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ABSTRACT 
 
Neuro-Fuzzy Systems (NFS) are computational intelligence tools that 
take advantage of low-level learning ability of neural networks and the 
high-level reasoning ability of fuzzy systems. Approximate Analogical 
Reasoning Schema (AARS) is one of the approaches which employs a 
similarity measure to decide on rule firing for a specific observation 
and is believed to be capable of adding more flexibility to NFS 
structure. In this study, an NFS model is developed based on AARS for 
event-based rainfall-runoff modeling in Sungai Kayu Ara, an urban 
catchment in Selangor State of Malaysia. The model performance is 
then compared with ANFIS and ARX models. 
 
KEY WORDS:  Rainfall-runoff modeling; Neuro-fuzzy system; 
Similarity Measure; ANFIS  

INTRODUCTION 
 
Modeling of rainfall-runoff process is one of the most important tasks 
in hydrology due to its vast applications in different hydrologic 
problems such as flood forecasting, design of spillways and waterways, 
water quality modeling, and water resources management. To-date 
several approaches have been introduced to model the rainfall–runoff 
relationship. These methods can be categorized into two main groups: 
physically-based models and system theoretic models. Physically-based 
models are designed to approximate the general internal sub-processes 
and physical mechanisms which govern the hydrologic cycle. They 
usually incorporate simplified forms of physical laws and are generally 
non-linear, time-varying, and deterministic, with parameters that are 
representative of watershed characteristics. Although physically-based 
models help us in understanding the physics of hydrological processes, 
they require sophisticated mathematical tools, and usually require 
significant user expertise. On the other hand, system theoretic models 
apply a different approach to identify a direct mapping between rainfall 
and runoff, without the need for a detailed consideration of the physical 
processes. Neuro-Fuzzy Systems (NFS) which combine the reasoning 
ability of fuzzy inference systems (FIS) with the learning ability of 
ANN through the incorporation of if-then rules have recently been used 
in many of hydrologic modeling. Based on the method chosen for 
determining the output, a FIS can be categorized as either linguistic 
also known as Mamdani-type NFS (Mamdani and Assilian, 1975) or 

precise which also known as Takagi-Sugeno-type NFS (Takagi and 
Sugeno, 1985) models. The NFS implemented has exclusively been the 
Takagi-Sugeno-type NFS while the Mamdani-type NFS has rarely if 
ever, been employed in rainfall-runoff modelling. The Mamdani-type 
NFS is advantageous as the consequent part of the rules is expressed in 
linguistic terms, which can help to provide a clearer description of the 
process as opposed to the Takagi-Sugeno-type NFS which specifies the 
rule consequents only as quantitative or crisp values. Neuro Fuzzy 
Syetems can also be categorized based on the reasoning schema 
adopted. Approximate reasoning is the process of concluding a possible 
imprecise conclusion from a group of imprecise premises (Zadeh, 
1973). Approximate Analogical Reasoning Schema (AARS) is one of 
the available reasoning schema in literature (Turksen and Zhong, 1990) 
which is constructed based on similarity measures and to the best of our 
knowledge has not been used for hydrological modeling yet. AARS 
employs a similarity measure or SM (distinguishing between the degree 
of similarity or dissimilarity) to determine whether a rule should be 
fired for a specific observation in the pattern matching phase. The same 
similarity measure is used to construct a modification function (ModF) 
to modify the right side of the rule in the consequent deduction phase. 
The objective of this study is to investigate the capabilities of a 
Mamdani-type NFS using the Approximate Analogical Reasoning 
Schema (AARS) in rainfall-runoff modeling and compare its 
performance with the commonly used Takagi-Sugeno-type NFS, 
Adaptive Network-based Fuzzy Inference System (ANFIS). In this 
paper, the implementation of the AARS within a NFS model, known as 
Pseudo Outer Product Fuzzy Neural Network (POPFNN-AARS) 
developed by Quek and Zhou (1999) will be applied to model the 
rainfall-runoff process for an urban tropical catchment to assess the 
applicability of similarity-based NFS for rainfall-runoff modeling. For 
convenience, POPFNN-AARS will be abbreviated as POPFNN in this 
study.  
 
APPROXIMATE ANALOGICAL REASONING SCHEMA 
(AARS) 
 
Given an observed fact A’ and a simple fuzzy rule “if A then B”; the 
basic procedure in AARS is to modify the consequence B of the fuzzy 
rule according to the similarity between the observed value or A’ and 
the antecedent A, which are compared against a threshold. Based on 
this comparison, a rule can be fired and the conclusion B’ can be 



deduced using a modification function which is constructed based on 
the same similarity measure Quek and Zhou (1999). As can be seen 
from Figure 1, a rule will be fired to estimate the true proposition of the 
consequence (B) when the observed variable (A’) is similar enough 
(SM larger than a threshold) to a true proposition (A) of the antecedent. 
Then by using a modification function, the conclusion (B’) will be 
deduced from the true proposition B.  
 

 
Fig 1. Schematic representation of AARS reasoning schema 
 
Distance measures (DM) have traditionally been employed in the 
development of similarity measures. In these models, the similarity or 
dissimilarity between different points in space can be represented by a 
distance measure (Zwick, Carlstein, and Budescu, 1987; Turksen and 
Zhong, 1990). Thus, a similarity measure can be expressed as: 
 

DM
SM

+
=

1
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In AARS, a fuzzy rule “if A then B” is to be fired by using a ModF 
which modifies the consequent B of the rule based on the SM between 
the observed value A’ and the antecedent A. The ModF is thus adjusted 
in such a way that the whole system can function as closely as possible 
to the real situation, based on the SM. Turksen and Zhong (1988) 
introduced two types of ModF; namely: (1) Expansion form which is 
equivalent to the linguistic term of ‘more or less’; and (2) Reduction 
form.  
 
POPFNN 
 
POPFNN is a five-layer network that incorporates the connectionist 
structure of the neural network to implement a fuzzy rule-based system 
and the AARS fuzzy inference model. The five layers are defined as: 
Layer (1) - Input layer, Layer (2) - Condition layer, Layer (3) - Rule-
Base layer, Layer (4) - Consequence layer, and Layer (5) - Output layer. 
A detailed description for each layer is available in Quek and Zhou 
(1999). The learning process in POPFNN adopts batch or offline 
learning and consists of three phases; namely: (1) Self-organization for 
initialization of parameters; (2) POP learning for rule identification, 
and (3) Supervised learning for the fine-tuning of parameters. 
 
Initialization 
 
Membership functions of the input and output-label nodes of POP-FNN 
are important since the fuzzy information is stored in the membership 
functions. The correct determination of the centroids and widths of 
these membership functions is necessary if information in the training 
data is to be properly captured and stored. The Kohonen’s feature-map 
algorithm (Kohonen, 1989) is adopted in POP-FNN to identify the 
initial centroids and widths of membership functions of the input and 
output variables. At this stage, these centroids and widths are initial 
estimates; in the third phase of learning, the centroids and widths will 
be fine-tuned by a supervised learning process.  
 
 

Rule Identification 
 
POFNN uses a simple one-pass algorithm known as the Pseudo Outer-
Product (POP) learning rule (Zhou and Quek, 1996). Consider a simple 
example of having two input variables x1 and x2 and an output variable 
y1 where XT = [x1, x2 ] ∈ D1 , YT = [ y1 ] ∈ D2 and suppose that after the 
self-organization phase, each linguistic variable has a label set of 
{small, medium, large} that is abbreviated as {S, M, L}. The POPFNN 
learning algorithm considers all the possible rules (see Fig. 4) and each 
of these rules is fully connected to the output-label nodes in the 
consequence layer. Once the membership functions have been 
determined, the set of training data (X(r), Y(r)) is fed into both the input 
and output layers simultaneously. When X(r) is presented at the input 
layer, the membership values of each input-label node is derived using 
the membership functions that have earlier been determined during the 
initialization phase. Subsequently, the firing strength of the kth rule 
node in the rule-base layer is depending on the type of modification 
function used. Similarly, Y(r) is fed into the output layer to calculate the 
membership values of the output-label nodes. For instance, if the 
training data satisfies the rule “if x1 is large and x2 is small then y1 is 
medium” then the derived membership functions will have large values 
at the corresponding input-label nodes, namely the input-label node “L” 
for linguistic variable “x1”, the input-label node “S” for the linguistic 
variable “x2”, and the output-label node “M” for the defuzzification
node “y1” (see Fig. 2).  On the other hand, the membership values of the 
other input-label nodes in the condition layer as well as the output-label 
nodes in the consequence layer will be relatively small. Therefore, the 
firing strength of the rule which has the label “L” for the input variable 
“x1” and the label “S” for the input variable “x2” as its condition will be 
larger than other rules. If the weights of the links which connect the 
rule nodes and the output-label nodes are raised by the product of their 
firing strength and membership function values, then the improvement 
in the strength of the link between the rule node having conditions “x1

is L” and “x2 is S” and consequence “y1 is M” will be greater than other 
links. This is shown as a solid line in Fig. 2. Consequently, after 
training the fuzzy rules embedded in training data will have larger 
weights compared to other rules. After the POP learning process, the 
weights represent the strengths of the fuzzy rules having the 
corresponding output-label nodes as their consequence. Amongst the 
links between a rule node and all the output-label nodes of a 
defuzzification node, the link with the largest weight is chosen and 
others deleted. When the weights of the links between a rule node and 
the output-label nodes are very small this indicates that there is little or 
no relation to the output variable represented by that particular 
defuzzification node. Hence, among all the links between a rule node 
and all the output-label nodes, the link with the largest weight is chosen 
while others can be deleted without affecting the outputs.  
 
Supervised Learning 
 
The well-known back-propagation algorithm (Werbos, 1988) is 
employed for this phase where the error signals are calculated and then 
are fed back to the system to adjust the centroid and width of 
membership functions for both output-label and input-label nodes. 
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Fig. 2. Sample POP-FNN with two inputs and one output linguistic 
variable 
 
STUDY SITE AND DATA USED 
 
Sungai Kayu Ara river basin is located in southeast of Kuala Lumpur, 
Malaysia, and covers an area of 23.22 km² as shown in Fig. 3. The 
main river of this basin originates from the reserved highland area of 
Penchala and Segambut. Sungai Kayu Ara river basin lies in equatorial 
zone. In this study, 24 major 10-minutes interval rainfall-runoff events 
between March-1996 to July-2004 are considered from which the first 
18 (chronological order) were used for training while the remaining 6 
events were used as testing data.  
 

 
 
Fig. 3. Schematic map of Sungai Kayu Ara catchment, Selangor, 
Malaysia. 
 
Data standardization were implemented before model training and 
testing. Standardization concentrates the dispersed data to a defined 
interval. All input and output data were standardized over an interval 
between 0.1 and 0.9 using a standardization method proposed by 
Rajurkar, Kothyari, and Chaube (2002).   

INPUT SELECTION AND MODEL DEVELOPMENT 
 
Inputs for all models of this study consisted of antecedent rainfall from 
10 different rainfall stations and antecedent discharge from the outlet 
station. The rainfall-runoff time series of the 18 training events was 
used for input selection process. Two criteria were applied in the 
selection of inputs for both POPFNN and ANFIS models used in this 
study. Firstly, the inputs used should be highly correlated with the 
output and secondly, the inputs used should possess low mutual 
information (Talei and Chua. 2012). The input selection process 
showed that for POPFNN model the input combination of R1(t-2), 
R3(t-4), R5(t-2), and Q(t-1) gives the best performance in simulating 
runoff at present time Q(t); however, for ANFIS the input selection 
process resulted in R1(t-8), R3(t-3), R5(t-6), Q(t-1). It was concluded 
that the input selection method has chosen rainfall inputs from the same 
rainfall stations (stations 1, 3, and 5) for both models. Therefore, the 
afore-mentioned input combinations were considered to be used in 
testing phase. 
 
Using 2 Gaussian membership functions for each input variable and the 
output gave the best performance during the training process in 
POPFNN. Other parameters of the model were chosen based on trial 
and error during training phase. In ANFIS, employing 2 triangular 
membership functions for each input variable gave the best results in 
training. Moreover, a sensitivity analysis was also conducted for both 
models to identify the proper number of epochs to avoid over-fitting. 
Epoch number of 60 was resulted and adopted for both POPFNN and 
ANFIS models.  
 
RESULTS AND DISCUSSION 
 
POPFNN model results in testing phase were compared with the ones 
were obtained by ANFIS model. For further comparison an ARX 
model was also calibrated with the same training data set and was used 
for predicting Q(t) in testing data set. The average coefficient of 
efficiency (CE), r2, RMSE, MAE, and relative peak error (RPE) values 
obtained by the 3 models for the 6 testing events of this study are 
compared in Table 1. As can be seen, POPFNN performed comparable 
to ANFIS it outperformed ARX model significantly in terms of all 
statistics. In peak estimation, POPFNN model was able to produce the 
best result as it gave the lowest RPE value compared to the other two 
models.   
 
Table 1. Comparison of average CE, r2, MAE, RMSE, and RPE values 
of 6 testing events obtained by POPFNN, ANFIS, and ARX models  

Models CE r2 RMSE 
(m3/s) 

MAE 
(m3/s) RPE 

POPFNN 0.85 0.86 5.18 3.18 0.09 
ANFIS 0.87 0.88 4.96 2.49 0.11 
ARX 0.57 0.59 7.92 5.86 0.27 

 
A qualitative assessment of the predicted hydrographs is demonstrated 
in Fig. 4 to compare the observed and simulated Q(t) hydrographs by 
POPFNN and ANFIS models for Event 6 which is the biggest event in 
terms of peak flow. As can be seen, POPFNN was successful to predict 
the peak quite accurately (RPE = 0.06) while ANFIS overestimated the 
peak (RPE = 0.20). It is worth mentioning that both models had some 
delay in estimating the major peak of this event.  
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Fig.4. Comparison between the observed and simulated hydrographs by 
POPFNN and ANFIS models for event 6. 

As seen in the results, POPFNN showed comparable performance to 
ANFIS in terms of different statistics. It is worth mentioning that the 
rule creation procedure for POPFNN and ANFIS are different. For 
ANFIS, which is a Takagi-Sugeno-type NFS, the output is a crisp value 
which is defined by a linear function while in POPFNN, which is a 
Mamdani-Type NFS, the output is defined by fuzzy sets. Therefore, if n 
membership functions are specified for each of the input variables, nq 
rules where q is the number of input variables will be produced in 
ANFIS while mnq ×  rules where m is the number of membership 
functions for each output variable will be produced in POPFNN. In 
most batch learning models, n has to be selected by trial and error. 
Although the number of rules can be increased by the specification of 
greater number of membership functions, this can result in over-fitting 
leading to deterioration in the model results. On the other hand, 
decreasing the number of rules by choosing a smaller number of 
membership functions can also worsen model performance due to an 
insufficient number of rules required to properly capture the 
associations between inputs and output variables. POPFNN learning 
algorithm incorporates a rule pruning mechanism that begins with a 
large number of mnq ×  rules, with the unused or less important rules 
removed during the training process. This represents an advantage over 
the learning mechanism used in ANFIS where the number of rules is 
determined by the user from the specification of the number of member 
functions, where an improper choice may lead to redundant rules that 
may result in a deterioration in model performance. In contrast, 
POPFNN has the ability to select only the essential rules, via the rule 
pruning procedure, from all possible rules. Thus, the deteriorating 
effect of having redundant or an excessive number rules is avoided. 
 

CONCLUSIONS 
 
The following can be concluded from this study: 
(i) Pseudo Outer Product Fuzzy Neural Network (POPFNN) was 

tested against ANFIS and ARX models for a tropical urban
catchment. POPFNN was comparable to ANFIS and superior to 
ARX models in terms of different statistics. 

(ii) Rule pruning mechanism used in the POPFNN learning algorithm 
has a more flexible rule structure with an optimal number of rules 
compared to ANFIS which has a fixed number of rules. This can be 
considered as an advantage of POPFNN model over ANFIS model 
in capturing the association between input and output. 
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