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Abstract — This paper describes the alternative BRDF (Bidirection reflectance distribution function) models. Main emphasis 

was done on the models development with simple hardware implementation, based on formulas with low computation 

complexity. The results, achieved by authors, testify the increase of BRDF approximation accuracy in more than 22 times in 

comparison with most widespread solutions. 
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1 INTRODUCTION

HE requirements towards graphics systems are grow-
ing steadily together with necessity of resolving more 
and more complicated and complex tasks of real-time 

high-quality images formation. 
The most complicated and resource-intensive computa-
tions at rendering stage occur when shading 3D graphic 
objects, that has volume effect created by the color grada-
tion of points within the scene. 
On shading, for all points of the surface their coordinates 
and color intensities are calculated, that leads to big time 
expenses. This especially takes place when use compli-
cated illumination models, in particular those, operating 
with diffuse and specular color constituents. 
In this connection, the problem of increasing the shading 
productivity in computer graphics systems becomes es-
pecially important. Solution of this problem provides a 
possibility to setup effective interactive channel and to 
ensure necessary realism and dynamics of 3D images. 

2 APPROACHES ANALYSIS AND PROBLEM 

FORMULATION 

On the shading 3D scenes according to the Phong method 
[1-3] color intensities are computed with following for-
mula: 

n
I I k cossl

γ=  , 
where I

l
- Incident light source intensity, ks - specular 

light coefficient, n - surface brightness coefficient, 
n

cos γ  
– BRDF – bidirectional Reflectance Distribution Function, 
that characterizes optical properties of the surface.  
The 

n
cos γ  function, used in Blinn and Phong illumina-

tion models [1, 2] has big computational complexity. The 
coefficient n is known to vary within the range from 0 to 
1000.   
On BRDF models creation one has to consider the most 
exacting requirements for the highlight epicentre repre-

sentation [4, 5, 8]. For the peripheral regions, which are 
responsible for blooming zones formation it’s necessary 
to provide monotonous color intensity fading to exclude 
artifact [6, 7]. At the same time there’re no especial accu-
racy requirements towards color intensity determination 
within these zones [4, 8].  
According to the method [9], suggested by R.F.Lion 

n
cos γ  is expanded into Taylor series and instead of an-
gle γ  (angle between reflected light direction and direc-
tion to observer) the length of the chord between these 
vectors is used. 
This substitute doesn’t have considerable influence upon 
the accuracy only for small values of the angle γ .  Using 
limited amount of Taylor series terms doesn’t allow ap-
proximation of 

n
cos γ  with the necessary quality. 

Sufficiently high approximation accuracy was reached at 
the 

n
cos λ approximation by function 

k
cos ( n / k )γ⋅  

[10], where 2 4 8k , , , ...= and is chosen depending on the n  
range, ( к n )<< . Unfortunately, this approach requires λ  
computation, which means resource-intensive arc cosine 
operation usage. 
C. Schlick [8] has suggested approximating 

n
cos γ  by 

( )cos / n n cos cosγ γ γ− +  function.  The analysis revealed 
that this approach provides sufficient accuracy only for 
the highlight epicentre and is hardly applicable for hard-
ware implementation. 
The paper [11] contains the idea of approximating 

n
cos γ  

by polynomial 
2n

cos a cos b cos x c.γ γ γ= ⋅ + ⋅ +  
To find a, b, с  they use values of 

n
cos γ  at start and end 

points, and also at cusp point. It’s proved that 1b a= − , 
0c = . The hardware solution has a  values for every n 

are stored in memory unit, and 2 other coefficient are 
computed by simple formulas. This solution allows suffi-
ciently accurate highlight epicenter approximating with 
relative error no more than 4,5 %). Unfortunately, the fast 
fading of this function at 0γ → leads to sharp borders of 
the blooming. Much better accuracy was achieved on ap-
proximating by the polynomial of 3rd power [12].  The 
values of function at maximum, minimum and 

n
cos γ =0,5 points were used to find coefficients. This ap-
proach guarantees relative error of epicenter approxima-
tion no more than 0,67 % [12]. Unfortunately, using the 
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polynomial of 3rd power doesn’t provide sufficient 
blooming accuracy. So that, for specular color formation 
in blooming zone they used another function 

g( ) cos( ) / ( a b cos( ))γ γ γ= − , where unknown coefficients 
are found from the eq. 

n
cos ( ) g( )γ γ=   at 

0 5
n

arccos( . )γ = , and from the similar equations with 
derivatives of these functions. This approach gives good 
accuracy, but is not applicable for the hardware imple-
mentation. 
The paper [13] covers the problem of the BRDF hardware 
implementation for its equivalent form 
 

 
The disadvantage of this approach is the insufficient ac-
curacy of blooming zone formation and the necessity to 
use several memory units of big relatively big size for 
hardware implementation. In recent years, the acceptable 
alternative BRDF model, providing  realistic representa-
tion of either epicenter or blooming highlight zone, hav-
ing simple hardware implementation was not found. 
The purpose of paper is – development and investigation 
of the bidirectional reflectance distribution function mod-
el, having low computational complexity and simple 
hardware implementation  

3 BRDF APPROXIMATION MODELS 

Let’s try to approximate 
n

cos γ  by the function 

( )( )
m

W( n, ) cos 1 1γ ζ γ= ⋅ − +  on conditions that  
0 / 2.γ π≤ ≤   
This function is suggested because:  
a) both functions are based on the cosine function;   
b) at 0γ =  
 ( )( )

mn
cos cos 1 1 1,γ ζ γ= ⋅ − + = that satisfies boun-

dary conditions;  
c) both functions are positive, when  0 / 2γ π≤ ≤  and 
m 2k= , where k N∈  є; 
d) ( )( )mcos 1 1ζ γ⋅ − + function reaches zero value, that is 
pre-condition of blooming formation;  
e) ζ  coefficient changes the highlight size. 
To determine ζ  in ( )( )mcos 1 1ζ γ⋅ − +  we expand 

n
cos γ  into Taylor series and take first 2 terms 

n 2
cos 1 n / 2.γ γ≈ − ⋅  
The same procedure on W ( n, )γ  leads to equation: 

( )( )m 2
cos 1 1 1 m x .ζ γ ζ⋅ − + ≈ − ⋅ ⋅  

Let’s find ζ . Right sides of these formulas are supposed 
to be equal, so that n / mζ = . Let’s examine the situation, 
when 2m= , than: 

 

 
Let’s analyze this BRDF model. 
The comparison with Schlick formula was done. This 
formula is widespread in computer graphics devices, be-
cause of its sufficient accuracy and low computation 
complexity. 
The graphics of  
 
 
 

and of Schlick functions on the condition that 100n=  are 
shown on the fig.1. The fig.1 shows that suggested BRDF 
model approximates highlight epicenter with sufficient 
accuracy and monotonously fades to zero after the cusp 
point. The part of BRDF function above the cusp point is 
considered to be responsible for the highlight epicenter 
formation. The behavior of this function fits the require-
ments to BRDF model. The fig.2 shows graphics of max-
imal relative errors of the approximation of n

cos γ  by 
W ( n, )γ  for epicenter zone. These figures show the ac-
curacy of epicenter approximation has increased in com-
parison with Schlick formula. 
The W ( n, )γ  function reaches zero value, when 
cos( ) ( n 2 )/ nγ = − . W ( n, )γ  is square of real number – 
and is never negative. Let’s find when derivative of 
W ( , n )γ  is equal to zero. 

n
W ( n, ) (cos 1 ) 1 n sin 0x

2
γ γ γ

 ′ =− − + ⋅ ⋅ = 
 

. 

Fig. 1. BRDF graphics 

 
Let’s determine extremums of the function. From the last 
formula it is obtained that cos( ) ( n 2 )/ nγ = − . 
TheW ( n, )γ  signs analysis from the left and right side 
shows that BRDF reaches zero value at 
 
 
 

W ( n, )γ monotonously fades within the interval 

0,ar cos(( n 2 ) / n )−  , because its x derivative equals to 

 

 
 
In its turn, n sinγ⋅  is positive on interval from 0  to π . 

( n(cos 1 ) 1 ) / 2 0γ− − + ≤  is true at the condition that  
0 ar cos(( n 2 )/ n )γ≤ ≤ − . Thus, within interval where 
function changes from 1 to 0, its derivative hasn’t nega-

n 2
ar cos

n
γ

−
=

2
2

n
cos ^ n log (cos )γ γ=

( )( )
2n

cos n cos 1 / 2 1 .γ γ≈ − +

( )( )
2n

cos n cos 1 / 2 1 .γ γ≈ − +

n
( (cos 1) 1) n sin

2
γ γ− − + ⋅ ⋅
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tive values, q. e. d. 

 
Fig. 2. The maximal relative error graphics for the highlight epicenter 

approximation by: 

1– W ( n, )γ function; 2 –Schlick function 

 
Let’s examine how the raising of power m influences 
upon approximation accuracy. Three cases are chosen – 

4m= ,  8m=  є 16m= : 
 
 

 
 
 

Considering the equation n / mζ = , one can find 
 
 
 

It’s significant, that coefficients 1ζ , 2ζ  and 3ζ  can be 
easily computed on the assembly level. 
 Considering values of 1ζ , 2ζ  and 3ζ coeffi-
cients, it’s possible to find W ( n, )1 γ , W ( n, )2 γ  and 
W ( n, )3 γ : 
 

 
 
 
 
 
 
  
 

 
 
 
 

Figures 3–5 show graphics of n
cos γ  and W ( n, )1 γ , 

W ( n, )2 γ  є W ( n, )3 γ  functions  when n 35= . The anal-
ysis of graphics leads to conclusion that increase of m  
leads to approximation accuracy increase. The modeling 
helps to determine maximal relative error of the approx-
imation within the range 11000n [ , ]∈ . The results of such 
modeling are represented on fig.6. 

Fig.3 – Graphics of 
n

cos γ  and W ( n, )1 γ  

Fig.4 – Graphics of 
n

cos γ  and W ( n, )2 γ  

 
It is significant, that special requirements to approxima-
tion accuracy are applied only for epicenter zone – part of 
BRDF from 0 to cusp point. The BRDF values after cusp 
point determine blooming zone formation. 
The investigation has shown, that maximal relative error 
of the n

cos γ  approximation before the cusp point, with-
in interval 1 512n [ , ]∈ doesn’t exceed: 8% – for W ( n, )1 γ , 
3,8% – for W ( n, )2 γ  є 1% – for W ( n, )3 γ . The obtained 
results tell about considerable increase of the approxima-
tion accuracy in comparison with Schlick function. The 
maximal relative error for the Schlick function within this 
interval is 22,4%. 

 

( )( )
4

W ( n , ) cos 1 1 ,11
γ ζ γ= ⋅ − +

( )( )
8

W ( n , ) cos 1 1 ,22
γ ζ γ= ⋅ − +

n
,

1 4
ζ =

n
,

2 8
ζ =

n
.

3 16
ζ =

( )

( )

( )

4
n

W ( n, ) cos 1 1 ,
1 4

8
n

W ( n, ) cos 1 1 ,2
8

16
n

W ( n, ) cos 1 1 .3
16

γ γ

γ γ

γ γ

 
= ⋅ − + 
 

 
= ⋅ − + 
 

 
= ⋅ − + 
 
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Fig.5 – Graphics of 

n
cos γ  and W ( n, )3 γ  

Function W ( n, )3 γ  has very good approximation quality 

even for the blooming zone. The maximal relative 

errors ε  values for approximation functions W ( n, )1 γ , 

W ( n, )2 γ  are W ( n, )3 γ  within various ranges a 

collected in table 1. The corresponding relative errors for 

the Schlick function are also provided in the table. 

Fig.6 – maximal relative error graphics for 
n

cos γ  approximation 

by: 1 -W ( n, )1 γ , 2 - W ( n, )2 γ  and 3 - W ( n, )3 γ . 

 

TABLE 1 

MAXIMAL RELATIVE ERRORS OF FUNCTIONS W ( n, )1 γ , 

W ( n, )2 γ , W ( n, )3 γ  AND SCHLICK FUNCTION 

 

Function 
ε ,% before the 

cusp point 
ε ,% after the 
cusp point 

W ( n, )1 γ  8,0 35,2 

W ( n, )2 γ  3,8 16,2 

W ( n, )3 γ  1,0 7,6 
Schlick 22,4 98,2 

 
Fig. 7 represents graphics of maximal relative errors of 
W ( n, )1 γ , W ( n, )2 γ  and W ( n, )3 γ   functions at 
blooming zone. 
The analysis of these errors leads to conclusion, that the 
best result is obtained at approximation by W ( n, )3 γ  
function.  
 

Fig.7 – Graphics of maximal relative error values for approximation 

of 
n

cos γ  by functions: 1 -W ( n, )1 γ , 2 - W ( n, )2 γ  and 3 - 

W ( n, )3 γ for the blooming zone. 

 
The relative error of W ( n, )3 γ  in cusp point doesn’t ex-
ceed 1%, at the same time this error for Schlick formula is 
more than 22 %. To calculate the Schlick’s BRDF it’s ne-
cessary to perform 1 multiplication operation, 1 dividing 
operation, 1 subtraction and 1 decrement operations. The 
dividing operation complicates hardware implementation 
of this formula. The suggested formulaW ( n, )3 γ  doesn’t 
contain resource-intensive dividing operations. It’s 
enough to perform only 4 multiplication operations, shift 
operation, increment and decrement. All these operations 
have easy hardware implementation. The software im-
plementation 3W ( n, )γ  takes in 2 times less time than 
Schlick formula. These facts lead to conclusion, that com-
putation complexity of W ( n, )3 γ  is considerably lower 
than that of Schlick function. It is important, that all 3 
suggested functions provide better accuracy than Schlick 
formula. 

There’re peculiarities of blooming zone formation. 
The boundary value is chosen to be equal to 2 q− , where 
q  is picked depending on the required specular constitu-
ent accuracy. Then ncos γ  has to be computed within 
this interval – q n2 cos 1γ− ≤ ≤ . From, which . 
 

 
 

 
 
For Schlick function we have 
 

 
 

 
From this we can find that Schlick function is to be calcu-
lated only within this interval 
 

 
 

Let’s determine the γ  vary interval for suggested 
BRDF. If solve the    

q

n0 arccos 2γ

  
−  
 ≤ ≤  

 
 

cosq
2 1.

n n cos cos

γ

γ γ

−
≤ ≤

− ⋅ +

n
0 arccos .

q2 n 1
γ≤ ≤

+ −
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we find, that 
 

 
 
 
The significant disadvantage of Schlick formula is ex-
tremely slow fading in blooming zone leading to unna-
tural object illumination. Vary interval for γ  in this case 
increases. 
The ratio ℜ , defines, in how many times the arguments 
in ncos γ  and in suggested functions differs on the con-
dition that these functions reach value 2 q− . This ratio 
also determines the highlight sizes correlation. 
 
For ncos γ  and 1W ( ,n )γ   
 
 
 
 
 
 
 
 
For ncos γ  and 2W ( ,n )γ    
 
 
 
 
 
 
 
 
For ncos γ  and 3W ( ,n )γ    
 
 
 
 
 
 
 
 
For ncos γ  and Schlick formula   
 
 
 
 
 

 
 
 

 4 CONCLUSIONS 

The suggested BRDF models have: 

• Much better approximation accuracy in comparison 
with Schlick formula. 

• More simple hardware implementation in compari-
son with Schlick formula. 

The approximation accuracy is increased more than in 22 
times for the epicenter zone and more than in 14 times for 
the blooming zone in comparison with Schlick formula. 
For the hardware implementation of the suggested func-
tions only simple functions are required. 
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