
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Predicting the Rating of an App Beyond its Functionalities

Lega, Mathieu; Burnay, Corentin; Faulkner, Stephane

Published in:
Proceedings of the ICDSST 2022 International Conference on Decision Support System Technology

Publication date:
2022

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Lega, M, Burnay, C & Faulkner, S 2022, Predicting the Rating of an App Beyond its Functionalities: Introducing
the App Publication Strategy. in Proceedings of the ICDSST 2022 International Conference on Decision Support
System Technology.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Nov. 2022

https://researchportal.unamur.be/en/publications/2bf9f12c-c870-49f5-a35f-30545812f34c

Predicting the Rating of an App Beyond its
Functionalities: Introducing the App Publication

Strategy

Mathieu Lega�[0000−0003−1682−4920], Corentin Burnay[0000−0002−0325−1732], and
Stéphane Faulkner

University of Namur, Namur Digital Institute (NADI / PReCISE), Namur, Belgium
mathieu.lega@unamur.be

Abstract. Mobile applications (or apps) are present on every portable
device and have become the center of tremendous attention from de-
velopers and software vendors. Some apps meet significant success with
high profitability, but most of them tend to remain anonymous, with
weak returns on investment. The risk incurred when launching a new
app is therefore significant. In this article, we introduce the concept of
Publication Strategy, resulting from the numerous decisions made by an
app designer on all the variables which are publicly visible on the stores
(screenshots, description, title, etc.). This paper studies the extent to
which the success of an app may be predicted using such Publication
Strategy. To do this, we use metadata about more than 40,000 apps
from both the Google Play Store and the Apple App Store and adopt
a machine learning research strategy by training and testing a number
of classification models. We observe that in about 50% of the cases, it is
possible to predict the rating of an app based solely on its Publication
Strategy. The results are very similar between the 2 stores. These results
bring us to the definition of a number of research avenues to further
explore the notion of App Publication Strategy which can be used to
support apps designers in their decisions.

Keywords: mobile applications, apps, Publication Strategy, empirical
study, machine learning, Google Play Store, Apple App Store, decision
support

1 Introduction

Nowadays, more than two thirds of the global population owns a smartphone [12].
On average, a smartphone is used 3 hours a day and contains 100 applications
[12]. In 2018, more than $100 billions were spent by users on mobile applications
(also called mobile apps or apps) via in-app purchases, paid downloads and
subscription fees [7] and 194 billions of mobile apps were downloaded [20]. Some
predictions state that the global mobile apps revenue could get near to $1000
billions by 2023 [20].

2 M. Lega et al.

It is clear from these numbers that the generated revenue is growing faster
each year and that this evolution is expected to continue in the next years.
This in turn emphasizes the fact that mobile applications now represent a huge
market and therefore a significant source of opportunities for businesses.

However, designing and selling an app is not trivial; some apps are down-
loaded/purchased much more frequently than others, and pushing an app on
the market may therefore not always represent a good move for a company as it
requires a lot of resources. In other words, developing a new app does not always
come with financial success and companies should be cautious about it.

We also know that the rating of a mobile application has an impact on the
ranking of the app in search results for the App Store [2]. Knowing that more or
less 50% of the customers use these stores to discover apps, rating has a direct
impact on the discovery of an app [3, 5]. Moreover, 80% of the customers check
the rating of an app before downloading it [5]. If an app has a rating of 2 stars
out of 5, only 15% of the customers state that they will consider downloading
it [3, 5]. This percentage increases to 96% if the rating is 4 stars [3, 5]. We can
thus say that the rating also has an impact on the conversion rate to download
and thus the success of an app.

All these reasons brought us to look at the extent to which the rating (used
as proxy for the success), and more precisely the number of complete stars, of
a mobile application can be predicted using only what we call the ”Publica-
tion Strategy” of the companies developing and commercializing the app (latter
called ”the companies”). This Publication Strategy includes the variables con-
trolled by the companies and displayed when a customer arrives on the page of
the app on an app store. Our objective in doing so is to discover if the concept of
Publication Strategy has an impact on the success of an app. If the Publication
Strategy truly plays a role in the success of an app, better understanding this
concept would allow companies to take better decisions regarding their Publica-
tion Strategy (which is easier to change than the functionalities of the app) and
thus to minimize the number of low rated (and thus riskier) apps launched on
the market for a given quality/functionality level. We also try to discover the
most important variables/features (the 2 words will be used interchangeably in
this work) of a Publication Strategy. Our research questions can be stated as
follows:

– To which extent is it possible to predict the rating of a mobile application
using only its Publication Strategy?

– Which are the most important variables in the Publication Strategy of a
mobile application?

For this purpose, we first create two databases containing metadata about
applications, one for the Google Play Store and one for the Apple App Store.
Then, feature engineering is used in order to extract the most important vari-
ables from the raw data. Finally, machine learning is applied to train prediction
models. We use the following classification algorithms: decision tree, random
forest, k-nearest neighbors, support vector machine and neural networks. The
results of these algorithms are compared and discussed.

App Publication Strategy 3

The remainder of this paper is structured as follows. In section 2, we present
some related works in the field of mobile applications. In section 3, we explain
with more details our methodology for the creation of the databases, the use of
feature engineering and the training of the models. In section 4, we present our
results. In section 5, we discuss our results, the limitations of our work and some
research avenues. Finally, we conclude our work in section 6.

2 Related works

This section presents some related works about apps success factors and the
prediction of the rating of mobile apps. We also detail our positioning compared
to the presented articles.

2.1 Models of App Success Factors

The reasons behind the success of a mobile application has been studied in
several ways in the literature. Lee and Raghu [11] decided to look at how the
success in an app market is impacted by both app-related and seller-related
characteristics. For this purpose, they tracked the presence of apps in the top
300 grossing charts of the Apple App Store and analyzed the factors allowing an
app to stay in these charts or not [11]. For this purpose, they used a generalized
hierarchical modeling approach, a hazard model and a count regression model
[11]. They concluded that, at a seller-level, it is very important to diversify
across categories to achieve sales performance [11]. At an app-level, the following
factors may impact positively the way an app performs in terms of sales: being
free, higher initial popularity, the fact of investing in less popular categories,
continuously updating the features of the app and an higher number of user
feedbacks [11].

Picoto, Duarte and Pinto [16] also used the tops grossing for their study.
The aim of their study was to find the factors that could have an impact on
the ranking and the success of an app [16]. For this purpose, they took 500 top
grossing apps from the Apple App Store from which they extract the top 50 and
bottom 50 for analysis [16]. Once they had identified potential antecedents for
an app’s ranking, they used a multivariate logistic regression and a Fuzzy Set
Qualitative Comparative Analysis (fsQCA) to identify the factors that could
determine the success of an app [16]. They found that the following factors
make it more likely for an app to be in the top 50: category popularity, number
of languages supported, package size, and app release date [16]. A surprising
result is that the higher the user rating, the lower the probability for this app
to be in the top 50 [16]. Finally, they found that the attributes, functionalities,
and longevity of an app have a bigger impact on the success of an app than the
user rating [16].

Yang [21] tried to predict the use of mobile apps, the attitudes of customers
towards these apps and the intent to use with the Theory of Planned Behavior,
the Technology Acceptance Model, and the Uses and Gratification Theory. The

4 M. Lega et al.

author tested the proposed model with a web survey answered by American
college students [21]. The results state that the following factors may be used
to predict the attitude of consumers related to apps: perceived enjoyment, use-
fulness, subjective norm, and ease of use [21]. If the aim is to predict the use
of applications, the significant factors are: perceived usefulness, mobile internet
use, mobile apps intent, personal income, and gender [21].

Lu, Liu and Wei [13] decided to focus only on two factors: enjoyment and
mobility. In their study, they tried to understand the link between the perception
of these factors and the intention to continue using an app [13]. They used a
second-stage continuance model and data of 584 smartphone users collected with
a survey [13]. As a result, they discovered that “the salience of disconfirmation
and beliefs in enjoyment and mobility serve as the primary driver of the changes
in satisfaction and attitude toward continuance intentions” (Lu, Liu &Wei, 2016,
p.1). Another result is that more than 60% of the variance related to the attitude
after usage can be attributed to: perceived enjoyment, mobility and satisfaction
[13].

2.2 Prediction of ratings

The prediction of the user rating of an application is a well-known problematic.
Monett and Stolte [15] have tackled this problem in their work. They used a cor-
pus of 1,760 annotated reviews about 130 mobile apps available on the Google
Play Store [15]. Their goal was to predict the rating based on the polarity of
subjective phrases found in the reviews [15]. For this purpose, several compu-
tational models have been used and evaluated [15]. They concluded that rating
could be well predicted even using only phrase-level sentiment polarity [15].

Meng, Zheng, Tao and Liu [14] implemented a weight base matrix factoriza-
tion (WMF) capturing user-specific interests in order to predict an app rating for
a specific user. The used dataset containing logs of user’s downloaded and unin-
stalled apps involved 5057 users and 4496 apps [14]. Their model got convincing
results, performing better than some other prediction models [14].

A third approach can be found in [4]. In order to predict the rating of appli-
cations, Daimi and Hazzazi decided to use the following algorithms: Linear Re-
gression, Neural Networks, Support Vector Machines, Random Forest, M5 Rules,
REP Tree and Random Tree [4]. They used an Apple Store dataset composed of
7197 apps and the following attributes: user rating count for all version, user rat-
ing count for current version, average user rating for all version (the attribute to
predict), average user rating for current version, number of supporting devices,
number of screen shots showed for display and number of supported languages
[4]. They found that Random Forest produced the best results when predicting
the rating of an application from the Apple Store dataset [4].

Finally, Sarro, Harman, Jia and Zhang [18] focused on predictions achieved
by Case Based Reasoning (CBR) taking only the technical features of the apps
into account. They used a dataset dating from 2011 containing 9588 apps and
1256 extracted features from the BlackBerry App World store and 1949 apps and
620 extracted features from the Samsung Android App store [18]. As a result,

App Publication Strategy 5

they discovered that, in 89% of the cases, the rating of an app could be perfectly
predicted [18]. They also discovered that only 11-12 applications were sufficient
to achieve the best prediction when using a case-based prediction system [18].
They thus concluded that it is possible to accurately predict the rating of an
app taking only its features into account [18].

2.3 Positioning of this work

Our work differentiates from all the studies about apps success factors presented
above because we do not use feedbacks from users to test a model, neither focus
on top charts. Instead, we try to maximize our precision when predicting the
rating (that acts as proxy for the success) given by the customers of an app.
More precisely, we try to predict the number of stars an app will receive using
classification algorithms. We thus use the well-known star rating used by several
stores.

What distinguishes this work from the other works about the prediction of
the rating of an app is the fact that we only use the Publication Strategy as
predictor. Indeed, we investigate the impact of the Publication Strategy on the
success, observed by the number of stars an app receives on the stores. We thus
only focus on variables that may be leveraged by the companies and that are
displayed on the stores because this is by definition what we consider to be the
Publication Strategy.

Moreover we differentiate apps from the Apple App Store and apps coming
from the Android Play Store. For this purpose, we gathered metadata about more
than 80 000 applications for the former and 90 000 applications for the latter.
Our final output is thus trained models of machine learning able to predict a
rating (the number of stars) for an application.

3 Methodology

3.1 Creation of the databases

To answer our research questions, the first step is to collect data about mobile
applications including the rating of each app and a maximum of variables con-
trolled by the companies and displayed on the store. For this purpose, we use the
API of 42matters (https://42matters.com/app-market-data). We chose this one
for several reasons. First of all, it allows us to retrieve metadata from both An-
droid (from the Google Play Store) and IOS (from the Apple App Store) apps.
Then, all the fields available on the stores are included and more precisely the
rating of each app and the variables about the Publication Strategy. There are
also mechanisms to iterate over the applications using some criteria and filters
allowing us to get a maximal amount of data. Finally, the results are returned
under an easy to process format (this is explained later).

The risk while using data collected by another party is to get data of bad
quality. However, 42matters extracts its data directly from the Apple App Store

6 M. Lega et al.

and the Google Play Store. Moreover, we checked the retrieved data of several
apps (selected randomly) by comparing with the actual stores and found no
error. We also checked for aberrant values in the different retrieved fields and
found none. We thus infer that the obtained data is reliable.

In order to retrieve data from this API, a query must be built. There are
different parameters that allow to specify the criteria that the returned apps
must fulfill (these parameters may be found on the website of 42matters). As we
are interested in the rating, we use this latter as selection criterion to retrieve
apps. We thus divide the loading of the data in different steps, specifying a range
of 0.5 for the rating at each time. We first collect apps with a rating lower or
equal to 0.5 and then increment this step by step until we collect apps with a
rating between 4.5 and 5. The API returns a maximum of 10,000 apps for a
given set of criteria and the apps are returned and sorted in descending order of
number of ratings which allows us to get the apps with the highest numbers of
ratings (ans thus the most reliable ratings) for each range.

This allows us to build a database with several thousands of apps for each
rating. This process is repeated for the Apple App Store and the Google Play
Store. As the API returns Json files, we use MongoDB to store our data because
it allows to work in a document-oriented way.

3.2 Feature engineering

The second step, realised with Python, is to extract the different variables that
will be later used in the prediction of the rating. The main criterion to choose
these variables is that they must be controlled by the companies before launching
the app on the market and displayed on the store. Indeed, the final goal is to
study the importance of the Publication Strategy of an app on its rating.

We also analyze and adapt the raw data in order to detect potential problems
(such as missing values or duplicated rows) and give it the right shape for the
different algorithms. Indeed, some of them have requirements for the data in
order to run successfully.

Moreover, we use dimensionality reduction techniques in order to check if it
increases the performances of our models. Principal Component Analysis (PCA)
and Random Forest are used for this purpose [1, 19]. The former allows to create
uncorrelated linear combinations of the existing features and the latter allows to
extract the most important features of our dataset [1, 19].

3.3 Training of the models

Finally, classification algorithms are used because our goal is to predict the num-
ber of complete stars an app will receive and not the precise rating (this is thus
a classification problem and not a regression one). This step is also performed
using Python. We train the following models with the prepared data: (i) Deci-
sion Tree; (ii) Random Forest; (iii) K-Nearest Neighbors (KNN); (iv) Support
Vector Machines (SVM); (v) Neural Networks and more specifically MultiLayer
Perceptron (MLP).

App Publication Strategy 7

Most of these models have been chosen using the flowchart presented in
[8]. We just added the Decision Tree and the MLP that are not listed in the
mentioned chart as the former is very simple and the latter is very flexible [6,
9]. Also, we do not use the linear SVC (Support Vector Classifier) model as we
already chose SVM. Indeed, the latter may be used with a linear kernel and,
even if it represents another implementation, the results are often similar with
the linear SVC [10].

The training process is the following for each model. We first divide our data
into train data (80%) and test data (20%). The train data is used to tune the
hyperparameters and the test data allows us to measure the accuracy of each
model on data never seen before. In order to find the optimal hyperparameters
for each model, we proceed in different steps. First, we analyze the evolution
of the accuracy depending on the values of some hyperparameters. Then, a grid
search is used to compare different configurations based on cross-validation. Once
this tuning is finished, we test the final model with the test data.

Three kinds of accuracies are calculated for each model: a training accuracy,
a validation accuracy and a testing accuracy. The first is the accuracy obtained
when predicting the labels of the data used to train the model. The second is
the accuracy obtained with the best configuration while tuning the hyperparam-
eters. The third accuracy is obtained by predicting the labels of the test data.
The training and the validation accuracies are biaised because they are used to
enhance the model.

Python is also used for this step and more precisely the functions from the
scikit-learn package. The performances of the different algorithms are discussed
and compared. The performances of a random prediction are also computed in
order to have a reference point.

4 Results

4.1 Feature engineering

Selection of the variables. For the Android apps, we obtained a database
containing 96,178 rows and 53 fields. The entire list of fields may be found
on the website of 42matters. Obviously, a big part of these variables did not
interest us. As a reminder, we only wanted to keep the variables controlled by
the companies and displayed on the store. Moreover, we had to transform some
fields in order to make them usable. The kept fields are presented in table 1. We
did not take the list of countries where the app is available neither the languages
supported by the app as features because we consider that these variables may
be impacted by the success of the app after the commercialization.

The database of IOS apps counted 81,000 rows and 52 fields. It is important
to note that some fields were available for Android but not for IOS and vice versa.
This explains why different fields were used for IOS in comparison with Android.
The used selection criteria was also that the variables must be controlled by the
companies and displayed on the store. Table 2 presents the kept fields for IOS
apps.

8 M. Lega et al.

Table 1. Selected features for Android apps

Name Description

Category The category of the app.
Promo video Whether the app contains a promotional video.
Price The price of the app (in $).
Content rating A rating of the content of the app.
Number of screenshots The number of screenshots displayed on the store.
Size The size of the app in bytes.
In-app purchases Whether in-app purchases are available in the app.
Minimum in-app purchase The minimum cost of in-app purchase.
Maximum in-app purchase The maximum cost of in-app purchase.
Length of the description The length of the description of the app.
Length of the short description The length of the short description of the app.
Length of title The length of the title of the app.
Ads Whether the app contains ads.
Rating The rating of the app.

Table 2. Selected features for IOS apps

Name Description

Length of the description The length of the description of the app.
Number of iPhone screenshots The number of iPhone screenshots of the app.
Number of iPad screenshots The number of iPad screenshots of the app.
iPhone Whether the app is available on iPhone.
iPad Whether the app is available on iPad.
VPP distribution Whether the app supports VPP distribution.
Content rating A rating of the content of the app.
Size The size of the app in bytes.
Game center Whether the app supports Game Center.
Primary category The primary category of the app.
Price The price of the app.
Length of the title The length of the title of the app.
Rating The rating of the app.

App Publication Strategy 9

Analysis and preparation of the data. First of all, as we created our
databases in different steps, there were some duplicated rows. Indeed, the rating
of an app may change from one week to another. We thus deleted them.

Then, we managed the different categorical features (the category for exam-
ple). We first checked the distribution of the values of each column to see if some
of them were under-represented. When several values appeared less than 1000
times in a column, we aggregated them into a new category ”other” in order
to keep only the relevant values. As explained before, some algorithms are not
able to handle categorical input. We therefore decided to use one-hot-encoding
[17]. This method allows to transform a categorical column in several boolean
columns (one for each category) [17].

The next step was the scaling of the numerical columns. This was another
requirement for some of our models. We decided to use standardization (z =
(x−µ)/σ) to decrease the impact of the outliers in the features [17]. In order to
avoid data leakage, we scaled the data using only the training sets.

We also had to modify the rating in order to have the classes that we wanted.
We used the following rounding rules: rating class = 0 if rating < 0.5; rating
class = 1 if rating ≥ 0.5 and < 1.5; rating class = 2 if rating ≥ 1.5 and < 2.5;
rating class = 3 if rating ≥ 2.5 and < 3.5; rating class = 4 if rating ≥ 3.5 and
< 4.5; rating class = 5 if rating ≥ 4.5.

Finally, as the number of rows with missing values in the resulting datasets
was very low (less than 100), we just deleted them. We also kept only the appli-
cations with at least 50 ratings from the customers. Indeed, for several apps, the
average rating was not calculated on enough individual ratings to be significant.

For the Android apps, our final dataset consisted of 64504 rows and 65
columns. An important consequence of the treatment described above is that
there was no application with a rating of 0 star any more, reducing the number
of classes to 5.

The final IOS dataset had 41856 rows and 31 columns. As for Android, there
was no app with a rating of 0 star.

Reduction of dimensionality. Two methods were used to decrease the num-
ber of features. First, we applied a Principal Component Analysis keeping 95%
of the variance. This returned 24 principal components for the Android dataset
and 15 principal components for the IOS dataset. Then, we used the built-in
feature selection of the Random Forest to keep only the variables with a rela-
tive importance bigger than 0.01. Based on this process, 9 features remained for
the Android dataset: the length of the description, the size, the length of the
short description, the length of the title, the number of screenshots, the most
expensive in-app purchase, the presence or absence of advertisements, the least
expensive in-app purchase and the presence or absence of a promo video. Re-
garding the application of this second method to the IOS dataset, 10 features
remained: the size, the length of the description, the length of the name, the
number of screenshots, the number of screenshots on ipad, the fact that the app
is a game or not, the fact that GameCenter is enabled or not, the fact that the

10 M. Lega et al.

app is free or not, the fact that the content of the app is rated ”4+” or not and
the fact that the category of the app is ”other” or not.

4.2 Training of the models

The results of the different models for Android apps is summarized in table 3 and
table 4 summarizes the results of the different models for IOS apps. Each time,
a reference point is given with a random prediction (1/number of classes). All
these results have been achieved using the methodology presented in subsection
3.3. As a recall, the training accuracy is biaised because it is used during the
optimisation of the parameters of the models. The validation accuracy is also
biaised as it is used to tune the hyperparameters. The testing accuracy is thus
the most significant approximation of the true accuracy of the model.

Table 3. Training of the models for Android apps

Model Selected hyperparameters and final values Training ac-
curacy

Validation
accuracy

Testing ac-
curacy

Random / 20% 20% 20%

Decision Tree - Maximal depth = 10
- Maximal number of leaf nodes = 90

47.5% 46.4% 46.3%

Random Forest - Maximal depth of the trees = 20
- Number of estimators = 75

78.9% 49.5% 50.1%

KNN - Number of neighbors = 30 51.4% 46.9% 47.5%
44.3%1

46%2

SVM - Regularization parameter (C) = 7 54.9% 45.2%2 48.8%
45.5%1

46.9%2

MLP - Number of layers = 1
- Number of neurons = 20

50.3% 48.7% 49%
46.1%1

47.4%%2

1: using only the most important features
2: using PCA

Looking at the results for the Android dataset, we can see that the per-
formances of all the models are rather close during the testing phase. It varies
between 44.3% and 50.1% with Random Forest achieving the best score. This
last result is more than twice the result of a pure random prediction. Another
conclusion is that both feature selection methods fail to improve the results. Us-
ing the built-in feature importance evaluation of Random Forest, we can assess
the relative importance of the different features. The most important features
for Android are thus: the length of the description, the size, the length of the
short description, the length of the title and the number of screenshots.

Analyzing the results for the IOS dataset, table 4 shows that all the models
have close testing performances. It varies between 45.2% and 49.6% and the best
score is achieved by Random Forest. We can see that the random prediction is
completely outperformed. This time, PCA seems to enhance slightly the results
for KNN and SVM. Using the built-in feature importance evaluation of Random

App Publication Strategy 11

Table 4. Training of the models for IOS apps

Model Selected hyperparameters and final values Training ac-
curacy

Validation
accuracy

Testing ac-
curacy

Random / 20% 20% 20%

Decision Tree - Maximal depth = 10
- Maximal number of leaf nodes = 200

49.1% 45.8% 46.4%

Random Forest - Maximal depth of the trees = 15
- Number of estimators = 125

72% 48.1% 49.6%

KNN - Number of neighbors = 30 49% 43.7% 45.2%
45.2%1

45.6%2

SVM - Regularization parameter (C) = 2 48.7% 45.35%2 47.3%
47%1

47.5%2

MLP - Number of layers = 1
- Number of neurons = 16

47.7% 47.2% 48%
47.3%1

47.7%2

1: using only the most important features
2: using PCA

Forest, the most important features for IOS are: the size, the length of the
description, the length of the title and the number of iPhone screenshots.

5 Discussion

5.1 Comparison of the performances

We can see that the models achieve rather close results when predicting the
rating of applications from both the Apple App Store and the Google Play
Store. The best score is achieved by the Random Forest model for both stores
and is around 50%. This is more than twice the result of a random prediction
(20%). This means that, in 50% of the cases, the number of stars that a mobile
application will get may be predicted using only its Publication Strategy.

What these results suggest is that the concept of Publication Strategy defined
earlier in this paper seems to be in practice a real and strong predictor of the
rating of an app, and therefore of its potential success on a platform. Although
we do no study a particular Publication Strategy in this paper, we find evidences
that it actually matters, and that it could be leveraged by apps designers when
making decisions about a new app.

Another conclusion is that the most important features are the same for
both stores: the length of the description, the size, the length of the title and
the number of screenshots.

5.2 Limitations and future works

First of all, the number of features extracted from the raw data could be increased
to enhance the precision of the models. Indeed, the variables presented in this
work are quite basic. In order to find more of them, a first idea would be to

12 M. Lega et al.

use text mining on the description and the title. These two fields seem to be
very important in the prediction of the rating while taking only the length into
account. More information could be extracted from these two fields.

Then, we only looked at the definition of the concept ”Publication Strategy”
and its importance in the prediction of the rating of an app. We did not study
a particular Publication Strategy nor the different types of Publication Strate-
gies. A future study could focus on the identification of patterns of Publication
Strategies that apps designers could use to enhance the performance of their
apps.

Another possibility would be to study a decision support system guiding the
companies in the decisions about the Publication Strategy of their apps. This
could reduce the uncertainty of their choices and reduce the number of low rated
apps due to bad presentation.

Finally, it would also be interesting to analyze the impact of the Publication
Strategy on the number of downloads for apps that have the same rating. It
would allow to see if the presentation of an application makes a difference in
terms of popularity for apps of the same quality.

6 Conclusion

We presented the concept of Publication Strategy of a mobile application and
studied its importance by looking at the extent to which the rating of an app can
be predicted solely based on its Publication Strategy. The following classification
algorithms were used to predict the rating: decision tree, random forest, KNN,
SVM, MLP. We used metadata about 64504 Android apps and 41856 IOS apps.
The performances of the algorithms were compared and discussed. We discovered
that, for both stores, 50% of the ratings could be predicted using only variables
controlled by the companies before the commercialization and displayed on the
store, i.e. the Publication Strategy. We thus concluded that this Publication
Strategy actually matters for the success of an app and that more research is
needed to support apps designers in their decisions regarding the Publication
Strategy. Moreover, the most important variables for the predictions were the
length of the description, the size, the length of the title and the number of
screenshots. The limitations were discussed and some avenues for future research
were presented.

References

1. Agarwal, R.: The 5 feature selection algorithms every data scientist should
know (2019), https://towardsdatascience.com/the-5-feature-selection-alg
orithms-every-data-scientist-need-to-know-3a6b566efd2

2. Apple: Ratings, reviews, and responses (2020), https://developer.apple.com/ap
p-store/ratings-and-reviews/

3. Colgan, M.: How important are mobile app ratings & reviews? (2019), https:
//tapadoo.com/mobile-app-ratings-reviews/

App Publication Strategy 13

4. Daimi, K., Hazzazi, N.: Using apple store dataset to predict user rating of mobile
applications. In: 2019 International Conference on Data Science. pp. 28–33 (2019)

5. Gordon, G.: User ratings & reviews: How they impact aso – ultimate guide
(2018), https://thetool.io/2018/user-ratings-reviews-aso-guide#How_doe

s_User_Feedback_Impact_ASO

6. Gupta, P.: Decision trees in machine learning (2017), https://towardsdatascien
ce.com/decision-trees-in-machine-learning-641b9c4e8052

7. Handley, L.: Nearly three quarters of the world will use just their smartphones to
accessthe internet by 2025 (2019), https://www.cnbc.com/2019/01/24/smartpho
nes-72percent-of-people-will-use-only-mobile-for-internet-by-2025.ht

ml

8. scikit learn: Choosing the right estimator (2019), https://scikit-learn.org/s
table/tutorial/machine_learning_map/index.html

9. scikit learn: Neural network models (supervised) (2019), https://scikit-learn
.org/stable/modules/neural_networks_supervised.html

10. scikit learn: Support vector machines (2019), https://scikit-learn.org/stabl
e/modules/svm.html

11. Lee, G., Raghu, T.S.: Determinants of mobile apps’ success: Evidence from the app
store market. Journal of Management Information Systems 31(2), 133–170 (2014)

12. Legal’Easy: Les chiffres des utilisateurs d’applications (2019), https://www.my-b
usiness-plan.fr/chiffres-application

13. Lu, J., Liu, C., Wei, J.: How important are enjoyment and mobility for mobile
applications? Journal of Computer Information Systems 57(1), 1–12 (2017)

14. Meng, J., Zheng, Z., Tao, G., Liu, X.: User-specific rating prediction for mobile
applications via weight-based matrix factorization. In: 2016 IEEE International
Conference on Web Services (ICWS). pp. 728–731. IEEE (2016)

15. Monett, D., Stolte, H.: Predicting star ratings based on annotated reviews of mo-
bile apps. In: 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS). pp. 421–428. IEEE (2016)

16. Picoto, W.N., Duarte, R., Pinto, I.: Uncovering top-ranking factors for mobile
apps through a multimethod approach. Journal of Business Research 101, 668–
674 (2019)

17. Rençberoğlu, E.: Fundamental techniques of feature engineering for machine learn-
ing (2019), https://towardsdatascience.com/feature-engineering-for-machi
ne-learning-3a5e293a5114

18. Sarro, F., Harman, M., Jia, Y., Zhang, Y.: Customer rating reactions can be pre-
dicted purely using app features. In: 2018 IEEE 26th International Requirements
Engineering Conference (RE). pp. 76–87. IEEE (2018)

19. Science, E.D.: Dimensionality reduction algorithms: Strengths and weaknesses
(2019), https://elitedatascience.com/dimensionality-reduction-algorithm
s#feature-selection

20. statista: Mobile app usage - statistics & facts (2019), https://www.statista.com
/topics/1002/mobile-app-usage/

21. Yang, H.: Bon appétit for apps: young american consumers’ acceptance of mobile
applications. Journal of Computer Information Systems 53(3), 85–96 (2013)

