust the values there-
after to ensure the feasibility of the constraint (17), there-
by enhancing the flexibility of the proposed event-based
estimation algorithm.

To end this section, the newly developed event-triggered
recursive state estimation (ETRST) algorithm is sum-
marized.

Algorithm ETRST :

Step I: Initialize the corresponding conditions and set
other parameters.

Step II: Calculate the prediction estimation Z; jy1)x
according to (6).

Step III: Compute the prediction error covariance X jy1x
by using (15) and obtain the estimator parameter
matrix C; p+1 via (19).

Step IV: The estimation error covariance &j j41|x+1
is derived by (16).

Step V: Calculate the state estimation Z; j41x41 based
on (7).

Step VI: Setting &k = k + 1, and go to Step II.

Remark 6 To facilitate further implementation, the
new ETRST algorithm is summarized above regarding
the addressed state estimation problem. It can be o0b-
served that the proposed algorithm has the recursive
feature since the upper bound matrices of the prediction
error covariance and the estimation error covariance
(i.e.; X o1k and X; jy1jk1 in (15)-(16)) are forward
matriz difference equations as the time goes. Hence, the
new ETRST algorithm is applicable for online imple-
mentations in real-time updating environment, which
performs a prevailing advantage of main results.

4 Performance Analysis

This section is devoted to the monotonicity analysis of
our main results, that is, we are interested in revealing

the relationship between tr{&} j1|x+1} and the proba-
bilities ﬁi,k—i—l .

To proceed, suppose that ﬁfll)ﬁq = Tipy1 (1

1,2,---,m). Thus, it is easy to know that Il; ;41 =
Tik+1d and Z; g1 = T g1 with @ g1 = T g1 (1 —
Tik+1). In what follows, the relationship between
tr{X; k41|k+1} and 7; 41 is established via rather direct
algebraic calculations.

Theorem 4 It can be shown that tr{X; j1|k+1} is non-

increasing when the occurrence probability 7; 41 increas-
es.

Proof: To facilitate further developments, set

Y1 =14 05" + 06 + 07)6:I + (1 + 07 )Vipt1
+(1+ 05 )Zikt10 (Ci,k+1‘11i,k+1cgk+1);

Oirr1=(1+ 95)ﬁi,k+1Ci,k:+1Xi,k+1\kogk+1ﬁi,k+l
+Y kt1-

Then, according to the above notations, (16) can be
rewritten as follows:

Xi kt1)k+1
=1+ 05)Xipr1e — (1 + 05)*Xi j1 6 Cr g1 Il oyt
><@;11+1ﬁi,k+lci,k+1Xi,k+1|k + [’Ci,kﬂ —(1+ 05)

T o —1
XXi,k-‘rl\kci,k+1ni,k+1@i7k+1} Oi k+1 [’Cz’,kﬂ

B T
-1+ QS)Xi,k-i-l\kcgk+1ni,k+16i_,;+1]

NOtiCG that ’Ci,k—H = (1+Q5)Xi,k+1|kcgk+1ﬁi,k+1®i_,;+1a
we have

2
X ki1 = (14 05) X jprpe — (14 05)° X5 g1k
T B —1 =
XCi gt i k410 gy Wi k1 Ci 1 i g -

Secondly, taking the partial derivative of tr{X; 11 jx41}
w.r.t T; k41 results in

dtr{ X ki 1)kt }
d7; ki1
dtr _
=4 {(1 +05)Xi ka1 — (14 05)°7 1 X ki
T, k+1
T o T
xCl [(L 4 05)77 11 Ci e 1 X o o Cll i
+(1+ 0 k411 0 (Cipy1 Y5 511CF yr)
+(1+ 05" + 06 + 07)0i L + (1 + 07 )WViny1]|
><Ci,k+1Xi,k+1|k}

= tr{ —2(1+ Q5)27—Ti,k+1Xi7k+1|kO¢T,k+1 [(1+ 95)7_7i2,k+1
XCi k1 X k11 Cly1 + (14 05 DR pgr ]
o(Cips1¥i b 1Clr) + (14 05" + 06 + 07)0:]
+(1+ 07 YViks1] 710i,k+1Xi,k+1|k +(1+ 95)27_T7:2,k+1

1



XX 1k Ch g1 [(1+ 05)77 11 Cikr1 X k116 Clpin

+(1 4 05 i ka1l 0 (Cips1 Vi ko 1C gt 1)
+(1 405" + 06+ 07)6: ] + (14 07 )Vikt1)

X [ (14 05)Ti k+1Ci k41X k+1|kc ki1 T (1+ 05 B

x (1 — 27, k+1)l 0 (Cior1¥i k107 kq1)]

X [ T2 ki1 Cikr1 X 11 Cipgr + (1 + %)
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Next, one has
Atr{ X g1 (k41 )
 Ea
< tr{ — 2(1+ 05)° s k1 Xi 1 1 Ciprn [(1+ 05)77 i
XCi,k-&-lXi,kJrl\kCZk-i-l + (1+ 05 )R]
O(Q,kﬂ@i,kﬂcgkﬂ) + (14 05" + 06 + 07)8: 1
+(1+ 07 )Viks1] e k1 X kg 1|k
+(1+ 05) ikt 1 X k416 Col s
< [(1+ 05)77 11 Ciktr X1 nClgs + (L+ 05 )
XTi ki1l 0 (Cip1 Wi kt1Cl141)
+(1 405" + 06+ 07)6:l + (14 07 Wiks1]
x[2(1 4 05)77 411 Ci k1 Xi 1k Clr +2(1 + 06 )
X7 k11 © (Ci k1 Wi k101 jg1)
+2(1+ 05" + 06 + 07)6:d +2(1 + 07 )Vigta
—(1+ 0 i1l 0 (Ci 10y, k+1cfk+1)}
x [(1 4 o5)7; kHCZ k1Y k+1|kCz re1 (1 + o ")
X7 1L 0 (Ciir1 Wik 1Clq) + (1 + 05" + 06
+o07)0: I + (1 + Q;I)W,k—&-l]_1Ci,k+1Xi,k+1|k}- (41)

By removing the zero term in (41), we arrive at
dtr{; py1jkr1}
A7 k41

~(1+ )1+ 05 Vo { X1 Ol

[ (14 o5)7; k+1cz E+1G, k+1|kCz pi1 (1 + %)

Tisrrl 0 (Cipy1 Wi ks1Cl ) + (1 + 05" + 06
+Q7)5J + (14 07 )WVikt1] _17i2k+ll
o(Cy 14, k‘+1c;rk+1) [(1+ 05)7; k+1Cz k41
XXi,k+1\kC pe1 (1 + 05 )ﬂ'i,k+1f
o(Cis1Wigi1Clipr) + (1 + 05" + 06 + 07)8:1

_ —1
+(1+ 07 )Viks1] Ci,k+1Xi,k+1|k}- (42)

Finally, it is easy to check that

10

dtr{X;, k+1\k+1}
d7T’L k+1

— ’

because the term tr{-} in (42) is non-negative. Con-
sequently, it can be concluded that tr{Xj . ijx4+1} is

non-increasing provided that the occurrence probability
T k41 increases.

Remark 7 In Theorem 4, special effort has been made
to further reveal the changes of estimation accuracy ac-
companying with the degraded measurements, that is, the
monotonicity analysis between tr{X; 1 1|k+1} and T; k11
is provided from theoretical perspective. According to the
theoretical analysis in Theorem 4, it can be observed that
the term tr{X; p11jk+1} is non-increasing if the value of
occurrence probability 7; 41 increases. Apparently, when
the occurrence probability 7; 1 increases in reality, it
means that the measurement data is more likely to be
transmitted safely to the remote estimator, thereby im-
proving the estimation accuracy, and this is consistent
with the practical engineering viewpoint.

Remark 8 So far, we have proposed a new event-based
state estimation approach with theoretical analysis for ad-
dressed nonlinear time-varying dynamical networks sub-
ject to randomly switching topologies and multiple miss-
ing measurements. It is worth noting that the available
information of multiple missing measurements, random-
ly switching topologies and event-triggered communica-
tion protocol has been clearly reflected in main results.
To be more specific, &; i, refers to the randomly switching

topologies, 7r( ) is there for the multiple missing measure-

ments, and 5 corresponds to the event-triggered commu-
nication scheme.

5 A Simulation Example

In this section, some simulations with comparisons are
presented to show the feasibility and usefulness of the
proposed event-triggered recursive estimation strategy.

Consider the nonlinear coupled dynamical networks (1)-
(2) with system parameters given by:

_ T
Bix=|04-01sin(0.2k) 04]

- T T
Boj=[~05-079] , Byx=[02095] ,
Cre=[02-17], Cyr=[112],
Cap=|~1.2— 0.1 cos(0.6k) 15,

[—0.26 0.12 0.12 | 02 0]
wh=1| 012 —02 012 |, I'=| ,

0 0.2

| 012 0.12 —0.26 | L .

[—0.36 0.15 0.15 | 01 0]
w® =1 015 -036 015 |, I'=|

0 0.1

| 015 0.15 —0.36 | L .




The nonlinearity f(x; ) is described by

Fnn) —0.12z} , + 0.252%, + 0.068sin(x} ,z2,)
i) = ) , K, :
PR 15al, + 0.82502, — 0.0485c0s(xl a2 ,)

T
where z; ), = [lek x?k} (i = 1,2,3) depicts the sys-
tem state of the i-th node.

To implement the developed recursive state estimation
method, the mathematical expectations of the initial val-

T
ues are chosen as 1, = [—0.3 —0.2} » T2,0 = T3,0 =
T T .
[0.1 0.4} » Z1000 = {—1.3 —1.2] » T2,00 = T3,00 =

T
[—0.9 —0.6] and X, o = 2.5I (i = 1,2,3). Other
parameters are selected as o1 = 0.1, oo = 03 = 04 = 1,
05 =06 = 07 = 0.1, 05 = 0.01, Wy, = 0.2, Wp ;, = 0.1,
Wi =Vigp =002 Vo, = Vs, =0.01, L, = 0.115,
Fij = 0.1y, @) = 0.75 and 7'} = 0.95. Then, based
on the result in Theorem 3, the state estimation method

can be implemented and the estimator gain can be ob-
tained recursively.
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Fig. 1. The response trajectories of x1 ; and 7 j (s = 1,2).

To reflect the impact from the event-triggered strategy
onto the estimation performance, we provide the com-
parative simulations concerning on the estimation per-
formance under different triggered thresholds, i.e., Case
1251 252263:1and0ase11:51 :52253:4.
The related simulations are provided in Figs. 1-7, where
Figs. 1-3 plot the trajectories of state x; j and the esti-
mation Z; (k. In particular, some sub-figures are added
in Figs. 1-3 and the actual scale of each sub-figure is cho-
sen from 60 to 80 for the abscissa axis. From the related
simulations, we can see that the estimation accuracy is
better when the triggered threshold is small. The rea-
son is that more measurements can be obtained in the
estimator side, thereby improving the estimation perfor-
mance in this case. Fig. 4 shows the log(MSE) in Cases
I-11, where MSE stands for the mean square error of the
node state estimation. Note that the chances of released
information during the network transmission could be

11
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Fig. 3. The response trajectories of x3 ;, and 23 |, (s = 1,2).
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Fig. 4. log(MSE) in two cases.

increased when the triggered thresholds decrease as in
Case I, thus the estimation accuracy of the proposed al-
gorithm is improved. It is easy to see that this fact has
been clearly shown as provided in Figs. 1-4.
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Fig. 7. The event-triggered time in Case II.

On the other hand, in order to further discuss the ef-
fects from the degraded measurements, log(tr(X; x|x)) is

plotted regarding missing measurements under differen-
t occurrence probabilities, i.e., 7; ; are 0.35, 0.85, 0.95

12

and 1, respectively. The corresponding simulation result
is presented in Fig. 5. It can be seen from Fig. 5 that
log(tr(X; kx)) increases when 7; , decreases, which rep-
resents the fact that the estimation accuracy of the pro-
posed estimation algorithm becomes worse when more
useful information is lost. According to this comparison
under different occurrence probabilities, we can further
verify the assertion mentioned in Theorem 4. Moreover,
for all nodes, Figs. 6 and 7 describe the event-triggered
time in Cases I-I1. Now, it can be observed that the above
simulations further illustrate the effectiveness of newly
variance-constrained state estimation algorithm.

Remark 9 [t is worthwhile to point out that the nonlin-
ear time-varying dynamical networks established in the
paper are more comprehensive than the existing ones.
Moreover, the addressed event-based optimized state es-
timation problem is mew, which fully handles the in-
duced effects from randomly switching topologies, multi-
ple missing measurements and event-triggered commu-
nication mechanism in a unified framework. After the
extensive literature search, we find that there has been
no existing state estimation algorithms applicable for the
same estimation problem addressed in the paper. Hence,
we further emphasize the main advantages of the pro-
posed state estimation method from the following three
aspects: 1) the time-varying dynamical network model
s quite comprehensive that reflects the above mentioned
three phenomena, thereby better depicting the reality; 2)
the newly designed state estimation scheme is in a dis-
tributed way without resorting the state argumentation
method, which is not increasing the computational bur-
dens; and 3) both the theoretical analysis and compara-
tive experiments are provided to reveal the inherent rela-
tionship between the estimation accuracy and the differ-
ent occurrence probabilities of degraded measurements.
As shown in the simulation comparisons, it can be seen
that the newly developed estimation scheme provides a
satisfactory performance. Moreover, it is worthwhile to
mention that the new estimation method can estimate the
original system state well as the time goes, which is ir-
respective of the stability of the original system. Hence,
the presented event-triggered estimation strategy enrich-
es the method on handling the state estimation problem
under variance constraint for time-varying dynamical
networks over networked communications.

6 Conclusions

This paper has investigated the recursive state estima-
tion problem under variance-constraint for a class of non-
linear coupled dynamical networks subject to randomly
switching topologies and degraded measurements. The
phenomenon of multiple missing measurements has been
characterized by means of a sequence of Bernoulli dis-
tributed variables. In addition, the randomly switching
topologies have been modelled by using the random vari-
able to reflect the randomly changeable topology charac-
teristics of the coupled complex networks. Subsequently,
a new time-varying state estimation method has been
given such that, for all randomly switching topologies,
event-triggered transmission protocol as well as missing
measurements, the expression equation of minimized up-
per bound for the estimation error covariance matrix has
been established and the desired state estimator gain has
been proposed via the solutions to some recursive ma-
trix difference equations. Besides, the theoretical proof



has been given to discuss the monotonicity relationship
with regard to the missing probability and the upper
bound matrix. Finally, the validity of presented event-
triggered estimation approach has been illustrated by
some comparative simulations. Further research exten-
sions include the discussions on the event-based time-
varying estimation problems for semi-Markovian jump
dynamical networks as in [17] and the estimation prob-
lem dealing with the round-robin communication proto-
col as in [6,44].
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