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ARTICLE

Virus-specific memory T cells populate tumors
and can be repurposed for tumor immunotherapy
Pamela C. Rosato1, Sathi Wijeyesinghe1, J. Michael Stolley1, Christine E. Nelson1, Rachel L. Davis1,

Luke S. Manlove1, Christopher A. Pennell 2, Bruce R. Blazar3, Clark C. Chen4, Melissa A. Geller5,

Vaiva Vezys1 & David Masopust 1

The immunosuppressive tumor microenvironment limits the success of current immu-

notherapies. The host retains memory T cells specific for previous infections throughout

the entire body that are capable of executing potent and immediate immunostimulatory

functions. Here we show that virus-specific memory T cells extend their surveillance to

mouse and human tumors. Reactivating these antiviral T cells can arrest growth of checkpoint

blockade-resistant and poorly immunogenic tumors in mice after injecting adjuvant-free

non-replicating viral peptides into tumors. Peptide mimics a viral reinfection event to memory

CD8+ T cells, triggering antigen presentation and cytotoxic pathways within the tumor,

activating dendritic cells and natural killer cells, and recruiting the adaptive immune system.

Viral peptide treatment of ex vivo human tumors recapitulates immune activation gene

expression profiles observed in mice. Lastly, peptide therapy renders resistant mouse

tumors susceptible to PD-L1 blockade. Thus, re-stimulating known antiviral immunity may

provide a unique therapeutic approach for cancer immunotherapy.
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Tumor immunotherapy has revolutionized cancer treat-
ment. Current therapies, however, remain suboptimal and
are often not effective in many patients. Therapies must

contend with exhaustion of tumor-specific T cells, and checkpoint
blockade therapies aimed at reversing this exhaustion are only
efficacious in a subset of patients1. Vaccines that carry tumor
antigens are also aimed at reinvigorating exhausted cells or
priming new responses, however, these therapies suffer from the
need to identify rare immunogenic epitopes that are often per-
sonalized (patient-specific) and subject to tumor escape. Adoptive
cell therapies (ACT) bypass tumor-specific T-cell exhaustion
issues and have been largely successful at eliminating blood
cancers. Application to solid tumors, however, has rarely been
effective, and in addition to epitope identification, T-cell migra-
tion to the tumor is a major barrier2. All therapies must also
contend with the immunosuppressive tumor microenvironment3.
Strategies to do so include intratumoral injection of live oncolytic
virus, which can kill tumor cells and promote an inflammatory
antiviral response, however, this property can be self-limiting
by inducing an antiviral response that then inhibits the viral
therapy. Other strategies include intratumoral injection of
microbial products that target an innate immune signaling
pathway, such as toll-like receptors or STING4. It is clear current
immunotherapy approaches have great promise for subsets of
patients, however, new therapeutic approaches are needed.

Humans experience many viral infections. Once controlled, the
host retains memory CD8+ T cells throughout the entire body to
sense reinfection or recrudescence5,6. These antiviral memory
T cells are licensed to respond quickly, remain highly vigilant, are
capable of cytotoxicity, and are plentiful throughout the body. In
addition to killing targeted cells, when antiviral memory CD8+
T cells encounter the specific peptides that they were primed to
respond to during the initial infection, they interpret this rapid
recognition as a reinfection event and promote potent local
immunoactivation, locally orchestrating immune defenses at that
site. This property is no longer strictly dependent on innate sig-
nals needed for a primary T-cell response, and it occurs within
mere hours of peptide exposure7–9. Unlike human tumor anti-
gens, which can be patient-specific and non-immunogenic, the
immunogenic peptides recognized by virus-specific CD8+ T cells
are widely known for common human pathogens. We asked
whether antiviral memory CD8+ T cells could be triggered by
peptides for cancer immunotherapy.

Here we observe that, like healthy tissue, mouse and human
tumors are commonly surveyed by memory T cells specific for
previously encountered viral infections, and these functional
T cells can be specifically reactivated via local delivery of
adjuvant-free viral peptide. Antiviral T-cell reactivation induces
activation of both the innate and adaptive immune system within
the tumor, arrests tumor growth, and synergizes with PD-L1
checkpoint blockade to eliminate normally resistant tumors.
Immune activation was observed in human tumors treated
ex vivo with viral-derived peptides, supporting that natural and
existing antiviral immunity is abundant in solid tumors and can
be repurposed as a tumor immunotherapy.

Results
Antiviral memory T-cell activation arrests tumor growth. To
visualize whether mouse tumors were surveyed by memory
T cells specific for acute viral infections, we established mouse
models that contained antiviral CD8+ T cells bearing markers
compatible with immunohistochemistry, which favored the use of
an antiviral transgenic T-cell population bearing a stainable
marker, CD45.1. CD45.1+ OT-I transgenic OVA peptide-
specific CD8+ T cells were transferred to naive mice. The

following day, recipients were infected with live replicating vesi-
cular stomatitis virus expressing OVA (VSVova), which resulted
in the establishment of broadly distributed OT-I memory CD8+
T cells (Fig. 1a). These mice are referred to as OT-I chimeras.
To test whether developing tumors would be populated by pre-
existing memory CD8+ T cells, OT-I chimeras were inoculated
with 1.5 × 105 aggressively growing B16 melanoma cells i.d.
Alternatively, OT-I chimeras were generated in BRafCA,PtenloxP,
Tyr::Cre-ERT2 mice (herein referred to as Braf/Pten), which
develop local autochthonous tumors in skin after topical appli-
cation of tamoxifen through Cre-mediated deletion of the tumor
suppressor Pten and expression of the mutant BrafV600E oncogene
in melanocytes10. In both cases, previously established antiviral
memory T cells extended immunosurveillance to tumors, con-
sistent with previous reports11 (Fig. 1a and Supplementary
Figure 1).

We next asked if antiviral T cells within the tumor
microenvironment were amenable to peptide-mediated reactiva-
tion, as we first observed in healthy skin (Supplementary
Figure 2). OVA peptide, without adjuvant, was injected into
palpable tumors (Fig. 1b). This peptide is a synthetic mimic of
the viral epitope that originally induced the OT-I response,
but importantly, is not expressed by the tumor. Within 12 h,
intratumoral antiviral CD8+ T cells expressed IFNγ, CD25, and
cytotoxic granyzme B (Fig. 1c), indicating that antiviral CD8+
T cells within tumors become activated in response to local viral
peptide injection.

We observed significant delays in tumor growth kinetics in
response to antiviral T-cell reactivation (Fig. 1d–f and Supple-
mentary Figure 3). This was true when viral peptide was injected
into palpable, poorly immunogenic melanoma tumors of Braf/
Pten mice, or into MC38 colon adenocarcinoma or B16
melanoma i.d. injected tumor cell lines, with total clearance
of the moderately immunogenic MC38 observed in some mice
(Fig. 1d–f and Supplementary Figure 3). GP33 peptide from a
different virus (LCMV) that had not been experienced by these
mice had no effect, indicating that tumor control was dependent
on antigen-specific reactivation of pre-existing antiviral immu-
nity. We also tested growth of B16 tumors in mice that did
not receive OT-I T cells but rather had endogenous B8R and
N-specific memory CD8+ T cells due to prior exposure to
vesicular stomatitis virus (VSV) and recombinant vaccinia virus
expressing the N epitope derived from VSV; tumor control was
similar in response to N and B8R peptides, indicating that this
phenomenon did not depend on the experimental use of
transgenic T cells (Fig. 1g).

Viral peptides promote intratumoral immune activation. To
explore potential mechanisms, we profiled B16 tumors 9 h after
peptide therapy by RNAseq. Many genes associated with immune
activation were significantly upregulated (Fig. 2a). This included
CD80, CD86, and CCR7, all associated with dendritic cell (DC)
activation and migration to draining lymph nodes. As CD103+
DCs have been described as critical for priming anti-melanoma
T-cell responses12, we tested if this subset was activated after
therapy. We observed that CD103+ dendritic cells had indeed
upregulated CD86 and CCR7 within the tumor after 12 h
(Fig. 2b), and observed a corresponding increase in activation and
accumulation within the draining lymph node at 48 h (Fig. 2b, c).
Tap1, Tap2, and β2M genes were also upregulated, which are
involved in natural killer cell recognition, and tumor cell pro-
cessing of antigens and presentation through MHC I to cytotoxic
CD8+ T cells. Indeed, we found that tumor cells notably
increased MHC I expression within 24 h of peptide therapy
(Fig. 2d). This finding, coupled with the observed rapidity of
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tumor control (Fig. 1d–g) and upregulation of the tumoricidal
molecule granzyme B (Fig. 1c), suggests direct killing of peptide-
coated tumor cells by reactivated antiviral T cells may have
occurred, as has been previously described for vaccine-generated
T cells13. Chemokines and VCAM-1, used to recruit immune
cells, were also expressed and this was accompanied by an
accumulation of intratumoral CD8+ T cells (excluding antiviral
OT-I) and natural killer cells, both of which upregulated gran-
zyme B (Fig. 2e, f). Fas, also a mechanism by which tumor cells
are killed by CD8+ T cells and NK cells, was also upregulated in
response to peptide therapy (Fig. 2a). Taken together, peptide
therapy promotes a broad immune-activating environment,
promoting the accumulation of CD8+ T cells, NK cells, and DCs
within tumors, activating DCs within draining LNs, increasing
MHC I expression by tumor cells, and upregulating cytotoxic
molecules by cells associated with tumor control.

Viral peptides promote immune activation in human tumors.
We next assessed whether antiviral CD8+ T cell

immunosurveillance commonly extended to multiple human
tumor types. Because ~50% of Minnesotans express HLA-A*02,
we generated HLA-A*02 MHC I tetramers containing known
immunogenic peptides from the common viral infections
Epstein–Barr virus (EBV), cytomegalovirus (CMV), and influenza
(Flu). In cases where paired blood samples were obtainable
(> 90%) and sufficient T cells could be isolated from available
tumor sample for analysis (77%), identification of virus-specific
T cells in the blood was 100% predictive of the presence of the
same population in tumors, including brain metastases, glio-
blastoma, renal cell carcinoma, as well as endometrial, ovarian,
head and neck, thyroid, colon, and breast cancers (Fig. 3a, b,
Supplementary Figure 4, and Supplementary Table 1). Virus-
specific T cells identified in tumors were phenotypically different
(expressing CD69 and CD103, markers associated with resident
memory T cells14) compared to those found in blood, indicating
that these were not blood contaminates and constituted T cells
within the tumor (Fig. 3a). These results extend recent observa-
tions of virus-specific T cells in colorectal and lung cancers15.
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To test if antiviral T cells in human tumors could respond to
peptide therapy, we first stimulated freshly isolated T cells from
human tumors with viral peptides ex vivo and measured cytokine
expression 12 h later. We observed a measurable increase in

TNFα and IFNγ production, indicating that both mouse and
human intratumoral T cells are capable of being triggered by viral
peptides (Supplementary Figure 5). To test if reactivated peptide
therapy could promote tumor-wide immune activation in situ, we
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tetramers specific for EBV (EBVGLC and EBVCLG), CMV (CMVNLV), and Influenza (FluGIL) (showing 4 of 36 patients, as indicated (b). Left two columns
gated on CD8+/CD3+ cells. Right column; CD69 and CD103 phenotype of tetramer-positive cells. b Frequency of tetramer+ T cells in all human tumors
analyzed. Each bar is a patient. Symbol color represents specific tetramer; red circles= CMVNLV, black circles= EBVGLC, blue circles= EBVCGL, green
circles= FluGIL. c Schematic of human organotypic slice culture experimental design. d Upstream transcriptional regulator analysis using ingenuity pathway
analysis (IPA) software on differentially expressed genes after 9 h treatment with control or viral peptide with a q-value < 0.1 from in vivo mouse B16
tumors (n= 3 mice), ex vivo Braf/Pten tumors slice culture (n= 3 mice) or two distinct human endometrial (from three technical replicates each) or one
colon (from two technical replicates) tumor slice cultures (colors denote activation z-score). Patient IDs in order from left to right are T18_0241, T17_1424,
and T18_0237. Upstream transcriptional regulators could not be identified by IPA in a fourth human tumor sample (T18_0286), as no significantly
differentially expressed genes were identified (see Supplementary Table 2)
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employed an organotypic ex vivo slice culture model of fresh
human tumors. This method allows for preservation of cellular
composition and tissue architecture of the tumor16. Blood from
HLA-A*02 patients was screened for tetramer+ cells, which then
informed the cocktail of viral-derived peptides to add to tumor
sections obtained from that same patient. RNAseq was performed
on tumor slices 9 h after peptide addition and compared to
control cultures (Fig. 3c, Supplementary Table 2). In three out of
four human tumors, there was upregulation of genes involved in
immune activation. Further analysis showed highly similar
patterns of enriched upstream transcriptional regulators in
human ex vivo, mouse ex vivo and mouse in vivo tumors
(Fig. 3d). Importantly, these proof-of-principle data demonstrate
that human antiviral T cells are capable of reactivating within
tumors to trigger immune activation.

Viral peptides sensitize B16 melanoma to checkpoint blockade.
Patients with PD-L1-positive tumors are typically more respon-
sive to checkpoint blockade1. While mouse B16 melanoma is
refractory to checkpoint blockade therapy17, when we stained for
PD-L1 we observed that it was upregulated on tumor cells after
peptide therapy (Fig. 4a). This prompted us to test whether PD-
L1 blockade would now be effective in the setting of peptide
therapy. OT-I chimeras received B16 melanoma. Seven to twelve
days later, palpable tumors were injected twice or thrice with
reactivating viral SIINFEKL peptide or control irrelevant peptide
in conjunction with three injections of anti-PD-L1 antibody i.v.
In this case, we observed complete eradication of B16 in 34% of
mice (Fig. 4b, c, and Supplementary Figure 6). Of note,

combinatorial peptide and checkpoint blockade therapy was far
more effective than anti-PD-L1 combined with a TLR agonist that
is currently in clinical trials, CpG (Fig. 4b, c and Supplementary
Figure 6)18. When peptide therapy-cured mice were subsequently
challenged > 5 weeks later on the opposite flank with B16 mela-
noma (in the absence of additional peptide therapy or any other
treatments), these tumors failed to grow in most mice (Fig. 4d).
This indicates that systemic anti-tumor immunity had been
established.

Discussion
This study highlights that human tumors from diverse cancers
commonly contain antiviral CD8+ T cells, consistent with
reports that many tumor infiltrating lymphocytes may not be
tumor-specific, and extending recent work focused on colorectal
and lung cancer15,19,20. This merits consideration given that the
frequency of CD8+ (and CD103+) tumor infiltrating lympho-
cytes correlates with favorable prognosis21–24. We go on to show
that we can repurpose these antiviral memory T cell as a tumor
therapy.

Major impediments to immune control over tumors are the
immunosuppressive microenvironment and the exhaustion of
tumor-specific T cells3. Overcoming this immunosuppression and
inducing a durable systemic tumor-specific immune response is
the ultimate goal of tumor immunotherapy. The peptide therapy
described in this study operates by ‘tricking’ antiviral T cells into
perceiving a local reinfection that broadly activates innate and
adaptive immunity. Inducing an immunostimulatory environ-
ment within tumors is an active area of study and notable
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Fig. 4 Antiviral T-cell reactivation sensitizes B16 to checkpoint blockade therapy. a PD-L1 expression on B16 tumor cells 24 h following intratumoral
irrelevant (black circles) or viral peptide (red circles), n= 5; data pooled from two experiments. Lines represent means and error bars are SEM. b, c Tumor
growth (b) and survival (c) of OT-I immune chimeras with B16 treated with irrelevant peptide (black lines), irrelevant peptide with anti-PD-L1 (green lines),
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therapies being pursued are TLR agonists and oncolytic viruses.
While not directly compared beyond impacts on tumor growth
(Fig. 4), it is likely there are mechanistic differences between
peptide therapy, which activates cytotoxic CD8 T cells to perform
a broad array of immune functions, and innate-activating TLR
agonists. Adaptive immunity requires significantly more levels of
regulation and danger signals to respond because once the
response has been established, future activity occurs with a sen-
sitive trigger, effector functions are much more potent, and par-
ticipating populations can undergo massive self-amplification.
Moreover, this hyper-responsive state is maintained long-term
due to durable T-cell memory. Peptide therapy bypasses the need
for vaccination and taps into adaptive cytotoxic memory T-cell
populations that have already passed through these regulatory
checkpoints in order to control pathogens. When established
antiviral memory CD8+ T cells are triggered by peptide, they
execute a broad array of functions that include cytotoxicity and
the activation of numerous pathways within the innate and
adaptive immune system.

Oncolytic virotherapies have shown exciting promise and while
originally used as a targeted way to kill tumor cells, this therapy
also induces anti-tumor immunostimulatory effects. Because of
the nature of the therapy (a live replicating virus), induction of an
antiviral immune response can work to inhibit the therapy.
Additionally, there are viruses currently being tested, such as
herpesviruses, poliovirus and measles virus, that may stimulate
pre-existing immunity. Presence of antibodies specific to the
virotherapy can pose a challenge as this can inhibit infection and
potentially limit efficacy25. Despite these limitations, clinical trials
have demonstrated promising efficacy, in particular with T-VEC,
an oncolytic herpesvirus that has demonstrated efficacy against
melanoma when injected intratumorally26,27. While not tested, an
intriguing possibility is that some current virotherapies may be
tapping into pre-existing T-cell immunity specific to those viruses
which may exist in tumors.

Immunotherapies that more directly work to induce an anti-
tumor T-cell response have also shown exciting promise and
include vaccines targeting tumor antigens, checkpoint blockade,
and adoptive cell therapies including chimeric antigen receptor
(CAR) T-cell therapy, however, clinical efficacy against solid
tumors remains suboptimal or does not work for many patients4.
Viral peptide therapy may synergize with these existing therapies,
for example by making ‘cold’ tumors ‘hot’ (recruiting T cells),
extending the range of patients that respond to PD-L1 or CTLA-4
checkpoint blockade, or by recruiting ACT to solid tumors. A
potential disadvantage is that viral peptides may have to be
matched to patient HLA type. HLAs, however, are easy to assess,
are shared by large populations, and peptides from ubiquitous
human pathogens have already been defined for common HLAs.
Additionally, these issues may be counterbalanced by safety and
manufacturing advantages as relevant synthetic viral peptides are
only 8–10 amino acids. Moreover, peptide therapy requires no
adjuvant, vaccine, or replicating agent potentially subject to risky
safety profiles or issues with dosing and tropism, nor costly
identification of tumor-specific antigens that may not be immu-
nogenic. In summary, re-stimulating known antiviral immunity
via defined peptides from common pathogens provides a unique
therapeutic avenue for cancer immunotherapy.

Methods
Mice. C57BL/6J (B6) female mice were purchased from The Jackson Laboratory
(Bar Harbor, ME) and were maintained in specific-pathogen-free conditions at the
University of Minnesota. BRafCA,PtenloxP,Tyr::Cre-ERT2 male and female mice
were obtained from the Jackson Laboratory and bred in our animal colony.
CD90.1+ OT-I and CD45.1+ OT-I mice were fully backcrossed to C57BL/6J mice
and maintained in our animal colony. Sample size was chosen on the basis of
previous experience. No sample exclusion criteria were applied. No method of

randomization was used during group allocation, and investigators were not
blinded. All mice used in experiments were 5–14 weeks of age. All mice were used
in accordance with the Institutional Animal Care and Use Committees guidelines
at the University of Minnesota.

Adoptive transfers and infections. We generated OT-I immune chimeras by
transferring 5 × 104 CD90.1 or CD45.1 OT-I CD8+ T cells from female mice
into naive 6–8-week-old C57BL/6J female mice, and then infecting those mice with
1 × 106 PFU of vesicular stomatitis virus expressing chicken ovalbumin (VSVova)
i.v. Alternatively, 5 × 104 CD90.1 or CD45.1 OT-I CD8+ T cells from female mice
were injected i.v. into 5-week-old male or female BRafCA,PtenloxP,Tyr::Cre-ERT2

mice which were then infected with 5 × 105 PFU of VSV-OVA i.v. For endogenous
CD8+ T-cell studies, we infected naive C57BL/6J mice with 106 PFU of VSV strain
Indiana i.v. followed by Vaccinia virus expressing the N epitope from VSV i.v.
30 days later. Lymphocytes were stained with H-2Kb/B8R and H-2Kb/N MHC
I tetramers.

Lymphocyte isolation and phenotyping of mouse cells. We used an intravas-
cular staining method to discriminate cells present in the vasculature from cells in
the tissue parenchyma, as described28 for 12-h timepoints. In brief, we injected
mice i.v. with biotin/fluorochrome-conjugated anti-CD45 i.v. Three minutes after
the injection, we euthanized the animals and harvested tissues as described29. B16
tumors were removed and processed by gentleMACS Dissociator. Skin was
digested in Collagenase IV (Sigma) for 1 h then dissociated via gentleMACS Dis-
sociator (Miltenyi Biotec) twice. Isolated mouse cells were stained with antibodies
to CD11b (clone M1/70, BD Biosciences, 561114), MHCII I-A/I-E (clone M5/
114.15.2, BioLegend, 107635), CD86 (clone GL1, BD Biosciences, 563055), CD11c
(clone N418, BioLegend, 117311), CD103 (clone 2E7, eBioscience, 17-1031-80),
CD45 (clone 30-F11, BD Biosciences, 563709), CCR7 (clone 4B12, eBioscience, 12-
1971-82), NK1.1 (clone PK136, BioLegend, 108728), CD3 (clone 145-2C11, BD
Biosciences, 563004), CD8a (clone 53-6.7, BioLegend, 100743), IFNγ (clone
XMG1.2, BD Biosciences, 54411), CD25 (clone PC61, BD Biosciences, 557192),
CD44 (clone IM7, BioLegend,103059), granzyme B (clone GB11, Invitrogen,
GRB04), CD69 (clone H1.2F3, BD Biosciences, 562455), MHCI H-2Kb/H-2Db

(clone 28-8-6, BioLegend, 107635), CD274 PD-L1 (clone 10F.9G2, BioLegend
124315), gp100 (clone EP4863, Abcam, ab137078), and anti-rabbit AF647 (Invi-
trogen, A-21245). All cells were stained at antibody dilutions of 1:100 except for
granzyme B (1:50), MHCII I-A/I-E (1:400), gp100 (1:1000), and anti-rabbit Ig
(1:400). Cells stained intracellularly (for IFNγ, granzyme B and gp100) were per-
meabilized using Tonbo or ebioscience Fixation/permeabilization kits. Cell viability
was determined with Ghost Dye 780 (Tonbo Biosciences). Gating strategy shown
in Supplementary Figure 7. Enumeration of cells was done using PKH26 reference
microbeads (Sigma). The stained samples were acquired with LSRII or LSR For-
tessa flow cytometers (BD) and analyzed with FlowJo software (Treestar).

Immunofluorescence microscopy. B16 tumors were harvested, then fixed in 2%
paraformaldehyde for 2 h before being treated with 30% sucrose overnight for
cryoprotection. The sucrose-treated tissue was embedded in OCT tissue-freezing
medium and frozen in an isopentane liquid bath. Frozen blocks were processed,
stained, and imaged including staining with antibodies to CD8-β (YTS156.7.7; BD
Biosciences), CD90.1 (OX-7; BD Biosciences), and CD45.1 (A20; Biolegend). We
also counterstained with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI)
to detect nuclei.

Tumor models and treatment. 150,000 B16F10 or 500,000 MC38 cells were
injected i.d. into the right flank (or 50,000 B16 in left flank for re-challenge
experiment). Tumor growth was monitored and mice were euthanized upon
reaching endpoint criteria of > 10 mm in one dimension or ulceration. Tumor size
was calculated by multiplying length × width (mm2). B16 and MC38 cells were
maintained in RPMI 1640 or DMEM, respectively, supplemented with 10% FBS, L-
glutamine, sodium pyruvate, penicillin/streptomycin, HEPES, nonessential amino
acids, and beta-mercapto-ethanol. Alternatively, tamoxifen (4-hydroxytamoxifen)
Sigma was diluted in DMSO at 8 mg/ml and 10 µl was injected intradermally into
the right flank of Braf/Pten mice. Braf/Pten mice that had observable spontaneous
tumors at the time of tamoxifen injection were excluded. Braf/Pten mice that
developed spontaneous tumors after 4-OHT delivery were included, however, all
measurements were taken from the induced tumor. For local tumor T cell reac-
tivation experiments involving peptides, 0.5 µg of the indicated peptides (New
England Peptides) were delivered intratumorally or into the skin via tattoo gun
(Fig. 2 and Supplementary Figure 2) or by direct intratumor injection in a volume
of 30 µl. Alternatively, CpG ODN1826 (Invivogen) was injected intratumorally at
a dose of 10 μg in 30 µl. Anti-PD-L1 (clone B7-H1, Bioxcel) was injected i.v. at
0.2 mg/mouse every other day for a total of three times starting at the time of first
intratumoral peptide injection. Peptides used in mouse studies: KAVYNFATM
(gp33) from LCMV (used as control irrelevant); TSYKFESV (B8R) from Vaccinia
virus; RGYVYQGL (N) from VSV; and SIINFEKL from ovalbumin.

Procurement and processing of human blood and tissue samples. All tumor
tissue and blood was obtained from male or female patients age 16–80 undergoing
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routine surgical resection of solid tumors or tumor metastases. Tumor tissue not
required for pathological diagnostic procedures was obtained after surgical resec-
tion at the University of Minnesota and collected and de-identified by the Tissue
Procurement Facility (BioNet, University of Minnesota). Informed consent was
obtained from all subjects. The University of Minnesota Institutional Review Board
approved all protocols used. Blood was collected in EDTA collection tubes and
tumors were collected in RPMI media containing 5% FBS. All samples were stored
at 4 °C until processed (within 24 h). Specimens reported on were obtained from
HLA*A02+ patients that had sufficient tetramer+ cells for analysis by flow
cytometry. Human blood was processed by Ficoll gradient. Tumors were minced
and digested in Collagenase type IV (endometrial) or Collagenase Type I (all
others). They were then dissociated via gentleMACS Dissociator 1 × (glioblastoma
or brain metastases) or 2 × (all others) and lymphocytes purified on a 44/67%
Percoll (GE Healthcare) gradient. Lymphocytes were stained for anti-human HLA-
A2 (clone BB7.2, BioLegend, 343324), CCR7 (clone G043H7, BioLegend, 353208),
CD45RO (clone UCHL1, BioLegend, 304232), CD8α (clone SK1, BD Biosciences,
561945), CD3e (clone SP34-2, BD Biosciences, 557917), CD4 (clone L200, BD
Biosciences, 551980), CD69 (clone FN50, BioLegend, 310926), CD103 (clone
HML-1, Beckman Coulter, IM1856U), IFNγ (clone B27, BD Biosciences, 554700),
TNFα (clone Mab11, BD Biosciences, 554514). Cells were stained at antibody
dilutions of 1:30. Samples were also stained for HLA-A*02 tetramers (made in
house) for EBVGLC, EBVCGL, CMVNLV, and FluGIL. Viability was assessed by live/
dead staining with GhostDye510 (Tonbo biosciences). Gating strategy shown in
Supplementary Figure 8. For in vitro stimulation, isolated lymphocytes were
incubated with viral peptides (10 μg/mL) or control DMSO in RPMI media con-
taining brefeldin A (GolgiPlug, BD Biosciences), monensin (GolgiStop, BD Bios-
ciences), 10% FBS, L-glutamine, sodium pyruvate, penicillin/streptomycin, HEPES,
and nonessential amino acids. Cultures were incubated overnight and stained for
the above antibodies/reagents for flow cytometry. Peptides used in human studies:
CLGGLLTMV (EBVCLG), GLCTLVAML (EBVGLC), NLVPMVATV (CMVNLV),
GILGFVFTL (FluGIL).

Transwell cultures and RNA isolation. Tumors were sliced into thin sections
manually with a sharp surgical blade. Sections were then incubated in RPMI media
containing 10% FBS, L-glutamine, sodium pyruvate, penicillin/streptomycin,
HEPES, nonessential amino acids, and beta-mercapto-ethanol on 12-well poly-
carbonate transwell inserts with a 0.4 μm pore size (Corning) and maintained in
5% CO2 and atmospheric oxygen levels16. Tissues were incubated with viral pep-
tides at 10 μg/mL or in equal volume of DMSO for 9 h. Tissues with poor viability
after culture were excluded. Tumor sections were stored in RNAlater (Thermo-
Fisher) at 4 °C overnight, then stored at −80 until further processing. For RNA
isolation, tissue was thawed on ice in 1 mL TRIZOL (Invitrogen) then homo-
genized with a Tissue Tearor homogenizer, BioSpec. RNA was then isolated fol-
lowing the TRIZOL recommended protocol. Resulting RNA was then further
purified using Qiagen RNA Cleanup Kit.

RNA library preparation and sequencing. mRNA libraries were generated using
the TruSeq Stranded mRNA Library Prep kit (Illumina) and sequenced on an
Illumina HiSeq 2500 in 50-base paired-end reactions. Fastq files were verified for
quality control using the fastqc software package. Low-quality segments and
adapters were trimmed using Trimmomatic. Quality-filtered reads were aligned to
either the mouse genome GRCm38 or the human genome GRCh38 using Hisat230.
Differentially expressed genes were determined using the DESeq2 R package31

where false-discovery rate (FDR) < 0.1 was considered significant.
Upstream transcriptional regulators were generated through the use of IPA
(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis)32.

Statistics. Data were subjected to the Shapiro–Wilk normality test to determine
whether they were sampled from a Gaussian distribution. If a Gaussian model of
sampling was satisfied, parametric tests (unpaired two-tailed Student’s t-test for
two groups and one-way ANOVA with Bonferroni multiple comparison test for
more than two groups) were used. If the samples deviated from a Gaussian dis-
tribution, non-parametric tests (Mann–Whitney U test for two groups,
Kruskal–Wallis with Dunn’s multiple comparison test for more than two
groups) were used. All statistical analysis was done in GraphPad Prism
(GraphPad Software Inc.). p < 0.05 was considered significant.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNAseq data are deposited to the GEO databaseunder the accession code GSE124620.
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