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RESEARCH Open Access

Reduced vagal tone in women with the
FMR1 premutation is associated with FMR1
mRNA but not depression or anxiety
Jessica Klusek1* , Giuseppe LaFauci2, Tatyana Adayev2, W. Ted Brown3, Flora Tassone4 and Jane E. Roberts5

Abstract

Background: Autonomic dysfunction is implicated in a range of psychological conditions, including depression and
anxiety. The fragile X mental retardation-1 (FMR1) premutation is a common genetic mutation that affects ~1:150 women
and is associated with psychological vulnerability. This study examined cardiac indicators of autonomic function among
women with the FMR1 premutation and control women as potential biomarkers for psychological risk that
may be linked to FMR1.

Methods: Baseline inter-beat interval and respiratory sinus arrhythmia (a measure of parasympathetic vagal
tone) were measured in 35 women with the FMR1 premutation and 28 controls. The women completed
anxiety and depression questionnaires. FMR1 genetic indices (i.e., CGG repeat, quantitative FMRP, FMR1
mRNA, activation ratio) were obtained for the premutation group.

Results: Respiratory sinus arrhythmia was reduced in the FMR1 premutation group relative to controls. While
depression symptoms were associated with reduced respiratory sinus arrhythmia among control women, these
variables were unrelated in the FMR1 premutation. Elevated FMR1 mRNA was associated with higher respiratory
sinus arrhythmia.

Conclusions: Women with the FMR1 premutation demonstrated autonomic dysregulation characterized by
reduced vagal tone. Unlike patterns observed in the general population and in study controls, vagal activity
and depression symptoms were decoupled in women with the FMR1 premutation, suggesting independence
between autonomic regulation and psychopathological symptoms that is atypical and potentially specific to
the FMR1 premutation. The association between vagal tone and mRNA suggests that molecular variation
associated with FMR1 plays a role in autonomic regulation.

Keywords: Fragile X carriers, Vagal tone, Heart rate, Physiological arousal, FMRP, FMR1 mRNA

Background
The autonomic nervous system plays a fundamental role
in health. Working in conjunction with other stress
regulation systems, such as the hypothalamic-pituitary-
adrenal axis and the immune system, the autonomic ner-
vous system promotes adaptability to life stressors while
helping the body maintain a well-controlled, functional
physiological state [1]. Optimally, the sympathetic (“fight
or flight”) and parasympathetic (“rest and digest”)

branches of the autonomic nervous system work to-
gether in a coordinated and often antagonistic fashion to
effectively respond to internal and external demands.
When the dynamic interplay between the sympathetic
and parasympathetic nervous systems is functioning
well, the autonomic system serves a broad protective
role, boosting the immune system, shielding against car-
diovascular disease, and warding away psychopathology
[2]. Conversely, dysfunction of the autonomic nervous
system is associated with vulnerability to a host of phys-
ical and mental health disorders.
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The integrity of the autonomic system can be assessed
objectively and non-invasively through peripheral mea-
sures of cardiac activity. The heart is innervated by the
vagal nerve, which provides a pathway for brain-heart
communication via connections in the brainstem and
the sinoatrial node of the heart. The measurement of
inter-beat interval (IBI; or the time between consecutive
heart beats) provides an estimate of general arousal level
influenced by both sympathetic and parasympathetic
branches of the autonomic system [3]. A specific index of
parasympathetic activity can be obtained by measuring
heart rate variability patterns, which index parasympa-
thetic influences on the heart via the vagal nerve [4]. Vagal
tone can be estimated through descriptive measures of
heart rate variability, as well as through the quantification
of respiratory sinus arrhythmia (RSA), a measure of
variability in the rise and fall of heart rate that occurs
with respiration (see [5], for review).

Cardiac autonomic dysregulation in mood and anxiety
disorders
Converging empirical and theoretical evidence supports
cardiac autonomic indices as objective, non-invasive
markers for mood and anxiety disorders (e.g., [6–9]).
Dampened vagal tone is well documented in a major de-
pressive disorder [10–13], and vagal level has also been
shown to correlate with the continuous distribution of
depression symptoms in non-clinical samples (e.g., [10,
14–16]). A number of reports demonstrate that de-
pressed individuals with low vagal tone have greater
symptom severity [17] and are less likely to recover or
demonstrate symptomatic improvement [18, 19], and
successful treatment for depression corresponds with
vagal increases [20–22], albeit with some mixed findings
(e.g., [23, 24]). Reduced cardiac vagal tone is also thought
to represent a physiological pathway leading to anxiety.
Low vagal tone relates to anxiety symptoms in non-
clinical groups [25–27], and low vagal tone has been docu-
mented extensively among individuals with anxiety disor-
ders, including populations affected by generalized anxiety
disorder, panic disorder, and post-traumatic stress disorder
(see [8, 9] for review).
Psychophysiological theories of vagal tone, such as the

Polyvagal Theory [28, 29] and the Neurovisceral Integra-
tion Model [30, 31], support the integral role of the
parasympathetic vagal system in emotional expression and
regulation, accounting for reduced vagal level in mood
and anxiety disorders—clinical conditions characterized
by impaired emotional regulation [32]. A large body of lit-
erature suggests a mechanistic role of vagal tone in emo-
tional regulation, coping, and social engagement [33, 34].
According to theory, vagal control is one component of a
larger central autonomic network that serves to regulate
defensive social behavior. The parasympathetic vagal

system, in conjunction with other mechanisms, works
to inhibit sympatho-excitatory threat circuits. When the
vagal system is hypoactive, the body remains in a state of
hypermobilization and defense, which increases “allostatic
load,” or wear and tear to the bodily system over time
[35]. The ability to inhibit threat circuits via the vagus is
compromised in disorders of impaired emotional regula-
tion, such as anxiety and depression (see [36]).

Cardiac indices as biomarkers for psychological risk
The identification of biomarkers holds promise for
furthering the prevention and treatment for complex
mental health conditions such as anxiety and depression.
Biomarkers, or measurable, endogenous traits that mark
either the risk or manifestation of psychiatric illness
[37], allow clinical groups to be deconstructed at the
biological level, thus yielding information relevant to (1)
the development of treatments targeted towards core
mechanisms rather than symptoms, (2) the stratification
of biological subgroups who are mostly likely to respond
to targeted interventions, and (3) the identification of in-
dividuals who are most at risk, perhaps even before the
onset of clinical symptoms [38]. A number of prior stud-
ies have put forth cardiac indicators of autonomic dys-
function as potentially useful biomarkers for anxiety and
depression (e.g., [39, 40]) given that they co-occur with
the clinical presentation of mood and anxiety disorders,
are associated with symptoms in non-clinical samples,
represent heritable and stable traits, are quantitative,
and can be measured non-invasively and relatively
quickly [41–44]. Thus, the study of cardiac activity in
relation to depression and anxiety may prove useful in
understanding the biological bases of these mental health
conditions.

The FMR1 premutation as a genetic model for
psychological risk
Studying cardiac function within high-risk genetic groups
can inform the intercorrelation between psychophysio-
logical traits and unique genetic profiles. In this regard, the
fragile X mental retardation-1 (FMR1) premutation repre-
sents a particularly promising condition for study. This
genetic condition is linked with significant psychological
risk and may hold promise for uncovering genetic determi-
nants for autonomic alterations. The FMR1 premutation
occurs when the trinucleotide (CGG) sequence on the
FMR1 gene of the X chromosome expands to 55–200
repeats [45]. This mutation is characterized by excess
production of FMR1 messenger RNA (mRNA), which
causes neuronal toxicity [46–48]. The FMR1 premutation
expansion is highly prevalent, occurring in approximately 1
in 113–250 females and 1 in 250–810 males depending on
ethnicity and world region [49–53]. Individuals with the
FMR1 premutation are at risk for passing the mutated gene
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to their children, which may undergo further expansions as
it is transmitted through generations, increasing the sever-
ity of the disease. Risk for generational expansion is related
to genetic factors such as CGG repeat size and the number
of AGG anchors, as well as environmental factors such as
maternal age [54, 55]. When the expansion extends beyond
200 CGG repeats, the gene becomes inactivated by methy-
lation and fragile X syndrome results, a neurodevelopmen-
tal disorder affecting approximately 1 in 5000 individuals
[56] that is associated with intellectual disability and
autism spectrum disorder [57]. The present study focuses
on women with the FMR1 premutation, who show a well-
documented psychological profile characterized by risk for
depression and anxiety disorders. Research focused on
women—and in particular mothers—with the FMR1 pre-
mutation is important given that the FMR1 premutation
phenotype is associated with negative outcomes both
for the affected individual as well as for their children
with fragile X syndrome (e.g., [58, 59]).
Women with the FMR1 premutation, referred to as

“carriers” of fragile X, were once thought to be clinically
unaffected; however, new evidence clearly supports
clinical involvement in this group [60]. This includes risk
for fragile X-specific conditions such as fragile X-
associated primary ovarian insufficiency [61] and fragile
X-associated tremor/ataxia syndrome (FXTAS), a late-onset
neurodegenerative movement disorder characterized by
tremors, gait ataxia, peripheral neuropathy, executive dys-
function, and cognitive decline that affects about 16% of
women with the premutation [62]. A subset of women with
the premutation may also present with certain cognitive
deficits related to executive functioning, working memory
[63], and symptoms of attention deficit-hyperactivity
disorder [64], which may worsen with age [65, 66]. So-
cial difficulties have also been documented in females
with the FMR1 premutation, such as social-language
deficits [58, 67] and elevated rates of autism spectrum
disorder [68]. Finally, a higher rate of immune-mediated
disorders, sleep apnea, hypertension, migraines, and
seizures has also been observed in individuals with the
premutation (reviewed in [69]).

Psychological risk in the FMR1 premutation
Elevated rates of mood and anxiety disorders are one of
the earliest and most consistently documented features
of the FMR1 premutation phenotype, with the risk for
these conditions increasing significantly over time during
adulthood [70]. Reported lifetime rates of major depressive
disorder range from 12 to 54% in females with the premu-
tation [70–75]. Lifetime rates of any anxiety disorder
ranges from 25 to 47% [72, 74, 76]. This includes ele-
vated lifetime rates of panic disorder [74, 75], social
phobia [72, 74], and post-traumatic stress disorder [74];
although, findings vary somewhat depending on sample

characteristics and diagnostic instruments. Reported
rates for current occurrence range from 5 to 13% for
major depressive disorder [70, 75] and 13 to 50% for
anxiety disorders [75–77].
Psychological risk in women with the FMR1 premuta-

tion likely has a multifactorial basis, with both FMR1
gene dysfunction and environmental factors, such as
child-related challenges, mechanistically implicated in an
additive or interactive manner. Chronic stressors associ-
ated with raising a child with a developmental disorder,
such as elevated child problem behaviors, are linked to
increased likelihood of anxiety disorders and major de-
pression in women with the FMR1 premutation [75, 78].
Yet, mental health problems in women with the FMR1
premutation often proceed the birth of their child with
fragile X syndrome [75] and women with the FMR1
premutation who do not have a child affected by fragile
X syndrome also show increased rates of psychological
disorders [79], supporting genetic contributors to
psychopathological risk that are independent of child-
related stressors. Studies have begun to characterize
specific FMR1 genetic markers associated with psychi-
atric symptoms. A number of reports have documented
that risk for depression in the FMR1 premutation is
highest among individuals with CGG repeat length
within the midsize range [70, 75, 80, 81]. Seltzer et al.
[81] also detected CGG-dependent sensitivity to the en-
vironmental context, where women with midsize CGG
repeat length and above-average life stress showed greater
vulnerability for depression and anxiety compared to
women with higher or lower repeat lengths, whereas
women with midsize CGG repeats and below-average life
stress were the most resilient to depression and anxiety.
Psychological vulnerability may also be related to in-

creased FMR1 mRNA expression, which is present at up to
eightfold normal levels and increases linearly with CGG re-
peat size in the premutation [82, 83]. Elevated mRNA levels
were found to be associated with increased psychological
symptoms and reduced amygdala activation in males with
the premutation, and these associations were present even
among male carriers without FXTAS, suggesting that the
impact of mRNA toxicity is not exclusive to FXTAS [84,
85]. Levels of mRNA are also linked with the age of de-
pression onset in individuals with the FMR1 premutation,
consistent with the hypothesis that mRNA toxicity builds
over time, contributing to vulnerability [86]. Females may
be more protected from mRNA toxicity, due to the pres-
ence of the second X chromosome. In females, a high acti-
vation ratio, or a high proportion of cells carrying the
normal allele on the active X chromosome, can dilute the
effects of the premutation allele [87] and has been associ-
ated with less severe clinical effects, such as lower parent-
ing stress [88] and more typical patterns of cortisol stress
responses [89]. Higher levels of mRNA are correlated with
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self-reported anxiety symptoms among women with the
premutation, but only when the sample was restricted to
women with an activation ratio of less than 0.5 [84].
Slightly reduced levels of fragile X mental retardation

protein (FMRP) have also been reported among individ-
uals with the FMR1 premutation, particularly among in-
dividuals with high CGG repeats [90, 91]. FMRP is an
mRNA-binding protein that regulates the translation of
about one-third of the proteins in the pre- and post-syn-
aptic proteomes, supporting its critical role in synaptic
plasticity and the development and maintenance of neur-
onal circuits [92]. Its absence is thought to underlie the
neurobehavioral impairments seen in the full mutation
[93]. Yet, the phenotypic impact of reduced FMRP in the
FMR1 premutation is less clear. Until recently, FMRP level
has been measured indirectly (e.g., by counting the per-
cent of FMRP-positive lymphocytes, see [94]), limiting the
ability to capture subtle variation in protein expression.
No relationships have been detected between the percent-
age of lymphocytes staining positive for FMRP and psy-
chological symptoms in males or females with the FMR1
premutation [84]. However, new technological advances,
such as the approach used in the present study, allow for
quantitative measurement of actual FMRP levels in the
blood and may lead to a new wave of discoveries into the
role of FMRP in the clinical profile of the FMR1 premuta-
tion. For instance, studies using quantitative FMRP have
revealed relationships with neurobehavioral profiles, such
as preliminary evidence of FMRP-mediated blunted amyg-
dala responses that are associated with deficient social in-
formation processing in men [85].
Despite the documented links between FMR1-related

variation and depression in the FMR1 premutation, a num-
ber of studies have failed to detect molecular genetic corre-
lates of anxiety in this group [70, 72, 77, 84, 86, 95, 96] and
extant findings suggest a complex, multifactorial, epigenetic
basis to anxiety symptom expression. Anxiety in women
with the premutation has been linked with environmental
factors such as child problem behaviors [75], with the im-
pact of the stress of raising a child with fragile X syndrome
moderated by variation on CRHR1, a gene involved in
cortisol regulation [97]. Epigenetic changes associated
with abnormal methylation have also been implicated,
with one study showing that methylation of the CpG10-12
sites located at the FMR1 intron 1 boundary predicted so-
cial anxiety with 92% sensitivity in women with the FMR1
premutation [98]. Finally, anxiety in women with the pre-
mutation has been linked with neuroanatomical changes,
specifically, with reduced hippocampal volume associated
with elevated mRNA [99].

Autonomic function in the FMR1 premutation
Given the elevated risk for depression and anxiety in the
FMR1 premutation and documented associations with

FMR1-associated genetic mechanisms, the FMR1 pre-
mutation may represent a “portal” condition that can
yield important information on the molecular genetic
basis for autonomic alterations relevant to both individ-
uals with and without FMR1 mutations. This work may
also inform prevention and treatment efforts specific to
the FMR1 premutation. The lack of useful biomarkers
represents a critical barrier to targeted treatment for this
group, given the incomplete penetrance of associated
clinical effects. Should cardiac indicators account for
inter-individual variability in psychological risk within
this population, they may prove useful in identifying
vulnerable subgroups who may benefit from targeted
prevention efforts.
Although cardiac autonomic dysregulation is a robust,

well-documented feature of fragile X syndrome (see [100],
for review), no studies have examined cardiac autonomic
integrity in the FMR1 premutation. Yet, the clinical effects
of the FMR1 premutation are highly suggestive of auto-
nomic impairment, such as increased rates of thyroid
disorders, fibromyalgia, and hypertension—all conditions
associated with autonomic dysfunction [101]. Moreover,
symptoms consistent with autonomic dysfunction are
common in FXTAS such as impotence, bowel and bladder
incontinence, hypertension, and syncope [102]. Neuro-
pathological involvement in the autonomic ganglion of the
heart and autonomic neurons of the spinal cord has also
been detected in postmortem studies of individuals with
FXTAS [103, 104]. In the only study to date that employed
direct measures of autonomic function in the premuta-
tion, Hessl and colleagues [105] detected dampened sym-
pathetic reactivity to a social greeting task among a
sample of 12 men with the premutation using measures of
electrodermal response. No associations were detected be-
tween sympathetic activation and psychological symptoms
or FMR1 molecular measures (CGG repeat size and
mRNA); although, conclusions were preliminary given the
small sample.

The present study
Further investigation of autonomic nervous system ac-
tivity among individuals with the FMR1 premutation will
help identify biophysiological pathways rooted in FMR1
gene dysfunction, shedding light on biomarkers that may
be linked with clinical impairment in this group. This
work has implications for the identification of at-risk in-
dividuals based on specific biological markers and the
potential to shift treatment efforts away from symptom-
based approaches to target specific underlying mecha-
nisms. In sum, investigations into cardiac indicators of
autonomic function may provide insight into the inter-
mediate functions of the FMR1 gene that are coupled
with psychological risk. The present study addressed the
following questions:
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1. Do cardiac markers of autonomic function (i.e., IBI
and RSA) differ between women with the FMR1
premutation and control women at baseline? It was
hypothesized that women with the FMR1 premutation
would have elevated general arousal and reduced
vagal tone when compared to controls, mirroring the
physiological profile seen in the full mutation.

2. Are cardiac markers of autonomic function related
to symptoms of depression and anxiety among women
with the FMR1 premutation and control women? It
was hypothesized that low baseline vagal tone and high
general arousal would relate to increased psychological
symptoms in both groups.

3. Are cardiac markers of autonomic function
associated with FMR1-related genetic variation
in women with the FMR1 premutation? Given
the lack of prior research in this area, this aim
was considered exploratory and specific hypotheses
regarding gene-autonomic relationships were not
made.

Methods
Participants
Participants included 35 women with the FMR1 premuta-
tion and 28 control women who were enrolled in a larger
study of the social-language phenotype of women with the
FMR1 premutation. Inclusionary criteria for the broader
study specified that all participants were native speakers of
English, were mothers, and did not have an intellectual dis-
ability (i.e., IQ composite >80 on the Kaufman Brief
Intelligence Test-II; [106]). Women who were pregnant
were excluded from the study to control for pregnancy-
related physiological changes (e.g., [107]). The women with
the FMR1 premutation were recruited through their chil-
dren, who were participating in developmental studies of
children with fragile X syndrome (PI’s: Abbeduto, Roberts).
Genetic status of the women with the FMR1 premutation
was confirmed through blood tests collected through this
study (n = 31) or via medical records. The premutation was
defined as an allele ranging from 55 to 200 CGG repeats
on FMR1. Although it was beyond the scope of the present
study to conduct genetic testing on control participants,
61% of controls completed genetic testing to rule out the
FMR1 premutation through dual enrollment in a related
study. Control women had no known family history of fra-
gile X-associated conditions and were mothers of typically
developing children (i.e., children who had not been diag-
nosed or treated for any type of developmental delay or dis-
order, per participant report). Additionally, control women
were excluded from the study if their child scored above
the cut-off for autism spectrum disorder on the Social
Communication Questionnaire [108]. Recruitment of con-
trols was focused in the local community using flyers, social
media, and word of mouth.

Descriptive and demographic information is presented
in Table 1. The groups did not differ significantly on age,
IQ, race, or household income. A higher proportion of
women with the FMR1 premutation were using psycho-
tropic medications compared to the control women (48
vs 15%, p = 0.008). While the presence FXTAS was not
an exclusionary criteria, none of the women reported a
clinical diagnosis of FXTAS. The groups did not differ in
self-reported functional symptoms of tremor measured

Table 1 Group characteristics

Variable Group

Women with the
FMR1 Premutation
(n = 35)

Control
Women
(n = 28)

Test of group
differences
(p value)

Age in years

M (SD) 44.31(8.63) 41.70 (9.34) 0.251

Range 25.53–60.94 28.72–65.23

IQa

M (SD) 104.26 (11.90) 104.57 (11.46) 0.928

Range 81.00–130.00 83.00–135.00

Race 0.181

Caucasian 94% 85%

African American 3% 15%

American Indian 3% –

Household Income

<20k 9% 12% 0.164

21–40k 12% 7%

41–80k 33% 35%

81–120k 12% 30%

>121k 34% 11%

Medication use

Atypical
antipsychotics

3% – 0.008*

Classical
antipsychotics

3% –

Antidepressants 48% 15%

Mood stabilizers 7% –

Anti-anxiety 10% –

Stimulants 3% 4%

Total stress percentileb 0.001*

M (SD) 62.12 (22.87) 34.64 (25.63)

Range 4.00–96.00 1.00–88.00

Tremor Disability Scorec 0.508

M (SD) 4.30 (15.29) 2.06 (4.15)

Range 0–77.42 0–12.90
aMeasured with the Kaufmann Brief Intelligence Test-II [106]
bMeasured with the Parenting Stress Inventory-4 [112]
cPotential scores range from 0 to 100, with higher scores denoting greater
functional disability associated with tremor
*p < 0.05
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with the Tremor Disability Questionnaire [109], p = 0.508.
Information on menopause status was also collected from
the women with the FMR1 premutation, as autonomic
changes are observed among postmenopausal women
(e.g., [110]) and the FMR1 premutation is linked with early
menopause [111]. Fifty-eight percent of the women in the
FMR1 premutation group had completed menopause, de-
fined here as the cessation of menses for >1 year. Finally,
the Parenting Stress Inventory-4 [112] was administered,
given the reported relationships between parenting stress
and maternal psychological health in other disability
groups (e.g., [113]). Parenting stress was significantly ele-
vated in the FMR1 premutation group (p = 0.001).

Procedures
Assessments took place in a university laboratory setting.
Baseline cardiac activity was the first assessment activity
completed after consent was obtained. To control for the
potential influences of circadian rhythm, assessments were
conducted in the morning (generally starting at 9:00 a.m.).
Participants were asked to refrain from drinking coffee for
at least 1 h prior to the assessment. Procedures were ap-
proved by the Institutional Review Board of the University
of South Carolina.

Measures
Cardiac autonomic activity
Cardiac activity was sampled during a 5-min baseline
context where participants viewed a video of ocean waves
that was designed for meditation and relaxation. Partici-
pants were instructed to “sit back and try to relax.” Data
were analyzed from the final 3 min of viewing, which
allowed additional time for participants to “settle into” the
task. Cardiac data were collected with an Actiwave Cardio
monitor (CamNtech Ltd., Cambridge, UK), which samples
activity via two electrodes placed on the participant’s chest
and internally records the ECG signal. Data were sampled
at a rate of 1024 Hz. The IBI series was extracted from the
ECG signal using QRSTool [114] with a threshold detec-
tion method. CardioEdit software (Brain-Body Center,
University of Illinois at Chicago) was then used to edit ar-
tifacts and arrhythmias (<5%). Mean values for RSA and
IBI were then extracted using CardioBatch software
(Brain-Body Center, University of Illinois at Chicago).
Briefly, CardioBatch samples sequential heart periods in
250 ms epochs and uses a 21-point moving polynomial al-
gorithm to de-trend the data [115, 116]. The data are then
bandpass filtered to extract variance associated with spon-
taneous breathing parameters (0.12–0.40 Hz), and RSA is
estimated by transforming the variance to its natural
logarithm. RSA and IBI were measured from 30 s
epochs and then averaged for a total mean across the
3-min baseline period.

Depression symptom severity
Participants completed the Beck Depression Inventory-II
[117], which is a 21-item questionnaire measuring self-
reported symptoms of depression occurring over the
last 2 weeks. Items are designed to reflect the defining
symptoms of major depressive disorder as outlined in
the Diagnostic and Statistical Manual for Mental
Health Disorders [118] and are tallied to create a con-
tinuous index of depression symptom severity. The
Beck depression inventory-II (BDI-II) demonstrates
high test-retest reliability, internal consistency, and
validity estimates (e.g., [119–121]). Nine women with
the FMR1 premutation obtained a score of 14 or
higher on the BDI-II, which is considered indicative of
clinical depression; no control women scored within
this range.

Anxiety symptom severity
The Beck Anxiety Inventory [122] measured self-reported
generalized anxiety symptoms occurring over the past
week. This 21-item questionnaire provides a total score
reflecting anxiety symptom severity, aligning with the
criteria outlined in the Diagnostic and Statistical Manual
for Mental Health Disorders [118]. The Beck anxiety in-
ventory (BAI) has high internal consistency, adequate test-
retest reliability, and evidence supporting convergent and
discriminant validity [123, 124]. Scores above 9 are consid-
ered indicative of clinically significant anxiety; 12 women
with the FMR1 premutation and 3 control women scored
above this cut-off.

FMR1 molecular measures
Genomic DNA was isolated from peripheral blood lym-
phocytes using standard methods (Qiagen, Valencia, CA).
CGG repeat length was determined using polymerase
chain reaction (PCR) and Southern Blot, as previously de-
scribed [125, 126]. Activation ratio, or the percent of cells
carrying the normal allele on the active X chromosome,
was measured using an Alpha Innotech FluorChem 8800
Image Detection System [87]. Total RNA was isolated
from 3 mL of blood collected in PAXgene® tubes. To de-
termine the relative expression levels of the FMR1 gene,
qRT-PCR amplification was carried out on total RNA
using custom-designed Taqman gene expression assays,
for both the validated target FMR1 gene and the reference
genes (β-glucoronidase) in a 7900 Sequence detector
(Applied Biosystems, Foster City, CA) as detailed in
[87]. A quantitative index of FMRP was obtained by
using a capture Luminex-based immunoassay to deter-
mine the amount of FMRP in peripheral blood lympho-
cytes (expressed in pg/ug of total lysate). This assay has
been shown to have high accuracy with dried blood
spots, peripheral lymphocytes, brain, and other human
tissues [127, 128].
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Data analysis
Analyses were conducted in SAS 9.4 [129]. The data
were first examined for normality. Skewedness was de-
tected for several variables; the Box-Cox transformation
[130] was applied to find the optimal normalizing trans-
formation for IBI (λ = −0.50), depression symptoms on the
BDI-II (λ = 0), anxiety symptoms on the BAI (λ = −0.25),
CGG repeat length (λ = 0), activation ratio (λ = 1.50), and
mRNA (λ = −1.50); the data were transformed accordingly.
The remaining variables were normally distributed and
did not require transformation. Transformed values were
used in all analyses. Descriptive statistics were computed
and are presented in Tables 2 and 3. To explore potential
confounds related to menopause status, t tests examined
differences in the cardiac indices between the subgroups
of pre- and postmenopausal women. Mean RSA and IBI
did not differ by menopause status in the women with the
FMR1 premutation (p’s >0.172). Information on meno-
pause status was not available for the control participants.
To test the first research question, general linear re-

gression models tested group as a predictor of IBI and
RSA. Covariates in the models included age, medication
use (captured as the total number of psychotropic medi-
cations used), and parenting stress level (indexed by the
total stress percentile on the Parenting Stress Inventory-
4 [112]); these variables have been shown to influence
cardiac functioning in prior work [27, 131–133]. Cohen’s
d effect sizes were computed for group differences [134].
In general, effect sizes of 0.32 or less are interpreted as
“small,” 0.33–0.55 “medium,” and 0.56–1.20 “large” [135].
Then, a series of general linear models tested each of the
cardiac variables, group, and their interaction as predictors
of depression and anxiety symptoms, after controlling for
age, medication use, and parenting stress level. False dis-
covery was controlled by adjusting at the level of the

model F test using the Benjamini-Hochberg correction
procedure [136]. Interaction contrasts were estimated to
determine the effect of the cardiac predictor on psycho-
logical symptoms at each level of group. Partial eta
squared (η2p) effect sizes were computed. In general, values
of η2p at 0.01, 0.06, and 0.14 are considered “small,”
“medium,” and “large,” respectively [134].
Finally, exploratory Pearson correlations were conducted

between the cardiac variables and the FMR1 molecular
variables within the FMR1 premutation group. Significant
correlations were followed with more sophisticated gen-
eral linear models testing the molecular genetic variable as
a predictor of the cardiac outcome, controlling for age,
medication use, and parenting stress level. Because of the
exploratory nature of this aim, we did not attempt to ad-
just for multiple comparisons in these analyses. Regression
models including quadratic and cubic terms were also
conducted to test for non-linear associations with CGG
expansion size, considering recent reports of curvilinear
associations with CGG repeat length (e.g., [75, 80]).

Results
Descriptive statistics
Means, standard deviations, and ranges for the cardiac
indices and psychological symptoms are presented in
Table 2. t tests indicated significant group differences for
these variables, with the women with the FMR1 premu-
tation presenting with higher levels of both depression
symptoms (t [58.40] = 4.22, p < 0.001) and anxiety symp-
toms (t [53.83] = 2.74, p = 0.007). Table 3 presents the
descriptive statistics of the FMR1 genetic data within the
FMR1 premutation group.

Group comparisons on cardiac indicators
The combined effects of group, age, medication use, and
parenting stress level accounted for significant variability
in RSA, F (1, 51) = 2.84, p = 0.033, R2 = 0.18. Group
accounted for significant variability in RSA, with the
women with the FMR1 premutation exhibiting lower RSA
than controls, F (1, 51) = 4.17, p = 0.046. Cohen’s d effect
size was 0.54, consistent with a medium effect. The

Table 2 Descriptive statistics

Variable Group

FMR1 premutation Control

IBI (untransformed)
M (SD), range

816.20 (131.11),
540.27–1135.33

791.58 (137.04),
577.93–1193.69

IBI (transformed)
M (SD), range

1.93 (0.01), 1.91–1.94 1.93 (0.01), 1.91–1.94

RSA
M (SD), range

4.82 (1.44), 1.78–7.64 5.56 (0.97), 3.24–7.26

BDI-II (untransformed)
M (SD), range

10.97 (7.84), 0–33.00 4.07 (3.66), 0–13.00

BDI-II (transformed)
M (SD), range

2.56 (0.58), 1.39–3.61 1.99 (0.44), 1.38–2.83

BAI (untransformed)
M (SD), range

7.96 (6.79), 0–24.00 3.72 (5.29), 0–23.00

BAI (transformed)
M (SD), range

1.73 (0.35), 1.17–2.26 1.49 (0.29), 1.17–2.25

IBI inter-beat interval, RSA respiratory sinus arrhythmia, BDI-II Beck Depression
Inventory, BAI Beck Anxiety Inventory

Table 3 Descriptive statistics: FMR1 molecular measures in the
FMR1 premutation group

Variable M (SD), range

CGG repeat length (untransformed) 95.81 (17.42), 64–147

CGG repeat length (transformed) 4.54 (0.18), 4.16–4.99

Quantitative FMRP 9.16 (3.99), 2.81–18.44

Activation ratio (untransformed) 0.60 (0.18), 0.10–0.90

Activation ratio (transformed) −0.35 (0.13), −0.65 to −1.00

Messenger RNA (untransformed) 0.77 (0.19), 0.49–1.24

Messenger RNA (transformed) 0.68 (0.01), 0.68–0.70
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combined effects group, age, medication use, and parent-
ing stress level did not account for significant variability in
IBI, F (1, 51) = 2.54, p = 0.051, and R2 = 0.17. Cohen’s d for
the group differences in IBI was 0.05, which is consistent
with a small effect size. Regression coefficients are pre-
sented in Table 4, and group comparisons are presented
in Fig. 1.

Relationship between cardiac activity and symptoms of
anxiety and depression
A significant effect was detected for the overall model test-
ing RSA as a predictor of depression symptoms (F [6, 48] =
9.82, p = 0.004, R2 = 0.55). After controlling for age,
medication use, and parenting stress level, the main effect
for group was statistically significant, F [1, 48] = 21.39, p <
0.001, η2p = 0.31. A significant group-by-RSA interaction
term was also detected (F [1, 48] = 7.83, p = 0.007, with a η2p
effect size of 0.14 consistent with a large effect. Regression
coefficients are presented in Table 5. Interaction contrasts
confirmed that the effect of RSA on depression symptom
severity differed by group; among the control women,
decreased RSA was significantly associated with ele-
vated depression symptoms with a medium-to-large ef-
fect (F [1, 48] = 6.40, p = 0.015, η2p = 0.12), whereas the
association between RSA and depression symptoms was
not statistically significant in the women with the FMR1
premutation with a small effect size (F [1, 48] = 1.83, p =
0.182, η2p = 0.04), see Fig. 2. The remaining models testing
the cardiac variables as predictors of depression and anx-
iety symptoms did not indicate a significant effect of RSA,
IBI, or their interactions with group on the psychological
outcomes (see Tables 5 and 6).

Relationship between cardiac autonomic activity and
FMR1 molecular variation
Exploratory Pearson correlations between the genetic
and cardiac variables within the FMR1 premutation
group are presented in Table 7. Elevated mRNA was cor-
related with higher RSA (r = 0.51, p = 0.009). CGG repeat
length was also positively correlated with RSA (r = 0.57,
p < 0.001). Significant correlations were followed with
general linear models including age, medication use, and
parenting stress level as covariates. After including for
these covariates, mRNA remained a significant predictor
of RSA, F (1, 18) = 4.88, p = 0.040, with a η2p of 0.21 which
is consistent with a large effect, see Fig. 3. The general lin-
ear model testing CGG repeat length as a predictor of
RSA did not show a significant effect of CGG repeat size
after controlling for age, medication use, and parenting
stress level; F (1, 22) = 2.51, p = 0.128, and η2p = 0.10. Re-
gression coefficients are presented in Table 8. Finally, gen-
eral linear regression models including quadratic and
cubic terms were run to test for non-linear CGG effects,
with no significant non-linear CGG effects detected.

Discussion
Women with the FMR1 premutation are at substantially
increased risk for depression and anxiety disorders, which
are conditions associated with autonomic dysregulation in
the general population. Given its single-gene basis, the
FMR1 premutation may serve as a foothold to inform the
genetic background for autonomic aberrations. This is the
first study to examine cardiac autonomic function in
women with the FMR1 premutation and its psychological
and genetic correlates. Vagal tone was significantly de-
pressed among the women with the FMR1 premutation,
supporting impaired parasympathetic function in this
group. Unlike the patterns observed in study controls and
the general population, vagal tone and depression symp-
toms were unrelated in women with the FMR1 premuta-
tion, suggesting that the parasympathetic system is not
serving its normal emotional regulatory functions in this
group. Elevated FMR1 mRNA, which is typically associ-
ated with neuronal toxicity, was correlated with higher
(i.e., “better”) vagal tone among women with the FMR1
premutation. Results underscore the need for additional
research to delineate the clinical correlates and predictive
utility of autonomic markers in this high-risk group and
their relationship with FMR1-related mechanisms.

Group comparisons on cardiac indices of autonomic
function
This study provides the first evidence of reduced vagal tone
in women with the FMR1 premutation, which could not be
accounted for by elevated parenting stress or increased
use of psychotropic medications. Dampened vagal tone
is thought to indicate inflexibility of psychophysiological

Table 4 Regression coefficients depicting group membership as
a predictor of cardiac autonomic indices

Effect B SE t p R2

Coefficients: RSA model

Intercept 5.87 0.88 6.70 <0.001* 0.18

Groupa −0.75 0.37 −2.04 0.046*

Age −0.01 0.02 −0.44 0.659

Medication use −0.33 0.23 −1.48 0.144

Parenting stress <0.01 0.01 0.27 0.785

Coefficients: IBI model

Intercept 1.92 <0.01 466.47 <0.001* 0.17

Groupa <0.01 <0.01 0.16 0.876

Age <0.01 <0.01 2.92 0.005*

Medication use <0.01 <0.01 −1.11 0.272

Parenting stress <0.01 <0.01 0.47 0.641
aThe control group was set as the reference category
*p < 0.05
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resources that regulate affective information processing
[137]. A large body of literature documents a supporting
role of the vagus in emotional regulation and pro-social
behavior. Adults with high vagal tone show greater self-
regulatory capacity [138], better regulation of negative
facial expressions [139, 140], increased perceived social
support [141], and increased feelings of social integration
and acceptance [142]. Vagal tone has also been shown to
moderate the impact of negative life experiences, acting as
a buffer to shield at risk individuals from negative emo-
tional and physical consequences [143–145]. Moreover,
an “upwards spiral” reciprocal causality effect has been
suggested, where high vagal tone supports psychological
well-being, which in turn promotes further vagal increases

[146]. The finding of dampened vagal activity among
women with the FMR1 premutation suggests that these
individuals may lack the physiological resources that are
needed to support optimal social-adaptive outcomes.
Blunted vagal tone may be a factor in the elevated risk for
emotional and physical health conditions seen in this
group. Additional research is needed to determine the util-
ity of vagal tone in predicting individual differences in
clinical risk. Penetrance is not complete in the FMR1 pre-
mutation and the identification of a biomarker that can
account for phenotypic variability would contribute sig-
nificantly to prevention and treatment efforts.

Differential relationships between cardiac activity and
psychological symptoms across groups
Vagal activity was not associated with depression symp-
toms in the women with the premutation, although, this
relationship was observed in study controls and has been
documented in the general population [14] and among
individuals with clinically diagnosed mood disorders
[10]. A similar decoupling between vagal tone and anx-
iety symptoms was observed in the FMR1 premutation,
which is contrary to a wealth of evidence supporting a
link between vagal regulation and anxiety symptoms in
other groups [8]. Together, these findings suggest that
parasympathetic control of the heart via the vagal nerve
is not only suboptimal (i.e., reduced in level) but also
dysfunctional (i.e., not serving its normal functions) in
women with the FMR1 premutation. In other popula-
tions, the vagus is thought to play a mechanistic role in
psychological vulnerability; when vagal tone is reduced,
the body is unable to maintain an adaptive physiological
state that promotes social engagement, leading to in-
creased risk for emotional regulatory disorders [29].
Here, we found that vagal activity and psychological risk
were not correlated in the FMR1 premutation, despite
the fact that vagal tone was reduced and psychological
symptoms were increased. This may suggest different

Fig. 1 Group comparisons on respiratory sinus arrhythmia and inter-beat interval. Note: Figures present model-adjusted values, controlling for
age, medication use, and parenting stress level. Untransformed IBI values are depicted for graphical representation. Boxes indicate data between
the 25th and 75th percentile, with the horizontal bar reflecting the median (whiskers = the highest and lowest cases within the interquartile range;
open circles = outliers, defined as cases falling greater than 1.5 times outside the interquartile range)

Table 5 Regression coefficients testing RSA as a predictor of
depression and anxiety symptom severity

Effect β SE t p R2

Coefficients: Depression Symptom Severity Model

Intercept 3.64 0.60 6.10 <0.001* 0.55

RSA −0.24 0.09 −2.53 0.015*

Groupa −1.34 0.62 −2.16 0.036*

Group x RSA 0.32 0.11 2.85 0.007*

Age −0.12 0.01 −2.27 0.028*

Medication Use 0.06 0.09 0.72 0.477

Parenting Stress 0.01 <0.01 3.85 <0.001*

Coefficients: Anxiety Symptom Severity Model

Intercept 2.04 0.42 4.87 <0.001* 0.41

RSA −0.05 0.07 −0.78 0.437

Groupa −0.23 0.43 −0.52 0.604

Group × RSA 0.07 0.08 0.88 0.384

Age −0.01 <0.01 −2.21 0.032*

Medication use 0.04 0.06 0.58 0.564

Parenting stress <0.01 <0.01 3.06 0.004*
aThe control group was set as the reference category
*p < 0.05
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mechanistic underpinnings in the FMR1 premutation
and is consistent with distinct symptom profiles seen in
this group (e.g., women with the premutation have a
lower likelihood of recurrent major depressive episodes
than women in the general population; Roberts et al.,
[75]). Future work incorporating measures of vagal re-
activity may clarify relationships. The present study only

included measures of tonic vagal activity, and some work
suggests that task-related vagal modulation may be a
more robust marker for depression than are baseline
levels [39]. Future research may also investigate relation-
ships among individuals who meet clinical thresholds for
depression and anxiety, as opposed to investigating
continuous symptom presentation across affected and
unaffected individuals, as was done here, or among in-
dividuals with lifetime histories of depression and anxiety
as opposed to current symptomatology.

Relationship between FMR1 molecular variation and
cardiac activity
It is unexpected that elevated FMR1 mRNA was associ-
ated with higher (i.e., “better”) vagal levels within the
FMR1 premutation group because mRNA is thought to
be toxic to the neural system. So, why was elevated
mRNA linked with superior vagal functioning in this
sample? Undetected non-linear effects might explain this
association, which would be consistent with evidence of
CGG-dependent curvilinear risk patterns (i.e., [70, 75,
80, 81]) and the suggestion that maximal mRNA toxicity

Fig. 2 Differential associations between respiratory sinus arrhythmia and depression symptom severity across groups. Note: Model-adjusted values
are depicted, controlling for age, medication use, and parenting stress level

Table 6 Regression coefficients testing IBI as a predictor of
depression and anxiety symptom severity

Effect β SE t p R2

Coefficients: Depression Symptom Severity Model

Intercept 17.76 35.52 0.50 0.619 0.48

IBI −7.96 18.49 −0.42 0.669

Groupa −31.06 43.19 −0.72 0.476

Group × IBI 16.30 22.39 0.73 0.470

Age −0.02 0.01 −2.11 0.040*

Medication use 0.04 0.09 0.40 0.691

Parenting stress 0.01 <0.01 3.46 0.001*

Coefficients: Anxiety Symptom Severity Model

Intercept 15.92 22.38 0.71 0.481 0.43

IBI −7.33 11.65 −0.63 0.532

Groupa −34.14 27.09 −1.26 0.214

Group × IBI 17.77 14.04 1.27 0.212

Age −0.01 0.01 −2.13 0.039*

Medication use 0.04 0.06 0.61 0.542

Parenting stress 0.01 <0.01 3.10 0.003*
aThe control group was set as the reference category
*p < 0.05

Table 7 Genetic correlations with the cardiac activity in women
with the FMR1 premutation

CGG repeat
length

Quantitative
FMRP

Messenger
RNA

Activation
ratio

IBI 0.14 0.26 0.17 −0.01

RSA 0.57** −0.17 0.51** .0.07

IBI inter-beat interval, RSA respiratory sinus arrhythmia
**p < 0.01
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may occur within the mid-premutation range [80, 147].
However, an undetected curvilinear relationship seems
unlikely, as the statistical tests and scatterplot distribution
both suggest a linear association. The unexpected mRNA
association underscores the complexity in untangling
gene-brain-behavior relationships. FMR1 mRNA toxicity
is thought to involve the sequestration of other RNA
binding proteins, which prevents the proteins of other
genes from carrying out their normal functions [69]. Thus,
FMR1 does not function in isolation and the mechanisms
by which FMR1 variation leads to autonomic dysfunction
are not straightforward. It is possible that the relationship

between mRNA and vagal tone is driven by background
gene dysfunction caused by protein sequestration associ-
ated with elevated mRNA. More research is needed to
understand the inter-correlations between FMR1 mRNA
and other FMR1 and non-FMR1 mechanisms and their
collective role in autonomic regulation.
Potential sex effects should also be considered, as

much of our understanding of the functions of FMR1
mRNA comes from work involving males with the pre-
mutation (e.g., [103, 148, 149]). The functions of mRNA
and its neurodegenerative consequences may differ across
males and females, which is consistent with evidence that
FXTAS is less prevalent among females and characterized
by less white matter disease, reduced brain atrophy, fewer
astrocytic inclusions, and lower likelihood for dementia
when compared to males [150–152]. Sex differences may
be partially accounted for by random X inactivation in fe-
males, but the influence of sex-specific hormonal patterns
must also be considered and has not yet been characterized.
Longitudinal work will also be an informative next step,
particularly given that FMR1 mRNA gain-of-function is hy-
pothesized to represent a degenerative, rather than develop-
mental, mechanism, with toxicity building over time [153].
It should also be noted that mRNA levels were measured
from peripheral blood lymphocytes and therefore might
not necessarily reflect expression levels in relevant brain
regions.
Findings did not support a relationship between cardiac

activity and quantitatively measured FMRP levels in women
with the premutation. No other studies have examined
FMRP-autonomic relationships in the premutation, but

Fig. 3 Association between FMR1 messenger RNA and respiratory sinus arrhythmia in women with the FMR1 premutation. Note: Model-adjusted
values are presented, controlling for age, medication use, and parenting stress level

Table 8 Regression coefficients testing FMR1 mRNA and CGG
repeat length as predictors of RSA

Effect β SE t p R2

Coefficients: FMR1 mRNA predicting RSA 0.29

Intercept −112.07 53.06 −2.11 0.049*

mRNA 191.70 86.79 2.21 0.040*

Age 0.04 0.06 0.78 0.444

Medication use −0.01 0.01 −0.69 0.497

Parenting stress −0.35 0.30 −1.17 0.256

Coefficients: CGG repeat length predicting RSA

Intercept −5.74 7.76 −0.74 0.458 0.20

CGG repeat 2.52 1.59 1.58 0.128

Age −0.02 0.04 −0.42 0.679

Medication use <0.01 0.01 0.14 0.891

Parenting stress −0.59 0.30 −1.98 0.060

*p < 0.05
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these results are consistent with prior reports failing to de-
tect a relationship between cardiac activity and the percent
of lymphocytes staining positive for FMRP in males with
the full mutation [154, 155]. One study did document a re-
lationship between FMRP and vagal activity in females with
the full mutation [155]; although, the significance of these
findings are unclear as the association was only present
when vagal tone was indexed using descriptive measures of
heart rate variability but not when respiratory sinus
arrhythmia was used, which is considered to be a more ac-
curate measure of vagal tone [156, 157]. Overall, more re-
search including larger samples is needed to determine
whether FMRP is implicated in autonomic dysregulation in
fragile X conditions.

Summary and directions
There are a number of future directions of this work. First,
follow-up studies including more diverse samples and test-
ing gender effects are needed. This study was limited by a
relatively small sample, which may have reduced statistical
power. Considering that the a priori power calculations for
the larger study were based on by a different set of ques-
tions and assumptions, we reported effect sizes when pos-
sible to provide insight into the strength of the detected
relationships. Given the novelty of the research question
addressing the relationships between cardiac function and
FMR1molecular variation, this aim was considered explora-
tory and we did not attempt to correct for multiple compar-
isons. The exploratory associations detected here may be
used to generate follow-up studies including more focused
hypotheses. Follow-up work may also include more com-
prehensive investigation of associations with menopause,
given that ~20% of women with the FMR1 premutation ex-
perience fragile X-associated primary ovarian insufficiency,
and some research suggests changes in autonomic function
following menopause (e.g., [110]). Finally, genotyping was
not conducted on all controls and we cannot definitively
rule out the presence of atypical CGG repeat numbers in
this group, which could attenuate group differences.
It should also be noted that the premutation group

consisted of mothers who had a child affected by fragile
X syndrome, and results may not generalize to premuta-
tion carriers who do not have an affected child. While
we covaried for parenting stress levels in our models, fu-
ture work may more comprehensively examine the poten-
tial moderating role of parenting stress on the patterns
observed here. Interactions with environmental factors
such as social support should also be considered in future
work, in light of evidence suggesting an “upwards spiral”
reciprocal causality effect, where vagal tone and feelings of
social connectedness reciprocally and prospectively predict
one another [146]. Women with the FMR1 premutation
report increased aloof personality traits [67] and height-
ened interpersonal sensitivity [95], which may interact with

the vagal system. Vagal tone may also be important for un-
derstanding the family environment, as women with the
premutation are particularly susceptible to parenting stress
[158], and low vagal tone is thought to magnify sensitivity
to psychosocial stressors [159]. Furthermore, vagal tone
has been shown to moderate the parenting behaviors of
shy-anxious mothers, influencing child outcomes [160].
Recent work shows that disruption of other allostatic
systems, such as the neuroendocrine system, directly im-
pacts maternal responsivity in mothers who carry the
FMR1 premutation [161]. Adopting a biobehavioral ap-
proach may be invaluable in parsing out the complex,
multi-dimensional influences on individual and family risk
factors in this population.
It should also be acknowledged that the autonomic

system is one of the many bodily stress regulatory sys-
tems, and a multisystem approach is needed to account
for how interactions and coordination across systems may
influence findings. For instance, hypothalamic-pituitary-
adrenal (HPA) axis function of the neuroendocrine system
is blunted in women with the FMR1 premutation and is re-
lated to FMR1 variation [81, 89]. Some evidence suggests
that the vagus plays an inhibitory role in the regulation of
other allostatic systems, including the neuroendocrine sys-
tem, with individuals with low vagal tone showing poor
post-stress recovery of cardiovascular, neuroendocrine, and
immune markers [162]. Better understanding of how these
interacting systems function together will be important for
developing targeted treatments.

Conclusions
In summary, the present study provides evidence that
autonomic dysfunction extends to the premutation,
highlighting autonomic dysregulation as a hallmark fea-
ture associated with defects on FMR1. Associations be-
tween FMR1-related variation and cardiac activity were
detected, which sheds light on genetic determinants of
autonomic alterations relevant to FMR1-associated con-
ditions and the general population as well. Despite the
elevated depression and anxiety symptoms, we observed
independence between psychological symptoms and the
autonomic system dysfunction in women with the FMR1
premutation group. This suggests that cardiac indices
may have limited utility as biomarkers for anxiety and
depression in this group. Yet, there is little understanding
of the clinical consequences of autonomic dysregulation in
this group and future studies may identify cardiac indices
as useful markers for other clinical phenotypes associated
with FMR1 gene dysfunction, such as FXTAS. The identifi-
cation of biomarkers for clinical risk in the FMR1 premuta-
tion may improve early identification, tailored treatment,
prevention, and the ability to predict which individuals are
most at risk for late-onset symptom presentation. This
study represents a first step in that direction.
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