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Power and Energy Storage Technologies:
Are any the perfect choice for you ?

Intermittent/variable generation Intermittent/variable duty
(unpredictable in real time) (unpredictable in real time)
«Off-shore wind eDomestic buildings
*On-shore wind farms Industrial/Commercial
eSolar Buildings
Tidal/Wave . Storage .-Automotive Vehicles
(15% by 2020) « domestic, public,
electrical, commercial
*Power stations e eAerospace
» Petrol/Diesel mechanical « Commercial, military
e Gas, nuclear, coal °.....

 CHP, hydro...




30kW, 60krpm,
300Wh Rotor 15kg
system >60kg

Flywheels

*Energy stored in rotating mass

*Energy input and recovery by elect. or mech. coupling
*Energy storage proportional to mass of rotor and the square
of rotational speed and rotor radius

sConsidered as peak power buffers 60kW, 60krpm, 112Wh
sStationary systems often use high mass rotors Rotor 5kg, system 25kg
*Peak power supply and recovery limited only by gearbox or
motor/generator
sSafety necessitates strong containment Ny
T high pl’OpOI’tiOﬂ of mass (Flybrid Systems LLP, 2009
sDiagnostics and prognostics to be able to run flywheels
closer to their theoretical mechanical limits ﬁ”mwi
*Energy loss ~35% per hour due to friction losses -, Part of 20MW
«Lifetime of 15-20 years anticipated e f'WE‘;hee' p""F‘)”t
— main degradation in bearings ?for;"j“;j’g‘ss_ow

sPotential material supply constraints if exotic core materials
and/or rare earth magnets used (e.g NdFeB,SmCo) .
*Requires little infrastructure (THE ASSOCIATED PRESS, 20)9

%
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Super/Ultra Capacitors

Proximity of electrostatic charges allows energy gfera
*High power density—ideal for rapid charge/discharge
limited only by internal impedance and associated
electronics.

«Can be fully discharged without damage

*As with electrochemical batteries, no limit to numbe
series/parallel units.

*Energy density relatively low compared with bateri

e High stored energy requires plates with high surfaea a
and high permittivity dielectrics.

*Need temperature control for efficiency and |
*Requires cell balancing

*Relatively safe (needs protection from over-voltage)

Future ?
-Combined battery/supercap solutions

U ‘ ittina’ of Il plat to i f 300 x saft supercaps
-Use ‘nano-pitting’ of cell plates to increase surfaoea 350F/cell (~50F total)

%
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High Temperature Sodium Nickel Chloride Battery—ZEBRA

Individual cells installed in Operational characteristics
vacuum insulated casing to * High temperature battery module 270%C-350 °C

reduce heat loss
®* Heat loss about 3T per/h (90W)

®* |Internal resistance reduces with increased
temperature

® During charging battery can absorb heat

® Requires high utilisation for maximum benefit

" Advantages
®* High nominal cell voltage 2.58V
® (Capacity independent of rate, Ah(in)=Ah(out)

®* 100% coulombically efficient, accurate DoD
estimation is possible

®* High energy density of 150Wh/kg (4x higher than
lead-acid, and 3x nickel-metal hydride)

%
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A, Temperafure sensors
B. Lithium ion cell

C. Yoltage converter/
regulator circuit

D. Motebook connector
E. Volioge tap

F. {obscured): Battery
charge state moniter

aI environment needs consideration
s like ‘A123 Systems’, Mitsubishi, among

« Future: dope graphite
silicon nanowires ? (st
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A Fuel-cell or Hydrogen Economy ?

*H,-most abundant element in Universe *Not a producer of energy !
sEssentially endless supply *Energy storage medium
*Typically used in fuel-cells (electrochemical)
-by product, water/steam *Requires reforming (eg gas) or
-’pollution or emission free’ (?) electrolysis (eg from methanol) for
-can be expanded to support grid extraction
energy/power—from renewable source2Or, separation of water using
-well-proven technology ‘harvested electricity’ !l Very
-safe ? inefficient use of electricity (~25%

conversion efficiency)
Considered by many to be THE ideal solution <Solid Oxide ? High temp ?
*Alkane (Meth...) based ?
FUEL-CELLS (candidate for localised stand-by systems):
Efficiency ~40-50%
3000 x more volume required than petrol wrt. Energy
Leakage a safety issue, so ideally liquefied(K), then still ¥2 volume/energy ratio of petrol

%
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Is Efficiency Important ? Or C@

* |f we are consuming a resource eHarvesting not ‘consuming’ a resource

* Limited output power/transient «‘Harvest’ more and store energy !
availability

Heating/stress of components—need to be larger— N
more components/equipment—cooling

Cost to manufacturer and operator
Increased efficiency—nbetter profit margin P le R
Incentive to invest—Better for consumer !!! IPR !!! Rl

Cost, Reliability and Robustness over-arching fatto
Managing Power through Energy Storage

Recover energy from heat ‘loss’ output Qﬂkj

Lincoln:Engineering
LINCOLN Industrial Power and Eneroy
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Energy Management:Predictive Cont

Predict drivetrain characteristics for a short timéhe future based on
previous behaviour, and provide ‘optimal’ apportrognof energy from/to
the multiple sources: driving cycle assumed toifdenown to controller

e Can’t provide generic solution for all drive
trains/components

 Requires custom solutions in general

e However, may be some merit in considering
alternatives to classical underlying principles

eg. Specifying controlled dc-link ! Some benefits
can be obtained by allowing

dc-voltages to vary.

LINCOLN

I C




Predictive control of EV with Peak
Power Buffer

e PPB aims to reduce

transient T ; g

e Battery supplies mean L1
p Owe r . baftzr[; i‘)i;ick CDoE\iZ-tccr Supercapacitor

peak power
buffer

requirements of battery. 7 e

-Classically: try to maintain dc-link to
to traction drive
-Now allow dc-link to vary.

Consider impact on regeoraking. %j

IIIIIIIIIIII
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Potential Benefits

ENERGY FLOW

Controller Energy drawn Energy Net energy
from battery returned to expenditure
MPC zone 262 0 262 -
control minimised
de-link voltage | 318 (121%) 56 (21%) 262 circulating energy
control

Since normal operation is for net energy expengittirte dc-link
of the PPB will normally be lower than that allowadssically,
thereby facilitating increased regeneration

Should result in higher overall drivetrain
utilisation efficiency

%
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Driver Behaviour
(multiple drivers, single driving cycle

e includes Sheffield (UK) city centreand ‘Peaks
travelled for each trial is ~40km

' route so mean gradient=0 .
t same time of day: chosen to minimise tiffic variations
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y consumption (%SoC) 6f
(measured at battery)

Final %SOC Mean Power (kW)

43 < 5.47

50 5.33

53 4.95

o4 4.70

U — 4.21

equivalent UK grid mix)
~ 0.537kg/kWh e
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‘Re-charging BehaviouKuser perspective)

Initially charged over night on regular basis

Behaviour migrated towards ‘opportunist charging’
as confidence in range grew:

Remaining range

80%-\
VS. remaining %SoC readily —

- —
predictable %
Problems associated with o~
grid infrastructure may not b _ r

as acute as perceived !

Can be controlled by Tariffs ! iwesix




‘Crystal Ball’ on the Future-Energy Storage and asftructure

Development in supercaps to supersede batteries ia applications
-lifetime/fit-and-forget/improve energy density gurance for EVS/HEVS!)

Harvesting technologies (solar, excess heat) supporteEtélystorage (robustness).
-Need efficient power conversion at source.

Localised islanded/network issues on vehicle:

-Minor technological retro-fits to systems can reqgsignificant legislation
accommodation eg. connectors

-Don’t know impact on control yet! (a story for ahet day)
-Battery (possibly Pb)/supercap hybrids supportind?CH
-Harmonic/power quality control for EV/PHEV to suppgrid

Challenges:

-Be transparent to user/social acceptance/demolestranefit
-Security/stability

-TECHNOLOGY RELIABILITY

-Energy Management—efficient power integrati& aodversion
Management of user behaviour could provide /ﬂj

biggest relative benefits !
LINCOLN




