
Open Universiteit
www.ou.nl

MASTER'S THESIS

BLOCK HIGHLIGHTING TO IMPROVE CODE COMPREHENSION AMONG CS
STUDENTS

van Battel, S.

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02. Jul. 2022

https://research.ou.nl/en/studentTheses/2970c680-5c34-423a-abc6-7d23319da665

BLOCK HIGHLIGHTING TO IMPROVE CODE
COMPREHENSION AMONG CS STUDENTS

by

Sam Van Battel

in partial fulfillment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Wednesday February 02, 2022 at 10:00 AM.

IM9906Course code:

Thesis committee: dr. ir. Fenia Aivaloglou (chairman), Open University
dr. ir. Alaaeddin Swidan (supervisor), Open University

CONTENTS

1 Introduction 2

1.1 Objectives and Research Questions . 3

2 Background and Related Work 5

2.1 Text-based and Block-based IDEs . 6

2.2 Defining Code Comprehension . 6

2.3 Highlighting Methods for Syntax and Blocks . 7

2.4 Color Theory for Highlighting Text . 9

2.5 Similar Extensions. 9

3 Code Block Highlighting Tool 11

3.1 Design and Creation Approach for Codeblock Highlighting Methods 12

3.2 Designing a Codeblock Highlighting Tool . 12

3.2.1 Characteristics of Blocks in Visual IDEs. 12

3.2.2 Transferring Characteristics to Text-based IDEs. 16

3.3 Creating a Codeblock Highlighting Tool . 19

3.3.1 IDE Selection Process and Parameters . 20

3.3.2 Extension Development for Visual Studio Code 22

4 Experimental Evaluation 31

4.1 Experimental Research Approach . 31

4.1.1 Course of the Experiment . 32

4.1.2 Curriculum. 33

i

4.2 Data Collection . 38

4.2.1 Student Participants . 38

4.2.2 Pre-Test . 38

4.2.3 Post-Test . 39

4.3 Data Analysis . 39

4.4 Results of the Experiment . 40

5 Discussion 43

5.1 An Unexpected Result . 43

5.1.1 Choice of Programming Language . 44

5.1.2 Choice of IDE . 44

5.1.3 Color Scheme Variations. 44

5.1.4 Shape Topology Variations . 45

5.2 Threats to Validity . 45

5.2.1 Internal Validity . 45

5.2.2 External Validity . 46

5.2.3 Statistical Conclusion Validity . 46

6 Conclusion 47

7 Acknowledgements 48

Bibliography i

Pre-test Questions v

Pre-test Questions ix

ii

SUMMARY

In the past decade there has been a rise in the popularity of visual programming IDEs.
These IDEs use custom programming languages as an introductory system into the world
of programming and algorithmic thinking. Research has shown that these IDEs can be
effective towards those purposes. We want to explore which advantages of visual program-
ming IDEs are most effective. Transferring those advantages to a well-known text-based
IDE, CS students can reap the benefits of both systems. We hypothesize that the visualiza-
tion of codeblocks by these visual IDEs provides students with a deeper understanding of
program structure.

Our research is divided into two parts. First, we use a design and creation approach
to explore the visual elements that are available in visual IDEs and transfer them into a
popular IDE. Then, we perform a quasi-experimental study with a group of twenty-eight
high-school students, where students participate in a five-week course that teaches them
the base principles of programming and algorithmic thinking. Students are divided into
two groups. One group is provided with a popular text-based IDE that does not use code-
block visualizations. The other is provided with the same text-based IDE, but this time
enhanced with codeblock visualizations. We use a content assessment based on the Com-
mutative Assessment by Weintrop to evaluate basic code comprehension for each student.
Statistical analysis is performed to evaluate the relevance of our results.

We conclude that our tool negatively impacts student progression during the course.
Our small sample size and environmental conditions due to, among others, Covid-19 reg-
ulations opens the door towards future research.

1

1
INTRODUCTION

In the past decade there has been a rise in the popularity of visual programming IDEs, e.g.
Snap (2020), Blockly (2019), Pencil.cc (2015), Scratch (2013). Research has shown that these
IDEs can be effective as a learning tool in Computer Science education [34, 36, 37, 1]. The
work by Weintrop and Alrubaye make use of a side-by-side hybrid environment in order to
highlight the advantages of block-based IDEs and text IDEs together [36, 1]. However, these
side-by-side hybrid environments lack important features that other major (text-based)
IDEs offer, e.g. advanced syntax-highlighting, intellisence and support for multiple pro-
gramming languages (to name a few). Additionally, most programming languages do not
have a visual programming translation. The few that do can only provide this for a limited
subset of features for that programming language. Developing and maintaining a visual
programming alternative for every major programming language might not be feasible.

Many modern programming languages use codeblocks to structure code. These code-
blocks add functionality (e.g. functions, classes, selection, iterations) and can be nested.
In order to visualize these codeblocks and their nesting levels, programmers have used
whitespace since the early beginnings of software development [6]. This type of codeblock
visualization is known as indentation. Indentation has become such a staple of program-
ming that some programming languages forgo curly brackets entirely in favor of indenta-
tion. These languages, also known as Off-Side Rule languages, enforce indentation as a
way to delimit the start and end of a block of code (e.g. Python, Coffeescript). Most other
block structured programming languages provide at least a style-guide1, where the type
and amount of white-spaces are specified for proper indentation [28]. Even when this is
absent, many software development companies opt to provide their own style guide in the
form of coding guidelines. These coding guidelines provide specific guidelines for, among
other things, white-space indentation [20]. It is clear that indentation is an important part
of programming and, as a consequence, so too is codeblock visualization.

The aim of this thesis is to create an extension to a popular IDE that adds codeblock

1Java code conventions: https://www.oracle.com/java/technologies/javase/
codeconventions-contents.html

2

https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

visualization, and then perform an experimental study to investigate if the tool provides
similar results to previous work by Weintrop and Alrubaye, where students using a visual
or hybrid IDE outperform students using a text-based IDE [34, 36, 37, 1]. We hypothesize
that the visualization of codeblocks by these visual IDEs provide students with a deeper
understanding of program structure.

1.1. OBJECTIVES AND RESEARCH QUESTIONS

The goal of this paper is two-fold. First, we will explore the benefits of using a set of inte-
grated visual elements in an IDE that highlights syntax and scope. Second, we will measure
how this visualization will affect code comprehension among high school students.

There is a growing number of visual programming languages that are used to teach
novice programmers. Several research papers have concluded that using these visual, block-
based languages have a positive effect on student performance and comprehension, both
as a separate way to learn programming as well as in a hybrid mode alongside text-based
programming. With these research questions we focus on the visual characteristics of these
visual programming languages and see if a similar effect can be observed when these char-
acteristics are transferred to text-based languages.

In order to achieve this goal, we ask two research questions:

RQ1 How can the main visual characteristics of a visual IDE be implemented into a text-
based IDE?

RQ2 How is code comprehension affected among students from the integration of block-
scope visualization in a text-based IDE?

RQ1 involves multiple goals:

1. To distinguish the visual properties of codeblock highlighting in visual IDEs.

2. To analyze these properties, so we can mock-up one or more solutions to integrate
these properties into a text-based IDE as visual elements.

3. Lastly, to develop a working solution/tool where a popular IDE is expanded to include
those visual elements. The tool can subsequently be used to answer RQ2.

RQ2 has the following null hypothesis associated with it, which we formulate as follows:

H10 Adding codeblock visualizations to a text-based IDE does not impact code compre-
hension for students.

The alternative hypothesis that we will evaluate is the following:

3

H11 Adding codeblock visualizations to a text-based IDE impacts code comprehension
for students.

In order to answer RQ2 and its hypotheses, there are two important elements that need
further definition:

• How do we define code comprehension? Our definition of code comprehension will
be based on previous research. Not only is creating and researching our own defini-
tion beyond the scope of this thesis, but this allows us to better compare our results
to those research papers.

• How will block-scope be visualized in a student’s IDE? By answering the first research
question, we define how codeblock will be visualized in a student’s IDE. This is why
RQ1 needs to be answered before exploring RQ2: the first research question is an-
swered before progressing to the second one.

4

2
BACKGROUND AND RELATED WORK

The development of online IDEs has served as a major stepping stone in bringing program-
ming capabilities to many devices. These IDEs provide several benefits, especially for edu-
cation, as maintenance is low and device support is very wide [14, 38, 11]. With the advent
of visual IDEs, many of which are developed as an online IDE as welle.g. Blockly, Scratch,
Snap, along with many educational agencies around the world pushing for the need for a
stronger IT curriculum [16, 19], the question on how to teach children programming has
grown all the more important.

Initial research has mainly focused on the efficacy of visual IDEs versus text-based IDEs
[36]. Initial findings point towards several advantages of using visual IDEs over text-based
IDEs when it comes to teaching novice students. Further research has shown that hybrid
environments improve code comprehension even more among students [1]. This is impor-
tant to note, because it suggests that there are elements in both approaches that contribute
to improved code comprehension among students.

Identifying which elements impact code comprehension for each approach may allow
us to improve current coding practices in education, by merging these methods into pop-
ular programming IDEs. This links to other research-domains, such as color theory, code
highlighting methods and text readability, all of which have been researched for several
decades.

We are discussing these different domains into three different sections:

• 2.1 Text-based and Block-based IDEs, where we discuss the efficacy of block-based
and text-based IDEs, along with the research methods used so far in this domain.

• 2.2 Defining Code Comprehension where we define code comprehension based on
the works of Weintrop [35].

• 2.3 Highlighting Methods for Syntax and Blocks where we discuss the different code
highlighting methods (mainly syntax highlighting and codeblock highlighting), their
differences and evolution since their inception.

5

• 2.4 Color Theory for Highlighting Text where we define readability of text in terms of
color and contrast.

2.1. TEXT-BASED AND BLOCK-BASED IDES

Within the study of visual programming versus text-based IDEs for the purpose of pro-
gramming education, few studies have been conducted [34, 36, 37, 1]. These studies focus
primarily on the merits of either environment separately (be it visual programming or text-
based) or a hybrid (side-by-side) environment. These studies have shown that improve-
ments can be found with students using visual programming environments over those us-
ing a purely text-based environment [36]. A larger, more significant improvement can be
found within groups of students that learn programming when using a hybrid environment
[37]. Both studies used the Commutative Assessment method by Weintrop [35] in order to
measure code comprehension among students.

When Weintrop presented his paper to an audience of computer science teachers1, his
results often matched the expectations of the teachers, although some teachers noticed
issues that need to be part of further research. For example, one teacher remarked that
during these studies, a full-featured visual programming environment was presented to
the students. However, the text-based environment was very much slimmed down. Many
of the comforts programmers take for granted, such as syntax highlighting and elaborate
intellisence, were very limited or not available in the text-based and hybrid environments.

Because of the results that are presented by Weintrop and Alrubaye, we hypothesize
that the visualization of block-scope by these visual IDEs provides students with a deeper
understanding of program structure. We can support this hypothesis based on previous
research. Asenov et al [4] researched how visually enhanced code can improve code com-
prehension. In this study, participants were presented with different levels of visual variety,
starting with basic syntax highlighting and indentation, and adding further visual elements
to distinguish each element of code, codeblocks being one such element. It is notable that
when answering questions, the response times of participants would go down, while cor-
rectness in answering those questions remained the same. While they used a limited num-
ber of participants and questions in a controlled setting, these results do support the hy-
pothesis that visual elements can improve code comprehension.

2.2. DEFINING CODE COMPREHENSION

In order to measure code comprehension among students, it is important to define exactly
what it is we will measure. For the purpose of this research, we define code comprehension
by following the commutative assessment method by Weintrop [35], which in turn is based
on the 2013 CS Curriculum [26] and the FCS1 assessment by Tew and Guzdial [30, 31].

1Dr David Weintrop speaking at the Raspberry Pi Foundation: https://www.youtube.com/watch?v=
6M7Vvf7ZrbU

6

https://www.youtube.com/watch?v=6M7Vvf7ZrbU
https://www.youtube.com/watch?v=6M7Vvf7ZrbU

The FCS1 assessment is a generalized approach to test and measure student compre-
hension in introductory computing concepts. It was developed as a language-independent
assessment instrument that shows how a student can solve problems, read and analyze
code, and understand introductory computing concepts. In making the FCS1 assessment,
Tew and Guzdial reviewed the contents of 12 introductory computer science textbooks
along with other published curricula to establish a list of ten core CS1 concepts.

Weintrop and Wilensky selected the five primary core concepts of this curriculum and
included an additional two categories, based on their review of the CS2013 Curriculum.
This adds up to a total of seven concepts which can be used to measure and define code
comprehension, by presenting a student with practical questions and exercises. These
seven concepts are:

1. programming fundamentals: How can I direct a computer to save and adjust values
using a programming language?

2. selection statements: How can I use conditional logic to adjust the outcome of a pro-
gram?

3. definite loops: How can I use the previous concepts (programming fundamentals
and conditional logic) to execute code a specific number of times?

4. indefinite loops: How can I use the previous concepts (programming fundamentals
and conditional logic) to execute code an indefinite number of times?

5. function parameters: How can I break down code into smaller, more manageable
chunks?

6. program comprehension: How can I predict the outcome of a program?

7. algorithms: How can I break down a problem into smaller steps by using natural lan-
guage?

2.3. HIGHLIGHTING METHODS FOR SYNTAX AND BLOCKS

Apart from indentation, modern IDEs also provide another important visualization tech-
nique: syntax highlighting, by which each word is highlighted differently in order to im-
prove readability (and thus comprehension) of the code [8, 7].

This is done through the use of color, font-weight, font-style and text-decoration2. Of
these properties, color seems to be the most effective tool [29]. Although there are some
motivations against using proper syntax highlighting (such as color blindness, printout is-
sues and novelty), they are easily debunked [24].

Work by Hannebauer et al. suggest that syntax highlighting has few benefits towards
code comprehension among novice programmers [13], but further research is needed to

2These terms were borrowed from the CSS language

7

Figure 2.1: Syntax highlighting and indentation of the same HTML file in two different code editors (VS Code
and Notepad++). Notice how syntax highlighting differs between editors, but indentation does not.

say this with any certainty. Within the world of software development, syntax highlighting
has become fully integrated into the work routine.

We discuss two major differences between the current method of scope highlighting
(i.e. indentation) and syntax highlighting, mainly on how a programmer can influence the
experience of a peer and how these methods have evolved during the past few decades.

THE CONSEQUENCES OF CODE HIGHLIGHTING PREFERENCES

The first difference is how one programmer can influence scope and syntax highlighting
for their peers. Syntax highlighting is based on local settings and parsing methods3. When
opening a document, the code is tokenized and parsed according to your own, personal
settings4. Changing these settings has no influence on other users of the same codebase.

In contrast, indentation is saved within the document structure itself. Whether a pro-
grammer switches between spaces and tabs, changes the tab size, or even forgoes on in-
dentation altogether, these changes determine how their peers will experience the scope
visualization of the document (see Figure 2.1).

THE EVOLUTION OF CODE HIGHLIGHTING METHODS

The second difference is the advancement of highlighting techniques in the past decades.
Syntax highlighting has advanced much and now provides the ability to tweak many pa-
rameters. During the same time indentation remained the main - if not the only - op-
tion for scope highlighting. As mentioned before, syntax highlighting can be adjusted in
a multitude of ways, including (but not limited to) color, font-weight, font-style and text-
decoration. This is in stark contrast to code block highlighting, where the only actual choice
remains: how much and which white-spaces do I use to move a line of code to the right?

It is here where many visual programming IDEs provide a major improvement over con-
ventional IDEs (see Figure 2.2). Code blocks are distinguished from each other using shape,
color and, of course, indentation. Surprisingly, a majority of visual programming IDEs drop
some syntax highlighting features. E.g. most visual programming IDEs provide syntax high-
lighting through the use of statement blocks, but do not provide any syntax highlighting for

3VS Code highlighting settings: https://code.visualstudio.com/docs/getstarted/themes
4VS Code highlighting methods: https://code.visualstudio.com/api/language-extensions/syntax-highlight-

guide

8

value types.

Figure 2.2: Visual IDEs such as Scratch (right) distinguish code blocks more visually compared to text-based
IDEs.

2.4. COLOR THEORY FOR HIGHLIGHTING TEXT

There are few usability standards for user interfaces when it comes to readability and con-
trast. The most extensive standard, WCAG 25, is developed for the accessibility of content
on the web, but can easily be applied to application development. Technically Visual Stu-
dio Code and Atom (two popular, light-weight text-based IDEs) can even be seen as web
apps, as they both use the electron framework, which is a framework for building desktop
applications using JavaScript, HTML, and CSS by embedding Chromium and Node.js6.

WCAG 2 contains many different success criteria. The two that are interesting for the
purpose of readability and color contrast are:

• Success Criterion 1.4.3 Contrast (Minimum)

• Success Criterion 1.4.6 Contrast (Enhanced)

Both success criteria use a contrast ratio formula based on the relative luminescence of
the background and foreground colors. The formula provides us with a number between
1 and 21 (commonly written as a ratio between 1:1 and 21:1), where a minimum of 3:1 is
needed for 1.4.3 and a minimum of 4.5:1 is needed for 1.4.6.

A contrast ratio of 3:1 is the minimum level recommended by ISO-9241-3 and ANSI-
HFES-100-1988 for standard text and vision [32]. Criterion 1.4.6 is needed for people who
are impeded by moderately low vision and do not make use of any assistive technology to
artificially enhance contrast [33].

2.5. SIMILAR EXTENSIONS

While researching the possibilities of Visual Studio Code as a base for our research tool, we
came across several tools that implement some type of codeblock parsing. These exten-

5https://www.w3.org/TR/WCAG21/
6https://www.electronjs.org

9

https://www.w3.org/TR/WCAG21/
https://www.electronjs.org

sions heavily inspired us and provided a lot of practical examples to the API documenta-
tion.

• bracket pair colorizer: This extension allows matching brackets to be identified with
colours. The user can define which characters to match, and which colours to use7. It
even provides a visualization of the current codeblock with a ’C’-like shape. However,
the type of block is of no consequence to the coloring, it only works on bracket-based
languages and the visualization is only provided for the codeblock where the cursor
is positioned at.
We experimented with the code of this tool, and managed to change it such that
every codeblock gets highlighted. However, implementing a way to identify which
codeblock-type each codeblock is took a lot of effort and it will still only work for
bracket-based languages.

• indent rainbow: This extension colorizes the indentation in front of your text alter-
nating four different colors on each step. Some may find it helpful in writing code
for Nim or Python8. This was a great example of indentation parsing for each line
of code, although it does not provide any way to identify the current codeblock and
empty lines are ignored.

7https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
8https://marketplace.visualstudio.com/items?itemName=oderwat.indent-rainbow

10

https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://marketplace.visualstudio.com/items?itemName=oderwat.indent-rainbow

3
CODE BLOCK HIGHLIGHTING TOOL

Previous research in the domain of measuring the efficacy of visual IDEs and text-based
IDEs has mainly consisted of an experimental research approach, where a custom tool is
developed in order to allow students to experience either method separately [1]. Develop-
ing such a tool is the first step to performing the experiment. Similarly to those previous
experiments, we want to provide students with a programming IDE where codeblock visu-
alization can be turned on or off, depending on which group of students.

It is our hypothesis that the visualization of codeblocks by visual IDEs provides students
with a deeper understanding of program structure. Therefor, we want to create a text-based
IDE that provides similar visualizations as visual IDEs to users. In order to create such a tool
(one that can be used during the experiment) we first need to define which characteristics
of codeblock visualizations are common across multiple visual IDEs. Then we mock-up an
idea for transferring those characteristics into a text-based IDE.

Previous experiments have either created an IDE from scratch or, most often, adjusted
an existing IDE. For the purpose of our experiment, we pursue the option to adjust an ex-
isting IDE. This allows students to experience the advantages of the (text-based) IDE in its
current state, such as syntax-highlighting and auto-formatting. We do this through the use
of the design and creation approach.

In the following sections we will explain this approach:

• 3.1 Design and Creation Approach for Codeblock Highlighting Methods where we
explain the process of the design and creation approach.

• 3.2 Designing a Codeblock Highlighting Tool where we define the characteristics of
codeblock visualization elements in visual IDEs and how we would go about trans-
ferring those characteristics to a text-based IDE.

• 3.3 Creating a Codeblock Highlighting Tool where we take you through the selec-
tion process of selecting an IDE, and the development process of developing the tool
within the constraints of that IDE.

11

3.1. DESIGN AND CREATION APPROACH FOR CODEBLOCK HIGH-
LIGHTING METHODS

The first research question will be answered by using a design and creation approach [21].
This approach is well suited as it involves developing a tool to support a new hypothesis
that has not been previously tested. It involves parts from other domains, such as color
theory, layout and spacing, when very little of these theories have previously been applied
to measure code comprehension. Answering this question will include designing and de-
veloping a working prototype.

Developing such a prototype requires more insight into the different visualization tech-
niques that are used in text-based and visual IDEs. Exploring related research on text-,
code- and shape-visualization techniques allows us to make substantiated choices. Addi-
tionally, constructing IDE/visualization tuples will show which visualizations are used by
which IDEs. We will also evaluate each IDE on the following topics:

• Extensibility: Many schools restrict or disrupt some software installation procedures.
The ease of extensibility should be considered in order to ease the installation process
for the students.

• Programming language compatibility: visual IDEs may restrict teachers and students
to specific programming languages or even subsets thereof. We should therefore con-
sider the compatibility of the IDE with multiple major programming languages.

3.2. DESIGNING A CODEBLOCK HIGHLIGHTING TOOL

Research has shown that visual IDEs can be an effective learning tool for computer science
students. Most often this research has focused on Snap [15], Blocky [18, 27], Pencil.cc [5]
and Scratch [22, 17]. By analysing how these four visual IDEs incorporate their visual char-
acteristics, and then selecting which ones are useful towards code comprehension, we can
better understand which ones should be used in our research tool and which ones do not.

3.2.1. CHARACTERISTICS OF BLOCKS IN VISUAL IDES

Looking at these visual IDEs shown in Figure 3.1, we separate two main characteristics:

1. Shape topology

2. Shape color

Although typography and text color differs as well between these visual IDEs, it is mostly
automatically adjusted to contrasting colors (black/white) in respect to the background-
color.

12

Figure 3.1: The four most popular Visual IDEs that are often used in research: Snap (topleft), Blockly
(topright), Scratch (bottomleft) and Pencil.cc (bottomright). They use shape topology and shape color to
distinguish between different blocks, such as operations, statements and codeblocks.

By looking more closely into these characteristics, we can establish the specific features
we need to implement in our testing method.

SHAPE TOPOLOGY

Codeblocks, shown in every visual IDE as a ’C’-shape, look very similar in each of these vi-
sual IDEs. However, there are a few differences which contribute to usability and readability
[10]. The topology for codeblocks in Figure 3.2 always has a connector on the inside-top,
but some environments also have a connector on the inside bottom (e.g. Scratch, Pen-
cil.cc) whereas others do not (e.g. Blockly, Snap). The usefulness of the bottom connector
is a point of ongoing discussion [10]. The top connector is, on the other hand, unanimously
implemented across all visual IDEs. These connectors will fit the shape of statements, con-
veying to the user that certain statements can or cannot be added to these ’C’-shaped code-
blocks.

It is important to note here that these connectors are implemented because they are
used in a visual programming language. Users drag and drop statements instead of typing
instructions. They help visual IDE users to find and select the correct type of statement-
blocks that will fit their codeblocks, but do not improve upon the readability of program-
structure. Because we want to research if visualizing codeblocks in text-based IDEs im-
proves code comprehension, we will not implement this feature in our testing method.

The ’C’-shape itself is very interesting. It clearly shows the start and end of a codeblock,
with the beginning and end elongated. The thickness of the left side varies across different
visual IDEs, with Blockly using a wider spacing and other IDEs a smaller spacing. There is

13

Figure 3.2: Topology for inline items, such as operators (left) and statements (center) is show here as items
that can be horizontally or vertically daisy-chained. Topology for codeblocks (right) are shown as a C shape
with a connector on the inside-top and inside-bottom.

no clear indication why Blockly chose this amount of spacing, and there are several imple-
mentations of Blockly where they use a smaller spacing on the left1.

The thickness of the left side corresponds to indentation size in text-based program-
ming. When using spacing instead of tabs, there is often a choice in indentation size be-
tween two to four spaces (and sometimes even larger). Previous research on indentation
size has shown that there is little difference between smaller and larger indentation sizes for
small code snippets [6], where ’small’ refers to code snippets that do not require scrolling
to read the entire snippet. As our research focuses on an introductory programming course
for high school students, we will seldomly present students with code snippets larger than
that.

SHAPE COLOR

Shape color is used to differentiate between operations, statements and codeblocks. We
are mostly interested in the visualization of codeblocks. Figure 3.3 shows that most visual
IDEs do not differentiate between different types of codeblocks, with the only exception
being Blockly and Pencil.cc. Pencil.cc divides codeblocks into two major categories:

1https://blockly.games/pond-duck

14

• Control: these codeblocks are selective or iterative. They consist of the blocks ‘for’,
‘while’, ‘if’ and ‘forever’.

• Operators: these codeblocks group statements together. They consist of the block
‘function’.

Blockly divides codeblocks into three major categories:

• Logic: these codeblocks are selective. They consist of the blocks ‘if’, ‘else’ and ‘elif’.

• Loops: these codeblocks are iterative. They consist of the blocks ‘repeat’, ‘count’ and
‘foreach’.

• Functions: these codeblocks group statements together. They consist of the blocks
‘function’ and ‘function return’.

In both cases, each category gets a distinctive color that is consistent across all blocks
of that category.

Figure 3.3: Most visual IDEs do not change colors between different types of codeblocks. Only Blockly (left)
and Pencil.cc (right) differentiates between different categories of codeblocks.

It is not clear why some of these visual IDEs choose to divide these blocks into different
categories and some do not. The choice of colors is also not documented, as far as we can
tell. Blockly, which allows developers to use their framework to implement custom visual
programming languages, provides several tips for creating a block language [23]. There,
they suggest using color in order to reinforce similarities between blocks, but do not offer
any advice on color choice or categories.

Because there is little information on the choice of colors within visual IDEs, we must
turn to other media that try to convey textual information with the use of shape and color.
One of those media is web development, where the use of colors (in order to convey infor-
mation to a user) is much more researched and well-defined.
The Web Content Accessibility Guidelines offer a multitude of guidelines that allows devel-
opers and designers to convey information to their users as clearly as possible. Specifically,

15

guidelines 1.4.3 Contrast (Minimum) and 1.4.6 Contrast (Enhanced) provide clear direc-
tions to improve the readability of text through the use of color contrast.

WCAG2.1 Chapter 1 contains information and techniques on the information and user
interface components must be presentable to users in ways they can perceive [9]. As we
want to show users (the students) specific information (the code they have written) in a
way they can perceive through a user interface component (a codeblock visualization), this
standard may very well apply to our research tool.

Section ‘1.4.3 Contrast (Minimum)’[9] sets a baseline contrast for the readability of text
in most situations. Except for two exceptions (large text and incidental text, both of which
are not applicable to our study) all text should have a contrast ratio of at least 4.5:1. The
contrast ratio is calculated through the following formula:

(L1+0.05)/(L2+0.05)

where:

• L1 is the relative luminance of the lighter of the colors, and

• L2 is the relative luminance of the darker of the colors.

This formula is based on several different aspects:

• The ISO-9241-3 and ANSI-HFES-100-1988 standards for the formula (L1/L2)

• The typical viewing flare from IEC-4WD and the proposal for a standard default color
space on the internet [2]. This is in turn an answer to the ANSI/HFS 100-1988 stan-
dard, which calls for a contribution from ambient light in the calculation for L1 and
L2.

The ISO-9241-3 and ANSI-HFES-100-1988 standards recommend a contrast ratio of 3:1
or higher for standard text and vision. In case the user suffers from lower visual acuity, any
color deficiencies or loss of contrast sensitivity, this contrast ratio should be adjusted to
4.5:1 or higher [3].

The 4.5:1 contrast ratio can be used as compensation for users with a visual impairment
comparable to 20/40 vision, which in itself is comparable to the vision of a typical 80 year
old person [12]. For our purposes, the contrast ratio 3:1 is therefor sufficient.

3.2.2. TRANSFERRING CHARACTERISTICS TO TEXT-BASED IDES

We translate the characteristics concerns into requirements. Every requirement is given a
priority, based on a simplified version of the MoSCoW-method2. This simplified version is
based on experiences in other software companies that use this same simplified method
for appointing priorities to requirements before they are translated into tasks.

2https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation

16

https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation

• Blockers: That which must be included. without this the system will not work as
intended.

• Must-haves: Requirements required by a stakeholder that are not a Blocker.

• Pepper&Salt: Requirements suggested by a stakeholder that are not a Must-have.

It is important to maintain a distinction between Blockers and Must-haves. Blockers
contain all core functionality of the software. Changes to these requirements should be
scarce. When all blockers are implemented a functional proof-of-concept can be show-
cased. Meanwhile, Must-haves are important to the stakeholders but have no impact on
the core functionality of the system. They are much more prone to changes. These require-
ments should be implemented with changeability and maintainability in mind.

color requirements Priority

maintain a contrast ratio of at least 3:1 M
A contrast ratio of at least 3:1 is im-
portant to maintain readability of
the text an UI.

maintain a contrast ratio of at least 4.5:1 P

A contrast ratio of 4.5:1 and greater
is preferred, in case students with vi-
sual impairment want to use the re-
search tool.

Categorize codeblocks in logical groups M

Using categories to distinguish be-
tween different types of codeblocks
can help users to more easily read
and understand their code.

Distinguish different codeblock cate-
gories

M

A clear color scheme that is specific
to its codeblock category, so users
can easily see what types of code-
blocks they have used in different
situations.

usability requirements Priority

Frequent updates of visualizations B

Visualizations should be updated
frequently, so that the user can use
these visualizations to read their
code more easily.

Live updates of visualizations M

Live visualization updates are pre-
ferred to frequent (timed) updates,
because code structure might
change dramatically between up-
dates when timed updates are
used.

topology requirements Priority

Distinguish different codeblocks B
A clear start and end, so users can
easily see where each codeblock
starts and ends.

17

Provide each codeblock with a ’C’
shaped visualization

M

The ’C’ shape is a consistent marker
for codeblocks in each visual IDE. It
provides a clear sense of start and
end of a codeblock.

Provide the ’C’ shape visualization with
an inside-top connector

/

These connectors are implemented
in visual IDEs to visualize where
certain statement-blocks can be
dragged and dropped. Because we
want to research if visualizing code-
blocks in text-based IDEs improves
code comprehension, we will not
implement this feature.

Provide the ’C’ shape visualization with
an inside-bottom connector

/

These connectors are implemented
in visual IDEs to visualize where
certain statement-blocks can be
dragged and dropped. Because we
want to research if visualizing code-
blocks in text-based IDEs improves
code comprehension, we will not
implement this feature.

Provide each codeblock with
indentation-like padding to the left

B

Left-side indentation is a consis-
tent marker for codeblock-nesting
in each visual IDE, as well as it is re-
quired by many programming lan-
guages and/or companies.

Table 3.1: Requirements for developing a codeblock highlighting extension.

To further guide us, we create a mockup based on all Blocker and Must-have require-
ments. To do this, we made a screenshot of a popular code editor and used an image editor
to imagine a non-intrusive way to visualize codeblocks (see Figure 3.4).

• Each codeblock is equipped with a darker ’C’ shape

• Each codeblock is equipped with a lighter background-color. (e.g. the function ’sub-
mitRegisterForm’)

• Different types of codeblocks are colored differently. (e.g. the function ’userRegis-
tered’ and the nested selection block)

• similar types of codeblocks are colored identically (e.g. the if-block and the else-
block)

• Each codeblock is indented to visualize nesting-level.

• text- and background-color has a contrast-ratio of at least 3:1.

18

Figure 3.4: A mockup of codeblock visualization, overlayed on top of the VS Code editor.

3.3. CREATING A CODEBLOCK HIGHLIGHTING TOOL

In order to teach students the basics of programming, we need to pick a programming lan-
guage. Because we offer a course of five weeks, the language needs to be comprehensible
enough in order to allow novice-programmers to understand the basic concepts that we
will teach them within that time frame. It is preferred to use a language with minimal tool-
ing requirements, ideally just an IDE and compiler/interpreter.

The codeblock-visualization tool also needs to be compatible with the language. We
can fit the language to the tool, or fit the tool to the language, but it is primarily important
they are compatible with each other.

Because the experiment will take place in a school-environment, we need to consult
the local ICT-team and look at what types of configurations are possible with or without
administrative privileges. Using a popular IDE as a development environment is preferred,
because it will increase the trustworthiness of the tool for outside parties.

19

3.3.1. IDE SELECTION PROCESS AND PARAMETERS

To find out which IDEs are most popular across the world, we use PYPL3. PYPL is a website
that maintains rankings for the most popular programming languages, IDEs, ODEs and
databases. The website creates this ranked list based on the amount of times a download
page is searched on google for an IDE. The more a download page is searched, the more
popular an IDE is assumed to be.

rank IDE Share

1 Visual Studio 27.37
2 Eclipse 15.94
3 Android Studio 11.87
4 Visual Studio Code 10.03
5 pyCharm 7.68
6 IntelliJ 6.86
7 NetBeans 5.58
8 Sublime Text 3.79
9 Atom 3.51
10 Xcode 3.42

Table 3.2: Top 10 most popular IDEs according to PYPL.

In consultation with the school’s ICT team, we came to a list of properties that are im-
portant to consider when choosing an IDE as a basis for our research tool. By sorting this
list based on priority, we can use this list as a priority list.

1. Extension support (required): for our research needs, the IDE needs to be extensible
with an API that allows for visual extensions.

2. Visual extension capabilities (required): the IDE’s extension support should be able
to visually adjust the workspace with shapes and colors.

3. Python support (required): it also needs to support Python as a programming lan-
guage, as this will be the program language of choice to teach the curriculum.

4. Price (lower is better): there is very little budget for this project, so price is a factor in
order to install and maintain such a software package.

5. Size (lower is better): the download and installation size should not be too large, as
it needs to be installed on many machines as quickly as possible. Install size is also
a good indicator for extensiveness of the IDE. Because the experiment has novice
programmers as its subjects, an extensive IDE may be too overwhelming.

6. Multi-platform support (more is better): the school utilizes a combination of Apple
and Windows machines. Also, students may have different machines at home than

3https://pypl.github.io/PYPL.html

20

they have access to at school. The IDE should therefor preferably work on multiple
systems.

7. Support for other programming languages (preferred yes): In order to facilitate fu-
ture ICT lessons, a wider range of supported programming languages is preferred by
the school. This may also allow us to test the research tool for other programming
languages if needed.

Going through the documentation and support pages of each IDE listed in table 3.2, we
can create a more detailed overview of these properties in table 3.3. Each IDE was checked
for Python support, install size, cross-platform support, support for other languages, price,
extensibility and capabilities for visualization extensions.

Table 3.2 shows the ten most popular IDEs as of April 2021 according to PYPL. Two of
these IDEs do not have Python support, and are therefore crossed out. The official docu-
mentation of every other IDE lists python as a supported language, or references a main-
tained plugin/extension that allows support for python.

IDE Share
python
(Y/N)

size

Mac
Win
Linux
(M/W/L)

Other
Lan-
guages

price
exten-
sibility
(Y/N)

visual
exten-
sibility

VS Code 10.03% Y + M W L Y free Y +++
Atom 3.51% Y + M W L Y free Y +++
Sublime Text 3.79% Y + M W L Y paid Y +++
NetBeans 5.58% Y ++ M W L Y free Y ++
pyCharm 7.69% Y + M W L N paid Y +++
Visual Studio 27.37% Y +++ M W Y free Y +++
Eclipse 15.94% Y +++ M W L Y free Y ++
Xcode 3.42% Y +++ M Y free Y ++

Table 3.3: Top 10 most popular IDEs, excluding the ones without Python support, sorted by fitness. IDE
name, Share (higher is better), size (lower is better), Apple/Windows/Linux support (more is better), support
for other languages (preference for yes), price (lower is better), extensibility (required), visual extension API
(higher is better)

Using this prioritization, we can sort table 3.3 to reach a ranked list of preferred IDEs.
We remove the rank column from table 3.2, because a) there is little use for it and b) it is a
PYPL ranking based on the share percentage, which is still included.

By using a low-cost, easy to install and multi-platform IDE, our proposed research-tool
will be able to run on most IT infrastructures, including systems at schools and at home.

From table 3.3 there are two IDEs that stand head and shoulders above the other op-
tions: VS Code and Atom. They both have an extensible extension API with documenta-
tion, are lightweight, can be kept minimalistic, have Python language support, are free to

21

use, are easy to install and come with several installation options. Having these two op-
tions means that we can start developing our research tool in the first option, and in case
of failure have a second option to start and try again.

We start with extending VS Code because it has the larger market share. There are al-
ready many visual extensions available in the VS Code extension market, much of which is
available as open-source projects on Github. This means we can learn from many different
sources to work out and test a working prototype as quickly as possible.

It is important to note that Visual Studio Code has several limitations. It does not pro-
vide a public API for its tokenization engine, and only minimal access to its token parsing
engine. This will limit the parsing methods we can apply to detect and visualize codeblocks.

3.3.2. EXTENSION DEVELOPMENT FOR VISUAL STUDIO CODE

Table 3.1 lists all requirements for the development of the extension. One of the Blocker-
requirements needs us to distinguish between different codeblocks with a clear start and
end, so users can easily see where each codeblock starts and ends. In order to implement
this feature, we need to first detect codeblocks in a document, and subsequently mark them
in a visual and distinctive way. Codeblock detection can be done with three different meth-
ods:

• Abstract Syntax Tree derivation

• Token parsing

• Indentation parsing

ABSTRACT SYNTAX TREE DERIVATION

Visual IDEs allow a user to work directly on the Abstract Syntax Tree of the program, so us-
ing the AST to back our visualization methods allows us to closely match the visualization
techniques used in visual IDEs. Some text-based IDEs parse each file for known program-
ming languages and build a complete or partial Abstract Syntax Tree. It may be possible
that these ASTs are exposed to the extension framework in the form of a public API.

This method has some downsides. Not all IDEs build an AST for each file, as this can
be a computationally expensive task. Even if an IDE creates one, they may not expose it
to its extension development. Lastly, the AST will be very framework-dependant, making
portability of the tool less possible.

TOKEN PARSING

A second method is the use of token parsing. By tokenizing the code we can recursively
match brackets, revealing each codeblock for block-based programming languages that

22

use brackets to denote the start and end of each block (e.g. C, C#, C++, Java, Javascript,
PHP). A major upside of this method is that it is much easier to find the specific block-type.

However, this method has its downsides as well. To include Off-Side Rule languages
(e.g. Python, Coffeescript) codeblocks need to be parsed differently, because bracket-pair
matching is not an option. We will also need language-specific token-parsing methods, as
block-type definitions can differ across languages, e.g. functions have no defined return-
type in Javascript while they do in Java. Many IDEs include token-grammars for the most
popular programming languages, but some may not expose those grammars to their ex-
tension frameworks. These token-grammars may also differ from IDE to IDE, making this
method less transferable between different IDEs. These downsides may be countered by
using a standardized grammar, although there are few IDEs that try to adhere to such stan-
dards. Microsoft has developed a Language Server Protocol for its VS Code editor, citing
it as a standard that can be used to develop parsing methods cross-IDE 3.5. It works as a
middleman between a language server (running in their own process) and a code editor,
providing tooling such as code completion, diagnostics, formatting, etc. This way, any LSP-
compliant code editor can use these language servers and vice versa, greatly reducing the
amount of work is needed to implement specific language features.

Figure 3.5: Instead of developing language tooling for each language in each editor, the LSP can greatly reduce
the amount of work that is needed to implement specific language tools.

INDENTATION PARSING

As indentation is the accepted method for visualizing codeblocks, we may visualize the in-
dentation in text-files. There are some upsides to this method: it is fast because it needs
very little tokenization, it builds upon a known visualization technique that has been tried
and tested in the community and may be easy to implement, it is a universal visualization
technique across all block-based programming languages and, as it is purely character-
based parsing, it will be supported by almost any IDE, making it easy to port between dif-
ferent environments.

However, there are some downsides to this method. Firstly, indentation is not always

23

correctly applied, especially with novice programmers. This can be remedied by turning
on an auto-formatter within the IDE. Most text-based IDEs now include this functionality,
many even provide options to auto-format ‘on save’ or ‘on input’. Second, indentation con-
tains no information about the type of block. This means we might be able to quickly find
the position of the block without tokenizing the code, but still need those tokens to figure
out the type of block. Third, this way we still save (part of) the visualization within the file.

IMPLEMENTATION

Because Visual Studio Code does not provide a public API for its tokenization engine, and
only minimal access to its token parsing engine, we are by default limited to indentation
parsing. In order to implement an indentation parser, we will need to assume that inden-
tation for each line of code is correct. We can use the built-in auto-indentation to con-
tinuously format the code written by the user4. The auto-indenter works for multiple pro-
gramming languages. Python support in VS Code is provided through a different extension,
which includes indentation-rules specific to the Python programming language.

By utilizing the built-in auto-indenter, a program loop can be defined as in Figure 3.6.
The extension waits for any user input in the IDE. When the user provides this input (code),
the extension gets triggered. It will then execute three operations. First it will indent the
code correctly according to the built-in indentation-rules. Then it parses that indentation
and looks for any changes in the tree structure. Lastly, it updates the codeblock visualiza-
tions where necessary.

User − i nput // auto − i ndent

��
vi sual i ze − i ndent ati on

OO

par se − i ndent ati onoo

Figure 3.6: The program loop: A user provides input (code) to the IDE, after which the extension auto-indents
this input. This triggers the indentation parser, which in turn triggers the indentation visualizer. Finally, we
wait for new user input.

In order to trigger auto-indentation each time a user provides some user input, we con-
figure VS Code in such a way that the document gets formatted each time the user types
or saves. Snippet 3.1 shows how to activate these options for the currect workspace in VS
Code. In order to watch for user input, we opted to use the built-in autosave feature, as
shown in Snippet 3.2. Saving a document triggers an ‘onWillSaveTextDocument‘-event,
which we can use to call our indentation-parser and -decorator function as seen in Snippet
3.3.

1 vscode.workspace.getConfiguration().update(’editor.formatOnType’, true, vscode.ConfigurationTarget.
Workspace);

2 vscode.workspace.getConfiguration().update(’editor.formatOnSave’, true, vscode.ConfigurationTarget.
Workspace);

Snippet 3.1: Activating auto-indentation (called ‘auto-format’) configuration options in VS Code

4 https://code.visualstudio.com/

24

https://code.visualstudio.com/updates/v1_14#_auto-indent-on-type-move-lines-and-paste

1 vscode.workspace.getConfiguration().update(’files.autoSave’, ’afterDelay’, vscode.
ConfigurationTarget.Workspace);

2 vscode.workspace.getConfiguration().update(’files.autoSaveDelay’, 500, vscode.ConfigurationTarget.
Workspace);

Snippet 3.2: Activating auto-save configuration options in VS Code

1 vscode.workspace.onWillSaveTextDocument(event => {
2 const openEditor = vscode.window.visibleTextEditors.filter(
3 editor => editor.document.uri === event.document.uri
4)[0];
5 decorateIndent(openEditor);
6 });

Snippet 3.3: When the ‘onWillSaveTextDocument’-event is triggered, call the indentation function.

Parsing the indentation and providing some visualization method proved to be more
difficult than turning some configuration options on or off. Because this is not a built-in
feature of VS Code, it required a custom approach. We started by building a list of codeblock
objects, where each block is defined by its range (start and end position in the document),
type (e.g. class, function, ...) and indentation level. This is created using a simple class,
such as in Snippet 3.4.

1 class CodeBlock {
2 constructor(range: vscode.Range, type: CodeBlockType, indentLevel: number) {
3 this.range = range;
4 this.type = type;
5 this.indentLevel = indentLevel;
6 }
7 }

Snippet 3.4: A simple ES6 class datastructure, representing a codeblock by range, type and indentation
level.

Creating a list for each codeblock requires us to parse each line of code for its inden-
tation level. Indentation level shows us where a codeblock starts and ends, especially in
Off-Side Rule languages such as python. We currently implemented an iterative approach.
A recursive approach would also be possible, but as our priority is a working prototype, we
did not explore this option further. Visualizing each codeblock can then be done by using
the decoration API of VS Code. This API provides a stylesheet-like method to define how
text in an editor is presented, e.g. Snippet 3.5.

1 backgroundColor: ‘rgba(${color}, ${opacity})‘,
2 border: ‘2px solid rgba(${color}, ${Math.max(opacity * 2, 0.5)})‘,
3 fontWeight: ’bold’,
4 before: {
5 backgroundColor: ‘rgba(${color}, ${Math.max(opacity * 2, 0.5)})‘,
6 width: ’4px’,
7 height: ’67%’,
8 contentText: ’ ’,
9 margin: ‘0 0 0 0‘

10 }

Snippet 3.5: The decoration API uses a stylesheet-like approach to visualizing code.

25

Using these methods, we have implemented every Blocker requirement:

• Distinguish different codeblocks: using the decoration API we can now visualize each
codeblock separately from each other codeblock.

• Provide each codeblock with indentation-like padding to the left: classic indenta-
tion, using the auto-format configuration options in VS Code, allows us to maintain
indentation as expected.

• Frequent updates of visualizations: VS Code provides us with options to format and
visualize the codeblocks on user input and document saves.

We can immediately implement several other Must-have requirements as well:

• Live updates of visualizations: VS Code provides us with options to format and visu-
alize the codeblocks on user input and document saves.

• maintain a contrast ratio of at least 3:1: Tweaking the colors used by in the decorator
stylesheets and using a contrast checker tool5, we can quickly adjust the color ratio
of the codeblocks.

• provide each codeblock with a ’C’ shaped visualization: We now know the start- and
end-position of each codeblock. This provides us with enough information to visual-
ize the start and end of each codeblock differently.

In order to implement codeblock categorization, we categorize codeblocks similarly to
Pencil.cc:

• Control: these codeblocks are selective or iterative in nature. They consist of the
blocks ’for’, ’while’, ’if’, ’else’, ...

• Functional: these codeblocks group statements together. They consist of the block
’method’, ’constructor’ and ’function’.

Each document in VS Code contains a Document Symbol Provider, which provides ac-
cess to all named symbols in the document that can be reached by the ’go-to-symbol’-
feature. Each symbol is provided with a SymbolKind, an enum value containing the type of
symbol it represents. By iterating over the entire list of named symbols in the document,
and comparing the range of each symbol to the range of each codeblock we collected ear-
lier, we can see if a codeblock matches a specific symbol.

The Document Symbol Provides doesn’t provide us with any information about code-
blocks in our control-category. However, every codeblock from the functional-category is

5The contrast checker tool from WebAim, which is referred to in the WCAG documentation.

26

https://webaim.org/resources/contrastchecker/

Symbolkind codeblock category

Array not a codeblock
Boolean not a codeblock
Class uncategorised
Constant not a codeblock
Constructor Functional
Enum not a codeblock
EnumMember not a codeblock
Event not a codeblock
Field not a codeblock
File not a codeblock
Function Functional
Interface uncategorised
Key not a codeblock
Method Functional
Module not a codeblock
Namespace uncategorised
Null not a codeblock
Number not a codeblock
Object not a codeblock
Operator not a codeblock
Package not a codeblock
Property not a codeblock
String not a codeblock
Struct uncategorised
TypeParameter not a codeblock
Variable not a codeblock

Table 3.4: SymbolKind enum from the VS Code extension API vs. the codeblock categories we defined.

represented in the list of Symbols, as seen in table 3.4. There is even information about a
third possible category - a structural or object-oriented category, containing classes, structs
and namespaces. Every other codeblock that is not detected by the Document Symbol
Provider can thus be categorized as a control-codeblock, as can be seen in example 3.7.
This is the reason why we cannot use the Document Symbol Provider as a way to detect
codeblocks, as none of the codeblocks in the control-category would get detected.

After applying all these methods we have created a tool that is capable of handling mul-
tiple languages that looks similar to the mockup we created in Figure 3.4. However, there
are still some differences as can be seen in Figure 3.8. The ’C’ shape is now a vertically
mirrored ’L’ shape for Python. The decoration API in VS Code only allows to decorate text,
which is a problem for Python, as there is no text to mark the end of a codeblock.

27

Figure 3.7: Categorizing each codeblock according to its symbolkind.

Figure 3.8: The prototype working in Python (left) and Javascript (right), with a similar visualization as the
mockup in Figure 3.4

HURDLES AND LIMITATIONS

The tool we present as a working prototype is stable for small programs on a novice-programmer
level, but is not well-suited for more complex structures where the header of a block con-

28

sists of multiple lines of code (e.g. a complex condition spread out over multiple lines of
code for a selection block as in Figure 3.9).

Figure 3.9: A bug in the prototype, where a multiline condition breaks the visualization partially.

The Document Symbol Provider is loaded asynchronously, and there is currently no
event that signals when it is ready. This means that the extension will sometimes not recog-
nize all blocks for the first few seconds (or before the first edit of the document), rendering
them all in the same color as can be seen in Figure 3.10.

Figure 3.10: A bug in the prototype. On initialization, the extension will sometimes not recognize all blocks,
rendering them all in the same color.

Both issues may be solved by using a more extensive public API or a custom build of the
editor, along with more extensive visualization APIs. The Atom editor would be a very good
choice to explore these possibilities, as its codebase is more public.

We do not consider these bugs as critical, as every Blocker requirement is still fully im-
plemented. The only Must-have requirement that is not fully implemented is requirement
’provide each codeblock with a C-shaped visualization’, where the first half of the C-shape is

29

fully functional in every language and the bottom half is missing in Off-side Rule languages,
still providing ample difference between multiple codeblocks.

30

4
EXPERIMENTAL EVALUATION

With a working prototype for the visualization tool we can construct an experiment to mea-
sure the efficacy of codeblock visualization as implemented by the tool. Similar to previous
research in the domain of measuring the efficacy of visual IDEs and text-based IDEs, we
will use an experimental research approach [35, 1, 36]. In the following sections we explain
this experimental research approach in more detail:

• 4.1 Experimental Research Approach, where we explain the methodology used in the
experiment and a detailed explanation of the curriculum used during the experi-
ment.

• 4.2 Data Collection where we elaborate on the participants and the testing methods
used to collect the results.

• 4.3 Data Analysis where we explain which statistical methods were used to analyze
the results and our reasoning behind those choices.

• 4.4 Results of the Experiment where we show and interpret the result of the statistical
analysis that was conducted.

4.1. EXPERIMENTAL RESEARCH APPROACH

Previous research from Weintrop and Wilensky and Alrubaye has used a quasi-experimental
setup with two separate class groups that follow the same introductory programming course
[1, 37, 35]. These studies have followed the first few weeks of the course, meaning that most
students have little to no background in programming. Each group is presented with a dif-
ferent tool for writing code (e.g. a block-based IDE vs a text-based IDE). On the first day of
the course, students are presented with a content assessment.

The content assessments in the studies of both Weintrop and Alrubaye were based on
the Commutative Assessment [35], a multiple-choice test that contains thirty questions

31

which cover the concepts that students will encounter during the introductory program-
ming course. The study of Weintrop used the questionnaire directly [37], while the study of
Alrubaye used a similar questionnaire based on the Commutative Assessment with fewer
questions [1]. Questions in the Commutative Assessment are either content, algorithm or
comprehension questions. Content and comprehension are each setup in a similar fash-
ion: it shows a short program, followed by five multiple-choice answers and asks the ques-
tion: "What will be the output of the program?" (for content questions) or "What does this
program do?" (for comprehension questions). Algorithm questions are different, as they
are written in plain text and ask students to identify the order of steps in an algorithm or
identify potential missing steps.

The study of Weintrop presented these questions in multiple formfactors, from block-
based to text-based or hybrid presentations. This allows students to ’read’ code in a way
that is most comfortable for them. The study by Alrubaye approached this differently: as
its goal was to measure the performance of different learning tools in order to start pro-
gramming using a text-based IDE, the questions are presented in a text-based fashion.

We will also use an experimental research approach, similar to Weintrop and Wilensky
and Alrubaye [1, 36]. We use this to measure the difference in performance between stu-
dents using visual elements to indicate codeblocks and students using a traditional text-
based IDE. This is similar to how Alrubaye conducted an experiment to measure the dif-
ference in performance between students using a hybrid environment and a block-based
IDE. Because we want to see how visual elements contribute to the learning performance
of students when using a text-based IDE, where the goal is to read and write code in a text-
based IDE, we opt to present students with code in a text-based fashion. Code-snippets are
created using the same IDE as the one students will work with.

4.1.1. COURSE OF THE EXPERIMENT

The experiment consists of multiple phases: a grouping phase, a learning phase and a test-
ing phase. It is important to account for the time it takes to perform each phase, especially
the learning phase. The three phases of the experiment are based on research performed
by Weintrop [36] and Alrubaye [1].

GROUPING PHASE

During the grouping phase, students were divided into one of two groups: the text-based
group and the block-visualization group. Each student was presented with the correct soft-
ware installation. During this phase, we also conducted a content assessment in order to
measure prior knowledge. This content assessment is based on the Commutative Assess-
ment [35], a multiple choice test containing thirty questions that cover the concepts that
students will encounter during the learning phase. The test was shortened (due to time
constraints) to nine questions that cover the same topics.

32

LEARNING PHASE

In the learning phase, the students followed a curriculum explaining all basic concepts that
are tested during the testing phase. Each concept was explained with both visual and text-
or number-based activities. This phase had a five-week duration, where students had two
hours of in-class lessons and the rest of the week to practice the subjects that were taught
during class, with a possibility to ask questions over the Learning Management System
(LMS).

TESTING PHASE

During the testing phase, students will again perform a similar content assessment. We
used a questionnaire that was used in the research by Alrubaye, which in turn is based on
the commutative assessment by Weintrop [1, 35], but translated it into Dutch. Framework-
and language-specific questions were modified in order to match the curriculum, although
we tried to match the questions as closely as possible. It contains a mix of content, algo-
rithm and comprehension questions that each covers one or more specific topics.

4.1.2. CURRICULUM

The curriculum was divided into five lesson-plans, where each lesson contained one or
more concepts from the curriculum. As the lessons were being taught in Dutch, the lesson
plans were also drawn up in Dutch. A new concept was introduced each week and previous
concepts were repeated within the context of the new concept.

Each lesson plan contained a similar structure:

• Data about the teacher, school, class (group) and time/location of the lesson

• General information about the lesson, including subject, main goal, initial situation,
connection to government-mandated learning goals and necessary materials (Figure
4.1).

• A step-by-step guide that determines how a subject is taught, including the specified
content of the subject content, guidelines on what to say and do and a time limit for
each piece of content (Figure 4.2).

A major part of the first lesson was devoted towards installing the software and tools
necessary in order to write code and run Python programs. The following four weeks (and
the second part of the first lesson) were used to teach the multiple concepts as described
in the Curriculum.

In order to measure code comprehension among students, it is important to define ex-
actly what it is we will measure. For the purpose of this research, we define code com-
prehension by following the commutative assessment method by Weintrop [35], which in
turn is based on the 2013 CS Curriculum [26] and the work of Tew and Guzdial [30, 31]. In

33

Figure 4.1: The general information of the lesson plan for the first week.

Figure 4.2: Specific step-by-step guide of the lesson plan for the first week.

making the FCS1 assessment, Tew and Guzdial reviewed the contents of 12 introductory
computer science textbooks along with other published curricula to establish a list of ten
core CS1 concepts. Weintrop selected the five primary core concepts of this curriculum and
included an additional two categories, based on his review of the CS2013 Curriculum. This
adds up to a total of seven concepts which can be used to measure and define code com-
prehension, by presenting a student with practical questions and exercises. These seven
concepts are:

1. programming fundamentals: How can we direct a computer to save and adjust values
using a programming language?

34

2. selection statements: How can we use conditional logic to adjust the outcome of a
program?

3. definite loops: How can we use the previous concepts (programming fundamentals
and conditional logic) to execute code a specific number of times?

4. indefinite loops: How can we use the previous concepts (programming fundamentals
and conditional logic) to execute code an indefinite number of times?

5. function parameters: How can we break down code into smaller, more manageable
chunks?

6. program comprehension: How can I predict the outcome of a program?

7. algorithms: How can we break down a problem into smaller steps by using natural
language?

In the following subsections each of these concepts is explained in more detail.

PROGRAMMING FUNDAMENTALS

How can we direct a computer to save and adjust values using a programming language?

During the first week, students get taught what variables, datatypes and values are and
apply these concepts in practical applications. This is done by first explaining these con-
cepts to students, using analogies to lessen the abstract nature of these concepts and ask-
ing questions to determine what current knowledge students have. This current knowledge
can come from many different fields of study, and can help students more accurately un-
derstand abstract concepts through the use of different analogies.

After explaining what variables, datatypes and values are, students are shown a prac-
tical application of these concepts. First within the concept of a larger program (a game
of ’hangman’), where students are show what effect these concepts have on the program.
Later they practice these concepts one by one with isolated examples to guide them, so
students can focus on these new concepts without the distraction of untaught concepts.

Finally, students get the chance to practice these concepts with a series of exercises. A
selection of good and bad solutions are used to explain good and bad practices and com-
mon misconceptions. Here, students learn the importance of statement order and how it
can affect how (or if) a program functions.

The second week goes more into the concepts of arithmetic expressions and operations.
This lesson starts with a repetition of the previous concepts (variables, datatypes and val-
ues) and explains the arithmetic operators that can be applied to those values. Each oper-
ator is explained within the context of specific datatypes and linked to the current knowl-
edge of students on arithmetic. The same lesson structure was used for explaining through
analogies, teaching by example and learning through exercises.

35

In week four, we elaborate further on different ways to save multiple values using lists,
dictionaries, tuples and sets.

SELECTION STATEMENTS

How can we use conditional logic to adjust the outcome of a program?

During the second week, after the students learn about arithmetic expressions and op-
erations, they learn about logical expressions and operations as well. These concepts get
introduced along with the larger concept of selection statements during the second week.
Selection statements are explained with the three selection codeblocks in Python:

• if

• elif

• else

Each block is explained through multiple examples and exercises that apply the new knowl-
edge. Within these blocks, the concepts of programming fundamentals are repeated. Next,
combinations of these blocks are shown through even more examples, along with an ex-
planation of the logical consequences that block choice and conditional order can have on
these structures. Students also practice the nesting of similar codeblocks.

This is the first codeblock students get to experience. It is the first time they will apply
logic to their programs and alter the flow of the program based on the initial input. It is also
the first time our research tool gets activated for the group that has installed it.

DEFINITE LOOPS

How can we use the previous concepts of programming fundamentals and conditional logic
to execute code a specific number of times?

During the third week, the concept of loops is taught to the students. Using the ’while’
codeblock we show students how they can use conditional logic to determine how often
a ’while’ codeblock will iterate over the statements contained within the block. Then the
concept of a loop counter is shown, where a variable is created to count the number of
iterations.

After this, we introduce the concept of iterable variables by looking more closely at the
string datatype. Together with the students, we reason how a variable of this datatype can
be broken down into smaller bits (each character). We use this as a gateway to talk about
iterator variables: variables that store a portion of the iterable object during the execution
of a loop. In case of a ’string’ variable, the iterator stores a character.

Armed with the knowledge of loops, conditional logic, iterables and iterators, the stu-
dents are introduced to the ’for’ codeblock, which is, in Python, a codeblock that specifi-
cally defines an iterator over an iterable object.

36

INDEFINITE LOOPS

How can we use the previous concepts of programming fundamentals and conditional logic
to execute code an indefinite number of times?

During the fourth week, students are shown how different codeblocks can be nested.
Along with the students, we create a program that repeatedly captures user input through
the ’input’ function, saves that input into a list, and only breaks from that loop if the user
enters a specific command. This shows students how a loop does not always have a prede-
termined number of iterations, and can in fact be indefinite.

FUNCTIONS AND PARAMETERS

How can we break down code into smaller, more manageable chunks?

Throughout the complete course, we put each example in a clearly named function.
We first introduce this as an easy way to name each exercise and keep our code a bit more
structured in multiple codeblocks. Later on, we show how we can call those previous ex-
ercises by simply calling their name, just so we don’t have to write previous code over and
over again. By the end of the course, students are using functions as a practical way to
structure their code and make their code more readable.

From the start of the course we use the ’input’ function to capture user input, the ’out-
put’ function to show information on screen, and the ’int’ function to selectively cast user
input (which is character-based) to integers. Each of these functions accepts at least one
argument.

By week four we start to combine the two concepts, where our ’exercises’ start to ac-
cept one or more arguments. Students are taught how this increases the reusability of the
codeblocks that we now call ’functions’.

PROGRAM COMPREHENSION

How can I predict the outcome of a program?

Students are taught through the use of examples. Bigger examples are analyzed with the
whole group, smaller examples as a way to guide them through similar exercises. Through
this method, we teach the students how to read code and predict the output of a program
based on possible inputs.

ALGORITHMS

How can we break down a problem into smaller steps by using natural language?

For each programming concept we create a specific ’human-readable’ problem state-
ment that can be solved through the use of a student’s current programming knowledge.

37

Students first try to solve these problems on their own. Often this gives us multiple possi-
ble answers to the same problem. Students then solve the problem in groups, step by step,
breaking the problem down to multiple smaller problems until we can concretely translate
a given problem statement into a specific programming statement. We guide them through
the process, until we come to a complete solution. We do this multiple times, in order to
cover multiple possible solutions to the problem.

4.2. DATA COLLECTION

4.2.1. STUDENT PARTICIPANTS

We approached a school in Antwerp (Belgium) to conduct the experiment. Within the
school, there are several class groups which have an algorithmic thinking and program-
ming part in their curriculum. class groups consist of students from multiple genders and
ethnic and social backgrounds. Most students originate from the surrounding urban areas.
These class groups can be divided into three experience categories, based on the amount
of programming each student was offered during their curriculum prior to the experiment:

1. no prior programming experience

2. little (0.5 years) prior programming experience

3. some (1.5 years) prior programming experience

These three class groups amount to a total sum of 28 students, of which 1 student could
not complete the experiment and was therefore not included in the results. Every student
was informed about the experiment beforehand in two different ways. First, we provided a
verbal info session where students could freely ask questions about the experiment, its re-
sults and data handling. Second, we provided students and their parents with a letter con-
taining a detailed explanation about the experiment. The letter was digitally sent through
the schools Learning Management System. This way, we could actively track which par-
ents and students did or did not read the letter. The digital letter included a consent-form
in compliance with the ethics procedure from the Open University. Using these consent-
forms, we collected consent for each student, either from their parents or directly from the
students themselves1.

4.2.2. PRE-TEST

Students were assembled in a controlled and familiar classroom environment. Each class
group was presented with an introduction to the course, where both the goals of the course
and the goals of the experiment were clearly laid out. Students were informed on both
accounts beforehand, which allowed this introduction to act more as a reminder.

1students 16 years of age or older are allowed to give consent themselves

38

After the introduction, students are presented with a digital form that contains the
questions from the first content assessment. The test is limited in size, and will allow us
to establish a baseline for a student’s comprehension of the different subjects.

After the pre-test, each of the three class groups was further divided into a control-
group that will use the default visualization of the IDE and a group that will use the vi-
sualization extension on top of the IDE. Due to Covid-19 restrictions, class groups were
already divided up into two, randomly distributed, equally sized groups. We simply used
these Covid-19 groups as either the control-group or the visualization-group.

In order to make sure that the results of each group are separated clearly, a copy of the
digital questionnaire is made for each group. In order to access the questionnaire, students
have to login using the same credentials that are used to access the schools Learning Man-
agement System (Smartschool/Office365). This way we can verify each result to originate
from a specific student.

4.2.3. POST-TEST

Conducting the post-test was done in a very similar fashion to the pre-test. Students were
assembled in the same classroom. We explain that the test will be similar to the one they
filled in at the beginning of the course, and that every question will cover one or more topics
from the past five weeks.

The same digital questionnaire tool was used to collect the results, where students have
to login using the same credentials that are used to access the schools Learning Manage-
ment System (Smartschool/Office365). This way we can verify each result to originate from
a specific student. Identical to the pre-test, a copy of the digital questionnaire is made for
each group.

4.3. DATA ANALYSIS

We used a Shapiro-Wilk normality test to check the normal distribution of our datasets.
Where these datasets showed such a normal distribution, we made use of parametric tests
to further analyze the data.

We did two regression analyses to check for a correlation between programming expe-
rience and post-test scores on the one hand, and between programming experience and
student progress on the other.

A two-way Anova test was performed between post-test scores, amount of program-
ming experience and the use of the tool. This was done to see if our tool has any effect on
the final score of the students.

A second two-way Anova test was performed between student progress, amount of pro-
gramming experience and the use of the tool. This was done to see if our tool has any effect

39

on the progression score of the students.

4.4. RESULTS OF THE EXPERIMENT

We conducted an experimental study to measure the difference in performance between
students using visual elements to indicate codeblocks within a text-based IDE and students
using a traditional text-based IDE. We hypothesized that code comprehension among stu-
dents is impacted by the use of codeblock visualizations within a text-based editor.

Students were presented with two tests: one at the start of the course and one at the
end. This way we collected two different datasets. The first dataset shows how each student
performed on the test at the end of the course, while the second dataset shows how much
progress each student made between the first and second dataset. Statistical analysis was
applied to both datasets, allowing us to answer our hypotheses.

Figure 4.3: Post-test scores for students. The group that did not use the tool is shown in blue (left), the group
that did use the tool is shown in red (right). The score is normalized to a scale of 0 - 1. The lines show the
average score for each group.

In Figure 4.3 we show the normalized result of each student. Figure 4.4 shows the
progress of each student between the initial pre-test that was taken during the grouping
phase and the final post-test that was taken during the testing phase. We did a Shapiro-
Wilk normality test to check the normal distribution of these datasets. Both datasets show
a normal distribution (W = 0.94076, p-value = 0.1272 and W = 0.97993, p-value = 0.8607),
allowing us to make use of parametric tests to further analyze the data.

There were 3 different student groups that participated in the experiment. Each of these
groups had a different level of programming experience (no experience, 0.5 years and 1.5
years). Each group was divided into a control-group that used the default visualization of
the IDE and a group that uses the visualization extension on top of the IDE. We did two
regression analyses to check for a correlation between programming experience and post-
test scores on the one hand, and between programming experience and student progress
on the other. As expected, students with more programming experience have a significantly
higher score on the post-test (p-value of 0.019), as can be seen in Figure 4.5. However, there
is no significant effect on student progress (p-value of 0.698).

40

Figure 4.4: Relative scores, showing how much students improved their result between the pre-test and the
post-test. The group that did not use the tool is shown in blue (left), the group that did use the tool is shown
in red (right). The lines show the average progress for each group.

A two-way Anova test was performed between post-test scores, amount of program-
ming experience and the use of the tool. Although students with more experience had a
higher score on the post-test, there was no significant difference between using the tool or
not on the average result of each group (p-value of 0.52311). We did not observe an influ-
ence of our tool on a students’ final score, as seen in Figure 4.3.

Another two-way Anova test was performed between student progress, amount of pro-
gramming experience and the use of the tool. Here, we observed a significant negative in-
fluence of our tool (p-value of 0.04099). Students that did use the tool had a worse progress
score than those who did. This can be clearly seen in Figure 4.4.

Figure 4.5: Average scores on the post-test for each group, broken down into categories. Blue groups did not
use the tool, while red groups did use the tool. Lighter bars have more programming experience, while darker
bars have less experience.

In short, we observed no influence of our tool on a students’ final score. We did observe
a significant negative influence of our tool on student progress. This means that students

41

that did use the tool had a worse progress score than those who did not. This rejects our
null hypothesis. It also confirms our alternative hypothesis, although not in the way we
expected.

42

5
DISCUSSION

Research by Weintrop and Wilensky has shown that Visual programming languages can
be used to increase code comprehension among novice high school students [36]. Their
results show an inverse effect when compared to our results, as students that use a visual
IDE performed better than students that use a text-based IDE, most significantly on code
comprehension questions. An explanation for this could be due to limitations in respect to
the tools and programming language used. It should be noted that both the visual IDE and
the text-based IDE have multiple features not implemented, which can skew the results.
One of those shortcomings is a limited form of syntax-highlighting and autoformat, and no
autocomplete within the text-based IDE. The visual IDE had a clunkier user interface when
compared to other visual IDEs such as Scratch or Blockly.

5.1. AN UNEXPECTED RESULT

Research by Alrubaye et al. has shown that hybrid forms of programming, where students
can switch between block-based and text-based versions of their code, show more promis-
ing results than in pure visual IDEs [1]. These results are more significant than the previous
research by Weintrop and Wilensky [36]. It shows that text-based IDEs have significant ad-
vantages as well. At first glance, this seems to directly contradict our results.

However, combined with our results, a possible conclusion may be that visual IDEs pro-
vide other advantages that are more significant than the visualization of code in a block-like
fashion. These other advantages may include the listing of possible statements and code-
blocks, easy access to code snippets for these codeblocks, the clear organization of such
statements and codeblocks into categories or the drag and drop interface.

It is possible as well that some of the decisions we made during development had a
more negative impact than anticipated. Many decisions were made during the develop-
ment of the tool and the design of the experiment that could have an effect on the out-
come of the experiment. The experiment was conducted using a specific programming

43

language and IDE, while the tools’ design still had a lot of variables such as variations on
color scheme or shape topology.

5.1.1. CHOICE OF PROGRAMMING LANGUAGE

Python is an off-side rule language, meaning that indentation dictates code structure. This
allowed our visualizations to directly indicate errors in code structure, instead of merely
suggesting them. However, this means that Python has no clear end-of-codeblock indica-
tor. This broke our visualization partially, because we had no bottom bar for the ’C’-shape.
Students that did not use the tool were forced to focus on indentation early on because of
this, possibly lessening the effect of the codeblock visualizations.

In the end, we did pick Python for some very obvious reasons:

• Its syntax is simple, consistent and readable for the fundamentals

• Its learning curve is beginner-friendly for the fundamentals

• Its setup is very straightforward

The idea that Python should be simple, consistent and readable is found directly within
its documentation, specifically a document called ’the Zen of Python’. This document lists
nineteen principles that are meant to guide developers when writing Python1. It includes
maxims such as (1) beautiful is better than ugly, (2) sparse is better than dense and (3) if
the implementation is hard to explain, it’s a bad idea. In future work we propose that other
languages such as Java, C# or Javascript should be considered as they may alliviate some of
the downsides of using an off-side rule language.

5.1.2. CHOICE OF IDE

Several factors were included when deciding which IDE should be used during the exper-
iment. Because the experiment was done in a real-life environment, many factors were
included that had nothing to do with the initial research question (e.g. cost, installation
size, language support). Because we had to include these unrelated factors, it may be pos-
sible we did not use the optimal IDE as our primary choice for the experiment. Other IDEs
that were not considered might provide a more elaborate visualization API.

5.1.3. COLOR SCHEME VARIATIONS

Color theory is an entire research field of its own. It explains how colors are perceived,
how colors can mix, match or contrast with each other and, maybe most importantly, what
messages colors communicate. In our research we focussed on a very small part of this:

1The Zen of Python

44

https://www.python.org/dev/peps/pep-0020/

contrast. Our current color scheme focussed entirely on readability in accordance to the
WCAG2 standard.

Expanding our color scheme with slight variations for similar, but not identical, types
of codeblocks may have further improved readability. By not doing this we may even have
decreased the readability, because similar types of codeblocks now look visually identical
(e.g. an ’if’ block and ’while’ block are now visually the same type of codeblock).

5.1.4. SHAPE TOPOLOGY VARIATIONS

As we mentioned above, the use of an off-side rule language, where codeblocks have no
clear end-of-block indicator, made it technically a lot more difficult to implement a com-
plete ’C’-shape. We decided that we had a compelling visualization of each codeblock, even
without the bottom bar for the ’C’-shape. However, this is a clear deviation from each of
the researched visual IDEs.

Within visual IDEs there is a clear difference in the left-side padding of the ’C’-shape,
where Blockly even allows for different sizes for different implementations. This is similar
to how some programmers prefer 2-space indentation versus 4-space indentation. How-
ever, research has shown that the amount of spaces does not contribute to the readability
of code, so it is unlikely that this was a contributing factor for the negative effect of the tool
[6].

Line-height was also increased for students that used the tool, in order to create more
space for the top and bottom visualizations of the ’C’-shape. This inherently meant that
students that did use the tool had larger line spacings between statements. This is an in-
direct effect of the implementation of the tool itself, not the concept of codeblock visual-
ization. However, previous research on text comprehension and readability has shown that
larger line-heights should increase comprehension and have little effect on readability [25].
If anything, this should have increased code comprehension for students that did use the
tool. However, further research is needed to see if the results of Rello et al. are applicable to
reading code as well.

5.2. THREATS TO VALIDITY

5.2.1. INTERNAL VALIDITY

The experiment was conducted in the middle of the Covid-19 crisis. As a consequence, a
ventilation mandate was active, where doors and windows had to be open at all times. With
most days averaging on a maximum temperature of 18°C or lower2, weather conditions
might have had an influence on the concentration of students. Because the doors of every
classroom were open throughout the school, there was a lot of noise coming into the class-
room which may have distracted participants. Students were also obligated to wear masks.

2Meteoblue - weather archive Belgium

45

https://www.meteoblue.com/nl/weer/historyclimate/weatherarchive/belgie_zuid-afrika_1020331?fcstlength=1m&year=2021&month=5

Although students did not complain about discomfort during the experiment specifically,
this might have impacted performance.

The tests were conducted during a normal school day, where students also went to
different classes before and after the test. Other tests from other classes were sometimes
planned on the same day, which may have impacted student mood and concentration.

In the first test, an error was found in one of the code snippets. This meant that none
of the multiple choice answers were completely correct, although one answer was partially
correct.

It is a possibility that students did not understand the translated questions well. We did
involve several teachers to read the questions and evaluate them on clarity, but due to the
subject of the course and the limited amount of CS teachers present in the school, there
were few adjustments made to the wording of the questions.

5.2.2. EXTERNAL VALIDITY

The number of students that were part of the experiment was small, especially compared to
the research done by Weintrop in [36]. All of the participants were high-school students that
were taught by the same teacher. This means that the limited results from this experiment
are hard to transfer to other settings, such as the effectiveness of codeblock visualizations
on experienced programmers. This limits the generalizability of the results.

5.2.3. STATISTICAL CONCLUSION VALIDITY

Although our results are statistically valid for our test subjects, we cannot extrapolate these
results towards a larger population. It is entirely possible that our small sample size con-
tains an accidental offset that have skewed the results. The data shown in Figure 4.5 shows
some hints towards such an offset, as one group performed differently from the two others.
A larger sample size would be able to give a clearer image for the larger population. Future
work should especially focus on the results where we did not find any significance.

46

6
CONCLUSION

The goal of this thesis is to find out if codeblock visualizations within a text-based IDE can
increase code comprehension among high school students, similar to the results of using
visual IDEs. To that end we have analyzed multiple, popular visual IDEs in order to create a
tool that provides codeblock visualizations within a text-based IDE. We then used the tool
in a quasi-experimental study where high school students were randomly divided into two
groups. One group was provided with a popular text-based IDE that did not use codeblock
visualizations, while the other was provided with the same text-based IDE, but this time
enhanced with codeblock visualizations. Both groups followed the same curriculum during
a period of five weeks. Both groups were given the same test at the start and the end of the
five-week period. We find that students that did use the tool performed similarly to the
ones that did not on their final test. However, students that did not use the tool, progressed
more between the initial and final test.

There are multiple possibilities for future work. First and foremost, our findings should
be replicated on a larger scale. Secondly, we showed just one way in which codeblocks can
be visualized. Different programming languages, color schemes, shape topologies, in- or
exclusion of syntax highlighting can all have impacted these results. Thirdly, there are more
differences between visual IDEs and text-based IDEs than just the visualizations, although
these are the most straightforward. For example, the drag-and-drop interface for different
programming structures that also provides students with an easy lookup system for differ-
ent codeblocks, operators and statements.

47

7
ACKNOWLEDGEMENTS

Writing this thesis was not easy, and I have received a great deal of help and support from a
number of people.

First and foremost, I would like to thank my supervisors, professors Alaaeddin Swidan
and Fenia Aivaloglou, for their support and patience. Alaaeddin, Without your guidance
and understanding I would not have made it this far. Fenia, your enthusiasm and feedback
at the end were invaluable.

I would like to thank my colleagues and principals at Pius X highschool for their help
and support. This would not have been possible without your help.

I would also like to thank my fellow students, especially Steven, Bob and Dennis, who I
shared many moments of joy and suffering with throughout my Masters.

In addition, I would like to thank my partner, Anemoon, and my family for their endless
patience and understanding. Anemoon, you have been my bedrock throughout the past
three years. This work is as much an accomplishment by you.

Special thanks to my sister, Evi, for being my personal spell checker.

Finally, this would not have been possible without the help of my friends, the Uncles,
who not only gave me a listening ear whenever I needed it, but many happy distractions as
well.

48

BIBLIOGRAPHY

[1] H. Alrubaye, S. Ludi, and M. W. Mkaouer. Comparison of block-based and hybrid-
based environments in transferring programming skills to text-based environments.
in Proceedings of the 29th Annual International Conference on Computer Science and
Software Engineering, 2019. 2, 3, 5, 6, 11, 31, 32, 33, 43

[2] M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes. Proposal for a standard de-
fault color space for the internet—srgb. In Color and imaging conference, 4th Color
and Imaging Conference Final Program and Proceedings, pages 238–245. Society for
Imaging Science and Technology, 1996. 16

[3] A. Arditi. Monocular and binocular letter contrast sensitivity and letter acuity in a di-
verse ophthalmologic practice. Supplement to Optometry and Vision Science, 81:287,
2004. 16

[4] D. Asenov, O. Hilliges, and P. Müller. The effect of richer visualizations on code
comprehension. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, pages 5040–5045, 2016. 6

[5] D. Bau and D. A. Bau. A preview of pencil code: A tool for developing mastery of
programming. In Proceedings of the 2nd Workshop on Programming for Mobile &
Touch, pages 21–24, 2014. 12

[6] J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel. Indentation: simply
a matter of style or support for program comprehension? In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pages 154–164. IEEE,
2019. 2, 14, 45

[7] T. Beelders and J.-P. du Plessis. The influence of syntax highlighting on scanning and
reading behaviour for source code. In Proceedings of the Annual Conference of the
South African Institute of Computer Scientists and Information Technologists, pages
1–10, 2016. 7

[8] T. R. Beelders and J.-P. L. du Plessis. Syntax highlighting as an influencing factor when
reading and comprehending source code. Journal of Eye Movement Research, 9(1),
2016. 7

[9] B. Caldwell, M. Cooper, L. G. Reid, G. Vanderheiden, W. Chisholm, J. Slatin, and
J. White. Web content accessibility guidelines (wcag) 2.0. WWW Consortium (W3C),
290, 2008. 16

[10] N. Fraser. Ten things we’ve learned from blockly. In 2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond), pages 49–50. IEEE, 2015. 13

i

[11] L. M. Gadhikar, L. Mohan, M. Chaudhari, P. Sawant, and Y. Bhusara. Browser based ide
to code in the cloud. In New Paradigms in Internet Computing, pages 59–69. Springer,
2013. 5

[12] N. S. Gittings and J. L. Fozard. Age related changes in visual acuity. Experimental
gerontology, 21(4-5):423–433, 1986. 16

[13] C. Hannebauer, M. Hesenius, and V. Gruhn. Does syntax highlighting help program-
ming novices? Empirical Software Engineering, 23(5):2795–2828, 2018. 7

[14] J. Jenkins, E. Brannock, and S. Dekhane. Javawide: innovation in an online ide: tutorial
presentation. Journal of Computing Sciences in Colleges, 25(5):102–104, 2010. 5

[15] K. M. Kahn, R. Megasari, E. Piantari, and E. Junaeti. Ai programming by children using
snap! block programming in a developing country. 2018. 12

[16] R. B. Kozma. Comparative analysis of policies for ict in education. In International
handbook of information technology in primary and secondary education, pages
1083–1096. Springer, 2008. 5

[17] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The scratch pro-
gramming language and environment. ACM Transactions on Computing Education
(TOCE), 10(4):1–15, 2010. 12

[18] A. Marron, G. Weiss, and G. Wiener. A decentralized approach for programming in-
teractive applications with javascript and blockly. In Proceedings of the 2nd edition
on Programming systems, languages and applications based on actors, agents, and
decentralized control abstractions, pages 59–70. Association for Computing Machin-
ery, 2012. 12

[19] J. Moonen. Evolution of it and related educational policies in international organiza-
tions. In International handbook of information technology in primary and secondary
education, pages 1071–1081. Springer, 2008. 5

[20] F. Nogatz, P. Körner, and S. Krings. Prolog coding guidelines: Status and tool support.
EPTCS 306, pages 8–21, 2019. 2

[21] B. J. Oates. Researching information systems and computing. Sage, 2005. 12

[22] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar, and S. Lahmine. Learning basic
programming concepts by creating games with scratch programming environment.
Procedia-Social and Behavioral Sciences, 191:1479–1482, 2015. 12

[23] E. Pasternak, R. Fenichel, and A. N. Marshall. Tips for creating a block language with
blockly. In 2017 IEEE Blocks and Beyond Workshop (B&B), pages 21–24. IEEE, 2017.
15

[24] M. Patrignani. Why should anyone use colours? or, syntax highlighting beyond code
snippets. CoRR, abs/2001.11334, 2020. 7

ii

[25] L. Rello, M. Pielot, and M.-C. Marcos. Make it big! the effect of font size and line
spacing on online readability. In Proceedings of the 2016 CHI conference on Human
Factors in Computing Systems, pages 3637–3648, 2016. 45

[26] M. Sahami and S. Roach. Acm/ieee-cs joint task force on computing curricula (2013).
Computer science curricula, 2013. 6, 33

[27] M. Seraj, E.-S. Katterfeldt, K. Bub, S. Autexier, and R. Drechsler. Scratch and google
blockly: How girls’ programming skills and attitudes are influenced. In Proceedings
of the 19th Koli Calling International Conference on Computing Education Research,
pages 1–10, 2019. 12

[28] D. Spinellis. Code reading: the open source perspective. Addison-Wesley Professional,
2003. 2

[29] R. Tapp and R. Kazman. Determining the usefulness of colour and fonts in
a programming task. In Proceedings 1994 IEEE 3rd Workshop on Program
Comprehension-WPC’94, pages 154–161. IEEE, 1994. 7

[30] A. E. Tew and M. Guzdial. Developing a validated assessment of fundamental cs1 con-
cepts. In Proceedings of the 41st ACM technical symposium on Computer science
education, pages 97–101, 2010. 6, 33

[31] A. E. Tew and M. Guzdial. The fcs1: a language independent assessment of cs1 knowl-
edge. In Proceedings of the 42nd ACM technical symposium on Computer science
education, pages 111–116, 2011. 6, 33

[32] w3c. Web content accessibility guidelines 2.0, w3c world wide web con-
sortium recommendation, criterion 1.4.3. https://www.w3.org/TR/WCAG21/
#contrast-minimum, 2018. Accessed: 2021-03-02. 9

[33] w3c. Web content accessibility guidelines 2.0, w3c world wide web con-
sortium recommendation, criterion 1.4.6. https://www.w3.org/TR/WCAG21/
#contrast-enhanced, 2018. Accessed: 2021-03-02. 9

[34] D. Weintrop and U. Wilensky. To block or not to block, that is the question: students’
perceptions of blocks-based programming. In Proceedings of the 14th international
conference on interaction design and children, pages 199–208, 2015. 2, 3, 6

[35] D. Weintrop and U. Wilensky. Using commutative assessments to compare concep-
tual understanding in blocks-based and text-based programs. In Proceedings of the
Eleventh Annual International Conference on International Computing Education
Research, pages 101–110, 2015. 5, 6, 31, 32, 33

[36] D. Weintrop and U. Wilensky. Comparing block-based and text-based program-
ming in high school computer science classrooms. ACM Transactions on Computing
Education (TOCE), 18(1):1–25, 2017. 2, 3, 5, 6, 31, 32, 43, 46

[37] D. Weintrop and U. Wilensky. How block-based, text-based, and hybrid block-
/text modalities shape novice programming practices. International Journal of
Child-Computer Interaction, 17:83–92, 2018. 2, 3, 6, 31, 32

iii

https://www.w3.org/TR/WCAG21/#contrast-minimum
https://www.w3.org/TR/WCAG21/#contrast-minimum
https://www.w3.org/TR/WCAG21/#contrast-enhanced
https://www.w3.org/TR/WCAG21/#contrast-enhanced

[38] L. Wu, G. Liang, S. Kui, and Q. Wang. Ceclipse: An online ide for programing in the
cloud. In 2011 IEEE World Congress on Services, pages 45–52. IEEE, 2011. 5

iv

PRE-TEST QUESTIONS

WELKE WAARDEN HEBBEN X EN Y AAN HET EINDE VAN DIT PROGRAMMA?

1 x = 7
2 y = 4
3 y = x - 1
4 x = x + 3

• x=7, y=4

• x=6, y=10

• x=10, y=6

• x=4, y=7

• X=X+3, y=X+1

• x=6, y=8

• Ik weet het niet

WELKE WAARDEN HEBBEN X EN Y AAN HET EINDE VAN DIT PROGRAMMA?

1 x = 4
2 y = 6
3 x = x + y
4 y = x - y
5 x = x - y

• x=4, y=5

• x=6, y=4

• x=5, y=6

• x=10, y=7

• X=6, y=10

• x=10, y=6

• Ik weet het niet

v

WELKE WAARDEN HEBBEN X EN Y AAN HET EINDE VAN DIT PROGRAMMA?
(MET ’AND’ WORDT ER HET WOORD ’EN’ BEDOELT, MET ’OR’ WORDT ER HET WOORD ’OF’ BEDOELT)

1 x = True and False
2 y = False or True

• x=false, y=false

• x=false, y=true

• x=true, y=false

• X=true, y=true

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 0
2 if x > 0:
3 print(’getal is positief’)
4 else:
5 print(’getal is negatief’)

• getal is positief

• getal is negatief

• niets

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 8
2 y = x - 9
3 if x >= y:
4 print(’x is groter dan y’)
5 else:
6 print(’y is groter dan x’)

• x is groter dan y

• y is groter dan x

• niets

• Ik weet het niet

vi

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 1
2 while x < 6:
3 print(x)
4 x = x + 1

• 1 2 3 4 5 6

• 1 2 3 4 5

• 2 3 4 5 6

• 2 3 4 5

• niets

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 1
2 while x < 6:
3 print(x)
4 if x > 3:
5 break;
6 x = x + 1

• 1 2 3 4 5 6

• 1 2 3 4

• 1 2 3

• 1 2

• niets

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 fruit = [’appel’, ’banaan’, ’druif’]
2 for stuk in fruit:
3 print(stuk)

• appel

vii

• appel banaan druif

• druif banaan appel

• niets

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 kleuren = [’rode’, ’groene’]
2 fruit = [’appel’, ’banaan’, ’druif ’]
3 for stuk in fruit:
4 for kleur in kleuren:
5 print(kleur, stuk)

• rode appel groene banaan druif

• rode appel groene appel rode banaan groene banaan rode druif groene druif

• appel banaan druif rode groene

• appel rode banaan groene druif

• appel rode appel groene banaan rode banaan groene druif rode druif groene

• niets

• Ik weet het niet

WANNEER JE EEN INGEWIKKELD PROBLEEM TEGENKOMT, WELKE STAPPEN GE-
BRUIK JE OM DAT PROBLEEM OP TE LOSSEN?
DEZE VRAAG GAAT NIET OVER DE VRAGEN HIERVOOR. MET ’PROBLEEM’ BEDOELEN WE IETS (EEN-

DER WAT!) WAAR JE ZELF EEN OPLOSSING VOOR MOET ZOEKEN.

(open question, no multiple choice)

viii

PRE-TEST QUESTIONS

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 7
2 y = 4
3 y = x -1
4 x = x + 3
5 print("x is gelijk aan", x, "en y is gelijk aan", y)

• x is gelijk aan 7; y is gelijk aan 4

• x is gelijk aan 10; y is gelijk aan 6

• x is gelijk aan 4; y is gelijk an 7

• x is gelijk aan "x+3": y is gelijk aan "x-1"

• x is gelijk aan 6; y is gelijk aan 8

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 som = 0
2 for x in [o, 1, 2, 3]:
3 som = som + X
4 print("som : ", som)

• "som: 3"

• "som: 6"

• "som: 0" "som: 1" "som: 3"

• "som: 0" "som: 1" "som: 3" "som: 6"

• Ik weet het niet

ix

WAT DOET HET VOLGENDE PROGRAMMA?

1 x = 0
2 som = 0
3 while x <= 200:
4 if x > 10 and x < 50:
5 som= som + X
6 x = x + 1
7 print("som:" . som)

• Het berekent de som van getallen tussen 1 en 200

• Het berekent de som van getallen groter dan 10

• Het berekent de som van getallen kleiner dan 50

• Het berekent de som van getallen tussen 10 en 50

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 0
2 som = 0
3 while x <= 10:
4 if x > 8:
5 som= som + x
6 x = x + 1
7 print("som : ", som)

• "som: 9"

• "som: 19"

• "som: 9" "som: 19"

• Het programma werkt niet

• Ik weet het niet

SCHRIJF EEN PROGRAMMA IN PYTHON WAARMEE JE DE VOLGENDE OUTPUT

ZOU KRIJGEN IN DE TERMINAL.

1 1 : 0
2 2 : 4
3 3 : 8
4 4 : 12

(open question, no multiple choice)

x

STEL: JE WORDT GEVRAAGD OM EEN PROGRAMMA TE SCHRIJVEN WAARBIJ GE-
BRUIKERS EEN ZIN KUNNEN INVOEREN. HET PROGRAMMA TOONT DAARNA

HOEVEEL KEER DE LETTER ’E’ IN DE ZIN VOORKOMT.
WELKE VAN DEZE OPTIES HEEFT EEN PROGRAMMEERTAAL MINSTENS NODIG,
ZODAT JIJ DIT PROGRAMMA KAN SCHRIJVEN?
JE KAN MEERDERE OPTIES AANDUIDEN

• De invoer van een gebruiker opslaan

• Tekst weergeven op het scherm

• Twee letters met elkaar vergelijken om te zien of ze gelijk zijn

• Letters omzetten naar cijfers en omgekeerd

• Data aanmaken en wijzigen terwijl het programma wordt uitgevoerd

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 0
2 while x < 5:
3 print(x)

• 0 1 2 3 4

• 5

• Het programma werkt niet

• Het programma zit vast in een oneindige lus

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 for x in [1, 2, 3]:
2 print("Appel")
3 print("Appelsien")
4 print ("Appelsien")

• Appel Appelsien Appel Appelsien Appel Appel Appelsien

• Appelsien Appel Appelsien Appel Appelsien Appel Appelsien

• Appel Appelsien Appel Appelsien Appel Appelsien Appelsien

• Appelsien Appel Appelsien Appel Appelsien Appel Appel

• Ik weet het niet

xi

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 0
2 while x <= 10:
3 if x > 5:
4 print(x)
5 x = x + 1

• 0 1 2 3

• 5 6 7 8

• 6 7 8 9

• 6 7 8 9 10

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 4
2 if x > 10:
3 x = 10
4 else:
5 if x < 5:
6 x = 5
7 print (x)

• 4

• 10

• 5

• Niets

• Error

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = "ik"
2 z = "games"
3 boodschap = x + "speel" + z
4 print (boodschap)

• ik speel games

xii

• speel games ik

• ikspeelgames

• games speel ik

• Error

• Ik weet het niet

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 7
2 if x > 0:
3 print("getal is positief")
4 else:
5 print("getal is negatief")

• Het programma kijkt na of je een getal kunt delen door 0

• Het programma kijkt na of een getal positief of negatief is

• Het programma zorgt ervoor dat je niet kunt delen door 0

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 x = 7
2 if x > 0:
3 print("getal is positief")
4 else:
5 print("getal is negatief")

• getal is positief

• getal is negatief

• niets

• Ik weet het niet

ALS X GELIJK ZOU ZIJN AAN -12, WAT IS DAN DE OUTPUT VAN HET PROGRAMMA?

1 x = 7
2 if x > 0:
3 print("getal is positief")
4 else:
5 print("getal is negatief")

xiii

• getal is positief

• getal is negatief

• niets

• Ik weet het niet

0 IS NIET POSITIEF, EN OOK NIET NEGATIEF. MAAR DIT PROGRAMMA TOONT

BIJ 0 DAT HET GETAL NEGATIEF IS.
SCHRIJF DE CODE OPNIEUW ZODAT BIJ (X = 0) DE OUTPUT ZAL ZIJN "HET

GETAL HEEFT GEEN TEKEN". ZORG ERVOOR DAT ALLE ANDERE CODE BLIJFT

WERKEN.

1 x = 7
2 if x > 0:
3 print("getal is positief")
4 else:
5 print("getal is negatief")

(open question, no multiple choice)

WELKE WAARDES HEBBEN DE VARIABELEN X, Y EN Z AAN HET EINDE VAN HET

PROGRAMMA?

1 x = "ja"
2 y = x
3 z = x
4 x = "nee"
5 y = "misschien"
6 z = x

• x is gelijk aan "ja, nee": y is gelijk aan "ja, misschien"; z is gelijk aan "ja, nee"

• x is gelijk aan "nee"; y is gelijk aan "misschien"; z is gelijk aan "ja"

• x is gelijk aan "ja"; y is gelijk aan "misschien; z is gelijk aan "nee"

• x is gelijk aan "nee"; y is gelijk aan "misschien"; z is gelijk aan "nee"

• x is gelijk aan "nee": y is gelijk aan "misschien"; z is gelijk aan "*"

• Ik weet het niet

xiv

WAT IS DE OUTPUT VAN HET PROGRAMMA?

1 c = 5
2 while c > 0:
3 c = c- 2
4 print(c)

• 3

• 5 3 1

• 5 4 3 2 1 0

• 3 1 -1

• Ik weet het niet

WERKT DIT PROGRAMMA?

1 print (boodschap)
2 boodschap = "Hallo!"

• Ja

• Nee

• Ik weet het niet

INDIEN JE "JA" ANTWOOORDDE:

WAT IS DE OUTPUT VAN HET PROGRAMMA?

(open question, no multiple choice)

INDIEN JE "NEE" ANTWOOORDDE:

PAS HET SCRIPT ZO AAN DAT HET NU WEL WERKT?

(open question, no multiple choice)

SCHRIJF EEN PROGRAMMA DAT TWEE GETALLEN VERGELIJKT MET ELKAAR. HET

GROOTSTE GETAL WORDT DAN GETOOND OP HET SCHERM.
BIJVOORBEELD: ALS GETAL1 = 5 EN GETAL2 = 7, WORDT GETAL2 GETOOND OP HET SCHERM.

(open question, no multiple choice)

xv

WERKT DIT PROGRAMMA? WAAROM WEL/NIET?

1 x = 8
2 y = x - 9
3 if y > 0:
4 z = 8
5 nieuwePlaats = y + z
6 print("punt s bevindt zich op x, y")
7 else:
8 nieuwePlaats = y + z
9 print("punt s bevindt zich op x, -y")

(open question, no multiple choice)

xvi

	Introduction
	Objectives and Research Questions

	Background and Related Work
	Text-based and Block-based IDEs
	Defining Code Comprehension
	Highlighting Methods for Syntax and Blocks
	Color Theory for Highlighting Text
	Similar Extensions

	Code Block Highlighting Tool
	Design and Creation Approach for Codeblock Highlighting Methods
	Designing a Codeblock Highlighting Tool
	Characteristics of Blocks in Visual IDEs
	Transferring Characteristics to Text-based IDEs

	Creating a Codeblock Highlighting Tool
	IDE Selection Process and Parameters
	Extension Development for Visual Studio Code

	Experimental Evaluation
	Experimental Research Approach
	Course of the Experiment
	Curriculum

	Data Collection
	Student Participants
	Pre-Test
	Post-Test

	Data Analysis
	Results of the Experiment

	Discussion
	An Unexpected Result
	Choice of Programming Language
	Choice of IDE
	Color Scheme Variations
	Shape Topology Variations

	Threats to Validity
	Internal Validity
	External Validity
	Statistical Conclusion Validity

	Conclusion
	Acknowledgements
	Bibliography
	Pre-test Questions
	Pre-test Questions

