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ABSTRACT 
 
Recently, the adiabatic flow model, which is a computational fluid 
dynamics (CFD) model in an adiabatic state, has been applied to solve 
the actual flow problem. When using finite element method for the 
computational fluid dynamics, the advection and pressure-induced 
vibration causes numerical instability. Hence, it is very effective to 
apply stabilized methods to the flow model to reduce the instability. In 
this paper, we present the new stream-upwind/Petrov-Garelkin (SUPG) 
formulations of the adiabatic flow model, which include not only the 
effects of SUPG but also those of pressure-stabilizing/Petrov-Garelkin 
(PSPG) and least-square on incompressible constraint (LSIC). By 
employing these methods, we were able to considerably improve the 
stability and accuracy of computations for two dimensional cavity 
flows. Furthermore, we applied arbitrary Lagrangian-Eulerian (ALE) 
methods to solitary wave propagation. Based on these case studies, we 
have verified the effectiveness of our present CFD model. 
 
KEY WORDS: Adiabatic flow model, Solitary wave propagation, 
Cavity flow, SUPG, PSPG, LSIC, ALE 

INTRODUCTION 
 
Numerical computations of fluid flows are usually carried out under the 
assumption of either incompressibility or compressibility. Formulation 
of an incompressibility model can be introduced when the acoustic 
velocity tends to infinity. However, the acoustic velocities of natural 
fluids are not infinite, although its values are very large in comparison 
with other variables. Thus, we adopted the adiabatic flow model, which 
is considered to have slight compressibility. In the adiabatic flow model, 
by assuming the adiabatic state of the fluid, the density can be 
expressed only as a function of the pressure. Furthermore, the 
assumptions of the adiabatic flows are categorized into two methods. In 
one method, velocity, pressure, and density are used as the working 
variables and density is explicitly related to pressure by using the 
equation of states (Terachi and Kawahara [2010], Okumura et al. 
[2013], Kawahara [2016], etc.).  In the other method, velocity and 
pressure are used as the working variables, by assuming the acoustic 
velocity to be constant (Kawahara and Hirano [1983], Kawahara and 
Miwa [1983], Uchiyama and Kawahara [2015], Kawahara [2016], etc.). 
The latter method is known  as the acoustic velocity method. 

Many techniques have been proposed for the stabilized methods. When 
the finite element method is used, in order to reduce the instability due 
to the advection or pressure-induced vibration, stabilized methods 
such as stream-upwind/Petrov-Garelkin (SUPG) method, pressure-
stabilizing/Petrov-Garelkin (PSPG) method or bubble function method 
are widely used. In this paper, we clarify the effectiveness of the 
acoustic velocity model by considering SUPG terms, PSPG terms and 
least-square on incompressible constraint (LSIC) terms. Furthermore, 
we applied arbitrary Lagrangian-Eulerian (ALE) methods for moving 
meshes. In the test studies of two-dimensional cavity flows, two-
dimensional solitary wave propagation, and three-dimensional solitary 
wave propagation, the stability and accuracy of computations are 
considerably improved with the use of these stabilized methods. By 
carrying out these test studies, we can confirm the applicability of our 
CFD model to the fluid flow analysis in various problems and the 
applicability of structurally resistive design against wave action in 
coastal facilities. 
 
BASIC EQUATIONS OF THE ACOUSTIC VELOCITY 
MODELS 
 
The basic equations of mass and momentum are expressed as follows 
by considering the change in density. 
 �̇�𝜌 + 𝑣𝑣𝑖𝑖𝜌𝜌,𝑖𝑖 + 𝜌𝜌𝑣𝑣𝑖𝑖,𝑖𝑖 = 0 (1) 𝜌𝜌��̇�𝑣𝑖𝑖 + 𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� + 𝑝𝑝,𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑗𝑗,𝑗𝑗 − 𝜌𝜌𝑓𝑓𝑖𝑖 = 0 (2) 
 
where p, u, and v are the density, pressure and velocity, respectively, 
and 𝜏𝜏𝑖𝑖𝑗𝑗  and 𝑓𝑓𝑖𝑖  denote the total stress and body force, respectively. 
Since the acoustic velocity c can be expressed as Eq. 3, Eq. 1 can be 
transformed into Eq. 4. 
 𝑐𝑐2 =

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (3) �̇�𝑝 + 𝑣𝑣𝑖𝑖𝑝𝑝,𝑖𝑖 + 𝜌𝜌𝑐𝑐2𝑣𝑣𝑖𝑖,𝑖𝑖 = 0 (4) 
 
Finally, the following equations of mass and momentum can be derived. 
 Α = 𝜙𝜙(�̇�𝑝 + 𝑣𝑣𝑖𝑖𝑝𝑝,𝑖𝑖) + 𝑣𝑣𝑖𝑖,𝑖𝑖 = 0 (5) 𝛣𝛣𝑖𝑖 = 𝜌𝜌��̇�𝑣𝑖𝑖 + 𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� + 𝑝𝑝,𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑗𝑗,𝑗𝑗 − 𝜌𝜌𝑓𝑓𝑖𝑖 = 0 (6) 



where 𝜙𝜙 = 1 𝜌𝜌𝑐𝑐2� = 1/𝜅𝜅 (7) 

which is the inverse of the bulk modulus 𝜅𝜅. In many cases, the acoustic 
velocity c remains constant. If the acoustic velocity c tends to infinity 
in Eq. 5, it corresponds to the mass of incompressible flow. However, 
we would like to emphasize that the acoustic velocity is not infinite in  
natural fluids. 
 
FINITE ELEMENT EQUATIONS

The weighted residual equation with SUPG is formulated as follows. 
 ∫ (𝑣𝑣 𝑝𝑝∗�𝐴𝐴 + 𝑣𝑣𝚤𝚤∗�𝛣𝛣𝑖𝑖) = 0 (8) 

where 𝑝𝑝∗�and  𝑣𝑣𝚤𝚤∗�  are the weighting functions in SUPG and could 
be expressed as follows. 

(𝑝𝑝∗� 𝑣𝑣𝚤𝚤∗� ) = (𝑝𝑝∗𝑣𝑣𝑖𝑖∗) + 𝜏𝜏𝑀𝑀(𝑝𝑝∗𝑣𝑣𝑖𝑖∗),𝑘𝑘 �𝜙𝜙𝑣𝑣𝑘𝑘 𝛿𝛿𝑖𝑖𝑘𝑘𝛿𝛿𝑗𝑗𝑘𝑘 𝜌𝜌𝑣𝑣𝑘𝑘𝛿𝛿𝑖𝑖𝑗𝑗� �𝜌𝜌‖𝑣𝑣‖2 1 𝜌𝜌� � (9)

On substituting Eq. 5 and Eq. 6 into Eq. 8, and by using weighting 
functions in Eq. 9, finite element equations could be derived as 
follows. 𝜙𝜙∫ (𝑝𝑝∗�̇�𝑝𝑣𝑣 )𝑑𝑑𝑣𝑣 + 𝜙𝜙∫ (𝑝𝑝∗𝑣𝑣𝑖𝑖𝑝𝑝,𝑖𝑖𝑣𝑣 )𝑑𝑑𝑣𝑣 + ∫ (𝑝𝑝∗𝑣𝑣𝑖𝑖,𝑖𝑖𝑣𝑣 )𝑑𝑑𝑣𝑣 +𝜈𝜈𝐴𝐴𝜙𝜙2 ∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗𝑣𝑣𝑖𝑖�̇�𝑝)𝑑𝑑𝑣𝑣 + 𝜈𝜈𝐴𝐴𝜙𝜙2 ∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝑝𝑝,𝑗𝑗)𝑑𝑑𝑣𝑣 +𝜈𝜈𝐴𝐴𝜙𝜙∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗,𝑗𝑗)𝑑𝑑𝑣𝑣 + 𝜏𝜏𝜕𝜕𝜌𝜌 ∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗�̇�𝑣𝑖𝑖)𝑑𝑑𝑣𝑣 +𝜏𝜏𝜕𝜕𝜌𝜌 ∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖,𝑗𝑗)𝑑𝑑𝑣𝑣 + 𝜏𝜏𝜕𝜕 ∫ (𝑣𝑣 𝑝𝑝,𝑖𝑖∗𝑝𝑝,𝑖𝑖)𝑑𝑑𝑣𝑣 = 0 (10)𝜌𝜌 ∫ (𝑣𝑣𝑖𝑖∗�̇�𝑣𝑖𝑖𝑣𝑣 )𝑑𝑑𝑣𝑣 + 𝜌𝜌 ∫ (𝑣𝑣𝑖𝑖∗𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗𝑣𝑣 )𝑑𝑑𝑣𝑣 − ∫ (𝑣𝑣𝑖𝑖,𝑖𝑖∗ 𝑝𝑝𝑣𝑣 )𝑑𝑑𝑣𝑣 +∫ (𝑣𝑣𝑖𝑖,𝑗𝑗∗𝑣𝑣 𝜏𝜏𝑖𝑖𝑗𝑗)𝑑𝑑𝑣𝑣 + 𝜈𝜈𝑐𝑐𝜙𝜙∫ (𝑣𝑣𝑖𝑖,𝑖𝑖∗ �̇�𝑝𝑣𝑣 )𝑑𝑑𝑣𝑣 + 𝜈𝜈𝑐𝑐𝜙𝜙∫ (𝑣𝑣𝑖𝑖,𝑖𝑖∗𝑣𝑣 𝑣𝑣𝑗𝑗𝑝𝑝,𝑗𝑗)𝑑𝑑𝑣𝑣 +𝜈𝜈𝑐𝑐𝜙𝜙∫ (𝑣𝑣𝑖𝑖,𝑖𝑖∗𝑣𝑣 𝑣𝑣𝑖𝑖,𝑗𝑗)𝑑𝑑𝑣𝑣 + 𝜏𝜏𝑀𝑀𝜌𝜌 ∫ (𝑣𝑣𝑖𝑖,𝑗𝑗∗𝑣𝑣 𝑣𝑣𝑗𝑗�̇�𝑣𝑖𝑖)𝑑𝑑𝑣𝑣 +𝜏𝜏𝑀𝑀𝜌𝜌 ∫ (𝑣𝑣𝑖𝑖,𝑗𝑗∗𝑣𝑣 𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘𝑣𝑣𝑖𝑖,𝑘𝑘)𝑑𝑑𝑣𝑣 + 𝜏𝜏𝑀𝑀 ∫ (𝑣𝑣𝑖𝑖,𝑗𝑗∗𝑣𝑣 𝑣𝑣𝑗𝑗𝑝𝑝,𝑗𝑗)𝑑𝑑𝑣𝑣 =∫ (𝑣𝑣𝑖𝑖∗𝑠𝑠 𝑡𝑡𝑖𝑖)𝑑𝑑𝑑𝑑 + 𝜌𝜌 ∫ (𝑣𝑣𝑖𝑖∗𝑣𝑣 𝑓𝑓𝑖𝑖)𝑑𝑑𝑑𝑑 (11)

Where 𝜈𝜈𝐴𝐴 = 𝜌𝜌‖𝑣𝑣‖2𝜏𝜏𝑀𝑀 (12) 𝜈𝜈𝐶𝐶 = 𝜌𝜌‖𝑣𝑣‖2𝜏𝜏𝑀𝑀𝜏𝜏𝜕𝜕 =
1𝜌𝜌 𝜏𝜏𝑀𝑀 

On the left-hand side of Eq.10, the fourth, fifth, and sixth terms are 
LSIC terms, and the seventh, eighth, and ninth terms are PSPG terms. 
On the left-hand side of  Eq.11, the fifth, sixth, and seventh terms are 
LSIC terms, and the eighth, ninth, and tenth terms are SUPG terms. 
Although the LSIC method is usually applied to incompressible models, 
in order to stabilize the computation, we included the LSIC method in 
our CFD model because the fluid should be almost incompressible. In 
Eq.12, 𝜈𝜈𝐴𝐴, 𝜈𝜈𝐶𝐶, 𝜏𝜏𝜕𝜕, and 𝜏𝜏𝑀𝑀 are the coefficients defined by Tezduyar 
et al [2003]. 

CAVITY FLOWS 
 
In order to demonstrate the applicability of this CFD model, we have 
carried out the computation of the cavity flow problem. This 
computation is based on spatial domains that  are not required to move 
the nodes or deform the meshes. Fig. 1 shows the computational finite 
element mesh. The number of nodes and meshes are 6,561 and 128,000, 
respectively. The boundary conditions on the right, left, and down sides 
are non-slip conditions, and we set the velocity to 1m/s on the upper 
boundary. 
 

 
Fig. 1 Finite element meshes for the cavity flows 
 
Fig. 2 shows the computational results of the velocity along the central 
axis compared with Giha’s results [Ghia et al, 1982], and Fig. 3 shows 
the velocity distribution at the time step of 200s. In Fig. 2, each 
computational result corresponds with Giha’s results very well. 
According to these computational results, our CFD model is able to 
provide accurate results  with an incompressible flow model. 

 
Fig. 2 Velocity along the central axis compared with Giha’s results 
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Fig. 3 Velocity distribution (Re = 1,000, T = 200 s) 
 
TWO-DIMENSIONAL SOLITARY WAVE  
 
We then carried out the computation of the solitary wave propagation 
in order to demonstrate the applicability of this CFD model. In this 
problem, we have to cope with the free surface condition. The mesh 
needs to be updated as the flow evolves. Fig.4 shows the computational 
finite element mesh. The number of nodes and meshes were 5,511 and 
10,000, respectively. The boundary conditions on the left, right, and 
down sides are slip wall conditions. The initial conditions of the wave 
level and velocity were derived using Laitone’s formula. Furthermore, 
we set the wave height ratio at 0.1 by considering a non-breaking wave 
condition. 

 
Fig. 4 Finite element meshes for two-dimensional solitary wave 
propagation 

 

 
Fig. 5 Schematic expression of ALE method 
 
In this computation, we applied the ALE method to the flow to avoid 
having to collapse the meshes. Fig. 5 shows the schematic expression 

of  the ALE method. Nodes on the free surface move according to the 
interface-tracking techniques. In contrast, nodes in the fluid move 
according to the ALE approach. The x-coordinate of the nodes in the 
fluid invariably corresponds to those on the free surface. 
 
Fig. 6 shows the solitary wave propagation. The colors in the figure  
denote the pressure distribution. In these computational results, the 
solitary wave propagates and reflects from the wall accurately. 
 

 
(1)  T = 30 s 

 
(2) T = 45 s 

 
(3) T = 60s 
Fig. 6 Solitary wave propagation (Two-dimensional) 
 
THREE-DIMENSIONAL SOLITARY WAVE 
 
We then computed the three-dimensional solitary wave propagation in 
order to demonstrate the applicability of this CFD model. Fig.7 shows 
the schematic view and the computational condition. The number of 
nodes and elements are 30,371 and 125,000, respectively. We set the 
wave height ratio at 0.12 by considering a non-breaking wave condition. 
We set a slope of 1/20 in the middle of the channel. The depth on the 
downstream side was 0.5m from the surface to the reef topography. 

Slip wall
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Slip wall
(u=0)

Slip wall
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Free surface

n n+1 n nn+1 n+1

Free surface treatment
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Fig. 7 Schematic view of the three-dimensional solitary wave 
propagation 
 

 

 

 
Fig. 8 Solitary wave propagation (three-dimensional) 
 
Fig. 8 shows the solitary wave propagation. In these computational 
results, the solitary wave propagates on the reef and transforms itself. It 
reflects from the wall, while maintaining its shape. 
 
Fig. 9 shows the computational time history of the non-dimensional 
water level compared with Street’s results [Street et al, 1968] at 
x/h=41.6 on the reef topography. These computational results 
correspond with Street’s results very well. 
 

 
Fig. 9 Computational time history of the non-dimensional water level 
compared with Street’s results 
 
CONCLUSIONS 
 
In this study, the applicability of the acoustic velocity model in both air 
and water was confirmed. Therefore, it is clear that this CFD model can 
be applied to various flow problems. However, to stabilize the 
computation, stabilized methods such as SUPG, PSPG, LSIC, and ALE 
are necessary. In the near future, we intend to apply this CFD model to  
structurally resistive design against wave action in the coastal 
facilities or the shape optimization problem of coastal facilities. 
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