
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Spectral pruning of fully connected layers

Buffoni, Lorenzo; Civitelli, Enrico; Giambagli, Lorenzo; Chicchi, Lorenzo; Fanelli, Duccio

Publication date:
2021

Link to publication
Citation for pulished version (HARVARD):
Buffoni, L, Civitelli, E, Giambagli, L, Chicchi, L & Fanelli, D 2021 'Spectral pruning of fully connected layers:
ranking the nodes based on the eigenvalues'.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jul. 2022

https://researchportal.unamur.be/en/publications/10624615-f3c1-4527-980b-9872601702da

Spectral Pruning of Fully Connected Layers: Ranking the Nodes Based
on the Eigenvalues

Lorenzo Buffoni,1, 2 Enrico Civitelli,3 Lorenzo Giambagli,2 Lorenzo Chicchi,2 and Duccio Fanelli2

1Physics of Information and Quantum Technologies Group,
Instituto de Telecomunicações, Lisbon, Portugal
2CSDC, Department of Physics and Astronomy,
University of Florence, Sesto Fiorentino, Italy

3LabGOL, Department of Information Engineering, University of Florence, Florence, Italy

Training of neural networks can be reformulated in spectral space, by allowing eigenvalues and
eigenvectors of the network to act as target of the optimization instead of the individual weights.
Working in this setting, we show that the eigenvalues can be used to rank the nodes’ importance
within the ensemble. Indeed, we will prove that sorting the nodes based on their associated eigen-
values, enables effective pre- and post-processing pruning strategies to yield massively compacted
networks (in terms of the number of composing neurons) with virtually unchanged performance.
The proposed methods are tested for different architectures, with just a single or multiple hidden
layers, and against distinct classification tasks of general interest.

I. INTRODUCTION

Automated learning via deep neural networks
is gaining increasing popularity, as a ductile
procedure to address a widespread plethora of
interdisciplinary applications [1–3]. In standard
neural network training one seeks to optimise
the weights that link pairs of neurons belonging
to adjacent layers of the selected architecture
[4]. This is achieved by computing the gradient
of the loss with respect to the sought weights, a
procedure which amounts to operate in the so
called direct space of the network [5]. Alterna-
tively, the learning can be carried out in recip-
rocal space: the spectral attributes (eigenvalues
and eigenvectors) of the transfer operators that
underlie information handling across layers de-
fine the actual target of the optimisation. This
procedure, first introduced in [5] and further re-
fined in [6], enables a substantial compression
of the space of trainable parameters. The spec-
tral method leverages on a limited subset of key
parameters which impact on the whole set of
weights in direct space. Particularly relevant, in
this respect, is the setting where the eigenmodes
of the inter-layer transfer operators align along
random directions. In this case, the associated
eigenvalues constitute the sole trainable param-
eters. When employed for classifications tasks,

the accuracy displayed by the spectral scheme
restricted to operate with eigenvalues is slightly
worse than that reported when the learning is
carried in direct space, for an identical architec-
ture and by employing the full set of trainable
parameters. To bridge the gap between conven-
tional and spectral methods in terms of mea-
sured performances, one can also train the ele-
ments that populate the non trivial block of the
eigenvectors matrix [5]. By resorting to apt de-
composition schemes, it is still possible to con-
tain the total number of trainable parameters,
while reaching stunning performances in terms
of classification outcomes [6].

In this paper we will discuss a relevant
byproduct of the spectral learning scheme.
More specifically, we will argue that the eigen-
values do provide a reliable ranking of the
nodes, in terms of their associated contribution
to the overall performance of the trained net-
work. Working along these lines, we will empir-
ically prove that the absolute value of the eigen-
values is an excellent marker of the node’s sig-
nificance in carrying out the assigned discrimi-
nation task. This observation can be effectively
exploited, downstream of training, to filter the
nodes in terms of their relative importance and
prune the unessential units so as to yield a more
compact model, with almost identical classifi-

ar
X

iv
:2

10
8.

00
94

0v
2

 [
co

nd
-m

at
.d

is
-n

n]
 2

6
Ja

n
20

22

2

cation abilities. The effectiveness of the pro-
posed method has been tested for different feed-
forward architectures, with just a single or mul-
tiple hidden layers, by invoking several activa-
tion functions, and against distinct datasets for
image recognition, with various levels of inher-
ent complexity. Building on these findings, we
will also propose a two stages training proto-
col to generate minimal networks (in terms of
allowed computing neurons) which outperform
those obtained by hacking off dispensable units
from a large, fully trained, apparatus. This is a
viable strategy to discover a “winning ticket”
[7]: dense (randomly-initialized) feed-forward
networks contain sub-networks (aka winning
tickets) with recorded performance compara-
ble to those displayed by their unaltered homo-
logues, after a proper round of training.

The paper is organized as follows. In the next
section we will discuss the mathematical foun-
dation and set the notation of the spectral learn-
ing scheme. We will then move on to illustrat-
ing the results of the proposed spectral pruning
strategy, after a short account of the alternative
methods available in the literature. Finally, we
will sum up and draw our conclusions. The de-
tails about the proposed schemes are discussed
in the Methods Section.

II. SPECTRAL APPROACH TO
LEARNING

This Section is devoted to reviewing the spec-
tral approach to the training of deep neural net-
works. The discussion will follow mainly [6],
where an extension of the method originally in-
troduced in [5] is handed over.

Consider a deep feed-forward network made
of ` distinct layers. Each layer is labelled with
a discrete index i (= 1, ..., `). Denote by Ni

the number of the neurons, the individual com-
puting units, that pertain to layer i. Then, we

positN =
∑`

i=1Ni and introduce a column vec-

tor ~x(1), of size N , the first N1 entries referring
to the supplied input signal. As anticipated,
we will be mainly concerned with datasets for
image recognition, so we will use this specific

case to illustrate the more general approach of
spectral learning. This means that, the first N1

elements of ~x(1) are the intensities (from the
top-left to the bottom-right, moving horizon-
tally) as displayed on the pixels of the image
presented as an input. All other entries of ~x(1)

are identically equal to zero.

The aim of the procedure is to map ~x(1) into
an output vector ~x(`) , still of size N : the last
N` elements are the intensities displayed at the
output nodes, where reading is eventually per-
formed. The applied transformation is com-
posed by a suite of linear operations, interposed
to non linear filters. To exemplify the over-
all strategy, consider the generic vector ~x(k),
with k = 1, ..., ` − 1, as obtained after k ex-
ecution of the above procedure. At the suc-
cessive iteration, one gets ~x(k+1) = A(k)~x(k),

where A(k) is a N × N matrix with a rather
specific structure, as elucidated in the following
and schematically depicted in Fig. 1. Further,
a suitably defined non-linear function f(·, βk)
is applied to ~x(k+1), where βk identifies an op-
tional bias. To proceed in the analysis, we cast

A(k) = Φ(k)Λ(k)
(
Φ(k)

)−1
by invoking spectral

decomposition. Here, Λ(k) denotes the diago-
nal matrix of the eigenvalues of A(k). Following

[6], we set
(
Λ(k)

)
jj

= 1 for j <
∑k−1

i=1 Ni and

j >
∑k+1

i=1 Ni. The remaining Nk + Nk+1 ele-
ments are initially assigned to random entries,
as e.g. extracted from a uniform distribution,
and define a first basin of target variables for
the spectral learning scheme. Then, Φ(k) is the
identity matrix IN×N , with the inclusion of a
sub-diagonal Nk+1×Nk block, denoted by φ(k),
see Fig. 2. This choice amounts to assume
a feed-forward architecture. It can be easily

shown that
(
Φ(k)

)−1
= 2IN×N − Φ(k), which

readily yields A(k) = Φ(k)Λ(k)
(
2IN×N −Φ(k)

)
.

The off-diagonal elements of Φ(k) define a sec-
ond set of adjustable parameters to be self-
consistently modulated during active training.
To implement the learning scheme on these ba-
sis, we consider ~x(`), the image on the output
layer of the input vector ~x(1):

3

~x(`) = f
(
A(`−1)...f

(
A(1)~x(1), β1

)
, β`−1

)
(1)

Since we are dealing with image classifica-
tion, we can calculate ~z = softmax(~x(`)).
We will then use ~z to compute the categori-
cal cross-entropy loss function CCE(l(~x(1)), ~z),
where l(~x(1)) is the label which identifies the
category to which ~x(1) belongs, via one-hot en-
coding [8].

FIG. 1: A schematic outline of the structure of
transfer matrix A(k), bridging layer k to layer
k + 1. The action of A(k) on ~x(k) is also

graphically illustrated.

FIG. 2: The structure of matrix Φ(k) is
schematically displayed.

The loss function can thus be minimized by
acting on the spectral parameters, i.e. the en-
semble made of non trivial eigenvalues and/or
the associated eigendirections. A straightfor-
ward calculation, carried out in the annexed

supplementary information, allows one to de-

rive a closed analytical expression for w
(k)
ij , the

weights of the edges linking nodes i (belonging
to layer k+1) and j (sitting on layer k) in direct
space, as a function of the underlying spectral
quantities. In formulae, one gets:

w
(k)
ij =

(
λ
(k)
m(j) − λ

(k)
l(i)

)
Φ

(k)
l(i),m(j) (2)

where l(i) =
∑k

s=1Ns + i and m(j) =∑k−1
s=1 Ns + j, with i ∈ (1, ..., Nk+1) and j ∈

(1, ..., Nk). In the above expression, λ
(k)
m(j) stand

for the first Nk eigenvalues of Λ(k). The remain-

ing Nk+1 eigenvalues are labelled λ
(k)
l(i).

To help comprehension denote by x
(k)
j the ac-

tivity on nodes j. Then, the activity x
(k)
i on

node i reads:

x
(k+1)
i

=

Nk∑
j=1

(
λ

(k)
m(j)

Φ
(k)
l(i),m(j)

x
(k)
j

)
−λ(k)

l(i)

Nk∑
j=1

(
Φ

(k)
l(i),m(j)

x
(k)
j

)
(3)

The eigenvalues λ
(k)
m(j) modulate the density

at the origin, while λ
(k)
l(i) set the excitability of

the receiver nodes, weighting the network ac-
tivity in its immediate neighbourhood. As re-
marked in [6], this can be rationalized as the
artificial analogue of the homeostatic plasticity,
the strategy used by living neurons to maintain
the synaptic basis for learning, respiration, and
locomotion [9].

Starting from this background, we shall here-
after operate within a simplified setting which

is obtained by imposing λ
(k)
m(j) = 0. This im-

plies that λ
(k)
l(i) are the sole eigenvalues to be

actively involved in the training. As we shall
prove, these latter eigenvalues provide an effec-
tive criterion to rank a posteriori, i.e. upon
training being completed, the relative impor-
tance of the nodes belonging to the examined
network. Stated differently, nodes can be sorted
according to their relevance in carrying out the
assigned task. This motivates us to introduce,
and thoroughly test, an effective spectral prun-
ing strategy which seeks at removing the nodes
deemed unessential, while preserving the overall

4

network classification score. The Methods Sec-
tion is entirely devoted to explain in detail the
proposed strategy, that we shall contextualize
with reference to other existing methodologies.

III. CONVENTIONAL PRUNING
TECHNIQUES

Generally speaking, it is possible to ide-
ally group various approaches for network com-
pression into five different categories: Weights
Sharing, Network Pruning, Knowledge Distilla-
tion, Matrix Decomposition and Quantization
[10, 11].

Weights Sharing defines one of the simplest
strategies to reduce the number of parameters,
while allowing for a robust feature detection.
The key idea is to have a shared set of model
parameters between layers, a choice which re-
flects back in an effective model compression.
An immediate example of this methodology are
the convolutional neural networks [12]. A re-
fined approach is proposed in Bat et al. [13]
where a virtual infinitely deep neural network
is considered. Further, in Zhang et al. [14] an
`1 group regularizer is exploited to induce spar-
sity and, simultaneously, identify the subset of
weights which can share the same features.

Network Pruning is arguably one of the most
common technique to compress Neural Net-
work: in a nutshell it aims at removing a set of
weights according to a certain criterion (mag-
nitude, importance, etc). Chang et al. [15]
proposed an iterative pruning algorithm that
exploits a continuously differentiable version of
the ` 1

2
norm, as a penalty term. Molchanov et

al. [16] focused on pruning convolutional filters,
so as to achieve better inference performances
(with a modest impact on the recorded accu-
racy) in a transfer leaning scenario. Starting
from a network fine-tuned on the target task,
they proposed an iterative algorithm made up of
three main parts: (i) assessing the importance
of each convolutional filter on the final perfor-
mance via a Taylor expansion, (ii) removing the
less informative filters and (iii) re-training the
remaining filters, on the target task. Inspired

by the pioneering work in [7], Pau de Jorge et
al. [17] proved that pruning at initialization
leads to a significant performance degradation,
after a certain pruning threshold. In order to
overcome this limitation they proposed two dif-
ferent methods that enable an initially trimmed
weight to be reconsidered during the subsequent
training stages.

Knowledge Distillation is yet another tech-
nique, firstly proposed by Hinton et al. [18].
In its simplest version Knowledge Distillation is
implemented by combining two objective func-
tions. The first accounts for the discrepancy
between the predicted and true labels. The
second is the cross-entropy between the output
produced by the examined network and that ob-
tained by running a (generally more powerful)
trained model. In [19] Polino et al. proposed
two approaches to mix distillation and quantiza-
tion (see below): the first method uses the dis-
tillation during the training of the so called stu-
dent network under a fixed quantization scheme
while the second exploits a network (termed the
teacher network) to directly optimize the quan-
tization. Mirzadeh et al. [20] analyzed the
regime in which knowledge distillation can be
properly leveraged. They discovered that the
representation power gap of the two networks
(teacher and student) should be bounded for
the method to yield beneficial effects. To resolve
this problem, they inserted an intermediate net-
work (the assistant), which sits in between the
teacher and the student, when their associated
gap is too large.

Matrix Decomposition is a technique that
remove redundancies in the parameters by
the means of a tensor/matrix decomposition.
Masana et al. [21] proposed a matrix decom-
position method for transfer learning scenario.
They showed that decomposing a matrix taking
into account the activation outperforms the ap-
proaches that solely rely on the weights. In [22],
Novikov et al. proposed to replace the dense
layer with its Tensor-Train representation [23].
Yu et al. [24] introduced a unified framework,
integrating the low-rank and sparse decompo-
sition of weight matrices with the feature map
reconstructions.

5

Quantization, as also mentioned above, aims
at lowering the number of bits used to represent
any given parameter of the network. Stock et
al. [25] defined an algorithm that quantize the
model by minimizing the reconstruction error
for inputs sampled from the training set dis-
tribution. The same authors also claimed that
their proposed method is particularly suited for
compressing residual network architectures and
that the compressed model proves very efficient
when run on CPU. In Banner et al. [26] a prac-
tical 4-bit post-training quantization approach
was introduced and tested. Moreover, a method
to reduce network complexity based on node-
pruning was presented by He et al. in [27].
Once the network has been trained, nodes are
classified by means of a node importance func-
tion and then removed or retained depending
on their score. The authors proposed three dif-
ferent node ranking functions: entropy, output-
weights norm (onorm) and input-weights norm
(inorm). In particular, the input-weights norm
function is defined as the sum of the absolute
values of the incoming connections weights. As
we will see this latter defines the benchmark
model that we shall employ to challenge the
performance of the trimming strategy here pro-
posed. Finally, it is worth mentioning the Con-
ditional Computation methods [28–30]: the aim
is to dynamically skip part of the network ac-
cording to the provided input so as to reduce
the computational burden.

Summing up, pruning techniques exist which
primarily pursue the goal of enforcing a sparsi-
fication by cutting links from the trained neural
network and have been reviewed above. In con-
trast with them, the idea of our method is to a
posteriori identify the nodes of the trained net-
work which prove unessential for a proper func-
tioning of the device and cut them out from en-
semble made of active units. This yields a more
compact neural network, in terms of compos-
ing neurons, with unaltered classification per-
formance. The method relies on the spectral
learning [5, 6] and exploits the fact that eigen-
values are credible parameters to gauge the im-
portance of a given node among those compos-
ing the destination layer. In short, our aim is

to make the network more compact by remov-
ing nodes classified as unimportant, according
to a suitable spectral rating.

IV. RESULTS

In order to assess the effectiveness of the
eigenvalues as a marker of the node’s impor-
tance (and hence as a potential target for a co-
gent pruning procedure) we will consider a fully
connected feed-forward architecture. Applica-
tions of the explored methods will be reported
for ` = 3 and ` > 3 configurations. The nodes
that compose the hidden layers are the target
of the implemented pruning strategies. As we
shall prove, it is possible to get rid of the vast
majority of nodes without reflecting in a sensi-
ble decrease in the test accuracy, if the filter,
either in its pre- or post-training versions, relies
on the eigenvalues ranking.

For our test, we used three different datasets
of images. The first is the renowned MNIST
database of handwritten digits [31], the second
is Fashion-MNIST (F-MNIST) [32] (an image
dataset of Zalando’s items) and the last one
is CIFAR-10 [33]. In the main text we re-
port our findings for Fashion-MNIST. Analo-
gous investigations carried out for MNIST and
CIFAR10 will be reported as supplementary in-
formation. Further, different activation func-
tions have been employed to evaluate the per-
formance of the methods. In the main body
of the paper, we will show the results obtained
for the ELU. The conclusion obtained when op-
erating with the ReLU and tanh are discussed
in the annexed supplementary material. In the
following we will report into two separate sub-
sections the results pertaining to either the sin-
gle or multiple hidden layers settings.

A. Single hidden layer (` = 3)

In Figure 3 the performance of the inspected
methods are compared for the minimal case
study of a three layers network. The interme-
diate layer, the sole hidden layer in this config-

6

uration, is set to N2 = 500 neurons. The ac-
curacy of the different methods are compared,
upon cutting at different percentile, following
the strategies discussed in the Methods. The or-
ange profile is the benchmark model: the neural
network is trained in direct space, by adjusting
the weights of each individual inter-nodes con-
nection. Then, the absolute value of the incom-
ing connectivity is computed and used as an im-
portance rank of the nodes’ influence on the test
accuracy. Such a model has been presented and
discussed by He et al. in [27]. Following this as-
sessment, nodes are progressively removed from
the trained network, depending on the imposed
percentile, and the ability of the trimmed net-
work to perform the sought classification (with
no further training) tested. The same proce-
dure is repeated 5 times and the mean value of
the accuracy plotted. The shaded region stands
for the semi dispersion of the measurements. A
significant drop of the network performance is
found when removing a fraction of nodes larger
than 60 % from the second layer.

The blue curve Figure 3 refers instead to the
post-processing spectral pruning based on the
eigenvalues and identified, as method (ii), in
the Methods Section. More precisely, the three
layers network is trained by simultaneously act-
ing on the eigenvectors and the eigenvalues of
the associated transfer operators, as illustrated
above. The accuracy displayed by the network
trained according to this procedure is virtually
identical to that reported when the learning is
carried out in direct space, as one can clearly
appreciate by eye inspection of Figure 3. Re-
moving the nodes based on the magnitude their
associated eigenvalues, allows one to keep sta-
ble (practically unchanged) classification per-
formance for an intermediate layer that is com-
pressed of about 70% of its original size. In
this case the spectral pruning is operated as a
post-processing filter, meaning that the neural
network is only trained once, before the nodes’
removal takes eventually place.

At variance, the green curve in Figure 3 is ob-
tained following method (i) from the Methods
Section, which can be conceptualized as a pre-
training manipulation. Based on this strategy,

we first train the network on the set of tun-
able eigenvalues, than reduce its size by per-
forming a compression that reflects the rank-
ing of the optimized eigenvalues and then train
again the obtained network by acting uniquely
on the ensemble of residual eigenvectors. The
results reported in Figure 3 indicate that, fol-
lowing this procedure, it is indeed possible to
attain astoundingly compact networks with un-
altered classification abilities. Moreover, the to-
tal number of parameters that need to be tuned
following this latter procedure is considerably
smaller than that on which the other methods
rely. This is due to the fact that only the ran-
dom directions (the eigenvectors) that prove rel-
evant for discrimination purposes (as signaled
by the magnitude of their associated eigenval-
ues) undergoes the second step of the optimiza-
tion. This method can also be seen as a similar
kind of [7]. As a matter of fact, the initial train-
ing of the eigenvalues uncovers a sub-network
that, once trained, obtains performances com-
parable to the original model. More specifically,
the uncovered network can be seen as a winning
ticket [7]. That is, a sub-network with an ini-
tialization particularly suitable for carrying out
a successful training.

Next, we shall generalize the analysis to the a
multi-layer setting (` > 3), reaching analogous
conclusions.

B. Multiple hidden layers (` > 3)

Quite remarkably, the results achieved in the
simplified context of a single hidden layer net-
work also apply within the framework of a
multi-layers setting.
To prove this statement we set to consider a
` = 5 feedforward neural network with ELU ac-
tivation. Here, N1 = 784 and N5 = 10 as re-
flecting the specificity of the employed dataset.
The performed tests follows closely those re-
ported above, with the notable difference that
now the ranking of the eigenvalues is operated
on the pool of N2 +N3 +N4 neurons that com-
pose the hidden bulk of the trained network. In
other words, the selection of the neuron to be

7

FIG. 3: Accuracy on the Fashion-MNIST
database with respect to the percentage of

trimmed nodes (from the hidden layer), in a
three layers feedforward architecture. Here,
N2 = 500, while N1 = 784 and N3 = 10, as

reflecting the structural characteristics of the
data. In orange the results obtained by

pruning the network trained in direct space,
based on the absolute value of the incoming

connectivity (see main text). In blue, the
results obtained when filtering the nodes after

a full spectral training (post-training). The
curve in green reports the accuracy of the

trimmed networks generated upon application
of the pre-training filter. Symbols stand for

the averaged accuracy computed over 5
independent realizations. The shadowed region
is traced after the associated semi-dispersion.

removed is operated after a global assessment,
i.e. scanning across the full set of nodes, with-
out any specific reference to an a priori chosen
layer.

In Figure 4 the results of the analysis are re-
ported, assuming N2 = N3 = N4 = 500. The
conclusions are perfectly in line with those re-
ported above for the one layer setting, except
for the fact that now the improvement of the
spectral pruning over the benchmark reference
are even superior. The orange curve drops at
percentile 20, while the blue begins its descent

at about 60 %. The green curve, relative to
the sequential two steps training, stays stably
horizontal up to about 90 %.

FIG. 4: Accuracy on the Fashion-MNIST
database with respect to the percentage of
pruned nodes (from the hidden layers), in a
five layers feedforward architecture. Here,
N2 = N3 = N4 = 500, while N1 = 784 and

N5 = 10, as reflecting the structural
characteristics of the data. Symbols and colors

are chosen as in Figure 3.

V. CONCLUSIONS

In this paper we have discussed a relevant
byproduct of a spectral approach to the learning
of deep neural networks. The eigenvalues of the
transfer operator that connects adjacent stacks
in a multi-layered architecture provide an effec-
tive measure of the nodes importance in han-
dling the information processing. By exploiting
this fact we have introduced and successfully
tested two distinct procedures to yield com-
pact networks –in terms of number of comput-
ing neurons– which perform equally well than
their untrimmed original homologous. One pro-
cedure (referred as (ii) in the description) is
acknowledged as a post processing method, in
that it acts on a multi-layered network down-

8

stream of training. The other (referred as (i))
is based on a sequence of two nested opera-
tions. First the eigenvalues are solely trained.
After the spectral pruning took place, a sec-
ond step in the optimization path seeks to ad-
just the entries of the eigenvectors that popu-
late a trimmed space of reduced dimensional-
ity. The total number of trained parameters is
small as compared to that involved when the
pruning acts as a post processing filter. De-
spite that, the two steps pre-processing protocol
yields compact devices which outperform those
obtained with a single post-processing removal
of the unessential nodes.

As a benchmark model, and for a neural net-
work trained in direct space, we decided to rank
the nodes importance based on the absolute
value of the incoming connectivity. This latter
appeared as the obvious choice, when aiming at
gauging the local information flow in the space
of the nodes, see also [27]. In principle, one
could consider to diagonalizing the transfer op-
erators as obtained after a standard approach
to the training and make use of the computed
eigenvalues to a posteriori sort the nodes rele-
vance. This is however not possible as the trans-
fer operator that links a generic layer k to its ad-
jacent counterpart k+ 1, as follows the training
performed in direct space, is populated only be-
low the diagonal, with all diagonal entries iden-
tically equal zero. All associated eigenvalues are
hence are zero and they provide no information
on the relative importance of the nodes of layer
k+ 1, at variance with what happens when the
learning is carried out in the reciprocal domain.

Summing up, by reformulating the training
of neural networks in spectral space, we iden-
tified a set of sensible scalars, the eigenvalues
of suitable operators, that unequivocally cor-
relate with the influence of the nodes within
the collection. This observation translates in
straightforward procedures to generate efficient
networks that exploit a reduced number of com-
puting units. Tests performed on different set-
tings corroborate this conclusions. As an inter-
esting extension, we will show in the supplemen-
tary information that a suitable regularization
of the eigenvalues yields a general improvement

of the proposed method.

VI. METHODS

We detail here the spectral procedure to make
a trained network smaller, while preserving its
ability to perform classification.

To introduce the main idea of the proposed
method, we make reference to formula (2) and

assume the setting where λ
(k)
m(j) = 0. The in-

formation travelling from layer k to layer k + 1
gets hence processed as follows: first, the ac-
tivity on the departure node j is modulated by

a multiplicative scaling factor Φ
(k)
l(i),m(j), specifi-

cally linked to the selected (i, j) pair. Then, all
incoming (and rescaled) activities reaching the
destination node i are summed together and fur-

ther weighted via the scalar quantity λ
(k)
l(i). This

latter eigenvalue, downstream of the training,
can be hence conceived as a distinguishing fea-
ture of node i of layer k + 1. Assume for the

moment that Φ
(k)
l(i),m(j) are drawn from a given

distribution and stay put during optimization.
Then, every individual neuron bound to layer
k + 1 is statistically equivalent (in terms of in-
coming weights) to all other nodes, belonging

to the very same layer. The eigenvalues λ
(k)
l(i)

gauge therefore the relative importance of the
nodes, within a given stack, and as reflecting
the (randomly generated) web of local inter-
layer connections (though statistically compa-

rable). Large values of |λ(k)l(i)| suggest that node

i on layer k+ 1 plays a central role in the econ-
omy of the neural network functioning. This

is opposed to the setting when |λ(k)l(i)| is found

to be small. Stated differently, the subset of
trained eigenvalues provide a viable tool to rank
the nodes according to their degree of impor-
tance. As such, they can be used as refer-
ence labels to make decision on the nodes that
should be retained in a compressed analogue of
the trained neural network, with unaltered clas-
sification performance. As empirically shown
in the Results section with reference to a var-
iegated set of applications, the sorting of the

9

nodes based on the optimized eigenvalues turns
out effective also when the eigenvectors get si-
multaneously trained, thus breaking, at least in
principle, statistical invariance across nodes.

As we will clarify, the latter setting trans-
lates in a post-training spectral pruning strat-
egy, whereas the former materializes in a rather
efficient pre-training procedure. The non linear
activation function as employed in the training
scheme leaves a non trivial imprint, which has
to be critically assessed.

More specifically, in carrying out the numer-
ical experiments here reported we considered
two distinct settings, as listed below:

• (i) As a first step, we will begin by con-
sidering a deep neural network made of
N neurons organized in ` layers. The
network will be initially trained by solely
leveraging on the set of tunable eigen-
values. Then, we will proceed by pro-
gressively removing the neurons depend-
ing on their associated eigenvalues (as in
the spirit discussed above). The trimmed
network, composed by a total of M < N
units, still distributed in ` distinct layers,
can be again trained acting now on the
eigenvectors, while keeping the eigenval-
ues frozen to the earlier determined val-
ues. This combination of steps, which we
categorize as pre-training, yields a rather
compact neural network (M can be very
small) which performs equally well than
its fully trained analogue made of N com-
puting nodes.

• (ii) We begin by constructing a deep neu-
ral network made of N neurons organized
in ` layers. This latter undergoes a full
spectral training, which optimizes simul-
taneously eigenvectors and the eigenval-
ues. The trained network can be com-
pressed, by pruning the nodes which are
associated to eigenvalues (see above) with
magnitude smaller that a given thresh-
old. This is indeed a post-training prun-
ing strategy, as it acts ex post on a fully
trained device.

Train Λ, Φ	with Spectral
Method

Evaluate 𝜆!"# , the 𝑞#$
percentile of the distribution of

Λ

Remove every node in each
layer 𝑘 such that Λ % < 𝜆!"# ,

with 𝑖 ∈ 𝑁&'(+ 1,…	N&

Spectral Pruned Network

Train only Λ	with Spectral
Method

Train remaining Λ, Φ	with
Spectral Layer

Spectral Pruned Network

Post-training method (ii) Pre-training method (i)

Light pre-training

Full training on the
reduced network

Full training

Spectral Pruning Spectral Pruning

FIG. 5: Flowchart of the pre- and post-
training pruning strategies as presented in

section VI.

To evaluate the performance of the proposed
spectral pruning strategies (schematically rep-
resented in the flowchart of Figure 5), we also
introduced a reference benchmark model. This
latter can be conceptualized as an immediate
overturning of the methods in direct space.
Simply stated, we train the neural network in
the space of the nodes, by using standard ap-
proaches to the learning. Then, we classify
the nodes in terms of their relevance using a
proper metric to which shall make reference be-
low, and consequently trim the nodes identified
as less important. When adopting the spectral
viewpoint, one can rely on the eigenvalues to
rank the nodes importance. As remarked above,
in fact, the eigenvalues at the receiver nodes
set a local scale for the incoming activity, the
larger the eigenvalue (in terms of magnitude)
the more important the role played by the pro-
cessing unit. As a surrogate of the eigenvalues,
when anchoring the train in direct space, we

can consider the quantity
∑Nk

j=1 |wij |, for each

neuron i belonging to layer k + 1, see also [27].
The absolute value prevents mutual cancella-
tions of sensible contributions bearing opposite
signs, which could incidentally hide the actual
importance of the examined node.

In all explored cases, the pruning is realized
by imposing a threshold on the reference indi-

10

cator (be it the magnitude of the eigenvalues
or the cumulated flux of incoming –and made
positive– weights). Pointedly, the respective in-
dicator is extracted for every node in the arrival
layer. Then a percentile q is chosen and the
threshold fixed to the q-th percentile. Nodes

displaying an indicator below the chosen thresh-
old are removed and the accuracy of the ob-
tained (trimmed) neural network assessed on
the test-set. The codes employed, as well as a
notebook to reproduce our results, can be found
in the public repository of this project [34].

[1] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang,
Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile
devices. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 784–
800, 2018.

[2] Richard S Sutton and Andrew G Barto. Re-
inforcement learning: An introduction. MIT
press, 2018.

[3] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Co-
cias, and Gigel Macesanu. A survey of deep
learning techniques for autonomous driving.
Journal of Field Robotics, 37(3):362–386, 2020.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[5] Lorenzo Giambagli, Lorenzo Buffoni, Timoteo
Carletti, Walter Nocentini, and Duccio Fanelli.
Machine learning in spectral domain. Nature
communications, 12(1):1–9, 2021.

[6] Lorenzo Chicchi, Lorenzo Giambagli, Lorenzo
Buffoni, Timoteo Carletti, Marco Ciavarella,
and Duccio Fanelli. Training of sparse and
dense deep neural networks: Fewer parame-
ters, same performance. Physical Review E,
104(5):054312, 2021.

[7] Jonathan Frankle and Michael Carbin. The
lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

[8] Charu C Aggarwal et al. Neural networks and
deep learning. Springer, 10:978–3, 2018.

[9] D James Surmeier and Robert Foehring. A
mechanism for homeostatic plasticity. Nature
neuroscience, 7(7):691–692, 2004.

[10] James O’ Neill. An overview of neural network
compression. arXiv preprint arXiv:2006.03669,
2020.

[11] Yu Cheng, Duo Wang, Pan Zhou, and Tao
Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv
preprint arXiv:1710.09282, 2017.

[12] Yann LeCun, Bernhard Boser, John S Denker,
Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropa-
gation applied to handwritten zip code recogni-
tion. Neural computation, 1(4):541–551, 1989.

[13] Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
Deep equilibrium models. arXiv preprint
arXiv:1909.01377, 2019.

[14] Dejiao Zhang, Haozhu Wang, Mario
Figueiredo, and Laura Balzano. Learning
to share: Simultaneous parameter tying and
sparsification in deep learning. In International
Conference on Learning Representations, 2018.

[15] Jing Chang and Jin Sha. Prune deep neural
networks with the modified l {1/2} penalty.
IEEE Access, 7:2273–2280, 2018.

[16] Pavlo Molchanov, Stephen Tyree, Tero Karras,
Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440,
2016.

[17] Pau de Jorge, Amartya Sanyal, Harkirat S
Behl, Philip HS Torr, Gregory Rogez, and
Puneet K Dokania. Progressive skeletonization:
Trimming more fat from a network at initializa-
tion. arXiv preprint arXiv:2006.09081, 2020.

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.
Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[19] Antonio Polino, Razvan Pascanu, and Dan
Alistarh. Model compression via distil-
lation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

[20] Seyed Iman Mirzadeh, Mehrdad Farajtabar,
Ang Li, Nir Levine, Akihiro Matsukawa, and
Hassan Ghasemzadeh. Improved knowledge
distillation via teacher assistant. In Proceed-
ings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 5191–5198, 2020.

[21] Marc Masana, Joost van de Weijer, Luis Her-
ranz, Andrew D Bagdanov, and Jose M Al-
varez. Domain-adaptive deep network com-

http://www.deeplearningbook.org

11

pression. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages
4289–4297, 2017.

[22] Alexander Novikov, Dmitry Podoprikhin, An-
ton Osokin, and Dmitry Vetrov. Ten-
sorizing neural networks. arXiv preprint
arXiv:1509.06569, 2015.

[23] Ivan V Oseledets. Tensor-train decomposi-
tion. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[24] Xiyu Yu, Tongliang Liu, Xinchao Wang, and
Dacheng Tao. On compressing deep models by
low rank and sparse decomposition. In Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7370–
7379, 2017.

[25] Pierre Stock, Armand Joulin, Rémi Gribon-
val, Benjamin Graham, and Hervé Jégou. And
the bit goes down: Revisiting the quanti-
zation of neural networks. arXiv preprint
arXiv:1907.05686, 2019.

[26] Ron Banner, Yury Nahshan, Elad Hoffer, and
Daniel Soudry. Post-training 4-bit quantization
of convolution networks for rapid-deployment.
arXiv preprint arXiv:1810.05723, 2018.

[27] Tianxing He, Yuchen Fan, Yanmin Qian, Tian
Tan, and Kai Yu. Reshaping deep neural net-
work for fast decoding by node-pruning. In
2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
pages 245–249, 2014.

[28] Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma,
Ruth Wang, Azalia Mirhoseini, Trevor Darrell,
and Joseph E Gonzalez. Deep mixture of ex-
perts via shallow embedding. In Uncertainty in
Artificial Intelligence, pages 552–562. PMLR,
2020.

[29] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Dar-
rell, and Joseph E. Gonzalez. Skipnet: Learn-
ing dynamic routing in convolutional networks.
In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[30] Emmanuel Bengio, Pierre-Luc Bacon, Joelle
Pineau, and Doina Precup. Conditional com-
putation in neural networks for faster models.
arXiv preprint arXiv:1511.06297, 2015.

[31] Yann LeCun. The mnist database of
handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[32] Han Xiao, Kashif Rasul, and Roland Voll-
graf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.
arXiv preprint arXiv:1708.07747, 2017.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learn-
ing multiple layers of features from tiny images.
2009.

[34] https://github.com/Buffoni/spectral_

learning.
[35] Mark Sandler, Andrew Howard, Menglong

Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[36] Francis Bach, Rodolphe Jenatton, Julien
Mairal, and Guillaume Obozinski. Optimiza-
tion with sparsity-inducing penalties. Foun-
dations and Trends® in Machine Learning,
4(1):1–106, 2012.

AUTHORS CONTRIBUTIONS

LB and EC conceived the idea of the work.
All authors participated in writing the code.
EC and LG performed the experiments on the
various datasets. DF supervised the project.
All authors contributed to the writing of the
manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

Appendix A: Analytical characterisation of
inter-nodes weights in direct space

In the following, we will derive Eq. 2 in the
main body of the paper. We begin by recalling
that A(k) is a N × N matrix. From A(k) we
select a square sub-block of size (Nk +Nk+1)×
(Nk+Nk+1), formed by the elements A

(k)
i′,j′ with

i′ =
∑k−1

s=1 Ns + i and j′ =
∑k−1

s=1 Ns + j, with
i = 1, ..., Nk + Nk+1, j = 1, ..., Nk + Nk+1. We
use A(k) to identify the obtained matrix and

https://github.com/Buffoni/spectral_learning
https://github.com/Buffoni/spectral_learning

12

proceed in analogy for Λ(k) and Φ(k). Then:

A
(k)
ij =

[
Φ(k)Λ(k)

(
2I −Φ(k)

)]
ij

=
[
2Φ(k)Λ(k)

]
ij
−
[
Φ(k)Λ(k)Φ(k)

]
ij

=α
(k)
ij − β

(k)
ij

(A1)

From hereon, we will omit the apex (k). As-
sume λ1 . . . λNk+Nk+1

to identify the eigenvalues
of the transfer operator A, namely the diagonal

entries of Λ. Hence, Λij =
∑Nk+Nk+1

j=1 δijλj .
The quantities αij and βij read:

αij = 2

Nk+Nk+1∑
k=1

Φikλkδkj = 2Φijλj

βij =

Nk+Nk+1∑
k,m=1

ΦikλkδkmΦmj

=
∑

m∈I∪J
δimλmΦmj

where j ∈ J = (1, ..., Nk) refer to the nodes
at the departure layer (k), whereas i ∈ I =
(Nk + 1, ..., Nk +Nk+1) stand for those at ar-
rival. Hence, I ∪ J = [1, ..., Nk + Nk+1]. The
above expression for βij can be further manip-
ulated to eventually yield

βij =
∑
m∈J

ΦimλmΦmj +
∑
m∈I

ΦimλmΦmj

= Φijλj + λiΦij

and therefore: (A1) as

αij − βij = 2Φijλj − Φijλj − λiΦij

= (λj − λi)φij
(A2)

From the above expression, one obtains the
sought equation, after redefining the index i to
have it confined in the interval [1, ..., Nk+1]. By
definition, the matrix of the weights, w, is in
fact a Nk ×Nk+1 matrix.

Appendix B: MNIST and Fashion-MNIST:
single hidden layer with different activation

functions.

We shall here report (see Figures 6a, 6b, 6c,
7a and 7b) on the performance of the proposed
trimming strategies, as applied to MNIST and
Fashion-MNIST, for a single hidden layer archi-
tecture and beyond the setting reported in the
main body of the paper. In particular, we will
assume (i) ELU, tanh and ReLU for MNIST (ii)
tanh and ReLU activation function for Fashion-
MNIST (the ELU activation was employed in
the main text). Here, N2 = 500, whileN1 = 784
and N3 = 10.

Appendix C: MNIST and Fashion-MNIST:
multiple hidden layers with different

activation functions.

We will here generalize the analysis carried
out in the preceding section to the case of a
multilayered (` > 3) architecture (see Figures
8a, 8b, 8c, 9a and 9b). In line with the choice
operated in the main body of the paper, we will
assume a five layered deep neural network with
N2 = N3 = N4 = 500, and N1 = 784 and
N5 = 10.

Appendix D: Testing the trimming
strategies on CIFAR10 dataset.

To assess the flexibility of the schemes out-
lined in Section III-B we here consider the CI-
FAR10 dataset and assume a modified Mo-
bileNetV2 [35] adding two dense layer at the
end of the network. During training we freeze
all the layers, except for the two appended dense
layers. These latter are trained in the spectral
domain. Working in this setting, the pruning
is performed on the first dense layer by using
strategies both (i) and (ii), as introduced in the
main body of the paper. Here again the results
are compared to those obtained when using the
absolute value of the incoming connectivity as
an alternative trimming criterion (see Figures

13

(a) (b) (c)

FIG. 6: Accuracy on the MNIST database with respect to the percentage of trimmed nodes
(selected from the 500 neurons that compose the sole hidden layer), in a three layers feedforward

architecture. The results reported in each panel refer to a different selection of the nonlinear
activation functions, respectively ELU (a), ReLU (b) and tanh (c). In orange, the results obtained

by using the trimming procedure based on the absolute value of the incoming connectivity. In
blue, the results obtained when filtering the nodes after a full spectral training (post-training).

The curve in green displays the accuracy of the trimmed networks generated upon application of
the pre-training filter. In this case, the examined network is initially trained on the set of

eigenvalues, while keeping the eigenvectors frozen. After having removed unessential nodes, based
on their associated eigenvalues, the network undergoes another training phase that is solely

targeted to adjusting the entries of the residual eigenvectors. The shadowed region represents the
semi-dispersion over 5 independent realizations. When using the Relu function, trimming on the
absolute value of the incoming connectivity yields slightly better results than what found when

using the post-training spectral filter. The two stages spectral trimming proves always more
effective.

10a, 10b and 10c). As a further step in the anal-
ysis, we also introduce and test a `1-norm regu-
larization acting on the eigenvalues, so as to in-
duce a sparse solution [36]. All experiments are
performed by using a MobileNetV2 based archi-
tecture. The first dense layer is made of 512
nodes with an ELU activation function (oth-
ers activation functions yield analogous results).
The following regularization loss functions are
considered depending on whether the training
takes place in the reciprocal (spectral layer) or
direct space:

• Spectral regularization

Lspec
r = γ ∗

N`−1∑
i=1

|λ(`−1)i |

• Connectivity regularization

Lconn
r = γ ∗

∑
i,j

|w(`−1)
ij |

where γ stands for a suitable regularizer weight.
Clearly Lconn

r is equivalent to a regularization
which acts on the incoming absolute connectiv-
ity. In fact, |

∑
i |xi|| =

∑
i |xi|.

The `1 regularization impacts significantly on
the classification accuracy, as it can be clearly
appreciated by direct inspection of Figure 11.
Choosing the correct regularizer weight (γ), the
performance of the network are stable across
various range of pruning thresholds, even at the
highest percentile.

14

(a) (b)

FIG. 7: Accuracy on the Fashion-MNIST database with respect to the percentage of trimmed
nodes (selected from the 500 neurons that compose the sole hidden layer), in a three layers

feedforward architecture. The results reported in each panel refer to a different selection of the
nonlinear activation functions, respectively ReLU (b) and tanh (c). Symbols and conclusions are

in line with those reported for the case of MNIST.

(a) (b) (c)

FIG. 8: Accuracy on the MNIST database with respect to the percentage of trimmed nodes (from
the set of N2 +N3 +N4 neurons). The results in each panel refer to different choices of the non

linear function, ELU (a), ReLU (b) and tanh (c). Symbols are chosen as for the case of the single
hidden layer setting. It should be remarked that the spectral trimming strategies proves definitely
more effective than the benchmark model anchored to direct space, also when the Relu function is

employed, in the case of multiple hidden layers.

15

(a) (b)

FIG. 9: Accuracy on the Fashion-MNIST database with respect to the percentage of trimmed
nodes (from the set of N2 +N3 +N4 neurons). The results in each panel refer to different choices
of the non linear activation function, ReLU (a) and tanh (b). For the symbols, see the caption of

the Figures above. Also in this case the spectral filters prove always superior.

(a) (b) (c)

FIG. 10: Accuracy on the CIFAR10 database with respect to the percentage of trimmed nodes
(from the `− 1 layer). The results in each panel refer to different non linear functions,

respectively ELU (a), ReLU (b) and tanh (c). Symbols are chosen in analogy with the above (the
result drawn in green are based on two different runs).

16

(a) (b) (c)

FIG. 11: Computed accuracy on the CIFAR10 dataset against the percentage of trimmed nodes
(from the first of the two dense layers appended to the MobileNet-like architecture). The panels

displays the performance of the network as according to each trimming procedure, and using
weights (W) for the `1 regularizer. In panel (a) and (b) pre-training (based on two runs) and

post-spectral filter, respectively; in panel (c) the reduction schem based on the absolute
connectivity.

	Spectral Pruning of Fully Connected Layers: Ranking the Nodes Based on the Eigenvalues
	Abstract
	I Introduction
	II Spectral approach to learning
	III Conventional Pruning Techniques
	IV Results
	A Single hidden layer (=3)
	B Multiple hidden layers (>3)

	V Conclusions
	VI Methods
	 References
	 Authors Contributions
	 Competing Interests
	A Analytical characterisation of inter-nodes weights in direct space
	B MNIST and Fashion-MNIST: single hidden layer with different activation functions.
	C MNIST and Fashion-MNIST: multiple hidden layers with different activation functions.
	D Testing the trimming strategies on CIFAR10 dataset.

