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Abstract—Self-adaptive systems (SAS) change their behavior
and structure at runtime to answer the changes in their en-
vironment. Such systems combine different architectural frag-
ments or solutions via feature binding/unbinding at runtime.
Moreover, this combination may negatively impact the system’s
architectural qualities, exhibiting architectural bad smells (ABS).
These issues are challenging to detect in the code due to the
combinatorial explosion of interactions amongst features. Since
SAS does not document these features in their source code, design
time smell detection ignores them and risks reporting smells that
are different than those observed at runtime. This paper assesses
this risk to understand how ABS occurs at runtime for different
feature combinations. We look for cyclic dependency and hub-
like ABS in various runtime adaptations of two SAS, Adasim
and mRubis. Our results indicate that architectural smells are
feature-dependent and that their number is highly variable from
one adaptation to the other. Some ABS appear in all runtime
adaptations, some in only a few. We discuss the reasons behind
these architectural smells for each system and motivate the need
for targeted ABS analyses in SAS.

Index Terms—Architectural Smells, Self-Adaptive Systems,
Arcan, Behavioral Maps.

I. INTRODUCTION

Nowadays, more and more self-adaptive systems (SAS) are
required to run without interruptions in heterogeneous envi-
ronments. SAS vary their behavior through the (de)activation
of features depending on environmental changes and reconfig-
uration plans and goals to answer such requirements. Such a
reconfiguration combines architectural fragments or different
solutions at runtime that may negatively impact their archi-
tectural qualities. Thus, Architectural Bad Smells (ABS) may
emerge, implying reductions in system maintainability [1], [2].
ABS result from architectural design decisions that negatively
impact system lifecycle properties (e.g., testability and main-
tainability) [3].

Variability management is key for SAS as well as for
software product lines (SPL), where one derives a family of
variants based on core (present in all variants) and optional
(present in some variants) features [4]. Many studies target
ABS in single systems or [1]–[3], [5]–[7]. However, there are
less studies focusing on SAS or dynamic software product
lines (DSPL) [8]–[10]. In particular, these studies do not
discuss the impact of runtime variability on smell detection

and evolution as the SAS adapt. To assess runtime architectural
qualities of SAS, we developed a framework that instruments
SAS to monitor runtime adaptations and captures them in
behavioral maps (BM) [10].

This poster paper presents a preliminary comparison be-
tween design time and runtime smell detection for SAS. To
perform this comparison, we selected two ABS detection
tools, Arcan [11] and our BM framework [10]. We motivate
the choice of the former tool because it was applied on
SAS at design time [8]. The BM framework is the only
approach to focus on runtime ABS. Both tools focus on SAS
written in Java. We selected Adasim [12] and mRubis [13]
for their public availability and the diversity of adaptation
mechanisms these SAS use. As for smells, we considered
Cyclic Dependency (CD) and Hub-Like Dependency (HL)
[14] as they are supported by both Arcan and BM framework
tools.

Our results show important differences between smells
occurrences at design time and runtime for Adasim, and smells
appearing at runtime not found at design time for mRubis.
ABS occurrences also vary along SAS reconfigurations. Our
results suggest that runtime ABS assessment is required to
fully grasp SAS architectural qualities. In summary, this paper
provides the following contributions: i) A first empirical
comparison of architectural bad smells for SAS detected at
design time and at runtime; ii) Our analysis based on 40
runtime adaptations of Adasim and 16 runtime adaptations
of mRubis, demonstrates that runtime variability affects the
type and occurrence of smells found. The results and scripts
to process behavioral maps are also available here: https:
//doi.org/10.5281/zenodo.5814028.

The remainder of the paper is as follows. Section II intro-
duces research questions. We describe our results in Section
III. Finally, Section V wraps up the paper.

II. STUDY DESIGN

A. Research Questions

This empirical study aims at investigating differences be-
tween smells one detects at design time and smells occurring
at runtime. To understand these differences, we formulate the
following research questions:



RQ1. Are smells found at design time also found at
runtime? This involves: i) running different configurations
of self-adaptive systems, ii) measure the type and number of
occurrence of each smell, and iii) compare these results with
smells detected at design time.

RQ2. How does the number of architectural bad smells
evolves during the reconfiguration process at runtime?
We aim at qualifying the variations of smell occurrences at
runtime, and this is related to the SAS variability.

B. Systems under Study
We have chosen Adasim [12] and mRubis [13] systems,

both written in the Java programming language and available
in a reference repository for SAS1. Besides the program-
ming language, the motivation of these choices also relies
on the adaptive mechanisms. The former system uses the
parameter-based routing algorithm to trigger their adaptation
process, and the last uses a mix of adaptation mechanisms
(MAPE-K [15], Event-Condition-Action (ECA), and State-
based feedback loop) depending on the instantiated version.
This is relevant to study the impact of the variability on ABS
occurrences.

Adasim is a simulator for the Automated Traffic Routing
Problem (ATRP), implemented as an agent-based system [8],
[12]. The system is composed of six kinds of abstract entities:
i) a map; ii) vehicles; iii) agents that make routing decisions
and collect and store information; iv) sensors that allow agents
to observe the environment; v) measurement uncertainty filters
that control the noise and other sources of uncertainty in the
sensor measurements; and vi) data privacy policies that allow
vehicles and streets to restrict part or all information about
themselves from sensors [12]. The self-adaptive mechanisms
are utilized to deal with the scalability problems and the unex-
pected changes in the environment, for instance, an accident
or a closed street.

mRUBiS is a marketplace on which users sell or auction
items [13] based on RUBiS [16], a popular case study to
evaluate control-theoretic adaptation. mRubis comprises 18
components and can arbitrarily host many shops. These shops
manage items, users, auctions/purchases, inventory, and user
ratings, authenticate users, and persist and retrieve data from
the database.

C. Architectural Bad Smells
The architectural smells considered in our study are:
Cyclic Dependency (CD): CD occurs when two or more

components depend on each other directly or indirectly [14].
Hub-Like Dependency (HL): HL arises when a component

has (outgoing and ingoing) dependencies with a large number
of other abstractions (e.g., other components) [8], [14].

D. Experimental Setup
We ran Arcan on the Jar files available on GitHub for

Adasim2 and mRubis3. We instantiated the BM framework
1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
2https://github.com/brunyuriy/adasim
3https://github.com/thomas-vogel/mRUBiS

TABLE I: ABS identified by Arcan and Behavioral Map.

Arcan Behavioral Map

Feature Name CD HL CD HL Feature
Type

TrafficSimulator Yes Yes Core
RoadSegment Yes Yes Yes Yes Core
Vehicle Yes Yes Yes Core
VehicleManager Yes Yes Core
RoadVehicleQueue Yes Yes Core
AdasimMap Yes Core
QLearningRoutingAlgorithm Yes Optional
SimulationXMLBuilder Yes Core

TABLE II: ABS identified by the BM in adaptation 1 and 2
of the Adasim - QLearningRoutingAlgorithm.

Adaptation 1 Adaptation 2

Feature Name Feature
Type CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes
(13) Yes Yes

(12)

Vehicle Core Yes Yes
(14) Yes Yes

(13)
VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
QLearningRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core Yes
(9)

Yes
(9)

on both systems, a result of a two weeks work from the first
author.

III. RESULTS

A. Adasim Results

Adasim is a parameter-based routing algorithm adaptive
mechanism, and we identified two adaptation modes accord-
ing to the algorithms initiating the reconfiguration process:
QLearningRoutingAlgorithm and AdaptiveRoutingAlgorithm.

Adasim QLearningRoutingAlgorithm: Table I presents
the ABS identified by Arcan and BM. For the last tool,
we show only the smells identified in the first adaption
loop. Additionally, the table shows the feature type affected
for each ABS. The Arcan analysis identified ABS only in
the core features. Thus, the TrafficSimulator, RoadSegment,
Vehicle, VehicleManager, and RoadVehicleQueue are CD, and
RoadSegment is HL.

BM found the same features identified by Arcan involved
in ABS and identified three more additional features, as we
depicted Table I. Thus, the core feature AdasimMap and the
optional feature QLearningRoutingAlgorithm were identified
as a CD. Also, the core feature SimulationXMLBuilder was
identified as HL. These ABS were identified in the first
adaptation loop executed by Adasim.

We analyzed Adasim during 13 self-adaptations and found
that the number of detected ABS only changed between the
first and second adaptations. Further adaptations did not affect
further the architecture. Table II presents in detail the features
involved in ABS during the two first adaptations. The QLearn-
ingRoutingAlgorithm is an optional feature involved in CD



only in adaptation 1 with the feature RoadSegment, and Ve-
hicle. Nevertheless, the absence of the QLearningRoutingAl-
gorithm (in adaptation 2) reduces the numbers of dependency
in the features RoadsSegment and Vehicle involved in HL,
see Table II. This situation occurred because RoadSegment
and Vehicle are not sharing QLearningRoutingAlgorithm in
the second adaptation.

Adasim AdaptiveRoutingAlgorithm. In this mode, we
monitored the system during 27 self-adaptations, involving 20
features. Similarly, we observed differences between the two
first adaptations. Table III presents the ABS identified during
adaptations one and two. We observe that the number of CD
identified increase or decrease depending on the number of
optional features required in each adaptation process. This
situation also impacts the number of HL identified in each
adaptation, mainly because the features identified as CD and
HL concentrated on the core features. Also, there is a strong
dependency amongst them at runtime. Thus, we detected
that the Vehicle feature identified as HL in Adaptation 1
was not identified in Adaptation 2. Such a situation oc-
curred because the optional features AdaptiveRoutingAlgo-
rithm, QLearningRoutingAlgorithm, and LookaheadShortest-
PathRoutingAlgorithm are not used in adaptation 2. Conse-
quently, the BM identified in adaptation 2 the RoadSegment
feature as a new HL, as identified by Arcan.

B. mRubis Results

The mRubis system is divided into self-healing and self-
optimization versions.

mRubis self-optimization: Table IV details the ABS
identified by Arcan and the BM framework. Arcan analy-
sis identified the SimulatorUtil as HL and the classes
ModelParameterPage and ModelParameterPage$1
as CD in the mRubis self-optimization version. The
SimulatorUtil is a class part of the framework used to
implement the mRubis simulator, but the Arcan tool identified
the class as a mRubis implementation. Also, the classes

TABLE III: ABS identified by the BM in adaptation 1 and 2
of the Adasim AdaptiveRoutingAlgorithm.

Adaptation 1 Adaptation 2

Feature Name Feature
Type CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes Yes
(13)

Vehicle Core Yes Yes
(17) Yes

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
AdaptiveRouting
Algorithm Optional Yes

QLearningRouting
Algorithm Optional Yes

LookaheadShortest
PathRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core Yes
(11)

Yes
(11)

TABLE IV: Architectural Bad Smells identified by Arcan and
Behavioral Map in mRubis Self-Optimization.

Arcan Behavioral Map

Feature Name CD HL CD HL Feature
Type

SimulatorUtil Yes
ModelParameterPage Yes Optional
ModelParameterPage$1 Yes Optional
SelfOptimizationConfig Yes Core
MRubisModelQuery Yes Core
EventBasedMapeFeedbackLoop Yes Core

TABLE V: Architectural Bad Smells identified by Arcan and
Behavioral Map in mRubis Self-Healing MAPE-K loop.

Arcan Behavioral Map

Feature Name CD HL CD HL Feature
Type

SimulatorUtil Yes
ModelParameterPage Yes Optional
ModelParameterPage$1 Yes Optional
StateBasedMapeFeedbackLoop Yes Core

ModelParameterPage and ModelParameterPage$1
are optional features responsible for implementing the graph-
ical interface.

However, the BM identified the SelfOptimizationConfig,
MRubisModelQuery, and EventBasedMapeFeedbackLoop as
HL in four adaptation loops. Thus, these features are core
used in all configurations of mRubis self-optimization. We
observed in the SelfOptimizationConfig feature a decrease in
the numbers of dependencies used in the second adaptation.
This situation occurred because the feature is responsible
for adding the validators and other parameters related to
self-optimization. However, the number of validators used
at runtime decreases, impacting the dependencies identified.
The MRubisModelQuery and EventBasedMapeFeedbackLoop
maintain the same numbers of dependencies in all adaptations.
Also, the BM framework did not identify other types of ABS
during the adaptation loop.

mRubis self-healing: The Arcan identified the same ABS
identified in the mRubis self-optimization version because
the classes the SimulatorUtil, ModelParameterPage
and ModelParameterPage$1 are used in the mRubis
build independent of the version. However, the BM does
not identify ABS in the self-healing version with adaptation
mechanism ECA and SBFL after four reconfiguration pro-
cesses at runtime. The difference between the results presented
by Arcan and BM is triggered by the way how ABSs are
identified. Table V presents in detail the ABS identified
by Arcan and BM for self-healing version with adaptation
mechanism MAPE-K. The BM identified one instance of
HL in the core feature StateBasedMapeFeedbackLoop in four
adaptations loops. The feature is the main entry point to other
features as Monitor, Action, Plan, Execute, SelfHealingConfig,
SelfHealingScenario, and MRubisSelfHealingUtilityFunction.



C. Synthesis

Answering RQ1. For both systems we observed significant
differences between design time and runtime smell detection.
Some smells are only present at runtime and conversely some
smells only appear at design time. By answering no to RQ1,
we motivate the needs for further assessment of runtime smells
for SAS.

Answering RQ2. We also observed a variation in the
occurrences of smells found between the adaptations. For
instance, in Adasim AdaptiveRoutingAlgorithm, the BM found
9 CD and 3 HL in the first adaptation, but in the second, the
BM found 6 CD smells. We could explain this variation by
the activation and deactivation of certain runtime features.

IV. THREATS TO VALIDITY

Internal Validity: The absence of a feature model and fea-
ture annotations in the source code may hamper the variability
identification process. To mitigate this threat, we used the
Eclipse IDE tool to verify the feature implementation and to
debug the systems’ source code to check the execution of
each feature identified using the process. We also analyzed
execution logs to ensure that our identification of features was
correct.

External Validity: Our results may not generalize to all
SAS, since we selected only two systems in our studies. Fur-
ther, it is impossible to run all the possible systems adaptations
or to estimate their number. However, the selected systems
have different architectural models, adaptation mechanisms
and application domains. Diversity in the selected systems
contributes to mitigate this threat. We recall that our goal was
not to obtain statistical evidence on the differences between
runtime and design time architectural bad smells but rather
to reveal and explain their existence. A more quantitative
assessment is left for future work.

V. CONCLUSION

In this paper, we made the case for assessing architectural
bad smells (ABS) for self-adaptive systems (SAS) at runtime,
hypothesizing differences between design time and runtime
analyses. To reveal and explain these differences, we selected
two SAS (Adasim and mRubis), two ABS detection tools
(Arcan and the Behavioral Map framework) and performed
design time and runtime smell detection on a number of
systems reconfigurations. Our results showed that there are
indeed differences between design time and runtime detec-
tion. While we could have assumed that all smells found
at runtime would be a subset found by at design time, we
also found occurrences of smells only found at runtime.
We identified the root causes for this seemingly surprising
finding, including polymorphism that affects the precision of
design time analysis. These differences are of interest for SAS
architects in order to more precisely put their maintenance
efforts and assess the architectural qualities of a given runtime
adaptation. However, instrumenting such SAS for runtime
ABS identification requires expertise and time, especially since

core and variable features are not documented. This the main
lesson learned of our study besides our results.

There is room for future work. First, we would like to
reduce the cost of engineering involved in analyzing SAS at
runtime, which is a current impediment of large-scale analyses.
In particular, we will design a dedicated ABS tool operating at
the bytecode level, easing runtime analyses. Second, we will
generalize our findings by assessing more SAS.
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