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ABSTRACT 
 
Our aim in this talk is to describe the recent endeavors towards the 
development of high-order finite volume methods for the efficient and 
accurate computation of nonlinear dispersive waves in fluid flows. The 
Green-Naghdi model for shallow water flow and the Iordanski-
Kogarko-Wijngaarden model will be considered as examples in the 
algorithm for numerical discretization.  
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INTRODUCTION 
 
The Green-Naghdi (GN) equations for shallow water flow (cf. [4, 7, 8]) 
is one of the basic models in fluid flows for the study of dispersive 
waves and the numerical method development. In one space dimension, 
the GN model can be written in the form 
 

( ) 0,t xh hu∂ + ∂ =                                                                                  (1a) 
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where h denotes the total water depth, u is the average horizontal 
velocity, and K (to be called the generalized velocity) is defined by 
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Note that the homogeneous part of (1) belongs to a class of hyperbolic 
model, when h ≥ 0. The inhomogeneous part on the right-hand side of 
(1), however, contribute to the modelling of dispersive effects of waves 
in shallow water theory. The coupling between the variables ρ , ur  and 
K via (1c) leads to either an elliptic-type problem for ur , once h and K 
are known a priori(e.g., from the solution of (1)), or a numerical 
differentiation problem for K

r
, when h and ur are known (e.g., from the 

solution reconstruction step). It is easy to see that in the absence of the 
higher order derivative terms in u, (1) reduces to the classical Saint-
Vennant model for shallow water flow [10]. 
 
The other example that is of interest here is the Iordanski-Kogarko-
Wijngaarden (IKW) model for bubbly flow in liquid (cf. [5, 6, 9]). Here, 
in one space dimension, we may write the IKW in the form 

 
( ) 0,t x uρ ρ∂ + ∂ =                                                                                 (2a) 
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                            (2b) 

where the generalized velocity K is defined by 
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Here , ,l l g g gu pρ α ρ α ρ= + , R denote the mixture density, velocity, 
and gas pressure, and the bubble radius, respectively. The variables kα  
and kρ  are in turn the volume fraction and phasic density of the fluid 
phase k for k=l (the liquid phase), g (the gas phase); 1l gα α+ = . 
 
It should be mentioned that (2) is derived from the following equation 
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together with the assumptions: 
 
1. The liquid phase is assumed to be incompressible, where lρ  is set 

to be a chosen constant. 
2. The volume fraction of the gas   is assumed to satisfy the relation 

 
34 ,
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 where R is the bubble radius. 
 
3. The density of the gas phase gρ  is assumed to be small, and hence 

can be neglected, yielding the defnition of the mixture density 
ρ as 
 

(1 ) (1 )g g t g g g tρ α ρ ρ α ρ α ρ= − + ≈ −  
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4. The gas inside the bubble is assumed to be ideal, and be 
compressed or expanded isentrop- ically and uniformly. The gas 
pressure, denoted by gp , can then be written in a function of the 
bubble radius R as 
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                                                                              (4) 

 
Where γ is the ratio of specific heats, and 0p , 0R  are reference 
pressure and radius, respectively. 
 

5. We assume the mixture pressure p to follow the Rayleigh-Plesset 
equation (cf. [1]) of the form 
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Here tdR dt R u R= ∂ + ⋅∇

r stands for the material derivative of R. 
 

6. The bubble distribution is assumed to be uniform, i.e., the flow is 
in the absence of bubble breakup and coalescence. In this instance, 
the mass fraction of each fluid phase, denoted by /k k kY α ρ ρ=   
for k = l, g, and the number of bubbles per unit mass, denoted by 
nb = Nb /ρ, would retain their respective initial states for all times 
(cf. [2, 3]). 
 

With that, the bubble radius R can be expressed as a function of the 
mixture density ρ as 
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                                                                        (6) 

 
where 0z  is a reference state for the variable z for z R= , ρ , and gα . 
For simplicity, (6) is written in the form 
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                                                                                      (7) 

 
where the parameters a and b are problem-dependent constants defined 

by 3
0 0 0ga Rρ α=  and l lb aY ρ= , respectively. 

The model systems considered here (1) and (2) can be put into the 
general form as 
 

( ) ( )t xq f q qψ∂ + ∂ =  
 
We will discuss fractional-step method to find higher order 
approximation of the solution for this type of model system numerically. 
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