

Applied geoscience changing

Towards A Metadata Standard For Geomagnetic Observatory Data

Sarah Reay¹ (sjr@bgs.ac.uk), Ewan Dawson¹, Simon Flower¹ Don Herzog², Susan Macmillan¹

British Geological Survey, Edinburgh, UK
 National Geophysical Data Center, Boulder, Colorado USA

ORE

our

arth

© NERC All rights reserved

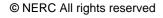
24th August 2009 Session V.02 11th IAGA Assembly, Sopron

What is Metadata?

"all the information, additional to the raw data itself, which a potential user of the data would need to know to be able to make full and accurate use of the data in a subsequent scientific analysis..."

Sufi, S., & Mathews, B. (2004). CCLRC scientific metadata model: version 2. CCLRC Technical Report: DL-TR-2004-001.

Benefits of Metadata (1)


Data Archive

- Metadata preserves the value of data for posterity.
- It protects against loss of organisational knowledge as personnel or institutes change.

Data Assessment

- Metadata describes the data.
- It gives us data provenance (QC history, processing and transformation steps etc).
- It is a means of declaring data limitations.

Benefits of Metadata (2)

Data Discovery

 Metadata can help other people find your data... and then obtain and use it.

Data Transfer

 Metadata is increasingly used by software systems to ingest, manipulate and analyse data.

Data Distribution

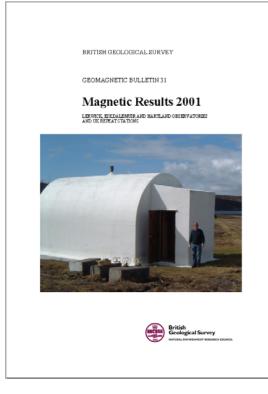
 Standardised metadata can allow participation in global data clearinghouse initiatives e.g. GEOSS, INSPIRE, WDS

Metadata Standards

- Metadata standards are a common set of terms and definitions in a structured format.
- No standard is perfect fit for geomagnetic data.
- Standards for geospatial data (FGDC, ISO) could provide framework for a geomagnetic profile.
- Temporal aspect is difficult to handle.
- Standards are complex for data providers to populate.

Why is it important?

To improve curation of data at WDCs


- Addressing inconsistencies within data holdings is difficult without metadata e.g. Apia observatory
- A clear 'paper-trail' of any transformations or corrections e.g. Eskdalemuir hourly means

To give clear quality assurance to researchers

- Assisting data selection for global models
- Negate the need for 'preliminary', 'definitive' definitions

Good data provenance is necessary for good quality science!

Current Geomagnetic Metadata Sources

Observatory yearbooks

🗉 README.HAD - WordPad 📃 🗆 🔯										
File	Edit	View	Inse	rt	Format Help					
HAD										
				H	ARTLAND OBSERVATORY INFORMATION					
Ι.										
	ICKNO TATI				British Geological Survey					
	OCAT				HAD Hartland, Bideford, Devon, United Kingdom					
					British Geological Survey					
					www.geomag.bgs.ac.uk					
					39.0000					
	ONGI				355.517ø					
E	LEVA	TION		÷	95 meters					
1	BSOL	UTE								
1	NSTR	UMEN.	TS	:	DI-flux (Zeiss theodolite with Bartington					
					MAG 01H fluxgate)					
					GDAS (Geomag SM90R) PPM					
	ECOR									
	ARIO				Three component DMI suspended fluxgate					
	RIEN									
					+/-4,000nT 0.1nT					
	AMPL									
					61-point cosine					
	ACKU				or point coorne					
			R		Three component DMI suspended fluxgate					
	-NUM				ASM method					
F	9-li	mit		÷	500 nT					
6	INS			:	Edinburgh					
0	COMMUNICATION:				INTERNET Communication, 1 second data					
					transferred to Edinburgh every minute					
0	BSER	VERS		÷	Regular absolute observations were made by					
					Mr S. Tredwin.					
	ONT	~ T			C H Turbing					
	ONTA	CI.		•	C.W. Turbitt British Geological Survey					
					West Mains Road					
					EDINBURGH, EH9 3LA					
					UNITED KINGDOM					
					TEL: +44 131 667 1000					
					FAX: +44 131 650 0265					
					e-mail: cwtu§bgs.ac.uk					
					< END >					

INTERMAGNET readme

File Edit Search	Preferences	Shell Mac	ro Window	ws Help
<pre>I Format Source of Data Station Name IAGA code Geodetic Latitude Geodetic Longitude Elevation Reported Sensor Orientation Digital Sampling Data Interval Type Data type # This data file was # processing software # a nd I are reporte # a dI point cosine f # Missing data are de # CONDITIONS OF USE: # For all other appli # team of BGS. Edinbu # yearbook included o # geomagnetism web si DATE TIME 2009-08-10 00:01:00.00 2009-08-10 00:03:00.00 2009-08-10 00:03:00.00 2009-08-10 00:03:00.00 2009-08-10 00:03:00.00</pre>	running on a Si d in angular uni F are reported i derived from 1- ilter. noted by 99999.(For scientific/2 cations please of rgh. Contact det n the CD and are te - www.geomag. DOY HADD 0 222 - 198. 0 222 - 198. 0 222 - 198. 0 222 - 198.	30 - 01:30) 305 geomagneti in workstation its of minutes in nanotesla. -second sample 00 academic studi contact the Ge available or bgs.ac.uk HADH 67 19663.20 62 19664.00 90 19664.00	ic data s of arc es using en in the n the BGS HADZ 44238.80 44 44238.90 44 44238.90 44	ADF

IAGA-2002 file header

24th August 2009 Session V.02 11th IAGA Assembly, Sopron

Requirements for geomagnetic metadata

Contact Information

Name, address, institute information, responsible persons.

• **Data Description** Type of data, nature of the data, possible applications.

• **Station Description** Coordinates, elevation, possibly photographs and maps.

• **Instrumentation** Types of instruments in use.

Data Processing

Processes and methodology used to process the data from instrument recordings to the final definitive values.

Data Quality According the quality of

Assessing the quality of the data set.

Distribution

How and where the data may be acquired.

WDC efforts in metadata

- WDCs at Edinburgh, Boulder and Kyoto have begun to discuss what is required in a metadata standard.
- WDC hold limited metadata currently:

Edinburgh

- Holds simple metadata
- Requested further basic information from data providers with annual 'call-for-data'

Boulder

- Beginning to use a FGDC standard for data held in SPIDR
- Complex for data providers to fill-in

Next Steps? "Don't Duck Metadata"

- Documenting data is part of the scientific process
- Data providers are encouraged to keep metadata records of some form: yearbooks, free-form text
- WDCs will gradually request and this store metadata
- Better records of data provenance and interoperability will lead to better science!

Questions?

sjr@bgs.ac.uk

Acknowledgments

World Data Centre, Boulder and World Data Centre, Kyoto

References

- Institutionalize Metadata *Before It Institutionalizes You,* Lynda Wayne, GeoMaxim / Federal Geographic Data Committee, Nov 2005
- Geospatial Metadata, Federal Geographic Data Committee, February 2005
- The British Atmospheric Data Centre: Curation and Facilitation, Bryan Lawrence, NCAS/BADC, Rutherford Appleton Laboratory, CCLRC http://www.dpconline.org/graphics/events/presentations/pdf/BryanLawrence.pdf
- Martini, D. and Mursula, K., 2006. Correcting the geomagnetic IHV index of the Eskdalemuir observatory, Ann. Geophys., 24, 3411-3419