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ABSTRACT 
 
In this paper we review the ongoing research on developing procedures 
which allow realistic reconstructions of sea states and extreme waves, 
including so-called rogue waves recorded in Taiwanese coastal waters. 
We confine the approach to the assumption of unidirectional wave 
propagation; the focus is made on the spatio-temporal evolution of 
surface waves. Some examination of limits of applicability of the 
reconstruction method, and elements of the short-term forecasting are 
presented. The potential usefulness of the stochastic simulations of 
irregular wind waves is discussed. 
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INTRODUCTION 
 
The rogue (or freak) waves are a threat that has been recognized rather 
recently, and nowadays attracts much attention, see for reviews (Kharif 
and Pelinovsky, 2003; Dysthe et al., 2008; Kharif et al., 2009; Slunyaev 
et al., 2011). The number of in-situ registrations of rogue wave is still 
insufficient, and many related questions (dominating mechanisms, 
probability of accuracy, favourable sea conditions, possibility of 
prediction, etc) still challenge trustworthy answers. 
 
Measurements of the surface elevation at a certain point provide only 
limited information about waves. In this paper we discuss an approach 
to reconstruct the lacking wave data with the purpose to complete the 
picture of extreme wave dynamics. Numerical reconstructions of the 
wave dynamics on the basis of instrumental records were performed in 
(Trulsen, 2001; Divinsky et al., 2004; Slunyaev et al., 2005, 2014; 
Slunyaev, 2006; Sergeeva et al, 2014). As a result, not only the full 
detailed wave information in the vicinity of the measurement point can 
be obtained, but the rogue wave evolution can be also recovered. 
 
In this paper we show at first how the reconstruction technique may be 
applied, using a record from the Taiwanese coastal water. The direct 
verification of the reconstruction procedure requires in-situ 
measurements at several downstream locations, which are not available 
at present. Instead, in the second section we use strongly nonlinear 
simulations as the reference, and validate our approximate approach. In 
the last section we discuss possible applications of the realistic 

simulations of stochastic sea waves, and present some results of 
analysis of the spatio-temporal wave data of strongly nonlinear wave 
simulations over different depths, which at present can be hardly 
obtained from laboratory measurements. 
 
RECONSTRUCTION OF IN-SITU ROGUE WAVE 
REGISTRATIONS 

In this section we use the general idea that a time series of the surface 
elevation recorded in one point may be used to reconstruct the wave 
dynamics in the vicinity of the registration point, if only one major 
assumption is applied, that the waves in the position of registration are 
unidirectional. If so, then the surface displacement and potential on the 
surface are related, and the momentary velocity may be calculated (in 
our work we generally use the nonlinear theory for modulated waves, 
the extended nonlinear Schrodinger (NLS) framework, see Slunyaev et 
al (2014)). When the full information on waves is available in one point 
(i.e., the surface displacement η(x0, t) and the surface velocity potential 
ϕS(x0, t)), then the equations which integrate the evolution in space are 
most convenient (the boundary problem). Different equations may be 
applied for the simulation in space: linear equations, equations for 
weakly nonlinear weakly modulated waves (modifications of the NLS 
theory), spatial modifications of the Zakharov equations. 
 
The nonlinear Schrodinger equation (NLSE) is the simplest nonlinear 
theory for modulated waves. The coefficients of the equation depend on 
the local depth, and thus vary in case when waves propagate over 
slowly changing bathymetry. For this problem the NLSE may be 
written in form 
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where B(x, t) the is the complex amplitude of the envelope. The surface 
displacement and surface velocity potential are in the leading order  
 

( )( )ikxtiB −= ωη expRe ,        ( )( )ikxtiBgS −= ω
ω
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Here x is the horizontal coordinate directed onshore (x = 0 corresponds 
to the shoreline and the wave gauge is situated at x = x0), t denotes the 
time; ω and k are the carrier frequency and wavenumber; g is the 



 

gravity acceleration. When the water depth h is constant, equation (1) 
reduces to the classic NLSE with shoaling coefficient µ = 0. The term 
with µ is responsible for the conservation of wave energy flux cg|B|2, 
where cg is the group velocity. 
 
Eq. 1 may be used for reconstruction of waves which propagate strictly 
onshore with wave crests aligned with depth isolines. While waves 
propagate over variable depth, the carrier frequency remains constant, 
ω = ω0, and the wavenumber k varies in accordance with the dispersion 
relation ω2 = gk tanh(kh), hence it is a function of x, k = k(h(x)).  
 
In Sergeeva et al (2014) we applied this framework for reconstruction 
of a few registrations of abnormally high waves, which were selected 
from the bank of long-term instrumental measurements near the coasts 
of Taiwan (Doong et al., 2007). The conditions of wave registration 
correspond to the sloping bottom, see Fig. 1a for measurements at 
station Hsinchu. The dimensionless water depth kh is also a function of 
x, see the broken line in Fig. 1a. Thus, equation (1) with variable 
coefficients is an appropriate basic model. 
 

(a) 

(b) 
Fig. 1. The uneven bathymetry in the vicinity of the measurement by 
the Hsinchu buoy (a). The circles and the connecting line show the 
depth. The local dimensionless water depth kh is shown with broken 
line and corresponding right-side axis. The simulated rogue wave 
evolution in the vicinity of the buoy (b). Numbers at the left side give 
values of x in meters. The thick red curves show rogue waves with 
H/Hs > 2. 
 
An example of the rogue wave reconstruction is shown in Fig. 1b. The 
time series are plotted for different locations. The rogue wave emerges 
a little bit prior the buoy location (x0 = –2440 m) and propagates for 
about 550 m during about 60 seconds, from time to time exceeding the 
conventional threshold of a rogue wave, 2Hs. 
 
Three more reconstructions of rogue waves from Taiwanese coasts may 
be found in Sergeeva et al (2014). A dozen more reconstructions were 
performed for time series from the North Sea at constant depth 
conditions (Slunyaev et al, 2005, 2014; Slunyaev, 2006)). A more 

accurate model, the modified NLSE (Dysthe equations), was used for 
that simulations. In many cases the anomalously high waves live 
relatively long, up to about 1-1.5 minutes. 
 
INDIRECT VALIDATION OF THE RECONSTRUCTION 
PROCEDURE AND POSSIBLE FORECASTING 
 
In the reconstruction shown in Fig. 1 weakly nonlinear weakly modulated 
theory was employed, which is marginally applicable in situation of 
realistic sea storms. In this section we present a justification of the 
approach in the condition of infinitively deep water. The strongly 
nonlinear simulations of irregular sea waves with JONSWAP spectrum 
by means of the HOSM solver are used as the reference (the HOSM 
simulations are described in Sergeeva & Slunyaev, 2013). At some 
moment of the reference simulation the surface displacement ηref(x, t*) is 
taken and considered as it would be an instrumental record (the fluid 
velocity data is not used). The surface velocity potential is reconstructed 
at first, and the obtained initial condition is then simulated within 
different frameworks: the linear theory, the NLSE with full linear 
dispersion, and the Dysthe model with full linear dispersion. 
 

(a) 

(b) 

(c) 
Fig. 2  Average difference (rms) in percents between the reference and 
the reconstruction for cases Hs = 3.5 m (kpHs/2 = 0.07) (a) and Hs = 
6.6 m (kpHs/2 = 0.13) (b). An example of the most pronounced 
disagreement between surfaces for case Hs = 6.6 m at t = 2 min (c). 
 
The reconstruction result (i.e, the simulated surface displacement η(x, 
t > t*)) is compared with the reference strongly nonlinear simulation 
ηref(x, t > t*). The relative average squared errors for two sea conditions 
are shown in Fig. 2a,b. The first case is characterized by relatively 
smooth waves without breaking (Hs = 3.5 m, Tp = 10 s, γ = 3, five 
examples are shown in Fig. 2a), while in the second (Hs = 6.6 m, Tp = 
10.5 s, γ = 3.3, Fig. 2b) waves occasionally break. The reconstruction 
rapidly gains a certain error due to the imperfect reconstruction of the 
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velocity field; later on the error grows much slower. One may conclude 
from Fig. 2a,b that the NLS framework practically has no advantage in 
comparison with the linear theory; in both the cases the reconstruction 
quickly depart from the reference. In the case of simulation of the 
Dysthe model the error is essentially smaller. In the steeper sea state 
(Fig. 2b) the error grows faster (note different scales in Figs. 2a, b). In 
Fig. 2c the wave interval is shown, which exhibits the maximal 
deviation between the reference and reconstruction. It corresponds to 
instant t = 2 min of the steeper sea state simulation (Fig. 2b), when the 
average error is of order of 30%. One may see that the maximum 
excursion of the reconstructed wave corresponds to slightly different 
locations of waves, what in many cases may be practically insignificant. 
Thus, we may conclude that the time of reliable wave dynamics 
reconstruction from a given sea surface snapshot can be of order of a 
few minutes. Under another viewpoint, this estimate gives an idea 
about the feasible horizon of a deterministic forecasting of dangerous 
waves, when the simulation is used to foresee the wave evolution. 
 
NUMERICAL SIMULATIONS OF IRREGULAR 
NONLINERAR WAVES IN FINITE-DEPTH BASINS 

The fast realistic numerical simulations of nonlinear surface waves help 
to obtain statistical information on sea waves which can be hardly 
obtained otherwise. In particular, the direct numerical simulations may 
be used to obtain the wave statistics for given sea states. We report here 
some results of simulations of quasi-stationary sea states. The initial 
conditions for the simulations are characterized by the JONSWAP 
spectrum; after a transient stage waves attain quasi-stationary state, and 
then the statistical data is collected (Sergeeva & Slunyaev, 2013; 
Slunyaev et al, 2016). The approach allows a twofold consideration: the 
traditional, based on time-series of the surface elevation; and the 
consideration of a spatial domain (snapshots), which is often preferable 
when waves are simulated in time. We show below that the wave 
statistics if time and space domains may look noticeably different. 
 
The wave height exceedence probabilities for two different water 
depths kph ≈ 2 (Fig. 3a,b) and kph ≈ 1.2 (Fig. 3c,d) (where kp denotes 
the peak wavenumber) and two characteristic wave steepnesses are 
presented in Fig. 3. The data in Figs. 3a-d corresponds to runs A2, E2, 
A1.2 and E1.2 from Slunyaev et al (2016). The blue and red lines 
correspond to down-crossing and up-crossing analysis respectively; the 
statistics in time domain is given by plane curves, while curves with 
dots denote the space domain consideration. The Rayleigh law is shown 
for reference by the green thick line, and the Glukhovskiy distribution 
(in original formulation) is given by magenta curves for time series and 
space series (solid and broken lines correspondingly). 
 
One may see from Fig. 3 that the probability distributions for time 
series and space series exhibit rather different behaviour in the interval 
of large wave heights when water is deep (Fig. 3a, b); the difference is 
less evident in the shallower case kph ≈ 1.2 (Fig. 3c,d). The horizontal 
axes in Fig. 3 are scaled by the standard deviation of the surface 
elevation, which is the same for the consideration in time or space. The 
significant wave height, however, is dependent on the approach; it is 
somewhat larger for time series, since the frequency spectrum is 
narrower than the wavenumber spectrum, and thus the wave heights in 
time series diverse less than in space series. The mean wave heights 
also depend on the domain of analysis, what leads to different 
Glukhovskiy distributions (see solid and broken magenta curves in 
Fig. 3). The difference between Glukhovskiy distributions becomes 
smaller over shallower water (cf. Fig. 3a, c); it is interesting to note that 

for steeper waves this difference diminishes to even a larger degree (see 
magenta curves in Fig. 3a,b, and also Fig. 3c,d). 
 
The effect of nonlinearity on the wave height probability is evident 
from Fig. 3. In еру steeper sea state over deep water high waves are 
more frequent. The probability curves lie well below the Rayleigh law 
in Fig. 3c (intermediate depth, moderate wave steepness), they exceed 
the Rayleigh prediction when waves are rougher (Fig. 3b,d). 
 
It is interesting to note that the up-crossing and down-crossing analyses 
exhibit significant difference in the steeper wave situations regardless 
the domain of consideration (time or space series), the probability 
distribution curves split in two in the large height interval, see Fig. 3b,d. 
This difference corresponds to a larger number of high crests with rear 
slopes deeper than their front slopes. This asymmetry of high waves in 
irregular seas was probably first mentioned in our work Sergeeva & 
Slunyaev (2013); it was also observed in 3D numerical simulations by 
Xiao et al (2013) and in in-situ data Pinho et al (2004). 
 

(a)  (b) 

(c)  (d) 
Fig. 3  Wave height exceedence probability distributions for two depths: 
kph ≈ 2 (a, b) and kph ≈ 1.2 (c, d) and two characteristic wave 
steepnesses: kpHs/2 = 0.07 (a, c) and kpHs/2 = 0.13 (b, d). See 
description in the text. 
 
The maximum wave amplification H/4σ in the reported simulations is 
about 3. The probability distributions drop down at the maximum wave 
heights in Fig. 3 may be caused by the small number of events; in 
addition, the curves in Fig. 3b,d (steeper waves) may be affected by the 
employed regularization of eventual wave breaking.  
 
Another promising application of the direct numerical simulations is 
related to obtaining the information on wave kinematics and pressures 
beneath the surface, which are extremely difficult to be measured in 
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laboratory facilities. The Monte-Carlo type simulations allow obtaining 
statistical data. The Eulerian surface velocities are given by formulas 
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These quantities were calculated for irregular waves over infinitively 
deep water in Sergeeva & Slunyaev (2013). It was concluded that the 
overlap between very high waves and waves with extreme kinematics is 
only partial. It was also noticed that the 3-order Stokes theory gives 
reasonable estimations for the maximum values of the surface 
velocities in relatively rough sea states. 
 
The work by Sergeeva & Slunyaev (2013) was extended in Slunyaev et 
al (2016) to cases of finite depth basins, when waves start to ‘feel’ the 
bottom. The wave kinematics in the coastal area is probably of even 
greater importance than in the limit of infinite depth, thus we have 
considered how the fields of surface velocities depend on the depth. 
 

(a)  (b) 

(c)  (d) 
Fig. 4  Horizontal (Vx) and vertical (Vz) surface velocity probability 
densities for two characteristic wave steepnesses: kpHs/2 = 0.07 (a, b) 
and kpHs/2 = 0.13 (c, d), and three depths (see the legend). 
 
The probability densities are calculated for Vx and Vz; they are shown in 
Fig. 4. Two characteristic wave intensities are considered (Fig. 4a,b for 
moderate steepness and Fig. 4c,d for steeper waves) at three depths, 
kph ≈ 2, 1.6, and 1.2 (see the legend). The normal (Gaussian) 
distribution is given for the reference as well.  
 
A striking feature of Fig. 4 is that the curves for different depths 
collapse in one, and do not show any certain dependence on the depth 
(of course, the water is still not really shallow, kph ≥ 1.2). The 
probability density for the horizontal velocity is strongly asymmetric; 

its tails depart essentially from the Gaussian curve. In the rougher case 
the right-hand tail of Vx has complicated dependence (Fig. 4c). At the 
same time, the vertical velocities Vz almost comply with the normal 
distribution in the case of moderate wave steepness (Fig. 4b); it 
becomes skewed when waves are steeper (Fig. 4d). 
 
The probabilistic description of nonlinear wave kinematics is poorly 
developed so far. The presented examples of stochastic numerical 
simulations prove the efficiency of this approach for considering the 
wave statistics with minimal restrictions. 
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