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Abstract: The P-complete problem of logic deduction in classical propositional and first order 

predicate calculus is considered. The suggested method is alternative to the traditional methods of 

direct and inverse logic deduction in particular to the Robinson’s resolution principle. The deter-

ministic algorithm of polynomial complexity based on Boolean algebra of cubic functions for dif-

ferentiation between two classes of formulas: valid and satisfiable, or unsatisfiable and satisfiable, 

is suggested. 
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1. Introduction 
 

        One of the major directions in Artificial Intel-

ligence is solution of the problem of  knowledge repre-

sentation and its processing based on the logic deduction 

[1]. Intellectual methods for selection and generalization 

of information allow one to make motivated decisions 

and carry out the long-term predictions in economics, 

medicine, and other areas.  

The problems of logic deduction, as well as the ma-

jority of problems for the optimum solution search in 

various spheres can be classified as NP-complete prob-

lems. One way to solve such problems is to use special 

algorithms, for example, genetic algorithms [2], the 

Fuzzy Adaptive Search Method [3], the DNA computing 

[4], etc. However, these methods give only approximated 

solution and do not guarantee finding the global opti-

mum. More effective solution of this problem means to 

reduce it to P-complete problem and to design the exact 

algorithms of polynomial complexity for them. 

Because of the increase of the initial data dimensions, 

both the NP-complete and P-complete problems, require 

a lot of computing resources, that is why the develop-

ment of algorithms suitable for parallel processing is also 

important. 

 

   2. The mathematical tools  
for formalization of logic deduction 

 

The procedure of forming the new knowledge from 

the already available one in any formal system of 

knowledge representation is a logic deduction which can 

be written as follows: 

          ))(( 21  CAAA n  ,       (1)      

where nAAA ,,, 21   – premises of logic deduction, C –   

conclusion of  logic deduction.  

The theoretical basis of Artificial Intelligence is 

mathematical logic the main results of which are stated in 

the famous monograph by D. Hilbert and P. Bernays [5].  

The deduction offered by D. Hilbert and based on the 

set axioms is a difficult and time consuming process, be-

cause the choice of the necessary axioms at each step of 

the formula proof remains at the level of guess-work, intu-

itions, and finally leads to an exhaustive search.  

It is also difficult to automate a natural deduction 

which uses heuristics to select the rules. 

In 60s the new stage began in the development of 

mathematical logic [6]. The methods of logic deduction 

which have developed in that period can be divided into 

two groups. The methods of direct logic deduction per-
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form the proof from premises to conclusion, and the 

methods of inverse logic deduction operate in the reverse 

direction, beginning from the conclusion, through a chain 

of rules for search of the facts confirming the proof. The 

most well-known method of inverse logic deduction is 

the Robinson’s resolution principle [7]. 

The main disadvantage of both approaches is caused 

by the necessity to execute a lot of search operations 

while performing the proof   from the premises to the 

conclusion or vice versa. To decrease the quantity of su-

perfluous operations it is necessary to use complicated 

heuristics. 

More effective problem solution of logic deduction can 

be found by reducing the problem to decision procedure. 

In modern logic the decision procedure is understood as 

the task of finding general methods for identification of 

the validity or unsatisfiability of logic formulas [8, 9]. 

Checking of the correctness of some reasoning which is 

preset by the premises nAAA ,,, 21   and by the conclu-

sion C  is logically equivalent to the proof of the fact 

that the formula 

        CAAA n  21                   (2)                                      

is valid, or the formula 

         CAAA n &&&& 21                  (3)                                   

is unsatisfiable (inconsistent). 

We will consider the classical propositional and first 

order predicate calculus as the formal theories in which 

we will investigate the problems of validity and 

unsatisfiability. 

The research problem of formula deductibility in 

propositional calculus can be replaced by the equivalent 

research problem of the functions validity in Boolean  

algebra of logic functions. While performing propositional 

calculus we transform formula )A,,A,A(F n21   into 

the logic function ),,,( 21 nAAAf  , and then formulas 

(2) and (3) can be represented in the disjunctive normal 

form (DNF) or conjunctive normal form (CNF) of the 

logic function, in which premise iA  represents the i th 

clause of DNF or CNF. In this case, the decision proce-

dure consists in identification of  the class of  logic 

function ),,,( 21 nAAAf  : 

1) the class of the valid functions accepting  the 

value of "true" in all sets of values of their argu-

ments; 

2) the class of the unsatisfiable functions accepting  

the value of "false" in all sets of values of their 

arguments; 

3) the class of the satisfiable functions accepting the 

value of “true” at least on one value set of their 

arguments;  

By analogy to propositional calculus, formulas of the 

first order predicate calculus are divided also into three 

classes: valid, unsatisfiable and satisfiable formulas. 

Effective hardware-software implementation of a deci-

sion procedure can be reached by means of the Boolean 

algebra of cubic functions. 

The Boolean algebra of cubic functions is isomorphic 

to the Boolean algebra of logic functions [10]. In the 

Boolean algebra of logic functions, the operations of con-

junction, disjunction and negation correspond to the oper-

ations of intersection, union and complement of cubes in 

the Boolean algebra of cubic functions, and the normal 

forms correspond to cubic coverings [11] .The cubic 
K -covering (cubic Q -covering) of some logic function 

f  is the representation of CNF of direct function f  

(inverse function f ) in cubic form (i.e. in alphabet 

{0,1, x }).  

 One CNF clause corresponds to one cube of a cov-

ering, the direct (inverse) value of a variable in CNF 

clause corresponds to the value one (value zero) of cube 

components, otherwise cube component is equal to the 

value of “ x ”, and the number m  of Boolean function 

variables is equal to the number m  of  cube compo-

nents. 

The cubic D -covering (cubic R -covering) of some 
logic function f  is the representation of CNF of direct 

function f  (inverse function f ) in cubic form. The 

conformity between the DNF clauses and the cubes of   

D -covering (cubic R -covering) is the same, as the one 
for K -covering (cubic Q -covering). 

If  the cube id  contains r  components equal to the 

value of “ x ” then we will assume, that the cube id  has 

an interval r  ( m0r  ) and m -interval cube we des-

ignate as }{ xxxX m  . 
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The cubic covering is called as minimal if there is no 

other covering of this type with smaller number of the 

cubes. 
For example, CNF of a logic function f and the in-

verse function f ,                           

)(&)(&)(),,,( dcacbcbadcbaf 

)(&)(&)(),,,( cbdcacbadcbaf   

correspond to the following coverings  

       

110

01

101

x

xx

x

K   ;          

xx

x

x

Q

00

010

111

 . 

The DNF of logic function f  and inverse function  f , 

cbdcacbadcbaf &&&&&),,,( 

dcacbcbadcbaf &&&&&),,,(    

correspond to the following coverings 

    

xx

x

x

D

11

101

000

  ;         

001

10

010

x

xx

x

R   . 

If the initial data for the task of a logic deduction is 

presented in the form of the traditional set of the premises 

and conclusion, they will correspond to the clauses of 

CNF and DNF  or  the cubes of K -covering and  

R -covering. 

Intersection operation of the cube 

},,,,{ 1 imizii dddd   and of the cube 

},,,,{ 1 jmjzjj dddd   is designated as 

jik ddd  , and it leads to the cube 

},,,,{ 1 kmkzkk dddd  , which is the common part of 

cubes id  and jd . This operation is carried out in two 

stages: at the beginning the preliminary cube "
kd  is being 

formed according to Table 1, and then the final cube kd  

is being formed in the following way: if the cube "
kd  

does not contain a component equal to value of “ y ” then 

the final cube kd  coincides with the cube "
kd , otherwise 

the result of intersection operation will be empty. 

Tab.1. Formation of the components kzd  of the pre-

liminary cube  "
kd  

         

izd      

jzd  

 

0 

 

1 

 
x  

0 0 y  0 

1 y  1 1 

 x  0 1 x  

 

The  -product operation of cubes is also re-

quired for us. As a result of   -product of cube id  and 

cube jd   the cube  jik ddd   will be produced. It 

contains separate subcubes of these cubes, while cubes 

id  and jd  do not contain any common subcubes. This 

operation is also carried out in two stages: at the beginning 

the preliminary cube "
kd  is being formed according to 

Table 1, and then the final cube kd  is being formed in 

the following way: if the cube "
kd  contains only one 

component, equal to the value of “ y ” then it is replaced 

by the value of “ x ”, otherwise the result of  -product 

operation will be empty. 

By means of cubic coverings it is possible to represent 

both formulas of propositional calculus and formulas of 

first order predicate calculus. 

 

3. Decision procedure  



International Journal of Biomedical Soft Computing and Human Sciences, Vol.18, No.1 (2012) 
 

 

 72

in propositional calculus 
 

In the modern theory of logic deduction, the basic 

method of performing the resolving procedure is the Rob-

inson’s resolution principle [7]. The essence of this rule of 

deduction means consecutive forming of the new clauses 

from the initial set of CNF clauses till an empty clause is 
derived. Such result will testify that the function f  and 

the formula (3) corresponding to this CNF are unsatisfia-

ble. 

According to the famous theorem of resolution princi-

ple, completeness [6] the logic deduction based on this 

method will be completed successfully only if the set of 

the clauses (i.e., logic function) is unsatisfiable. If a func-
tion f  belongs to the class of satisfiable functions then 

the empty clause cannot be derived, hence, decision pro-

cedure based on the Robinson’s resolution principle will 

never be completed.  

Let's consider another approach to perform logic de-

duction by means of constructing decision procedure on 

the basis of direct proof of validity of formula (2) or of  

formula (3) unsatisfiability and by using cubic coverings. 

THEOREM 1. i) For a valid function presented in  

form (2) or in form (3), the K -covering  and 

R -covering are empty, and the minimal D -covering and 

Q -covering are equal to the m -interval cube mX : 

         RKXQXD mm ,,, .     (4) 

ii) For an unsatisfiable function presented in form (2) 
or in form (3), the D -covering  and Q -covering are 

empty, and the minimal K -covering and R -covering are 

equal to the m -interval cube mX : 

       mm XRXKQD  ,,, .      (5) 

iii) For a satisfiable function presented in form (2) or 

in form (3), the D -covering, R -covering, K -covering  
and  Q -covering are not empty and are not equal  to the 

m -interval cube mX . 

Proof: First, we will prove the statement of item i). 
From definition of the valid function f  it follows that 

there are no sets of arguments on which the function is 

false.  Hence, the inverse function f  is empty and 

there will be also the empty R -covering which corre-

sponds to it. Such function cannot be presented in the 

CNF, and its perfect DNF contains n2  clauses which, as 

a result of minimization, will be combined in one clause, 

in which there are no literals, i.e., the function becomes 

equal to logical 1. Such way of forming cubic coverings 

gives us equality (4). 

The other items of the Theorem are established in an 

analogous way.                                 ■ 

The type of Boolean function, as well as the type of 

formula (1), can be defined by the type of the normal form 

or by the type of the cubic covering. If certain pairs of 

coverings are known ( fD  and fK , fD  and fR , 

fK and fQ , fR  and fQ ) then it is possible to identi-

fy the type of formula (1) at once. We will further consider 

the general case of identification when only one of the 

specified coverings is known. 

The proof of the formulas’ validity based on resolution 

principle reduced to the proof that CNF, which corre-
sponds to logic function f , is absent, and in terminology 

of cubic  coverings it means that  the covering fK  is 

empty. We will show that the opposite way of the proof, 

namely, the proof that one of coverings equals to cube 

mX  is more effective. 

If the majority of the known proof procedures are the 

methods of inverse deduction (methods of refutation) then 

the suggested proof procedure is the method of the direct 

deduction. The first advantage of the decision procedure 

based on the direct deduction gives the possibility to dif-

ferentiate two classes of formulas: valid and satisfiable, or 

unsatisfiable and satisfiable ones.  

The procedure of such a proof in algebra of logic func-

tions is equivalent to the first stage of Boolean functions 

minimization, i.e. equivalent to the calculation of prime 

implicants. 

From the practical point of view (an ability to conduct  

the parallel processing [12]) it is better to execute the de-

cision procedure in algebra of cubic functions. We will 

consider an algorithm of distinguishing between valid and 
satisfiable functions f  with the help of  known 

fD -covering, which consists of n  m -digit cubes 

id ( ni 1 ).       

              ALGORITHM 
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1. Form the coverings: fDD )0(  and )1(D . Es-

tablish iteration number 0p , and sign 0w .  

2. Increase the iteration number p : 1 pp .  

3. In the end of )( pD -covering, add  all cubes of 

)1( pD -  covering. Form the covering  )1( pD .  

4. Introduce the parameter pn  equal to the number of 

cubes in the )( pD -covering. 

5.  For 1i  till  ( pn -1) , execute the following steps: 

5.1. For  1 ij  to pn  do: 

5.1.1 Execute the  -product operation of cubes 

jik ddd   from a )( pD -covering. 

5.1.2 If  the m -interval cube mk Xd   is obtained then 

to pass to step 8. 

5.1.3. If the interval of cube kd  exceeds an interval of 

cubes id , jd  or of both cubes,  then add the cu-

be kd  into the )1( pD -covering, and delete the 

initial cubes with the smaller interval from the 

)( pD -covering. Update the sign w : 1 ww . 

5.1.4. If the cube id  was removed then go to step 5. 

6.  If  0w   then go to step 7, else go to step 2. 
7. The function f  corresponding to the initial 

fD -covering is valid. Go to step 9. 

8. The function f  corresponding to the initial 

fD -covering is satisfiable.  

9. Stop. 

Similar results can be obtained if the fQ -covering of 

function f  is used as initial data of the algorithm. 

When we use fK -covering or fR -covering of function 

f  as initial data, then it is possible to distinguish be-

tween unsatisfiable and satisfiable functions. We will 

remind that the Robinson's resolution principle identifies 

only one class of functions.    

In the tasks of logic deduction based on known strat-

egies of direct and reverse deduction, in particular, the 

resolution principle, in general case an undetermined  

search is used [9], which makes us to characterize  these 

tasks as NP-complete problems. 

In contrast to the resolution principle, which increases 

the number of the clauses at each step of deduction, the 

suggested method can be named as algebraic, and it re-

sults in a gradual decrease of the quantity of cubic cov-

ering cubes. 

Let's make an estimation of the computational com-

plexity of suggested algorithm according to the number of 

the operations  -product used. In this case, its upper limit 

of complexity is equal to )( 2 pnO , where  n  is the 

number of cubes in the initial covering and p  is the 

number of iterations.   

To identify any of the functions of the three classes of 

functions in classical propositional calculus, we have con-

structed the deterministic algorithm of polynomial com-

plexity, hence, the deducibility problem   based on the 

identification of the formulas classes belongs to the 

P-complete problems. 

 

      4. Decision procedure 
        in the first order predicate calculus 

 

As it follows from the famous Church’s Theorem, 

there is no universal algorithm allowing to identify a 

class of any formula of predicate calculus [5]. It means 

that unlike the propositional calculus, the predicate cal-

culus is generally undecisable except for the one-place 

predicates calculus. We will search, therefore, a separate 

decision procedure for the three types of the predicate 

formula: A type (in all predicates, the terms represent the 

constants), B type (in all predicates, the terms represent 

the variables), and C type (in all predicates, the terms can 

represent both constants and variables). 

The predicate formula of A type can be easily re-

placed by the propositional calculus formula, that is why 

the algorithm of decision procedure discussed in the 

above section is completely applicable.  

The predicate formula of B type has an infinite sub-

ject base. Herbrand [6] offered an approach to the solu-

tion of the problem of logic deduction in predicate cal-

culus by means of replacing the checking of formulas in 
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infinite area with the checking of them in Herbrand’s 

base of the finite size. 

As a matter of fact, Herbrand’s interpretation means 

transformation from predicate calculus to propositional 

calculus because each fundamental form is equivalent to 

the proposition. As a result,  CNF of the predicate for-

mula is being converted to CNF of formulas of proposi-

tional calculus. The cubic equivalent of such a CNF is              

fK -covering, with the number of cubes equal to the 

number of CNF clauses, and the number of components 

of a cube is equal to the number of fundamental forms.  

Therefore, it is also possible to apply the algorithm of 

decision procedure discussed above to such predicate 

formulas. 

Generally, if Herbrand’s base consists of n  elements 

(constants) and the formula for propositional calculus 

contains m  one-place predicates, then there will be 

mn fundamental concretized expressions and, thus, the 

same number of cubic coverings. Therefore, even with 

the availability of a small number of constants in 

Herbrand’s base, it is more effective to perform the 

checking of deductibility of the predicate formula by a 

direct replacement of universal quantifiers and existential 

quantifiers with the corresponding cubic coverings.  

For one-place predicates, it is possible to use a sim-

pler approach which does not require the use of the deci-

sion procedure based on Herbrand’s base. In formulas 

with the specified types of predicates, it is possible to 

remove all quantifiers, to replace variables in predicates 

with constants, and then to define the correctness of logic 

deduction according to the rules of propositional calcu-

lus. 

Let's consider now the cubic interpretation of the 

predicate formula of C type. Let the predicate formula in 

clause form contain m  one-place predicates, in which 

the terms can be both variables and constants from the 

base  

       },,,{ 21 naaaM  .             (6)                                              

Then its fK -covering will consist of the left part, 

corresponding to the constant propositions of the predicate 

formula, and the right part, corresponding to the variable 

propositions of the predicate formula. In the left part of 

the covering, the i th column corresponds to the ith con-
stant from base (6), and the right part of the covering j th 

column corresponds to j th variable of predicate 

( mn1i  , m1j  ). The number of cubes in 

fK -covering is equal to the number of CNF clauses, 

while the value one (value zero) of cube component cor-

responds to direct (inverse) value of the predicate. It 

should be noted that a cubic representation of the C type 

formula is the association of cubic representations of  the 

A  type and B type formulas. 

While producing a logic deduction for formulas of C 

type we will use the operation of substitution { ji wa / }, 

i.e., of replacement of some variable jw  with a con-

stant ia  from area (6). According to the above-shown 

representation of predicate formulas, the operation of 

substitution { ji wa / } is performed using intersection 

operation for the column in the right part of the covering, 

which column corresponds to the variable predicate 

)( jwE , with the column in the left part of the covering, 

which column corresponds to the constant predicate 

)( iaE . 

The result of this operation will be written on the 

place of column )( iaE , and the column )( jwE  is be-

ing removed from the covering. Such process gives the 

concretized expression of cubic covering, and we will 

call the covering, which lacks the right part, the com-

pletely concretized covering (as a matter of fact, this 

covering is the covering of the A type formula).   

Further on, it is necessary to define the type of the 

concretized covering and, thus, the type of predicate 

formula by means of the above-mentioned Theorem and  

Algorithm. 

It is also necessary to note that some additional re-

search for optimization of decision procedure for 

many-place predicates must be carried out. 

For instance, for the predicate formula 

      )(&)(&))()(( 21 aGaEzGyEzy  , 

which is defined on the base },{ 212,1 aaM  , the fol-

lowing covering (the left and right parts of  this cover-

ing are separated by dotted line) corresponds to: 
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          )()()()( 21 zGyEaGaE  

  

xxx

xxx

xx

K f







0

0

11

 .              (7) 

Producing a logic deduction for a formula of the C 

type we use the operation of substitution { ji wa / }, 

where some variable jw  is being replaced by a constant 

ia  from the base 2,1M . For example, let us perform a 

{ ya /1 } substitution for covering (7). For this reason we 

perform the intersection operation for )( 1aE  and )(yE  

columns (for convenience, we place the specified col-

umns horizontally) 

          
)(:

)(:

01

0

1

1aE

yE

x

xx

xx


 

After executing this operation, we will obtain the fol-

lowing partially concretized covering :  

      )()()( 21 zGaGaE  

        

xx

xx

x

K f







0

0

11

 , 

which corresponds to the predicate formula 

         )(&)(&))()(( 211 aGaEzGaE  . 

After calculation of the completely concretized cov-

ering, it is necessary to identify the type of the concre-

tized covering and, respectively, the type of the predicate 

formula using above-mentioned Algorithm. 

 

             5. Conclusions 
 

In this paper, we suggest to interpret the problem of a 

logic deduction as the one of the direct proof validity of 

formula (2) or unsatisfiability of formula (3). This ena-

bles us to distinguish among three classes of formulas in 

the following pairs: valid and satisfiable formulas, or 

unsatisfiable (inconsistent) and satisfiable formulas. 

Since we designed the deterministic algorithm of poly-

nomial complexity to solve this problem, it is possible to 

consider it as a P-complete problem. 

The main difference between the suggested algebraic 

method of logic deduction and the established methods 

of  direct and reverse logic deduction is that the sug-

gested method does not contain the concepts of “premis-

es” and "conclusion" and directly uses the cubic cover-

ings or Boolean functions. 

Application of the Boolean algebra of cubic functions 

allows us to formalize the procedure of logic deduction 

and to obtain its parallel implementation at the mac-

ro-level (the parallelizing of separate algorithm branches) 

and at the micro-level (the parallelizing of intersection 

operation and  -product operation for cubic coverings) 

[12]. 

The obtained theoretical results are likely to find prac-

tical application in medical OLAP systems [13]. Such 

systems contain traditional database of case histories, and  

knowledge base which allows to form new knowledge (for 

example, predict the state of health of a person) by means 

of logic deduction, fuzzy logic [14], and other approaches.  
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