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Deducing exponential stability of an equilibrium of a non-
linear distributed parameter, i.e. infinite-dimensional, sys-
tem on the basis of the stability of a linear approximation
of it is in general quite challenging. Some of the existing
theories, see e.g. [4, 1], rely on the Fréchet differentiability
of the nonlinear semigroup generated by the nonlinear oper-
ator dynamics. However, checking Fréchet differentiability
for nonlinear operators defined on an infinite-dimensional
space is difficult or even impossible if these are unbounded.
In many cases, the general theory cannot be applied and a
case-by-case study has to be performed by working directly
on the semigroup instead of its generator.
The approach that is proposed here is based on an
adapted concept of Fréchet differentiability which takes
different spaces and norms into account. This is called
the (Y,X)−Fréchet differentiability, where X is the state
(Hilbert) space and Y is an auxiliary space chosen to han-
dle more easily norm-inequalities when working in infinite-
dimensions (typically L∞ or Sobolev spaces (H p, p ∈ N0),
which are all multiplicative algebras). The systems that
are considered here are governed by the following abstract
ODE: ẋ(t) = Ax(t)+N(x(t)), x(0) = x0, (1)
where A : D(A)⊂ X → X and N : D(N)⊂ X → X are linear
and nonlinear operators, respectively. Let xe ∈D(A)∩D(N)
be an equilibrium of (1).
Definition : Let (Y,‖ · ‖Y ) be an infinite-dimensional (pos-
sibly Banach) space such that D(A)∩D(N) ⊂ Y ⊆ X. The
operator N is called (Y,X)−Fréchet differentiable at xe if
there exists a bounded linear operator dN(xe) : X → X such
that for all h∈D(A)∩D(N),N(xe+h)−N(xe)= dN(xe)h+
R(xe,h) where lim‖h‖Y→0 ‖R(xe,h)‖X/‖h‖X = 0.
This allows more easily checkable adapted Fréchet differen-
tiability conditions, provided that local exponential stability
of the equilibrium of (1) holds in a weaker sense, see [3].
Based on this new concept, our approach to deduce expo-
nential stability of the equilibrium of (1) can be summura-
zied as in Figure 1. Let (S(t))t≥0 be the nonlinear semigroup
generated by the operator A+N on X . The standard concept
of Fréchet differentiability is needed for (S(t))t≥0 on Y , with
(Txe(t))t≥0 as Fréchet derivative, the linear semigroup gen-
erated by the Gâteaux derivative A+dN(xe) of A+N. After
showing that (Txe(t))t≥0 satisfies some Lyapunov-type sta-
bility condition and that it is exponentially stable on X , the
new concept of (Y,X)−Fréchet differentiability pops up to
make the connection between Y and X , in order to deduce
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Figure 1: Illustration of the new theoretical framework.

local exponential stability of the equilibrium of (1) on X ,
see [3]. Local means here that the Y−norm of the initial
condition has to be small instead of its X−norm.
Our theoretical approach is illustrated on a nonisother-
mal axial dispersion tubular reactor which exhibits differ-
ent numbers of equilibria depending on the diffusion coeffi-
cients: see [2] for the existence and multiplicity of the equi-
libria. Our main result states that, in the case of only one
equilibrium profile, the latter is locally exponentially stable
for the nonlinear system governing the dynamics. Moreover,
in the case where the reactor exhibits three equilibria, local
exponential bistability is established, that is, the pattern ”sta-
ble – unstable – stable” is highlighted, see [3].
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