
Open Universiteit
www.ou.nl

MASTER'S THESIS

Using an interaction DSL to prevent races in a distributed system

Smeele, T.

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02. Jul. 2022

https://research.ou.nl/en/studentTheses/9e093f4a-5d1b-4ae2-9a3a-2a7303aaed1a

Using an interaction DSL to
prevent races in a distributed
system

Ton Smeele

St
ud

en
t:

D

at
e:

20

22
04

01

USING AN INTERACTION DSL TO PREVENT

RACES IN A DISTRIBUTED SYSTEM

by

Ton Smeele

in partial fulfillment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University of the Netherlands,
Faculty of Science

Master’s Programme in Software Engineering

to be defended publicly on Friday April 1, 2022 at 11:00 AM.

Student number:
Course code: IM9906 SE Graduation Assignment
Thesis committee: Dr. Ir. Sung-Shik Jongmans (supervisor), Open University NL

Dr. Stefano Schivo (reader), Open University NL

https://orcid.org/0000-0001-6485-4337

CONTENTS

List of Figures iv

Abstract vi

1 Introduction 1

2 Related work 4

2.1 Data grids . 4

2.1.1 Data grid architecture . 4

2.1.2 Coherence challenges in a data grid . 5

2.1.3 Data grid requirements . 6

2.2 Consistency models. 7

2.3 Multiparty asynchronous session types . 9

3 Problem analysis 12

4 Research scope and methods 14

4.1 Research questions and methods. 15

4.2 RQ1: Capture the problem case in a session type model 15

4.3 RQ2: Design coherence support as MPST calculus extension 16

4.4 RQ3: Validate the coherence-extended calculus 17

4.5 RQ4: Prototype language extensions that protect coherence 18

4.6 Research validation . 18

5 Model the problem case as a protocol 19

5.1 Problem case modeled as protocol in Scribble . 19

i

5.2 Problem case modeled as LTS in UPPAAL . 21

5.3 Prototyping data race avoidance . 22

5.4 Validation of problem case model . 23

6 An MPST based calculus to support asynchronous data transfers 25

6.1 A calculus for concrete asynchronous interactions 25

6.2 Endpoint perspective: calculus for local language. 27

6.2.1 Local language for a single endpoint . 27

6.2.2 Local language for a group of endpoints 28

6.2.3 Local language for a system of endpoints and channels 29

6.3 Endpoint projection . 29

7 Coherence model and integration in calculus 31

7.1 Exploring coherence . 31

7.2 Coherence modeled as state transition graph . 32

7.3 Definition of the coherence property . 33

7.4 Calculus extended with coherence model . 34

7.4.1 Coherence model as global language extension 34

7.4.2 Coherence as local language extension . 34

7.4.3 Endpoint Projection including coherence 35

8 Validation of the coherence-extended calculus 36

8.1 Implementation of calculus in mCRL2 . 36

8.2 Validation of projection from global to local calculus 38

8.3 Validation of coherence expressiveness . 39

9 Prototype language extensions that protect coherence 40

9.1 Towards a strategy for coherence protection . 40

9.2 Throughput considerations for coherence . 41

ii

9.3 Prototype with coherent update . 42

10 Discussion and conclusions 44

10.1 Discussion . 44

10.2 Conclusions . 45

10.3 Future work. 45

A Software components used in research 47

B UPPAAL model of problem use case 48

C Protocol simulator in mCRL2 49

D Coherence property transposed to µ-calculus 51

E Test cases protocol simulator 52

F Protocol simulator extensions to support coherent update 53

Acknowledgements 55

Bibliography 56

Glossary of terms and abbreviations 59

iii

LIST OF FIGURES

2.1 Data grid architecture. 5

2.2 Processes A and B update x . 9

2.3 Other processes read value of x . 9

2.4 Global protocol . 11

2.5 Projected local protocols . 11

3.1 Potential race condition at data object path update. 13

5.1 Scribble protocol for data grid update . 20

5.2 UPPAAL template for an Object (Data Object or Replica) 21

5.3 UPPAAL template for AgentNaive . 22

5.4 UPPAAL template for AgentMilestone . 22

6.1 Structural operational semantics for the global language 26

6.2 Local language structural operational semantics . 28

6.3 Structural operational semantics extended for group of endpoints 29

6.4 Structural operational semantics, channels layer . 29

7.1 Example execution paths for M, incoherent paths are dashed 32

7.2 Additional layer of global language operational semantics to integrate coherence
model . 34

7.3 Addition layer of local language operational semantics to integrate coherence model
35

8.1 Protocol simulator overview. 36

iv

8.2 Communications between automata, protocol simulator 37

9.1 Chained-coherence with five attributes . 41

9.2 Single-chain approach . 41

9.3 Two-chain approach . 41

9.4 Pseudo code for coherent update operation . 42

B.1 Global declarations for problem use case model in UPPAAL 48

C.1 Protocol simulator model, part 1 . 49

C.2 Protocol simulator model, part 2 . 50

D.1 Coherence property implementation in µ-calculus . 51

E.1 Test cases for protocol simulator . 52

F.1 Protocol simulator cohUpd extensions, part 1 . 53

F.2 Protocol simulator cohUpd extensions, part 2 . 54

v

ABSTRACT

Concurrency is becoming increasingly important, as it significantly augments the overall
speed of execution in modern parallel and distributed platforms. However, interference
from concurrently executing programs may impact the consistency and coherence of per-
sistent data. Whereas locking mechanisms to achieve mutual exclusive access are used to
counter this threat in single processor systems, this approach may result in serious perfor-
mance degradation when applied in distributed systems such as data grids. Therefore com-
monly deployed consistency models provide a compromise between failure-protection,
availability, and consistency, but they do not protect data coherence. We propose a novel
method to protect data coherence in non-transactional distributed systems. Our research
builds on the multiparty asynchronous session types theory by Honda et al. in which struc-
tured conversations between processes are specified as session protocols. We propose to
1) extend the underlying calculus with constructs to support coherence and 2) to enhance
a related domain specific language with features that allow software engineers to specify
coherence needs. We show that our method can be used to prove that data remains coher-
ent.

vi

1
INTRODUCTION

In the context of computer systems hardware, we commonly assume that unless a system’s
hardware is malfunctioning, data is guaranteed to remain consistent1. For instance, when
data is stored in a memory location, subsequent retrievals from that same location should
find the data unchanged.

The notion of data consistency is likewise important to software engineering. Software
engineers work on the assumption that the value of a data item at any point in a program
is solely the result of its initial value and the program instructions subsequently applied
to it. Our research is related to the fact that this assumption is not always justified due to
interference of other processes.

To protect shared data against consistency issues, commonly a contract is established be-
tween processes. The contract facilitates on-demand exclusive access to the shared data
for a limited amount of time. Prior to accessing shared data, a process first signals its intent
by acquiring an exclusive lock token. If the lock token is in use by another process, it can
opt to wait until the token becomes available. Any process that is in possession of the lock
may assume that other processes will not concurrently access the shared data, so that it
can for instance safely update the data.

This cooperative approach assumes that the lock operations themselves are not interleaved
and that processes always release their locks shortly after they have acquired them. For
instance in a single processor system non-interleaved locking can be achieved by using
cpu instructions that update a register or memory location in an atomic, indivisable, way.

The introduction of distributed system models has forced software engineers to reconsider
the implementation of data consistency and associated strategies. A distributed system is
a collection of independent computers that appears to its users as a single coherent sys-
tem [26]. A crucial difference with a central system is the notion that communication be-

1The online dictionary Merriam Webster defines consistent as "free from variation or contradiction", see
https://www.merriam-webster.com/dictionary/consistent

1

https://www.merriam-webster.com/dictionary/consistent

tween cooperating processes is no longer guaranteed to be near-instant, due to delays in-
heritantly introduced by network components. For instance a call to lock data might previ-
ously have completed in microseconds whereas now it may take a near-second to commu-
nicate that message across geographically distributed computers. Lock negotiation across
processes suddenly becomes a very time-expensive operation. Do we really need a level of
consistency that requires mutually exclusive access to all shared data?

Mutual exclusive access is not always required to keep data consistent. Lamport shows
that data consistency is challenged whenever a write operation on a data item is interleaved
with one or more read operations on the same item by concurrently running programs [19].
In that case the read operation may return the item’s value as it was before the write, or
alternatively the value that resulted from the write.

The CAP theorem shows that in a distributed system context a compromise is unavoid-
able between three commonly desired properties: consistency, availability, and partition-
tolerance [11]. Consistency requires data to remain consistent even while the system is
responding to concurrent service requests. Services are available when they continue to
properly and timely respond to requests under all circumstances. Issues such as network
link outages can affect availability. Mutual exclusive access to data resources by one pro-
cess may affect the progress of another process that attempts to access the same data and
as such may impact the availability of the system. Partition-tolerance refers to the ability of
services to deal with component failures, for instance when one of the involved processes
halts as the result of an exception.

Facing the need for a compromise, instead of solely relying on mutually exclusive access
mechanisms, data connection semantics have seen wide adoption [26]. These semantics
require a client process to open a connection to the data where it will receive access to a
then-current version of the data, possibly as a local copy. Any updates by the client pro-
cess to the data are applied on this version only. When the client process closes its con-
nection, these updates become visible to any other process that opens a connection to
the data thereafter. Hence from a single process perspective, the data appears consistent
throughout a connection. Note that scope of data consistency is now limited to this con-
nection: when a process reopens a connection to the same data, the data may turn out to
have changed meanwhile.

The result of concurrent updates depends on the implementation. For example distributed
file systems typically implement data connection semantics via file open/close operations.
Here the convention is that an update from the last data connection closed overwrites the
result from an update done by prior connections. Relational database management sys-
tems implement data connection semantics via transactions. Only committed data is read
by concurrent client processes.2 The completion of a transaction requires other open trans-
actions to consider the impact of this transaction and where needed reprocess data to take
results into account.

Connection semantics fullfill the requirement that a data consistency model must be easy
to understand and easy to use for programmers. Obtaining and specifying consistency re-

2This is also referenced as multi-versioning concurrency control model with read committed isolation level.

2

quirements per application can be extremely difficult for software engineers [26]. There-
fore software engineers should be facilitated by programming libraries and easy to grasp
consistency contracts.

While connection semantics protect the consistency of a single data item, some applica-
tions may also require consistency with regard to a relationship between data items. Can
we manage data coherence with similar ease of use as the single data item consistency?
We define data coherence as an invariant content relationship between two or more data
items. For example we may require that two related files of a distributed system always
have the same content. Note that a connection would only protect the consistency of each
file separately. It does not guarantee that either both files are updated or none.

Our research contributes a method for managing data coherence in a non-transactional
distributed environment. To this purpose, we define and model data coherence as a prop-
erty in a distributed process context. Our research builds on the multiparty asynchronous
session types methods by Honda et al. that support a formal specification of structured
conversations between processes in which properties such as progress are safeguarded [14].
We adapt and extend their calculus to include support for coherence. Our extension fa-
cilitates the detection and prevention of coherence issues early in software development
cycles.

For practical reasons, we limit our research to coherence requirements of an example non-
transactional distributed system architecture: the data grid. Data grids and their specific
consistency requirements are introduced in Section 2.1.

The remainder of this document is organized as follows. In Chapter 2, we discuss concepts
and prior work related to our research. Chapter 3 details the need for data coherence in
a key data grid function and describes the impact of not meeting this property. In Chap-
ter 4, we scope our research in questions, describe the methods we deploy, and we discuss
how our research is validated. Chapters 5 through 9 each provide an overview of activities
and results related to one of the subquestions of our research. Finally, in Chapter 10 we
conclude with a discussion, conclusions, and suggestions for future research.

3

2
RELATED WORK

In this chapter, we introduce the data grid architecture and a commonly used implemen-
tation called iRODS along with architecture specific requirements that include data coher-
ence. Next, we summarize the major categories of consistency models and we review their
suitability for our coherence use case. Lastly, we discuss a method to formalize structured
interactions between processes called multiparty asynchronous session types. We aim to
build on this method to establish data coherence properties.

2.1 DATA GRIDS

The existence of large data collections in distributed systems has prompted the design of
an integrated architecture that supports access to and management of distributed data: the
data grid [7]. In a data grid, data can be located on heterogeneous storage systems and data
is replicated for reasons of performance and availability. The grid provides users with easy,
uniform access to data. Additionally, in order for data to be found and appraised, the grid
maintains contextual information on its data.

2.1.1 DATA GRID ARCHITECTURE

To provide users with easy access to data, data grids virtualize the underlying storage sys-
tems. Users do not require any knowledge of the topological network structure of the grid as
they reference grid elements by logical names such as data object and resource. Figure 2.1
shows an application that requests access to a data object called /PROJ1/DAT5. Option-
ally it could have provided an indication of a preferred resource. A resource is a logical
name used to reference a particular storage medium on the grid. In our example the avail-
able resources are disks primary and secondary, and tape unit longterm. The data grid
searches its database for the data object and selects an appropriate file replica of the data
object. Subsequently it performs the underlying networking and storage access operations
required to access the associated data. In our example the grid selects file MYDIR/DAT5

4

located on storage media primary attached to system node B.

network

contextual

catalog

node A in

datacenter 1

node B in

datacenter 2

DATA GRID

READOBJECT("/PROJ1/DAT5")

/PROJ1/DAT5

-> B:/MYDIR/DAT5

MYDIR/DAT5

primarysecondary

longterm

Figure 2.1: Data grid architecture

In data grids, applications annotate data objects with metadata. Metadata is used to find
relevant objects based on contextual criteria. As underlying storage systems may have lim-
ited and varying capabilities for annotation of data, the metadata is stored separately in a
database referred to as the catalog.

2.1.2 COHERENCE CHALLENGES IN A DATA GRID

Data grid update operations require careful coordination between grid components to sup-
port data coherence in a concurrent context. Maintaining the data consistency of an indi-
vidual data item such as a data object or a file replica is not sufficient. Coherence require-
ments need to be taken into account as well. For instance when the content of a replica is
updated this may also need to be reflected in the related registration of replica file size held
in the catalog database.

Should a replica file update fail due to a concurrent operation then the associated catalog
update might be undone via a database transaction rollback. The opposite is more difficult
to achieve: should a catalog update fail then the file update on storage media might not be
as trivial to undo.

Initial data grid architectures would mitigate some of the data coherence risks by limiting
replicas to be read-only copies of the data [7]. This constraint has been lifted in more recent
implementations such as the iRODS data grid [31].

5

2.1.3 DATA GRID REQUIREMENTS

Data grids have specific data consistency and data coherence requirements. Relationships
between data items in the same layer (logical or physical) as well as relations between data
items that cross these layers, such as the relation between a data object and its replicas,
need to remain coherent. Further, existing storage infrastructures need to be integrated
seamlessly, data policies may need to be enforced and all these operations must be exe-
cuted efficiently.

Consistency requirements:

a) Infrastructure compatibility The consistency model must be compatible with com-
ponents that manage physical data access in the grid. The data grid architecture
assumes that, for the purpose of data access performance optimization, existing
physical data access mechanisms may need to be shared with high performance
compute grid applications [7]. Hence the consistency model must not require
any changes to these data grid components.

b) Policy support The consistency model must be compatible with side effects in
data grid components. The data grid architecture does not impose restrictions
on data policies [31]. For instance, when an application requests the execution
of a data operation, this may trigger additional changes to the state of other grid
data as well, as the result of a machine actionable policy. Alternatively, such
policy might use the state of other data as a precondition for an update.

c) Efficient execution The consistency model must facilitate efficient concurrent ac-
cess to data. The data grid architecture has been designed to meet complex and
stringent performance demands while providing access to distributed data col-
lections [7]. Consistency models should avoid to rely on strategies that require
exclusive access to data for long time periods as this is likely to negatively im-
pact system progress.

Coherence requirement:

Relation between logical and physical object Virtualized data information needs to
remain coherent with physical counterparts. Applications are offered a uniform
view on data by the grid and can reference logical data objects for data opera-
tions. The data grid must maintain the relationship between these objects and
the related physical files [7]. Changes to a logical level property, for instance
moving a data object to a different logical location, may imply a need to modify
a physical structure, for example move a file to a different directory. During such
operations, operations by concurrent processes may not encounter temporarily
broken relationships.

In summary, the specific data grid consistency and coherence requirements are a result of
its distributed nature, layered data access and its use in environments that demand high
performance access to huge amounts of data.

6

While our research is primarily concerned with the grid’s data coherence requirements, the
feasibility of implementation options will be influenced by the other requirements such as
a need for efficient execution.

2.2 CONSISTENCY MODELS

We have defined data coherence as a relation between data. Which existing consistency
models are suitable candidates for implementing coherence in our data grid use case?

Many data consistency models have been developed for use in non-transactional distrib-
uted storage systems. Viotti and Vukolić document over 50 different models, clustered in
families of shared characteristics and partially ordered from weak to strong consistency [30].
A weak consistency model provides for little or no data consistency guarantees, a strong
model does the opposite.

The model that delivers strongest consistency guarantees is named linearizable consis-
tency. It requires that read and write operations of all processes on single data items are
executed as if they were atomic operations ordered in time [12]. For example this could be
implemented by having each process lock the data prior to each read or write and unlock it
immediately after that operation. While this would provide programmers with an easy-to-
understand consistency model, the reality of network latency makes linearizability a very
difficult if not unattainable target for distributed systems.

Most other models are categorized within one of the families synchronized, staleness, ses-
sion, fork-based, per-object and causal. Notable exceptions are the eventual and sequential
consistency model.

We will briefly review each of these clusters and their relevance in the context of a data grid
use case. As selection criteria we use the consistency requirements for a data grid listed in
Section 2.1.

Synchronized models provide mechanisms for synchronizing operations on data between
processes by defining how and where locks protect these operations [18]. These models can
be considered for multiprocessor shared-memory systems. As explained earlier, locking is
a less efficient strategy when applied in a distributed systems context such as data grids.

Staleness models guarantee that data written by one process become visible to other pro-
cesses within a defined limited amount of real-time i.e. seconds [28]. However, real-time
guarantees are difficult to establish in data grid systems due to the diversity of supported
storage systems. Some storage systems, for instance tape systems, are simply unable to
offer access time guarantees.

Session consistency models merely guarantee that data appears consistent in the perspec-
tive of a single client process during a stated session with the system [27]. We will refer to
this model as data connection semantics as we reserve the term session for use with ses-
sion types. Session types are introduced in Section 2.3. Data connection semantics are less

7

suitable for our purpose as data coherence requires the consistency guarantees to extend
beyond the scope of a single data connection.

Fork-based models seek to counter malicious and erroneous process behavior through al-
gorithms that consider consistency between multiple replicas of data [21]. In contrast, the
data grid architecture assumes that underlying storage system components can be trusted
by higher level functions.

Per-object consistency models limit the linearizable consistency guarantees to isolated data
records or objects [20]. As a result, concurrent access to different objects is not constrained
which might considerably improve access performance in a distributed system for some
use cases. In a data grid, a suitable scope for an object is difficult to determine as a result
of data coherence requirements. For instance, some data grid requests will solely impact
a data object and hence would suggest the data object as scope for per-object consistency.
However, other requests may impact only one of the data object replica’s, while concurrent
requests for access to other replica’s should remain supported.

Eventual consistency models ensure that after application of all concurrent updates, the
replicas of the data will converge to an identical value [27]. With regard to our use case,
these models have a similar limitation as session consistency models: distributed processes
may each have a different perspective on a persistent data value during the time that the
values have not yet converged.

The sequential consistency model requires that all processes view the results of data oper-
ations in the same sequential order, which does not need to be related to the time of oc-
currence [18]. In this model, the system may process write operations of processes in any
order, as long as the order in which values are read by processes is consistent across all pro-
cesses. As an example of sequential consistency, imagine how a shared logfile is commonly
perceived. Several processes might concurrently write data to the log file. The sequence
in which data is read from this logfile will appear the same to all processes that concur-
rently view the log. The sequential consistency model provides the distributed data grid
processes with a consistent perspective of the data and therefore is a candidate model for
our use case.

Causal consistency seeks to guarantee that if a write operation by process B is potentially
influenced by or depends on a write operation from process A then this order is also obeyed
by processes that read this data. Hence there is no process in the system that will read what
A has written after it has read what B has written [1]. Compared to sequential consistency,
the requirements are weaker. Only two writes that are causally related must be read in that
order by all processes. The order of other reads can differ between processes.

The convergent causal model is similar to the causal consistency model, except that it also
requires data to eventually converge to a single value [20].

In summary, data coherence requirements in distributed systems such as data grids could
potentially be met using either a (convergent) causal model or a sequential model. A se-
quential model is more restrictive with regards to the order of events than a causal model.
We therefore expect that deployment of a causal model in distributed systems such as data

8

grids provides for more flexibility and potentially higher runtime throughput than the se-
quential consistency model although further research is needed to validate this assump-
tion.

To illustrate the causal and sequential models, let’s consider a scenario with five concur-
rently running processes A through E. All processes have access to a shared data item x
which is updated by processes A and B as shown in Figure 2.2. The horizontal axis repre-
sents the sequence of actions in time. The notation x1 represents the fact that B reads the
value 1 written by A prior to updating the value of x. Figure 2.3 shows values of x read by
the other processes C through E at arbitrary points in time.

Process A: x1 := 1 x := 3
Process B: read x1;

x := 2

Figure 2.2: Processes A and B update x

Process C: 1 3 2 causal
Process D: 1 2 3 causal
Process E: 2 1 3 not causal/seq

Figure 2.3: Other processes read value of x

Does the order in which processes C through E observe the value of x comply with causal
and/or sequential consistency properties?

Process B performs a read operation before executing an update operation. Potentially,
whatever has been read could have been used as input for this update. Consequently, the
process B update operation is now causally related to the operation that most recently up-
dated x prior to B’s read operation: the x := 1 action performed by process A. Hence to be
causally consistent, other processes may not observe the value 1 in a read operation af-
ter having read the value 2. Both processes C and D comply with this requirement even
while they show a different order for other, unrelated updates. Process E violates the causal
consistency requirement.

To be sequentially consistent, the order in which read data is observed must be the same
across all processes. In our example C, D and E observe data in a different order and there-
fore they are not sequentially consistent.

2.3 MULTIPARTY ASYNCHRONOUS SESSION TYPES

While conversations between distributed processes often require a structured protocol, the
programming language primitives to support such communications are typically limited
to one-time (send-receive) interactions. More involved sequences of interaction require
manual programming labor.

Significant benefits can be expected when programmers are able to specify a conversation
as an explicit structure [13]. The aim is to support the realization of more readable, main-
tainable programs as in general is the case for structured programming. More importantly,
the formalization of the conversation facilitates verification of communication properties
either statically or at runtime. This may help prevent or at least detect incompatible com-
munications, for example synchronization errors.

9

Note that the specification of a structured conversation could be processed similar to how
other source code is processed by a compiler. After a lexical scan, the specification is parsed
into terms. Subsequently these terms are evaluated according to formal rules into a nor-
malized form. Proper evaluation is an indication that the specification is a valid conver-
sation and complies with all properties that are guarded by the formal rules. The rules in
essence document acceptable conversation constructs as a mathematical formalism.

Honda et al. propose to use three key elements to structure conversations between pro-
cesses [13]. The process (a)synchronous interaction must be modelled in constructs to
make its structure explicit. In addition to providing common features such as send and
receive primitives, more complex interactions are supported through composition opera-
tors that influence the flow of communications. Communication interaction is categorized
by type to facilitate verification of safety properties and hence ensure compatible commu-
nication.

Milner’s polyadic π-calculus is used as a foundation for modelling processes and their in-
teractions [22]. This algebra formalizes the syntax and operational semantics of process in-
teractions. Information is exchanged between processes in the form of names which can be
used to reference a process or to exchange other data. The calculus defines terms that can
be supported via language constructs incorporated as extensions in existing programming
languages or specified separately using a domain-specific language such as Scribble [15].

The calculus is enhanced with communication primitives for label branching and delega-
tion [13]. Label branching involves the communication of a label, a value from a defined set
of names, to another process. The receiving process uses the label in a conditional expres-
sion to branch out to one of its behaviors. Delegation is used by processes to hand-off their
role in a conversation to another process. An example use case is a server listener process
that receives a request from a client process and delegates the response to this request to a
spawned agent process.

The terms in the calculus are annotated with types [24]. Types can be verified to detect
and prevent potential runtime failures and deadlocks caused by incompatible communi-
cation. For example, communication is incompatible when the sending process presents
a numeric value and the receiving process expects a boolean value. In this situation com-
munication can fail despite the fact that the sequence of messages might comply with the
required structure.

Structured interactions can involve more than two participating processes. To meet this
need, Honda et al. propose to use multiparty asynchronous session types (MPST) [14].
The conversation, a session, relies on asynchronous communication between two or more
processes, referred to as parties. Communication between parties may involve multiple
channels. Both linearity (causal relationship) and progress (deadlock-free) are guaranteed
to be properties of a channel within the context of a single session.

We will use a simple example to show what an MPST conversation might look like. In this
example the Buyer, a client process, seeks to purchase a table or a chair from the Seller, a
server process. The Seller is an intermediate actor. The articles will be delivered by another

10

process which is either the Tables or the Chairs process. Figure 2.4 shows the conversa-

import Purchase . messages . * ;
protocol Purchase {

role Buyer , S e l l e r , Tables , Chairs ;

hel lo from Buyer to S e l l e r ;
specialOffer from S e l l e r to Buyer ;
choice from Buyer to S e l l e r {

t a b l e A r t i c l e () :
buyTable from Buyer to S e l l e r ;
getTable from S e l l e r to Tables ;
deliveryDate from Tables to S e l l e r ;
deliveryDate from S e l l e r to Buyer ;

c h a i r A r t i c l e () :
buyChair from Buyer to S e l l e r ;
getChair from S e l l e r to Chairs ;
deliveryDate from Chairs to S e l l e r ;
deliveryDate from S e l l e r to Buyer ;

}
}

Figure 2.4: Global protocol

global protocol

Purchase

local protocol

Seller

(b, s, t, c)

local protocol

Buyer

(buyer,seller)

local protocol

Chairs

(seller,chairs)

local protocol

Tables

(seller,tables)

Figure 2.5: Projected local protocols

tion structure for session type Purchase, referred to as the global protocol. Here, the syntax
is based on Scribble but any programming language that implements the MPST calculus
would do. A role is defined for each participating process. The Buyer sends an initial mes-
sage to the Seller and then receives a list of special offers. The next message exchange shows
how the communication primitive label branching is used. The Buyer sends the Seller a la-
bel indicating a choice and the Seller branches to execute the related conversation part of
the protocol. In this part, a backoffice conversation starts with another process to get the
selected article. Once that part is completed, the Seller reports back the expected delivery
date to the Buyer.

Distributed process communications are commonly implemented as one-to-one conver-
sations. Figure 2.5 shows how the global protocol Purchase is projected onto multiple local
protocols that model the conversation from the perspective of one of the parties. For in-
stance the local protocol of party Chairs will only include an interaction between Chairs
and Seller. The local protocol of Seller will be similar to the global protocol because it in-
volves interactions with all other roles.

Ultimately, the local protocol code is compiled and linked to the program of the relevant
process.

11

3
PROBLEM ANALYSIS

Data grids aim to maintain coherence between data that they manage. We will now zoom
in on a data grid function that requires coherence. Subsequently we discuss an example
case where coherence is challenged.

Providing applications with easy access to distributed data is a key function of the data grid
as introduced in Section 2.1. This function is implemented through virtualization of under-
lying storage systems. Access to files is provided via logical structures called data objects.
For reasons such as data safety, replicas of a file can exist on storage media distributed
across the grid.

In the iRODS implementation of the data grid architecture, the filesystem path of a replica
is managed such that it remains coherent with the logical path of the associated data ob-
ject, only their prefixes differ. Whenever an application requests to update the logical path
of a data object, this change is propagated and also applied to the physical paths of all as-
sociated replicas.

This coherence feature is used and appreciated by system administrators and a class of
high-performance applications. For instance a system administrator can now use regular
operating system commands to directly access storage systems and check if any files are
infected by a virus. Should this be the case then the path to the replica file can be used to
locate the associated data object. Subsequently the data object is annotated with metadata
to signal the poor state of the replica. Likewise applications can be authorized to bypass3

the data grid layers in case they require very high data read access performance. Instead of
using data grid functions, they are allowed to directly call storage system I/O functions to
access the replica.

The strategy that iRODS follows to implement coherence between data object paths and
replica paths is to perform the updates in a fixed order. An iRODS agent process coordinates
the update operation. Other data grid processes are contacted in turn to perform the actual

3Despite its potential impact on data integrity, the bypass is considered a feature of the system.

12

updates. First, the agent has the data object path updated. Next, it iterates through an
ordered list of replicas and requests the replica path update to be performed. The agent
awaits the succesful completion of an update before it initiates the next update request.

Unfortunately the iRODS implementation of coherence between data object path and repli-
ca path is subject to a race condition. If two applications concurrently request the data grid
to update the path of the same data object, in an odd case the coherence between an data
object and its replicas may be lost.

Process A: dataObj:="n1" replica:="n1"
Process B: dataObj:="n2" replica:="n2"

Figure 3.1: Potential race condition at data object path update

In Figure 3.1 we demonstrate this race condition in an example where a data object is asso-
ciated with only one replica. We assume two concurrent requests to update the data object
path. Data grid agent process A coordinates the request to set the data object path to "n1".
Agent process B coordinates the other request to set the path to "n2". Coherence requires
that after applying all the updates both the data object and its replica exhibit an equiva-
lent path. Hence both the data object and its replica should either exhibit path "n1" or
both should have path value "n2". In our example, the interleaved execution of the update
operations results in a non-coherent end state: the data object path is "n2" whereas the
replica path is "n1".

Note that the fixed order strategy as implemented by iRODS is efficient and basic grid con-
figurations may well never experience the above race condition. The race is likely to emerge
in configurations with increased chances of request interleaving, for instance when similar
grid processes are distributed across computer nodes with different performance charac-
teristics.

Our example showcases a race condition that can be considered archetypical for a non-
transactional distributed system. The general case consists of a set of operations on multi-
ple items of persistent data, each data item managed by a different process, where the set
of operations needs to be executed as if it were a single transaction.

Next to this type of race condition, a distributed system may suffer from other types of race
conditions not covered by our research. For example, when a set of operations is executed
on a single data item, and these operations are executed concurrently, then a race condition
can emerge. This type of race condition can be prevented efficiently: We require that all the
processes responsible for managing the data item are located on the same node as where
the data item itself persists. Now traditional mutual-exclusive locking mechanisms can be
used without running the risk of performance degradation from network latency.

13

4
RESEARCH SCOPE AND METHODS

As demonstrated by our problem analysis, data coherence is a desirable property of a data
grid, yet it is not trivial to guarantee this property in current data grid systems. A fixed order
strategy as implemented in iRODS does not keep data coherent in all circumstances. Note
that even if a solid strategy has been established, the program code for process interactions
would still be intertwined with other operations. This scattered implementation is difficult
to maintain for software engineers.

Can we improve the management of data coherence in non-transactional distributed sys-
tems through a method that supports formal verification of this property? Can we use
a domain-specific language such as provided by multiparty asynchronous session types
(MPST) for this purpose? These are major challenges that set the context for our research.

Extensive research will be required to answer the above questions thoroughly, even if this
research is limited to distributed systems with a data grid architecture. For example here
are some aspects that future research might need to address:

• How well can we specify all data grid process interactions using MPST?
• Can MPST be implemented with sufficient performance to meet the needs of data

grids?
• Can session types be used or extended to easily detect and prevent all data coherence

issues in data grid conversations?
• Are we able to verify and guarantee that data coherence holds as a property for these

conversations?
• How can MPST be integrated gently in current data grid architectures? For instance

how easy is it for software engineers to model data grid conversations, including data
coherence requirements, in a domain-specific language such as Scribble?

14

4.1 RESEARCH QUESTIONS AND METHODS

Our research contributes a first step to this journey. Applied to a common data grid opera-
tion use case, we investigate how data coherence can be modeled in formal temporal logic
and how we can express coherence requirements as an extension of a multiparty asyn-
chronous session types based calculus. For our purpose and context, a data grid is a non-
transactional4 distributed system with asynchronous process communications.

Research Question: How can we express and manage data coherence between a data object
and its replicas in a data grid using a domain-specific language based on the multi-
party asynchronous session types calculus?

We limit the scope of data coherence to a value update operation for a single property of
the data object, where we require that a related property of all its replicas is updated with
the same value.

We address this question via four subquestions. Our methods to address these subques-
tions can be categorized as design-and-create. For each subquestion we document the
scope, our approach, and an overview of deliverables. A list of the software used in our
research can be found in Appendix A.

4.2 RQ1: CAPTURE THE PROBLEM CASE IN A SESSION TYPE MODEL

RQ1 a) How do we model the problem use case documented in Chapter 3 as a protocol?
b) How do we establish that this protocol allows for a race condition?

We model the update operation as a protocol that services multiple parallel requests, where
each request requires an update on persistent data. Using this approach we learn how well
we can express and manage coherence using the existing syntax and semantics of sessions.
The requests are scoped to an update operation on a property of a data object that is re-
lated to a single replica. We demonstrate how to scale the model to support scenarios with
multiple replicas.

We experiment with two different techniques to implement the above protocol. We model
this conversation as a global protocol in Scribble [15]. As an alternative approach, we also
implement the conversation as a labeled transition system in UPPAAL [2].

Scribble is a natural choice as this description language and compiler have been devel-
oped for representing the interaction protocols, in step with the multiparty asynchronous
session types theory [14]. Using Scribble, we should be able to reproduce the data race in
this protocol by creating a Java test application for each role involved. Scaling the model
from one replica to multiple replicas is possible by adding an extra protocol role per replica.
We use the Scribble language construct par to model interleaved update requests. Unfor-
tunately it turns out that support for interleaved operations, an element key to our model,

4Data grids depend on storage systems that do not always provide transaction features such as commit/roll-
back.

15

is not yet supported by the Scribble compiler.

Using UPPAAL, we are able to simulate the update operation and reproduce the data race
condition. In addition, it allows us to prototype solutions that protect coherence. In order
to capture coherence aspects, we use its ability to model asynchronous operations and con-
crete data transfers. Yet we are unable to use this tool to produce actual Java applications
for each role.

Our experiment shows that to protect coherence, we will require a domain specific interac-
tion language that supports three key features: 1) interleaved operations, 2) asynchronous
communications, and 3) concrete data transfer operations.

The deliverables are a model of the problem use case documented as a concrete protocol
(Scribble) and an implementation of the concrete protocol as a labeled transition system
(UPPAAL). Chapter 5 covers the results related to this research question.

4.3 RQ2: DESIGN COHERENCE SUPPORT AS MPST CALCULUS

EXTENSION

RQ2 How do we represent coherence as a property of related data?

We design support for expressing coherence in a new theory of multiparty asynchronous
session types. This design allows us to check the invariant relation that we seek to establish
between a property of a data object and the related property of a replica. We consider a
simple coherence relation where the value of a replica property must remain equivalent to
the value of the related data object property.

First, we design a calculus that can meet the requirements that surfaced in RQ1: interleaved
operations, asynchronous communications, and concrete data transfers. Interleaved op-
erations are needed to represent concurrent service requests to the system. Asynchronous
communications mimic actual communication patterns as commonly found in distributed
systems such as data grids. Information from concrete data transfers is needed, to assess if
a data transfer will make or break the invariant coherence relation.

In line with theory developments, we base our calculus on a recent formalization of the
multiparty asynchronous session types [16]. The calculus can be used to specify a global
protocol for interactions. We design the implications for participating roles as endpoint5

projections. The resulting local protocols comply with the grammar of a companion calcu-
lus. The deliverable is a mathematical design, documented in Chapter 6.

Next, we extend our theory with support for coherence. We define coherence in terms of
temporal logics with respect to a Kripke structure [17]. The coherence model describes a
relation between two attributes. We integrate this model as a layer of structural operational
semantics in the previously designed calculus.

5The term endpoint is used to refer to a process that takes part in an interaction.

16

The deliverable, again a mathematical design, is discussed in Chapter 7.

4.4 RQ3: VALIDATE THE COHERENCE-EXTENDED CALCULUS

RQ3 a) How can we establish that the projection of global protocols to local protocols, as
designed for our calculus, is sound and complete?
b) How can we establish that the expressiveness of our calculus is sufficient to support
verification of data coherence for concrete interactions?

Both research questions are answered using model checking. To prepare for model check-
ing, we implement the calculus, participating roles and communication channels along
with a concrete interaction protocol as a labeled transition system (LTS). The concrete pro-
tocol will trigger actions that are processed by the remainder of the system in line with the
operational semantics of the calculus.

We select mCRL2 as a model checking toolset suitable for our purpose [5]. mCRL2 is able to
both model check a property of an LTS (required to answer RQ3b), as well as to establish if
two LTS systems are sufficiently equivalent to be considered bisimilar (required to answer
RQ3a). In addition, the mCRL2 modeling language syntax matches with a large part of our
calculus syntax, which saves us implementation time. Other tools that we have considered
include UPPAAL (optionally with TIGA extension) and LTSmin [2][4]. UPPAAL lacks sup-
port for bisimulation checking and provides limited support for checking our coherence
temporal logic property. The installation and configuration of LTSmin is more involved
than mCRL2, while we are unlikely to require many of its features.

To answer RQ3a, we use samples of concrete global protocols to create instances of LTS.
One sample, named good, is a protocol that can be realized by endpoints. Another sample,
named bad, serves as a counter example. The counter example fails to meet one of the well-
formedness conditions identified by Jongmans and Yoshida [16]. Per sample, we create an
additional LTS using the projected local protocol. We use mCRL2 to establish that the two
LTS instances related to the good sample are weakly bisimilar. Weakly bisimilar systems
behave in an equivalent way and transition in sync (disregarding internal actions). The
bisimulation result validates that our projection is sound and complete.

To answer RQ3b, we transform the coherence property defined in Section 7.3 to a format6

that is accepted by mCRL2. We use this formula to verify samples of global protocols con-
figured in the above mentioned LTS. The results are compared with expected values.

The deliverable is a verified model, discussed in Chapter 8.

6mCRL2 accepts model checking formula specified in µ-calculus

17

4.5 RQ4: PROTOTYPE LANGUAGE EXTENSIONS THAT PROTECT CO-
HERENCE

RQ4 Which additional domain-specific language constructs are needed to express and pro-
vide support for coherence of related data for the use case in RQ1?

We aim to find out if we can facilitate software engineers to conveniently specify coherence
requirements as part of a session protocol. Is this a straight-forward implementation of the
session calculus in a domain-specific language, or will it demand more complex composi-
tions on top of the calculus, such as macro-like features? For practical reasons, we limit the
implementation of constructs to those needed to support our RQ1 use case.

The protocol that represents our problem use case is our initial test case. We use the cal-
culus implementation in mCRL2 as created in RQ3. We verify that the coherence property
does not hold for this protocol. Next, we enhance the session protocol of our use case to
express that the data object and a single replica should remain coherent, using a prototype
extension of the calculus. Subsequently, we establish that the new session protocol guar-
antees coherence as a property of the related data. Further, we establish that this guarantee
holds when we scale the use case to multiple replicas. Our prototype supports sequential
consistency, one of the consistency models discussed in Section 2.2.

The deliverable is a prototype and a discussion of strategies that can be used to protect
coherence. Chapter 9 covers the results related to this research question.

4.6 RESEARCH VALIDATION

We use the seven criteria provided by Vaandrager to reflect on the quality of our use case
model [29]. A good model has a clearly specified object of modelling, a clearly specified
purpose, is traceable, is truthful, is simple, is extensible and reusable, and is designed and
encoded for interoperability and sharing of semantics. Chapter 5 includes this reflection.

We validate the designed calculus as well as the coherence property formula by model
checking an implementation of the calculus. More details can be found in Chapter 8.

18

5
MODEL THE PROBLEM CASE AS A PROTOCOL

The informal problem analysis in Chapter 3 discusses a use case where an iRODS data ob-
ject is moved. The move operation requires an update of the logical path attribute of the
data object as well as an update of the related path of each replica associated with this data
object. The interleaved processing of multiple move requests for the same data object can
result in a data race. While we capture this interaction in a formal specification using two
different techniques, we learn about requirements for coherence support.

5.1 PROBLEM CASE MODELED AS PROTOCOL IN SCRIBBLE

We model the interaction between processes involved in our use case as a Scribble pro-
tocol [15]. Figure 5.1 shows the resulting specification. The sequence of interactions that
take place to process a move are specified in the global subprotocol MoveObject. The data
object is referenced as ObjName. A replica is referenced by its managing process and the
relation with a data object.

In our model, we will assume that each replica is managed by a separate process. In reality,
our data grid uses a combination of processes and threads to respond to replica-related
requests. We argue that our simplification is justified, as we aim to model the persistent
state of the replica, rather than the responding thread. Ultimately, all changes applied to a
replica will be executed in sequence.

The updated property, a logical or physical path, is depicted as CollName. Role A represents
a data grid agent process, whereas roles D and R1 depict processes that manage respectively
the data object and the replica. The data grid agent coordinates the processing of a move
request received from a client application.

First, the agent sends a message MoveDataObject to role D to have the data object itself
updated. It waits until D acknowledges that this action has completed.

Next, the agent orders associated replicas to be updated, each replica in turn, using a fixed

19

// Global Protocol for performing interleaved Data grid updates
//
// A = agent D = data object manager R = r e p l i c a manager
// option : To support multiple repl icas , add more r ol es besides R1

module move;
type <java > " java . lang . Str ing " from " r t . j a r " as CollName ;
type <java > " java . lang . Str ing " from " r t . j a r " as ObjName;

global protocol Move(role A1 , role A2 , role D, role R1) {
par {

do MoveObject (A1 , D, R1) ;
} and {
do MoveObject (A2 , D, R1) ;

}
}

global protocol MoveObject (role A , role D, role R1) {
MoveDataObject (ObjName, TargetCollName) from A to D;
Ack () from D to A ;
MoveReplica (ObjName, TargetCollName) from A to R1 ;
Ack () from R1 to A ;

}

Figure 5.1: Scribble protocol for data grid update

order. A data object has at least a single replica, which is the configuration used in our
specification. Role R1 manages this replica. The protocol specification can scale to sup-
port a data object with more replicas by merely adding replica roles and MoveReplica/ Ack
messages.

Interleaved processing of moves is specified in global protocol Move, where roles A1 and
A2 represent two agent processes that concurrently process a move. When roles A1 and A2
send messages with the same concrete value for ObjName and differing values for CollName
then a data race, as described in our problem case, can occur. The interleaving factor of the
model can be scaled by adding more agents.

Unfortunately, compilation of the Move protocol leads to endpoint Java code that throws a
nullpointer exception at runtime. Investigation reveals that this exception occurs whenever
we specify interleaved interactions in conjunction with Scribble compiler release 0.4.3.

While we have used a Scribble syntax for parallel interactions, this syntax is not completely
and consistently supported by the Scribble compiler. The original design for the Scrib-
ble language specified an operator & to be used with unordered (parallel) interactions [15].
Scribble compiler release 0.4.3 accepts the syntax par as we have used for our use case
protocol, yet the generated endpoint Java code is ineffective with respect to this opera-
tion. Support for parallel interaction syntax, a key requirement for our purpose, has been
dropped in a subsequent version of the compiler.

20

5.2 PROBLEM CASE MODELED AS LTS IN UPPAAL

As protocol compilation using the Scribble compiler has not proven fruitful, we resort to
simulation techniques for testing our protocol. To this end, we model the protocol as a
labeled transition system (LTS) in UPPAAL [2].

Figure 5.2: UPPAAL template for an Object (Data Object or Replica)

We use a template named Object, as depicted in Figure 5.2, to represent roles that man-
age either the data object or a replica. The instance Object[ob j 7→ 0] manages the data
object. Other Object instances (ob j > 0) manage a replica. Persistent state of the object
is captured in global variables. The source code containing global declarations is listed in
Appendix B.

Object roles receive values from agents and update their persistent variable objValue with
this new value. Once the value is stored, an acknowledge message is sent back to the agent.
We use multiple state transitions to reflect the impact of asynchronous communication on
the state of the managed variable. The upd channel action synchronizes with a message
sent by an agent. The receipt of this message (implicitly) takes place at the next state tran-
sition.

Agent roles are represented as instances of the AgentNaive template, shown in Figure 5.3.
An agent iteratively selects an object role, sends it an update request and waits until it re-
ceives an acknowledgement message back.

Model checking confirms that a system with multiple naive agents is subject to a data race
condition. We note that our simulation has required the use and inspection of concrete
data transfers in combination with modeling asynchronous communications.

21

Figure 5.3: UPPAAL template for AgentNaive

5.3 PROTOTYPING DATA RACE AVOIDANCE

Using UPPAAL, we can prototype ideas to resolve the data race as seen in our use case.
We assume that a strategy will involve some contract between the processes involved, to
enforce that updates take place in an acceptable order. We aim to minimize the impact of
exclusive access mechanisms on throughput performance.

Figure 5.4: UPPAAL template for AgentMilestone

Figure 5.4 shows an agent that uses a milestone approach to prevent a data race. Like our
naive agent, the milestone agent iteratively requests objects (data/replica) to be updated.
However, it deploys a locking mechanism to enforce exclusive access to an object. A lock is
acquired7 just prior to an update request for the object being locked. A lock is released only
after a lock for the subsequent object is obtained, which is considered the next milestone.
Note that this milestone locking mechanism relies on a contract between agents, where

7The agent synchronizes with a Lock process associated with a particular data object or replica. The Lock
process, not shown here, merely oscillates between the states locked and unlocked.

22

all agents use the same fixed iteration order. Model checking confirms that the data race
condition has disappeared after we replace the naive agents by milestone agents.

The milestone approach may reduce the impact of locking on throughput, for scenarios
where a data object is associated with more than one replica. For instance, when an agent is
updating the third replica of a data object, then another agent may simultaneously update
the first replica of the same set.

The chained-coherence strategies, discussed in Chapter 9, have been inspired by the results
gained from the above milestone agent experiment.

5.4 VALIDATION OF PROBLEM CASE MODEL

We reflect on the quality of our Scribble model and our UPPAAL model using criteria listed
by Vaandrager [29]. A good model has a clearly specified object of modelling, a clearly spec-
ified purpose, is traceable, is truthful, is simple, is extensible and reusable, and is designed
and encoded for interoperability and sharing of semantics.

We have a clear object of modelling as outlined in Chapter 3. We model an interaction
between data grid processes, that intends to update a data object property and a similar
property at related replicas in sync.

The model’s purpose is to serve as a testcase for a domain-specific interaction language.
The language should allow us to reason about coherence.

All elements of the Scribble model and the UPPAAL can be traced back to elements of the
real-world object being modelled. Traceability of the UPPAAL model is less transparant
compared to the Scribble model. For instance, the asynchronous nature of the update mes-
sage is implemented as a synchronization followed by another state transition.

The UPPAAL model is also less thruthful than the Scribble model. In particular the ac-
knowledgement message is exchanged via synchronous communication while actual data
grid processes communicate using asynchronous communications. We argue that for our
purpose this is an acceptable limitation as the state of the persistent property will not be
affected by this message exchange.

The Scribble model has sufficient predictive power while remaining simple. In the UPPAAL
model however, we have added extra states that do not relate to any aspect of the modeled
object. The added states are updateEnd in the agent templates and applied in the object
template. They have been added solely to ease model checking. We eliminate the impact
of the extra states on the state space by marking them committed8.

The extensibility and reusability of our Scribble model is limited. Scaling the model to in-
clude more agents or replicas is possible, yet it requires manual changes to the code. For
instance, adding a replica requires changes to the list of roles in the protocol statements

8In UPPAAL, the transition to a committed state is executed atomically with a transition to the next state.

23

and the addition of an update interaction statement. In contrast, the UPPAAL model is
highly extensible and reusable as a result of using templates to describe role types. Adding
another agent or replica is accomplished by changing a configuration parameter. We reuse
the Object template in our milestone agent prototype.

As our models are based on existing tools and grammars, they can in theory interoperate
with other specifications. For instance, our Scribble protocol could be embedded as a sub-
protocol in another specification.

24

6
AN MPST BASED CALCULUS TO SUPPORT

ASYNCHRONOUS DATA TRANSFERS

In this chapter, we design a calculus that serves to capture the interactions between pro-
cesses in a separate program (protocol) specification. In a next chapter, we will build on
this calculus and extend it with features that allow us to detect and ideally prevent loss of
coherence.

Our calculus takes a system perspective, while each process will only execute a part of the
interactions. We include support for the process perspective through a companion calcu-
lus. A projection operator links the calculi.

6.1 A CALCULUS FOR CONCRETE ASYNCHRONOUS INTERACTIONS

Our interaction calculus is based on an MPST calculus by Jongmans and Yoshida, which we
adapt to support asynchronous communications of concrete data transfer messages [16].

Let R denote the set of roles, representing processes that potentially participate in the
global protocol.
Let tup(R) denote a set of role tuples, representing combinations of two interacting pro-
cesses, generated by tup(R) = {(p, q) | p 6= q ∧p, q ∈ R ⊂R}.
Let Q denote the set of all sequences of data, ranged over by Q, representing queued con-
tent in channels.
Let {X1, X2, . . .} denote a set of recursion variables.
Let G be a language, defined as a set of protocols ranged over by G (the grammar for G is
defined below).
Let RG denote the set of roles involved in G where RG ⊂R.
Let C : tup(RG) → Q denote the set of unidirectional communication channels between
roles involved in G, with their content. We use the notation pq as the name for the channel
from role p to role q . Its content, a queue of data, is referenced by C (pq).
Let cpq .v be a transfer of data over channel pq where v denotes a value that is transferred

25

from role p to role q . A transfer cpq .v is performed using a send followed by a receive action,
denoted respectively as cpq !v and cpq ?v .

G is generated by the following grammar:

G ::= 1 | Fpq .v | cpq .v |G1 +G2 |G1 ·G2 |G1‖G2 | X | 〈Xk |{Xi 7→Gi }i∈I 〉 (k ∈ I)

1 denotes a skip. This grammar construct is used to structure operational semantics rules.
Rules that define valid transitions are separated from rules that define termination. Skip is
not intended to be used explicitly in instances of the language.

Fpq .v denotes a full. Like skip, this construct must not be used by programmers in in-
stances of the language. It is used in transition rules to allow receive actions only after the
channel is full of content from a corresponding send action.

X denotes a recursion variable. The operators + and · and ‖ represent respectively alterna-
tive, sequential and interleaved compositions. The interleaved compositions are parallel
compositions without interaction between the operands (free merge) [3].

The notation 〈Xk | E〉 reads as: the term specified as variable Xk is substituted by another
term using the provided specification E [10]. In our grammar, E is a recursive specification
that maps Xi to a corresponding term Gi for a finite set of i . Recursion is facilitated by the
combined presence of the recursion variable X and 〈X | E〉 as terms in G . For instance,
starting at a term Xk , this term is listed in the recursive specification and maps to term Gk .
Since X is listed as an option in the definition of term, Gk may take the form of a recursion
variable. Assuming that Gk indeed takes the form of X j , the new term meets the recursive
specification. A next level of recursion is reached as we substitute X j by its corresponding
term G j .

cpq .v
cpq !v−−−→ Fpq .v Fpq .v

cpq ?v−−−−→ 1

G1
α−→G ′

1

G1 ·G2
α−→G ′

1 ·G2

G1 ↓ G2
α−→G ′

2

G1 ·G2
α−→G ′

2

G1
α−→G ′

1

G1 +G2
α−→G ′

1

G2
α−→G ′

2

G1 +G2
α−→G ′

2

G1
α−→G ′

1

G1‖G2
α−→G ′

1‖G2

G2
α−→G ′

2

G1‖G2
α−→G1‖G ′

2

sub(E ,E(X))
α−→G ′

〈X |E〉 α−→G ′

1 ↓
G1 ↓

G1 +G2 ↓
G2 ↓

G1 +G2 ↓
G1 ↓ G2 ↓
G1 ·G2 ↓

G1 ↓ G2 ↓
G1‖G2 ↓

sub(E ,E(X)) ↓
〈X | E〉 ↓

Figure 6.1: Structural operational semantics for the global language

Figure 6.1 specifies the structural operational semantics for the above grammar. It includes
rules for transition and termination. We use the notation G

α−→ G ′ to denote a transition

26

from G to G ′ by executing an atomic operation α. This atomic operation α is defined as:

α ::= cpq !v | cpq ?v (p 6= q)

The specification G ↓ denotes a successful termination.
A helper function sub(E ,G) allows us to retain a notion of the applied recursive specifica-
tion. Note that this specification is consumed in the substituted form of a recursive term.
Our helper function is defined as:
Let X* G be the set of partial functions that define recursive specifications, ranged over
by E . Let sub(E ,G) denote the simultaneous substitution of term E(X) for each recursion
variable X in G .

Informally, the transition rules state that a data transfer is commenced by processing a
send action. The data transfer is completed by processing a receive action on the same
channel. Sequential compositions are reduced by first reducing the prefix term and then
reducing the suffix term after the prefix has terminated. Alternative compositions are re-
duced by reducing one of its component terms. The interleaved composition is reduced
by reducing both component terms. A recursive composition term is reduced by reduc-
ing a version of the term where all recursion variables have been substituted. The termi-
nation rules state that a skip can always terminate. Alternative compositions terminate
when either one of their terms terminate. Sequential and interleaved compositions termi-
nate when both terms terminate. A recursive composition terminates when its version with
substituted terms terminates.

We restrict our resulting global language to protocols that do not include any occurences of
a full or skip, nor include any free recursion variables. In addition, we require that there will
always be only a single option for processing an action. These preconditions are referred to
as full-free, 1-free, closed and deterministic [16].

6.2 ENDPOINT PERSPECTIVE: CALCULUS FOR LOCAL LANGUAGE

The interaction language takes a system view, it is a global language. The global language
is less suited to describe actions from the perspective of an individual role. For instance,
while two roles might be engaged in communication, a third role might be required to wait.
Such an idle action at an endpoint is not part of the global language.

We continue by defining a calculus for the local language related to our interactions. Our
local language takes the perspective of a single role (process) that participates in a protocol
expressed in the global interaction language.

6.2.1 LOCAL LANGUAGE FOR A SINGLE ENDPOINT

The notational conventions of the global grammar apply to the local grammar as well.
We define the language of local protocols as the set L, ranged over by L.
Let RL be the set of role names {r1,r2, . . .} involved in L where RL ⊂R.
Let C : tup(RL) → Q denote the set of unidirectional communication channels between

27

roles involved in L, with their content.

L is generated by the following grammar:

α ::= τ | cpq !v | cpq ?v (p 6= q)

L ::= 1 |α | L1 +L2 | L1 ·L2 | L1‖L2 | X | 〈Xk | {Xi 7→ Li }i∈I 〉 (k ∈ I)

The element α denotes an atomic action. An idle action is denoted by τ.

cpq !v
cpq !v−−−→ 1 cpq ?v

cpq ?v−−−−→ 1 τ
τ−→ 1

L1
α−→ L′

1

L1 ·L2
α−→ L′

1 ·L2

L1 ↓ L2
α−→ L′

2

L1 ·L2
α−→ L′

2

L1
α−→ L′

1

L1 +L2
α−→ L′

1

L2
α−→ L′

2

L1 +L2
α−→ L′

2

L1
α−→ L′

1

L1‖L2
α−→ L′

1‖L2

L2
α−→ L′

2

L1‖L2
α−→ L1‖L′

2

sub(E ,E(X))
α−→ L′

〈X |E〉 α−→ L′

1 ↓
L1 ↓

L1 +L2 ↓
L2 ↓

L1 +L2 ↓
L1 ↓ L2 ↓
L1 ·L2 ↓

L1 ↓ L2 ↓
L1‖L2 ↓

sub(E ,E(X)) ↓
〈X | E〉 ↓

Figure 6.2: Local language structural operational semantics

The operational semantics of our local language are listed in Figure 6.2. A transition L
α−→ L′

is performed by executing the atomic action α. Informally, the transition rules specify that
a send, receive or τ is reduced by executing the related action. Sequential compositions
are reduced by first reducing the prefix term and then reducing the suffix term after the
prefix has terminated. Alternative compositions are reduced by reducing one of its compo-
nent terms. The interleaved composition is reduced by reducing both component terms.
A recursive composition term is reduced by reducing a version of the term where all recur-
sion variables have been substituted. The termination rules state that a skip can always
terminate. Alternative compositions terminate when either one of their terms terminate.
Sequential and interleaved compositions terminate when both terms terminate. A recur-
sive composition terminates when its version with substituted terms terminates.

The preconditions that restrict our local language are similar to conditions stated for the
global language: we only consider local protocols that are 1-free, closed and deterministic.

6.2.2 LOCAL LANGUAGE FOR A GROUP OF ENDPOINTS

A group of endpoints represents the local perspective of multiple endpoints (distributed
processes) as they participate in an interaction. This concept will be useful in Section 6.3
where we relate global interaction languages to local languages.

28

Let R* L denote the set of all groups of local protocols, ranged over by Z . Hence Z (r)
refers to the protocol of the endpoint with role r in this group of endpoints.

Z (r)
α−→ L′

r

Z
α−→ Z [r 7→ L′

r]

Z (r) ↓
for all r ∈ dom Z

Z ↓
Figure 6.3: Structural operational semantics extended for group of endpoints

To cater for a group of endpoints, our local language operational semantics are extended
as shown in Figure 6.3. Informally, a group is reduced when a local term of one of the roles
is reduced through either a send, receive or idle action. The group terminates when all of
its members have terminated.

6.2.3 LOCAL LANGUAGE FOR A SYSTEM OF ENDPOINTS AND CHANNELS

In addition to group semantics, we need to add channel behavior to describe the system
from a local perspective. We reuse the global language channel related definitions in our
local language.

C (pq) =Q, Z
cpq !v−−−→ Z ′

C , Z
cpq !v−−−→C [pq 7→Q · v], Z ′

C (pq) = v ·Q, Z
cpq ?v−−−−→ Z ′

C , Z
cpq ?v−−−−→C [pq 7→Q], Z ′

Z
τ−→ Z ′

C , Z
τ−→C , Z ′

Z ↓
C , Z ↓

Figure 6.4: Structural operational semantics, channels layer

The added structural operational semantics layer for channels is shown in Figure 6.4. In-
formally, a send action will add a data transfer message to the back of the channel queue
of the channel used. A receive action removes a data transfer message from the front of
the related channel’s queue, under the provision that at least one message is queued. An
idle action has no impact on the state of channels. The system terminates when all its end-
points terminate.

6.3 ENDPOINT PROJECTION

Behaviors of participating roles and channels must add up to exactly meet an interaction
protocol specification in the global language. Therefore we project specifications from the
global language to a group of endpoint specifications and related channels.

First, we define a projection operator to map a global protocol9 G to a group of local pro-
tocols combined with channels. The projection is correct if the global protocol G and the
composition of the group of local protocols L with channels are operationally equivalent,
provided that the global protocol can be realized by the endpoints [16].

9Note that channels are a function of the global protocol, their projection is implicit.

29

Informally, the projection of a data transfer depends on the role: it is projected to a send
if the role is the source of the data transfer, to a receive if the role is the destination of the
data transfer, and to an idle action if the role is not involved in the data transfer. A full
is projected to a receive when the role is listed as its destination, and projected to an idle
operation in all other cases. Projections of all other forms of global terms on a role are
homomorphic, they result in a similar local term. The projection of a global protocol onto
a set of roles is the corresponding group of projections, provided that the set of roles is not
empty and there exists a local protocol for at least each role in the set.

Our projection operator is defined as:

cpq .v � r =

cr q !v if r = p ∧ r 6= q

cpr ?v if r 6= p ∧ r = q

τ if r 6= p ∧ r 6= q

Fpq .v � r =
{

cpr ?v if r = q

τ if r 6= q

G � r =G if G ∈ {1}∪X
(G1 ∗G2) � r = (G1 � r)∗ (G2 � r) if ∗ ∈ { ·+ || }
〈X | E〉 � r = 〈X | E � r 〉

E � r = { X 7→ E(X) � r | X ∈ dom(E) }

G ��RG = {r 7→G � r | r ∈ RL } if RG ⊆ RL 6= ;

Is this projection sound and complete? We will validate our projection later10, after we have
extended our calculus with features that allow us to reason about coherence.

10The validation of our projection is discussed in Section 8.2.

30

7
COHERENCE MODEL AND INTEGRATION IN

CALCULUS

In this chapter we extend our theory to support reasoning about coherence. First, we need
to define more precisely what we mean by coherence. As it turns out, coherence requires
that the order of receive operations meets certains criteria. We model these criteria as a
property in temporal logic. Subsequently, to be able to model-check this property, we in-
corporate information in the operational semantics of our calculus.

7.1 EXPLORING COHERENCE

We will refer to attributes as process attributes when their value is influenced only by mes-
sages received through process interactions. Informally, we consider a set of process at-
tributes to be coherent if and only if there exists an invariant equivalence relationship be-
tween their values.

Our context involves attributes of distributed processes. A requirement to atomically up-
date all related attributes can only be fullfilled at the cost of significant performance degra-
dation. To avoid such a requirement, we will allow for an attribute change that may tem-
porarily break the equivalence relationship, provided that until the equivalence relation is
restored for the entire set of related attributes: 1) the attribute may not change again and
2) eventually all other attributes in the set apply an equivalent change and 3) all the other
attributes do no apply a change that is not equivalent.

This slight relaxation of the invariant supports sequential consistency across coherent at-
tributes. Since the updates themselves are ordered, all processes view attribute changes in
the same sequential order.

To establish a formal definition of coherence, first we explore coherence for a set consisting
of two attributes. Later we will broaden our scope to an arbitrary number of attributes. We
model a composition of processes P and Q. A state will relate to a combination of 1) the

31

a
{2,0}

s6
b

{0,2}
s7

b
{1,2}

s4
a

{2,1}
s5

null
{0,0}

s0

a
{1,0}

s1
b

{0,1}
s2

b
{1,1}

s3

a
{1,1}

s8

Figure 7.1: Example execution paths for M, incoherent paths are dashed

global session state which includes a composition of P and Q, 2) the last attribute that was
changed and 3) the current values of the attributes a (owned by P) and b (owned by Q).

Figure 7.1 shows execution paths at an example starting state s0 where [acti on 7→ null , a 7→
0,b 7→ 0]. Note that only the coherence related aspects of the state are shown. Once one
of the attribute values has changed, shown in states s1 and s2, the other attribute must
change to the same new value in the next state to safeguard coherence between the at-
tributes. States s3 and s8 meet this condition while any other execution path (dashed) leads
to loss of coherence.

7.2 COHERENCE MODELED AS STATE TRANSITION GRAPH

We define coherence with respect to a Kripke structure M =< S,R,L > [17]. Using the in-
ductive definition of CTL temporal logics by Clarke et al. [8], we document our model se-
mantics as follows:
S is the set of states, R ⊆ S ×S is the transition relation, L : S → 2AP is a labeling function
that maps states to atomic propositions AP . If p ∈ AP then p is a state formula.
Let A denote the set of all attribute names.
Let D denote the set of all data.
State s ∈ S is a triple (a,m,G) such that a ∈ A and m : A → D is a function from A to D and
G denotes the state of our global interaction protocol.

32

Let π denote a path in M as an infinite sequence of states π = s0, s1, . . . such that for every
i ≥ 0, (si , si+1) ∈ R.
Let πi denote the suffix of a path starting at state si .
Let f , f1, f2 denote state formulas and g , g1, g2 denote path formulas.

M , s |= p iff p ∈ L(s)
M , s |= ¬ f iff M , s 6|= f
M , s |= f1 ∧ f2 iff s |= f1 and s |= f2

M , s |= f1 ∨ f2 iff s |= f1 or s |= f2

M , s |= f1 =⇒ f2 iff M , s |= f1 implies M , s |= f2

M , (a,m,G) |= l ast (b) iff a = b
M , (a,m,G) |= b = c iff m(b) = m(c)
M ,π |= ¬g iff M ,π 6|= g
M ,π |= g1 ∧ g2 iff M ,π |= g1 and M ,π |= g2

M ,π |= g1 ∨ g2 iff M ,π |= g1 or M ,π |= g2

M ,π |= X(g) iff M ,π1 |= g
M ,π |= G(g) iff for all i ≥ 0, M ,πi |= g
M ,π |= g1 U g2 iff there exists a k ≥ 0 such that M ,πk |= g2

and for all 0 ≤ i < k, M ,πi |= g1

M , s |= A(g) iff for every path π starting from s is M ,π |= g

7.3 DEFINITION OF THE COHERENCE PROPERTY

Using the above model, coherence is inductively defined as a symmetric relationship be-
tween an arbitrary set of process attributes. We use AG(g) as a shorthand for A(G(g)) and
AX (g) for A(X (g)).

Definition 7.3.1. The property "attribute b follows attribute a" is:

f ol low s(a,b) = AG(

l ast (a)∧a 6= b =⇒ AX(A(¬l ast (a)∧¬l ast (b) U l ast (b)∧a = b))

Attribute b follows attribute a iff after the value of a is changed, attribute a and b remain
unchanged until the same change is applied to b.

Definition 7.3.2. "The property "attribute a and b are coherent" is:

coher ent (a,b) = f ol low s(a,b)∧ f ol l ow s(b, a)

Coherence is a symmetric relationship between attributes, such that whenever the value of
either one of the attributes is changed, the related attribute must follow suit.

Definition 7.3.3. Let C denote a set of attributes. The property "attribute set C is coherent"
is defined as:

coher ent (C) =∧
{coher ent (a,b) | a,b ∈C }

The set is coherent only if all possible combinations of its members are coherent. This
implies that all members apply the requested attribute value update before they consider
any new update requests. For instance, suppose that all attributes of a set a1 . . . an initially
have value 0 and we apply the update [a2 7→ 1]. The relation coher ent (a1, a2) requires that

33

a1 must update to the same value as a2, before both a1 and a2 are allowed to apply any
other changes. The same restriction applies to the other attributes. An update [a3 7→ 2]
would break the relation coher ent (a2, a3). Since a2 6= a3 and a2 = 1, the only acceptable
change for a3 in this state is [a3 7→ 1].

7.4 CALCULUS EXTENDED WITH COHERENCE MODEL

The designed calculus does not yet track the impact of state transitions on coherence. We
will now add the coherence model to this calculus.

7.4.1 COHERENCE MODEL AS GLOBAL LANGUAGE EXTENSION

Figure 7.2 shows the integration of the coherence model, defined in Section 7.2, as an exten-
sion of the global language using an extra layer of operational semantics. Our operational
semantics assume that roles manage at most a single attribute. Conveniently, the name
of an attribute is derived from the corresponding role name. This suffices to demonstrate
how coherence can be expressed. More attributes per role could be supported by adding a
target attribute name to send and receive actions alongside the transferred value.

G
cpq !v−−−→G ′

(a,m,G)
cpq !v−−−→ (a,m,G ′)

G
cpq ?v−−−−→G ′

(a,m,G)
cpq ?v−−−−→ (q,m[q 7→ v],G ′)

G ↓

(a,m,G) ↓
Figure 7.2: Additional layer of global language operational semantics to integrate coherence model

Informally, a send action does not change any attributes. A receive action updates the tar-
geted attribute with a new value and registers that this attribute has been most recently
changed. The system extended with the model terminates when the system terminates.

7.4.2 COHERENCE AS LOCAL LANGUAGE EXTENSION

We annotate the local language system perspective with the coherence model. This pro-
duces an additional layer in the rules of the operational semantics similar to the extension
of the global language, except that a rule for idle actions is introduced.

The operational semantics layer is displayed in Figure 7.3. Informally, send or idle actions
do not change any coherence related attributes. A receive action updates the value of an
attribute and registers this attribute as the most recently changed attribute. The system
with coherence annotations terminates when the system terminates.

34

C , Z
cpq !v−−−→C ′, Z ′

(a,m,C , Z)
cpq !v−−−→ (a,m,C ′, Z ′)

C , Z
cpq ?v−−−−→C ′, Z ′

(a,m,C , Z)
cpq ?v−−−−→ (q,m[q 7→ v],C ′, Z ′)

C , Z
τ−→C ′, Z ′

(a,m,C , Z)
τ−→ (a,m,C ′, Z ′)

C , Z ↓

(a,m,C , Z) ↓
Figure 7.3: Addition layer of local language operational semantics to integrate coherence model

7.4.3 ENDPOINT PROJECTION INCLUDING COHERENCE

The projection of global protocols annotated with coherence information is the earlier pro-
jection operator defined in Section 6.3, extended with:

(a,m,G) � r = ([ar 7→ a], [mr 7→ m[r]],G � r)

(a,m,G) ��RG = {r 7→ (a,m,G) � r | r ∈ RL} if RG ⊆ RL 6= ;

Informally, the projection of a global protocol with coherence annotations to a role results
in a similar local protocol with a segment of the m annotation holding the attribute man-
aged by the role, and a copy of the a annotation. The projection of an annotated global
protocol onto a set of roles is the corresponding group of projections, provided that the set
of roles is not empty and there exists a local protocol for at least each role in the set.

Model checking confirms that the above projection is sound and complete. Section 8.2
describes this validation in more detail.

Note that our projection also reveals that not all coherence related information is trans-
ferable to local protocols. Individual endpoints are unable to track which attribute has
changed most recently, since they lack a system-wide overview of all interactions. As a
consequence, endpoints are provided with a local element a that is correct initially, yet will
not properly reflect all subsequent state changes.

35

8
VALIDATION OF THE

COHERENCE-EXTENDED CALCULUS

In this chapter we validate our interaction calculus and its ability to support coherence.
We use a calculus implementation and model checking. Our final test case is the data grid
problem case, formalized in Chapter 5. Verification confirms that the coherence property
does not hold for this protocol.

8.1 IMPLEMENTATION OF CALCULUS IN MCRL2

We implement a protocol simulator for our calculus in mCRL2 [5]. See Appendix C for a
listing of the source code.

Our protocol simulator, shown in Figure 8.1, is a network of communicating automata. One
automaton interpretes the concrete protocol. The remaining automata simulate a system
of interacting processes that execute the protocol.

protocol
interpreter

coherence

channels

roles

interactions

Figure 8.1: Protocol simulator overview

The composition of the simulated system mimics the layered structure of the operational
semantics of our calculus. At its foundation are automata that represent an interacting
process (role). A next layer consists of automata that model a channel between two partic-
ipating processes. The top layer is implemented as a single automaton that keeps track of
coherence.

Figure 8.2 displays automata that are involved in an example data transfer cap .v . Each row
depicts state changes of a single automaton. The automata communicate with each other

36

via synchronized actions, shown in the same color. We use red to depict synchronized
actions related to a send, and blue for actions that relate to a receive.

Protocol
interpreter

G Fap .v G ′
cap !v cap ?v

Coherence
tracker

trackSnd
trackRcv lastRole lastEq

Channel
A → P

ap ap ′enqueue dequeue

Role P
attribute

p p’
updateProp

Figure 8.2: Communications between automata, protocol simulator

The protocol interpreter automaton interpretes a concrete protocol as a composition of
data transfers, in line with the calculus syntax. Each data transfer results in two actions.
The automaton first communicates a cap !v send action and subsequently communicates a
cap ?v receive action.

These send and receive actions are processed by the other automata, the simulated sys-
tem. Sent data is first captured in a channel queue, and subsequently passed on to a role.

The channel automaton ap represents a unidirectional channel from process a to process
p. When it synchronizes with the send action communicated by the protocol interpreter,
it adds the transfered value to its first-in-first-out queue. When it synchronizes with the
receive action sent by the protocol interpreter, it performs a dequeue of the transfered
value.

The recipient role automaton p is the recipient of the data transfer. It models the partici-
pating process p, or more precisely it models the persistent attribute that this process man-
ages. It synchronizes with a receive / dequeue action, and updates its attribute with the
transfered value.

Finally, the coherence tracker automaton simulates the coherence annotation layer of our
calculus. When it synchronizes with a receive action, it subsequently makes two transi-
tions. First, it sends an action lastRole, which communicates the name of the attribute
that is being changed. Next, it sends an action lastEq, which communicates if the updated
value of this attribute is equivalent to the other, related attribute. These actions are not syn-
chronized with other actions. They merely report a state. We test for the occurrence of the
two actions in our coherence checking formula.

Note that the coherence tracker synchronizes on send actions as well. This approach pre-
vents that any new send or receive can interleave with the processing of a prior send or
receive action by the coherence tracker. As a result, our model checking formula may as-

37

sume that a receive action is always immediately followed by the actions lastRole and
lastEq.

Both global protocols and local protocols are supported by the simulator. Our program
includes an explicit implementation for the term transfer used in the global calculus and
the actions send and receive that feature in both the global and the local calculus. All
other constructs are implemented using native mCRL2 functions. This includes the action
tau, as well as the compositions sequential, choice, recursion, and parallel.

8.2 VALIDATION OF PROJECTION FROM GLOBAL TO LOCAL CAL-
CULUS

We use model checking to validate the projection of our interaction calculus to the local
endpoint calculus. The designed projection is sound and complete if a labeled transition
system specified using a global interaction protocol, is weakly bisimilar to a system com-
posed of projected endpoints and channels [16]. This requires that the two systems will
abide by the same rules and transition in sync. The adjective weak expresses that the re-
quirement does not apply to τ transitions which are entirely internal to a process.

We model check bisimularity using two protocol samples. Apart from the concrete proto-
col specification, all our simulations are based on the same simulation program code. All
simulations will include relevant channels and the coherence tracker.

First, we sample a ’good’ protocol Gg . The syntax C (a, p,one) is used by the protocol sim-
ulator program to implement a transfer cap .v where [v 7→ one]. In global protocol Gg , role
a transfers either the value one or the value t wo to role p. Once this has been done, and
regardless of the value received, role p communicates either the value one or t wo to role
q .

Gg =(C (a, p,one)+C (a, p, t wo)) · (C (p, q,one)+C (p, q, t wo));

We project11 this global interaction to a parallel composition Lg of three endpoint proto-
cols. Upon a data transfer, roles will execute either a send action, or a receive action, or
not participate in the interaction by performing a tau action.

Lg a = (send(a, p,one)+ send(a, p, t wo));

Lg p = (receive(a, p,one)+ receive(a, p, t wo)).

(send(p, q,one)+ send(p, q, t wo)) · tau;

Lg q = tau · (receive(p, q,one)+ receive(p, q, t wo));

Lg = Lg a || Lg p || Lg q ;

The output of the mCRL2 bisimulation checking tool ltscompare confirms that the corre-
sponding labeled transition systems are weakly bisimilar.

11We use the projection operator documented in Sections 6.3 and 7.4.3.

38

Our second sample involves a counter-example Gb and its projection Lb :

Gb =C (a, p,one) ·C (b, q,one);

Lba = send(a, p,one) · tau;

Lbb = tau · send(b, q,one);

Lbp = receive(a, p,one) · tau;

Lbq = tau · receive(b, q,one);

Lb = Lba ||Lbb ||Lbp ||Lbq ;

Gb is an example of a bad protocol, as its specification cannot be followed through correctly
by endpoints. The protocol specifies that role b may start a communication only after the
communication between roles a and p has completed. However, role b is not involved
in the prior communication and therefore it lacks the relevant knowledge to time its own
communication.

Model checking confirms that the labeled transition systems for Gb and Lb are not (weakly)
bisimilar.

8.3 VALIDATION OF COHERENCE EXPRESSIVENESS

We use the protocol simulator program to validate that we can reason about coherence
using the combination of 1) our calculus and 2) our coherence definition.

We note that the mCRL2 model checker offers limited support for checking state variables
and no support at all for formulas stated in CTL. The coherence tracker function in our
simulation program resolves the first limitation by reporting coherence state information
as actions (lastRole and lastEq). We transpose the coherence property CTL formula to a
µ-calculus based version, to resolve the second limitation. The resulting formula is listed
in Appendix D.

Using the mCRL2 tools lts2pbes and pbes2bool, we verify that the property complies with
the expected result from transitions listed in the Kripke structure in Figure 7.1. In addition,
we verify test cases that involve sequential, choice, recursion and parallel compositions.
These test cases are listed in Appendix E.

Finally, we test our data grid problem use case:

G =C (a, p,one) ·C (a, q,one) ||C (b, p, t wo) ·C (b, q, t wo);

In our test protocol, a and b are agents, p manages a data object, and q manages a replica.
Agent a sends the value one whereas agent b sends value t wo. Verification confirms that
this concrete protocol does not protect coherence.

39

9
PROTOTYPE LANGUAGE EXTENSIONS THAT

PROTECT COHERENCE

In the previous chapters, we designed and implemented a calculus. Using this calculus, we
are able to detect if a protocol meets coherence requirements. We will now discuss how this
calculus can be used to protect coherence. Our prototype implementation adds (un)lock
operations to the calculus, and deploys a strategy named chained-coherence.

9.1 TOWARDS A STRATEGY FOR COHERENCE PROTECTION

Ordering data operations is key to data coherence protection, similar to data consistency
protection. In both cases, the desired property is potentially endangered by interleaved
processing of data. This threat is mitigated by requiring that the execution of data opera-
tions meets an agreed upon order.

The inevitable balance between consistency and other desired properties of distributed
systems has lead to multiple consistency models with different ordering requirements [30].
With regard to coherence, we propose to use the ordering requirements as specified in the
coherence property Definition 7.3.3. These requirements implement a sequential consis-
tency model for coherence.

While a protocol specification may enforce some ordering in interactions, this will in gen-
eral not be sufficient to protect coherence. Our data grid problem case is an example of a
protocol that does not protect coherence as a result of interleaved interactions. Note that
even if a protocol itself does not include interleaved operations, the interleaved execution
of multiple instances of such a protocol might introduce risks to data coherence.

A contract between processes can be used to protect coherence. For instance, we may con-
sider to add a mutual exclusive access mechanism to our calculus so that processes can
synchronize their operations. Alternatively, the mechanism could be implemented on a
service level. For example, a coordinating server agent might choose to only accept one

40

connection at a time, effectively disallowing interleaved execution of the protocol. Clearly,
this alternative approach may introduce significant throughput limitations.

We will prototype a solution to our coherence problem that builds on our calculus extended
with lock and unlock operations. Locking all attributes could be considered to enforce ex-
clusive access in a scenario where we protect coherence between two attributes. Scenarios
that involve more related attributes may require a more sophisticated strategy, which we
will discuss next.

9.2 THROUGHPUT CONSIDERATIONS FOR COHERENCE

Whenever attributes need to remain coherent, this limits the throughput of update op-
erations on those attributes. The throughput limitation stems from the requirement that
attributes may not be updated in isolation. All attributes need to be updated to the same
value, before a subsequent request can be processed. This can be a time-consuming opera-
tion when the attributes are managed by geographically distributed processes that interact
via a high-latency network. Also note that the size of an attribute set will have a negative
impact on throughput.

a b c d e

coher ent (a,b) coher ent (b,c) coher ent (c,d) coher ent (d ,e)∧ ∧ ∧

Figure 9.1: Chained-coherence with five attributes

We propose a chained-coherence strategy to increase the throughput for large coherent
sets. This implementation strategy involves the deployment of linked subsets of coher-
ent attributes instead of processing a single large set. For instance, in order to meet the
requirement coher ent (a,b,c) one might consider to only implement coher ent (a,b) and
coher ent (b,c). Since attribute b is part of both subsets, any update to b must also be ap-
plied to both a and c and vice versa. The chained-coherence strategy guarantees that up-
date requests will be applied to all attributes, in the same order. In contrast to using a single
large set, the approach using linked subsets does not prohibit any processing of a subse-
quent request until an update has been applied to all attributes.

a b c d e
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
2 2 1 1 0
3 2 2 1 1

Figure 9.2: Single-chain approach

a b c d e
0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
1 1 2 1 1
1 2 2 2 1
2 2 3 2 2

Figure 9.3: Two-chain approach

There are many options for the implementation of a coherence-chain strategy. We will use
an example with five attributes as outlined in Figure 9.1 to discuss a single-chain and a

41

two-chain implementation.

Figure 9.2 shows state changes resulting from a single-chain (a-b-c-d-e) approach. Each
row represents a state with the current value per attribute. First, attribute a is updated with
the new value 1, then this change is applied to b, followed by c then d and finally e. The
fourth row demonstrates how attribute a is free to apply a next update request (value 2) as
soon as b is on par with the previous request, resulting in a processing pipeline.

Figure 9.3 showcases an approach with two chains: c-b-a and c-d-e. First, attribute c is up-
dated. Subsequently, the chains can be updated in parallel without the risk of endangering
coherence. As soon as b and d both have applied the update, then attribute c is free to pro-
cess a next update request. This approach is slightly more involved than the single-chain,
yet results in a higher throughput. The last row shows how a second update request has
been applied to four attributes, compared to two attributes in the single-chain approach.

9.3 PROTOTYPE WITH COHERENT UPDATE

Can we extend our calculus syntax with an operation that protects coherence? We add
a new operation CohUpd that implements chained-coherence with a single-chain. We
change our data grid problem test case to use this operation:

G = CohUpd(a, [p, q],one) || CohUpd(b, [p, q], t wo);

Our solution is based on the calculus designed in Chapter 7, extended with CohUpd, lock,
and unlock operations. A role that executes a lock operation will block until the lock is
acquired. The actual protocol simulator source code changes and additions are listed in
Appendix F. Conceptually, the pseudo code listed in Figure 9.4 summarizes our protocol

CohUpd(fromRole , toList , value) {
n = length (t o L i s t) ;
for (i = 0 ; i < n ; i ++) {

lock (i) ;
i f (i > 1) then

unlock (i −2);
t r a n s f e r (fromRole , i , value) ;
ack (i , fromRole) ;

}
unlock (n−2);
unlock (n−1);

}

Figure 9.4: Pseudo code for coherent update operation

simulator implementation of the coherent update operation. The CohUpd operation iter-
ates through the targeted destinations in a fixed order. It acquires a lock on the attribute
managed by the target role, then transfers the new value to the target role, and waits for
acknowledgement that the role has completed an update of its attribute. The oldest lock is
released, but only if at least two attributes remain locked. After all target roles have been

42

visited, the remaining locks are released.

Model checking confirms that the coherence property indeed holds for this protocol. Note
that our prototype implements the locking mechanism provisionally as a responsibility of
the process managing the attribute. While this seems a promising approach, further re-
search will be needed to investigate how our calculus should incorporate mutual exclusive
access.

43

10
DISCUSSION AND CONCLUSIONS

10.1 DISCUSSION

The multiparty asynchronous session types theory allows us to reason over interactions
between processes. We build on this theory to establish how data coherence is affected by
interactions.

The original MPST calculus, designed by Honda et al., introduces constructs and a type
discipline to structure interactions between processes [14]. We provide similar constructs
to structure interactions, yet we focus on concrete values that are being exchanged rather
than typed messages. Montesi note that the general idea to specify process interactions in
a global program and subsequently project this program to endpoint nodes constitutes a
new paradigm, which they name choreographic programming [23].

Jongmans and Yoshida have enhanced the MPST calculus by Honda et al. to make it more
expressive [16]. Their calculus supports both synchronous and asynchronous communi-
cations. Asynchronous communications are supported implicitly by modeling channels
as additional roles. Cruz-Filipe and Montesi argue that encoding asynchronous commu-
nications using roles simplifies the grammar [9]. In contrast, we provide explicit support
for (only) asynchronous communications. Our approach bears the advantage that com-
munication actions can be treated uniformly with regard to coherence annotations. For
instance, in our calculus a receive action will always pertain to a process receiving data, it
will never relate to a channel that receives a value to be queued.

Based on the CAP theorem, we work from the assumption that coherence in a non-trans-
actional distributed system will require a compromise between consistency and availabil-
ity [11]. As a consequence, our definition of coherence uses an equivalence relationship
that is almost invariant. When an attribute’s value changes, related attributes are allowed
to temporarily carry the original value, until they are updated as well. Clearly, a more strict
definition would be feasible, if we can restrict our context to transactional distributed sys-
tems. For instance, Spillane et al. have researched how transactional access can be en-

44

abled for subsystems that do not natively support transactions [25]. While it was possible
to add transaction support to a POSIX based file system, their conclusion is that adding
transaction support mechanisms is not easy to accomplish efficiently in existing operating
systems.

We have validated our research using a limited set of samples that cover most of the syn-
tactical compositions offered by our calculus. Some compositions are difficult to validate
though. In particular, mCRL2 does not support scenarios that involve a combination of
interleaving and recursion. Instead, we have validated these constructs in isolation.

Our research covers an attribute update operation only. While this is a common and funda-
mental operation, distributed systems such as a data grid provide other functions that have
remained out of scope. For instance, moving a collection tree with multiple data objects to
a new location as a compound operation is an example of a scenario that may involve a
nested form of coherence.

The chained-coherence strategy has been tested under simulator conditions. Further bench-
marking experiments will be needed to assess the actual impact on throughput perfor-
mance and to benchmark these results against alternative approaches.

10.2 CONCLUSIONS

Our research provides a method that can be used to prove that data remains coherent in the
context of a non-transactional distributed system. For instance, this method could be ap-
plied to interactions of a data grid. Concrete interactions specified in a domain specific lan-
guage based on our calculus can be analyzed statically to verify that they meet coherence
requirements. As suggested by our prototype, our calculus can be used as a foundation to
develop interactions that protect coherence.

Our method can be applied to analyze interactions in existing systems using protocol sim-
ulation. We have demonstrated this capability by successfully applying the method to an
existing data grid issue.

We recommend to use linked coherent subsets in scenarios where coherence is required for
a large set of attributes. Our research suggests that throughput performance may benefit
from using linked subsets over a single large set. The related chained-coherence strategy
requires that all processes agree on processing the data in the same order.

10.3 FUTURE WORK

How well can we specify all data grid process interactions using a choreographic program-
ming paradigm? We have assumed an ideal interaction context where messages are com-
municated without exception and processes are able to update their attributes in a proper
and timely fashion. In our prototype, we have combined choreographic programming with
mutual exclusive access mechanisms. More research will be needed to establish how our

45

calculus can facilitate exception handling and negotiation between processes.

Next to protection of coherence, research is needed to investigate how choreographic pro-
gramming methods could be used to specify how to reintroduce coherence after it is lost.
For instance, Cherrier and Ghamri-Doudane provide a method for coherence fault-recovery
in the context of an unreliable Internet Of Things network infrastructure [6]. How can we
cater for fault recovery in our calculus?

We have concluded that coherence is a system-level property. Our current method does
not provide endpoint nodes with sufficient state information needed to make informed
decisions related to coherence. Prior research, for instance Lloyd et al., shows that endpoint
nodes can be provisioned with state information by using data versioning annotations [20].
Can we combine these methods with choreographic programming to efficiently manage
coherence at the endpoint node level?

46

A
SOFTWARE COMPONENTS USED IN

RESEARCH

The following software components have been used in the context of this research:

• Antlr version 3.5.2

• Eclipse Photon (4.8.0)

• iRODS 4.2.6

• Java-8-openjdk (JavaSE-1.8)

• Linux Debian Buster 4.19

• Maven 3.6.0

• mCRL2 toolset 202106.0

• OpenJDK Runtime Environment (build 11.0.7+10-post-Debian-3deb10u1)

• Scribble release-0.4.3 (supports par syntax)

• Scribble12 at release-0.4.3 with additional changes (last git commit 13-May-2019,
53e520a8cd916bfadd20db947568f676210d350c) (much improved, yet does not sup-
port par syntax)

• UPPAAL 4.1.22

• UPPAAL Tiga 4.1.4

The software created during this research, (UPPAAL model and mCRL2 protocol simulator)
is open access available via DOI 10.5281/zenodo.6366593
12See https://github.com/scribble/scribble-java/

47

https://doi.org/10.5281/zenodo.6366593

B
UPPAAL MODEL OF PROBLEM USE CASE

Below is a partial listing of the UPPAAL source code used to model the problem use case
and prototypes.

The global declaration section shown in Figure B.1 provides details on identifiers used in
diagrams discussed in Section 5.2. Local declarations for templates, not shown here, are
limited to the declaration of a variable used for iteration, if any.

// A i s number of agents that concurrently modify a data object property
const int A = 3 ;
typedef int [0 ,A−1] id_a ; // agent id ’ s

// R i s number of r e p l i c a s that a data object has
const int R = 3 ;
typedef int [0 ,R] id_obj ; // objects (both data object and r e p l i c a s)
typedef int [1 ,R] id_r ; // r e p l i c a s only

// global state , property of the dataobject and i t s r e p l i c a s
// agents update the data / r e p l i c a object with the value representing t h e i r id
id_a objValue [id_obj] ; // current p e r s i s t e n t value held at Object (update i s applied)
id_a objRead [id_obj] ; // l a s t value received via Read by Object (update i s read)

// communication channels between agents and objects
chan upd[id_obj] , ack [id_obj] ;
meta id_a updValue ; // the value that the object ’ s property w i l l be set to

// communication channels between agents and locks
const int MUTEX = 0 ; // f i r s t object ’ s mutex also used for generic mutex lock
chan lock [id_a] [id_obj] , unlock [id_a] [id_obj] ; // one mutex per object
id_a currentLock [id_obj] ;

Figure B.1: Global declarations for problem use case model in UPPAAL

48

C
PROTOCOL SIMULATOR IN MCRL2

sort RoleName = s t r u c t a | b | p | q | r ;
sort Value = s t r u c t zero | one | two | three | four | ack ;
sort SyncStates = s t r u c t f i r s t | second | more ;

act send , enqueue , trackSend , send ’ ,
receive , dequeue , updateProp , trackReceive ,

receive ’ : RoleName # RoleName # Value ;
lastRole : RoleName ;
lastEq : Bool ;

proc Role ’ (N: RoleName , prop : Value) =
sum from : RoleName , v : Value . ((N != from) −> updateProp (from ,N, v) . Role ’ (N, v)) ;

Channel ’ (from , to : RoleName , data : L i s t (Value) , s i z e : Int) =
sum v : Value . ((s i z e < 5) −> enqueue (from , to , v) .

Channel ’ (from , to , data <| v , succ (s i z e))) +
(s i z e > 0) −> dequeue (from , to , head (data)) .

Channel ’ (from , to , t a i l (data) , pred (s i z e)) ;

Figure C.1: Protocol simulator model, part 1

49

Coherence ’ (coh1 , coh2 : RoleName , coh1val , coh2val : Value , l a s t : RoleName) =
sum from , to : RoleName , v : Value .
(to == coh1) −> (trackReceive (from , to , v) .

lastRole (to) . lastEq (v==coh2val) .
Coherence ’ (coh1 , coh2 , v , coh2val , to)) +

sum from , to : RoleName , v : Value .
(to == coh2) −> (trackReceive (from , to , v) .

lastRole (to) . lastEq (v==coh1val) .
Coherence ’ (coh1 , coh2 , coh1val , v , to)) +

sum from , to : RoleName , v : Value .
((to ! = coh1) && (to != coh2)) −> (trackReceive (from , to , v) .

lastRole (to) . lastEq (coh1val==coh2val) .
Coherence ’ (coh1 , coh2 , coh1val , coh2val , to)) +

sum from , to : RoleName , v : Value . (trackSend (from , to , v) .
Coherence ’ (coh1 , coh2 , coh1val , coh2val , l a s t)) ;

% Data t r a n s f e r ’Cpq’ i s a basic construct of our global language :
C(from : RoleName , to : RoleName , v : Value) = send (from , to , v) . receive (from , to , v) ;

% −−−−−−−−−− a t e s t s e t of concrete instances of coherence model protocol
G0 = C(a , p , one) . C(a , q , one) ; % coh (p , q) = true (s0 , s1 , s3)

% i n i t i a l i z a t i o n
Role (N: RoleName) = Role ’ (N, zero) ;
Chan(from , to : RoleName) = Channel ’ (from , to , [] , 0) ;
Coherence (r1 , r2 : RoleName) = Coherence ’ (r1 , r2 , zero , zero , a) ;

i n i t allow ({ send ’ , receive ’ , lastRole , lastEq } ,
comm({ send | enqueue | trackSend −> send ’ ,

receive | dequeue | updateProp | trackReceive −> receive ’ } ,
Role (a) | | Role (b) | | Role (p) | | Role (q) | | Role (r) | |
Chan(a , p) | | Chan(a , q) | | Chan(a , r) | | Chan(b , p) | | Chan(b , q) | |
Chan(b , r) | | Chan(p , q) | | Chan(p , r) | | Chan(q , p) | | Chan(q , r) | |
Chan(r , p) | | Chan(r , q) | | Coherence (p , q) | |
G0)) ;

Figure C.2: Protocol simulator model, part 2

50

D
COHERENCE PROPERTY TRANSPOSED TO

µ-CALCULUS

% Our d e f i n i t i o n of coherence in CTL :
% coherence (p , q) = follows (p , q) AND follows (q , p)
% follows (p , q) = l a s t (p) AND (p!=q) => AX(
% A(not l a s t (p) AND not l a s t (q) U l a s t (q) AND (p==q)))

% Implementation of the above CTL formula in mcrl2 muCalculus syntax :
% part 1 : fol lows (p , q)
% part 2 : fol lows (q , p)

(
% part 1 :
[true * . lastRole (p) . lastEq (f a l s e)] (% 1a : AG(l a s t (p) AND p != q =>)

[! lastRole (q) * . lastRole (p)] f a l s e % 1b : A(not l a s t (p) U l a s t (q)
&& % NB: remainder of Until clause

% i s checked as part of 1c
% 1c : A(not l a s t (q) U l a s t (q) AND (p==q))

[! lastRole (q) * . lastRole (q) . lastEq (f a l s e)] f a l s e
)

&&
% part 2 :
[true * . lastRole (q) . lastEq (f a l s e)] (

[! lastRole (p) * . lastRole (q)] f a l s e &&
[! lastRole (p) * . lastRole (p) . lastEq (f a l s e)] f a l s e

)
)

Figure D.1: Coherence property implementation in µ-calculus

51

E
TEST CASES PROTOCOL SIMULATOR

% t e s t of basic t r a n s i t i o n s as shown in f i g u r e Kripke structure
% (excluding mirrorred cases)
% s0 . . s6 r e f e r to s t a t e s in f i g u r e Thesis report

G0 = C(a , p , one) . C(a , q , one) ; % coh (p , q) = true (s0 , s1 , s3)
G1 = C(a , p , one) . C(a , q , two) ; % coh (p , q) = f a l s e (s0 , s1 , s4)
G2 = C(a , p , one) . C(a , p , two) ; % coh (p , q) = f a l s e (s0 , s1 , s6)

% t e s t s of data grid use case p = data object , q = r e p l i c a
G3 = C(a , p , one) . C(a , q , one) | | C(b , p , two) . C(b , q , two) ; % coh (p , q) = f a l s e (race)
G4 = C(a , p , one) . C(a , q , one) . C(b , p , two) . C(b , q , two)+

C(b , p , two) . C(b , q , two) . C(a , p , one) . C(a , q , one) ; % coh (p , q) = true
% (d i f f e r e n t protocol solves race)

% other testca ses that exercise language constructs and model checking formula

% interleaved update of non−related a t t r i b u t e
G10= C(a , p , one) . C(a , r , one) . C(b , q , one) ; % coh (p , q) = true
G11= C(a , p , one) . C(a , r , one) . C(a , q , two) ; % coh (p , q) = f a l s e

% choice constructs
G12= C(a , p , one) . C(a , r , one) .

(C(a , q , one) + C(a , p , two)) ; % coh (p , q) = f a l s e
G13= C(a , p , one) . C(a , r , one) .

(C(a , q , one) + C(a , r , two)) ; % coh (p , q) = true

% p a r a l l e l construct
G14= C(a , p , one) . C(a , q , one) | | C(b , r , two) ; % coh (p , q) = true

% recursive construct
G15= C(a , p , one) . C(a , q , one) .

C(a , q , two) . C(a , p , two) . G15 ; % coh (p , q) = true

Figure E.1: Test cases for protocol simulator

52

F
PROTOCOL SIMULATOR EXTENSIONS TO

SUPPORT COHERENT UPDATE

% our CohUpd keeps s t a t e via SyncStates
sort SyncStates = s t r u c t f i r s t | second | more ;

% locking actions added
act lock , lock ’ , unlock , unlock ’ : RoleName # RoleName ;

% Role ’ updated to also respond to (un) lock requests
proc Role ’ (N: RoleName , prop : Value , locked : Bool , holder : RoleName) =

sum from : RoleName , v : Value . ((N != from) −>
updateProp (from ,N, v) . Role ’ (N, v , locked , holder)) +

% unlock
sum requester : RoleName . ((locked && (requester==holder)) −>

unlock (requester ,N) . Role ’ (N, prop , f a l s e , requester)) +
% lock
sum requester : RoleName . ((! locked) −>

lock (requester ,N) . Role ’ (N, prop , true , requester)) ;

% Role needs to also maintain lock s t a t e
Role (N: RoleName) = Role ’ (N, zero , f a l s e , a) ;

Figure F.1: Protocol simulator cohUpd extensions, part 1

53

% CohUpd and CohUpd’ added

CohUpd(from : RoleName , t o L i s t : L i s t (RoleName) , v : Value) =
((# t o L i s t > 1) && ! (from in t o L i s t)) −>

% at l e a s t 2 r ol es coherent , ’ from ’ must not be one of them
CohUpd’ (f i r s t , from , toList , v , []) ;

CohUpd’ (syncState : SyncStates , from : RoleName , todoList : L i s t (RoleName) ,
v : Value , doneList : L i s t (RoleName)) =

(syncState == f i r s t) −> (lock (from , head (todoList)) .
C(from , head (todoList) , v) . C(head (todoList) , from , ack) .
CohUpd’ (second , from , t a i l (todoList) , v , doneList < | head (todoList))) +

(syncState == second) −> (lock (from , head (todoList)) .
C(from , head (todoList) , v) . C(head (todoList) , from , ack) .
CohUpd’ (more , from , t a i l (todoList) , v , doneList < | head (todoList))) +

((syncState == more) && (todoList != [])) −> (lock (from , head (todoList)) .
C(from , head (todoList) , v) . C(head (todoList) , from , ack) .
unlock (from , head (doneList)) .
CohUpd’ (more , from , t a i l (todoList) , v , t a i l (doneList) < | head (todoList))) +

((syncState == more) && (todoList == [])) −>
((doneList != []) −>

(unlock (from , head (doneList)) .
CohUpd’ (more , from , [] , v , t a i l (doneList)))) ;

% locking actions added
i n i t

allow (
{ send ’ , receive ’ , lastRole , lastEq , lock ’ , unlock ’ } ,

comm(
{ send | enqueue | trackSend −> send ’ ,

receive | dequeue | updateProp | trackReceive −> receive ’ ,
lock | lock −> lock ’ , unlock | unlock −> unlock ’

} ,

Figure F.2: Protocol simulator cohUpd extensions, part 2

54

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Sung-Shik Jongmans, who inspired and supported
me during this research, and who provided me with many valuable insights and ideas. Sung
showed me how research of formal languages can be an exciting, enjoyable and worthwhile
journey and I feel blessed that he was my supervisor.

I appreciate the friendship and support of my fellow student Roel Erps. We have been bud-
dies, sharing our highs and lows, during the entire (pre)master, working together on many
course assignments.
Further, I like to thank Sietse Snel, for taking the time to review and comment on an early
draft of my thesis. I hope to be able to return the favor.

Last but not least, I wish to dearly thank Tineke, my loving partner forever, whose love and
support fuels all my endeavors.

55

BIBLIOGRAPHY

[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
Causal memory: definitions, implementation, and programming. Distributed Com-
puting, 9(1):37–49, March 1995. ISSN 1432-0452. doi: 10.1007/BF01784241. URL
https://doi.org/10.1007/BF01784241. 8

[2] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. UP-
PAAL—a tool suite for automatic verification of real-time systems. In International
hybrid systems workshop, pages 232–243. Springer, 1995. 15, 17, 21

[3] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77 – 121, 1985. ISSN 0304-3975. doi: https:
//doi.org/10.1016/0304-3975(85)90088-X. URL http://www.sciencedirect.com/
science/article/pii/030439758590088X. 26

[4] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed and symbolic
reachability. In International Conference on Computer Aided Verification, pages 354–
359. Springer, 2010. 17

[5] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele,
Erik P. de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2
Toolset for Analysing Concurrent Systems. In Tomáš Vojnar and Lijun Zhang, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 21–39, Cham,
2019. Springer International Publishing. ISBN 978-3-030-17465-1. 17, 36

[6] Sylvain Cherrier, Yacine M Ghamri-Doudane, Stéphane Lohier, and Gilles Roussel.
Fault-recovery and coherence in internet of things choreographies. In 2014 IEEE World
Forum on Internet of Things (WF-IoT), pages 532–537. IEEE, 2014. 46

[7] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The
data grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Computer Applications, 23(3):187 –
200, 2000. ISSN 1084-8045. doi: https://doi.org/10.1006/jnca.2000.0110. URL http:
//www.sciencedirect.com/science/article/pii/S1084804500901103. 4, 5, 6

[8] Edmund M Clarke Jr, Orna Grumberg, and Doran A Peled. Model checking. MIT Press,
Cambridge, Massachusetts, 1999. 32

[9] Luís Cruz-Filipe and Fabrizio Montesi. Encoding asynchrony in choreographies. In
Proceedings of the Symposium on Applied Computing, pages 1175–1177, 2017. 44

[10] Wan Fokkink. Introduction to Process Algebra. Springer Berlin Heidelberg,
2000. doi: 10.1007/978-3-662-04293-9. URL https://doi.org/10.1007/
978-3-662-04293-9. 26

56

https://doi.org/10.1007/BF01784241
http://www.sciencedirect.com/science/article/pii/030439758590088X
http://www.sciencedirect.com/science/article/pii/030439758590088X
http://www.sciencedirect.com/science/article/pii/S1084804500901103
http://www.sciencedirect.com/science/article/pii/S1084804500901103
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9

[11] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services. SIGACT News, 33(2):51–59, June 2002. ISSN
0163-5700. doi: 10.1145/564585.564601. URL https://doi.org/10.1145/564585.
564601. Place: New York, NY, USA Publisher: Association for Computing Machinery.
2, 44

[12] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990. Publisher: ACM New York, NY, USA. 7

[13] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In Chris Hankin, ed-
itor, Programming Languages and Systems, pages 122–138, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg. ISBN 978-3-540-69722-0. 9, 10

[14] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 273–284, 2008. 3, 10, 15, 44

[15] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko
Yoshida. Scribbling Interactions with a Formal Foundation. In Raja Natarajan and
Adegboyega Ojo, editors, 7th International conference on Distributed Computing and
Internet Technology, pages 55–75, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg. ISBN 978-3-642-19056-8. 10, 15, 19, 20

[16] Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards
more expressive multiparty session types. In European Symposium on Programming,
pages 251–279. Springer, Cham, 2020. 16, 17, 25, 27, 29, 38, 44

[17] Saul A Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica,
16:83–94, 1963. 16, 32

[18] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691, 1979. 7, 8

[19] Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101,
1986. Publisher: Springer. 2

[20] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pages 401–416, 2011. 8, 46

[21] David Mazieres and Dennis Shasha. Building secure file systems out of Byzantine stor-
age. In Proceedings of the twenty-first annual symposium on Principles of distributed
computing, pages 108–117, 2002. 8

[22] Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and algebra of specification,
pages 203–246. Springer, 1993. 10

57

https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601

[23] Fabrizio Montesi. Choreographic programming. PhD thesis, University of Copen-
hagen, Denmark, 2013. 44

[24] B.C. Pierce, B. C, Coutts Information Services, and M. I. T. Press. Types and Program-
ming Languages. The MIT Press. MIT Press, 2002. ISBN 978-0-262-16209-8. 10

[25] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and Charles P.
Wright. Enabling Transactional File Access via Lightweight Kernel Extensions. In Proc-
cedings of the 7th Conference on File and Storage Technologies, FAST ’09, pages 29–42,
USA, 2009. USENIX Association. event-place: San Francisco, California. 45

[26] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2nd edition edition, 2007. ISBN 0-13-239227-5. 1, 2, 3

[27] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M Theimer,
and Brent B Welch. Session guarantees for weakly consistent replicated data. In Pro-
ceedings of 3rd International Conference on Parallel and Distributed Information Sys-
tems, pages 140–149. IEEE, 1994. 7, 8

[28] Francisco J Torres-Rojas, Mustaque Ahamad, and Michel Raynal. Timed consistency
for shared distributed objects. In Proceedings of the eighteenth annual ACM sympo-
sium on Principles of distributed computing, pages 163–172, 1999. 7

[29] Frits Vaandrager. A First Introduction to Uppaal. Deliverable no.: D5. 12 Title of Deliv-
erable: Industrial Handbook, pages 18–48, 2011. 18, 23

[30] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage
systems. ACM Computing Surveys (CSUR), 49(1):1–34, 2016. Publisher: ACM New
York, NY, USA. 7, 40

[31] M. Wan, W. Schroeder, A. Rajasekar, and R. Moore. Universal view and open pol-
icy: Paradigms for collaboration in data grids. In Collaborative Technologies and
Systems, International Symposium on, pages 322–329, Los Alamitos, CA, USA, May
2009. IEEE Computer Society. doi: 10.1109/CTS.2009.5067497. URL https://doi.
ieeecomputersociety.org/10.1109/CTS.2009.5067497. 5, 6

58

https://doi.ieeecomputersociety.org/10.1109/CTS.2009.5067497
https://doi.ieeecomputersociety.org/10.1109/CTS.2009.5067497

GLOSSARY OF TERMS AND ABBREVIATIONS

algebra
A generalization of arithmetic operations. It consists of mathematical symbols and
rules for manipulating them. For instance c = a+b involves the symbols {a,b,c,=,+}.

bisimulation
A binary relation between two state transition systems where the systems behave in
an equivalent way so that one system effectually "simulates" the behavior of the other
system and vice versa. In concurrent systems modeling, bisimulation is used to ex-
press the assumption that all processes will abide by the same rules and transition in
sync.

calculus
A method of computation by reasoning over symbols. It specifies how one symbol
can be derived from other symbols in a transition step. For instance f (x) = x2 shows
how x can transition to its square. A calculus may consist of a grammar to specify
the symbols and operational semantics to specify rules for valid transitions between
compositions of symbols.

coherence
Invariant content relationship between two or more data items. See Section 7.3 for a
formal definition.

data grid
Integrated architecture that supports access to and management of distributed data.

data object
Name to reference the set of instances of a data file in a data grid.

grammar
A grammar defines the compositional structure (syntax) of a language. It does so by
specifying valid compositions (strings) using an alphabet.

LTS Abbreviation for Labeled Transition System.
MPST

Abbreviation for Multi-Party asynchronous Session Types.
structural operational semantics

A set of rules that specify valid sequential steps for processing instances of a lan-
guage. For example a rule could specify that the expression A +B must be evaluated
before the asignment to C in the event of a statement C = A+B . Commonly the rules
ensure a deterministic form of processing. Hence operational semantics define the
(sequence of) interpretation of language compositions.

process calculus
A calculus to model concurrent systems by specifying how processes can interact.

protocol
Formal specification of a session.

59

replica
Name to reference a single instance of a file in a data grid.

resource
Name to reference a particular storage medium in a data grid.

session
Structured interaction between two or more processes.

SOS Abbrevation of Structural Operational Semantics.
weakly bisimilar

A bisimulation that is insensitive to and allows for internal actions, actions that do
not involve an interaction.

60

	List of Figures
	Abstract
	Introduction
	Related work
	Data grids
	Data grid architecture
	Coherence challenges in a data grid
	Data grid requirements

	Consistency models
	Multiparty asynchronous session types

	Problem analysis
	Research scope and methods
	Research questions and methods
	RQ1: Capture the problem case in a session type model
	RQ2: Design coherence support as MPST calculus extension
	RQ3: Validate the coherence-extended calculus
	RQ4: Prototype language extensions that protect coherence
	Research validation

	Model the problem case as a protocol
	Problem case modeled as protocol in Scribble
	Problem case modeled as LTS in UPPAAL
	Prototyping data race avoidance
	Validation of problem case model

	An MPST based calculus to support asynchronous data transfers
	A calculus for concrete asynchronous interactions
	Endpoint perspective: calculus for local language
	Local language for a single endpoint
	Local language for a group of endpoints
	Local language for a system of endpoints and channels

	Endpoint projection

	Coherence model and integration in calculus
	Exploring coherence
	Coherence modeled as state transition graph
	Definition of the coherence property
	Calculus extended with coherence model
	Coherence model as global language extension
	Coherence as local language extension
	Endpoint Projection including coherence

	Validation of the coherence-extended calculus
	Implementation of calculus in mCRL2
	Validation of projection from global to local calculus
	Validation of coherence expressiveness

	Prototype language extensions that protect coherence
	Towards a strategy for coherence protection
	Throughput considerations for coherence
	Prototype with coherent update

	Discussion and conclusions
	Discussion
	Conclusions
	Future work

	Software components used in research
	UPPAAL model of problem use case
	Protocol simulator in mCRL2
	Coherence property transposed to -calculus
	Test cases protocol simulator
	Protocol simulator extensions to support coherent update
	Acknowledgements
	Bibliography
	Glossary of terms and abbreviations

