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Abstract

Motivation The planning of drinking water supply and the evaluation of subsurface
CO2 and nuclear waste storage sites are just a few examples that require knowledge
about the subsurface structure. While drinking water wells should be built in regions
with highly permeable soils, nuclear waste storage sites should be built in impermeable
salt rock. In this example, the hydraulic conductivity can be used to describe the per-
meability of soils. Determining such subsurface parameters is difficult because they are
heterogeneous and only scarce data is available. Consequently, the spatial distribution
of subsurface parameters is uncertain. To overcome this challenge, parameter inference
and uncertainty quantification can be used to (1) improve predictions and (2) quantify
remaining uncertainties in various applications.

This thesis aims to improve the inference and uncertainty quantification of relevant sub-
surface parameters. To reach this goal, a two-step approach is taken. First, Bayesian
inversion, also known as Bayesian inference, is used for probabilistic predictions of sub-
surface parameter fields. Here, Bayesian inversion defines a so-called posterior distri-
bution which is the updated belief of the prior parameter model given data. Analytical
calculation of the posterior is often impossible. Instead, numerical sampling methods
can be used to approximate the posterior. Markov chain Monte Carlo (MCMC) meth-
ods have shown great potential in doing so. Depending on the amount of available data
and type of prior field, MCMC methods still have two drawbacks. In some problem
classes, existing MCMC methods are too slow to be used commonly. In other problem
classes, no MCMC methods exist to perform Bayesian inversion. This thesis closes
these gaps by developing novel MCMC methods to enable or speed up Bayesian inver-
sion. Second, all MCMC methods assume some prior (geostatistical) models. Selecting
appropriate prior geostatistical models can be done using Bayesian model selection
(BMS). This thesis shows that BMS results can differ based on where measurement
noise is modeled and gives guidance on how to model noise correctly.
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My contributions This thesis comprises a total of five journal articles and manuscripts.
In Reuschen et al. [2021b], the sequential pCN-MCMC is developed which combines
the ideas of the current state-of-the-art methods sequential Gibbs sampling and pre-
conditioned Crank Nicolson MCMC (pCN-MCMC) for Gaussian prior fields. It is
shown that the combined method is up to 6.5 times more efficient than the mentioned
state-of-the-art alternatives for Gaussian prior fields and weakly informative data.

For highly informative data and Gaussian priors, Bayesian inversion and posterior
sampling are more challenging due to more likelihood-dominated posteriors. Xu et al.
[2020] introduces the pCN-PT MCMC, which enables Bayesian inversion with highly
informative data by combining parallel tempering with the pCN-MCMC approach.

As the next step, the pCN-PT is generalized to Gaussian priors with uncertain vari-
ogram statistics. Xiao et al. [2021] summarizes how the variogram hyperparameters,
e.g., the lengthscale or variance, can be inferred jointly with the parameter field. Fur-
ther, it gives insights on which type of measurements are suitable for hyperparameter
approximation.

While the first three contributions focus on Gaussian prior models, Reuschen et al.
[2020] presents an MCMC that can perform Bayesian inversion on hierarchical prior
models. This enables a more realistic representation of nature. The presented MCMC
is applicable to highly and weakly informative data, and the differences in the resulting
posterior distributions are analyzed.

The second large challenge besides posterior approximation via numerical sampling
methods is the selection of appropriate prior geostatistical models using BMS. Reuschen
et al. [2021a] shows that the results of BMS heavily depend on where (in model and/or
data) noise is modeled. Further, guidance on how noise should be modeled in BMS and
which scientific question is answered based on this choice is explained and discussed.
Possible pitfalls are pointed out to prevent errors in future BMS studies.

Summary With these contributions, this thesis enhances the existing methods to in-
fer, and quantify the uncertainty of, subsurface parameter fields. The presented meth-
ods enable a broad range of users in scientific and practical applications to achieve
better predictions with less computational effort. Further, this thesis sheds light on the
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theoretical implications of measurement noise modeling. Altogether, these contribu-
tions enable better planning of subsurface-related applications such as drinking water
supply or nuclear waste storage.
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Zusammenfassung

Motivation Die Planung der Trinkwasserversorgung, sowie die Evaluierung von un-
terirdischen CO2-Speichern und Atommüll-Endlagern sind nur einige Beispiele, bei de-
nen Kenntnisse über die Beschaffenheit des Untergrunds erforderlich sind. Während
Trinkwasserbrunnen in Regionen mit stark durchlässigen Böden gebaut werden soll-
ten, sollten Atommüll-Endlager in undurchlässigen Salzstöcken errichtet werden. Dabei
kann beispielsweise die hydraulische Leitfähigkeit als Parameter genutzt werden, um
die Durchlässigkeit von Böden zu beschreiben. Die Bestimmung solcher Untergrund-
parameter ist schwierig, da sie heterogen sind und nur wenige Daten zur Verfügung
stehen. Folglich ist die räumliche Verteilung der Untergrundparameter unsicher. Dies
ist eine Herausforderung in vielen Anwendungen. Parameterinferenz und Unsicherheits-
quantifizierung können eingesetzt werden, um (1) die Vorhersagen zu verbessern und
(2) die verbleibenden Unsicherheiten zu quantifizieren.

Ziel dieser Arbeit ist es, die Inferenz und Unsicherheitsquantifizierung von relevan-
ten Untergrundparametern zu verbessern. Dieses Ziel wird in zwei Schritten angegan-
gen: Im ersten Schritt wird die Bayes’sche Inversion, auch bekannt als Bayes’sche In-
ferenz, für probabilistische Vorhersagen von Untergrundparameterfeldern verwendet.
Ziel der Bayes’schen Inversion ist es, die sogenannte A-posteriori-Verteilung, die an
die Daten assimilierte A-priori Verteilung, zu finden. Eine analytische Berechnung der
A-posteriori-Verteilung ist oft nicht möglich. Stattdessen können numerische Stichpro-
benverfahren verwendet werden, um die A-posteriori-Verteilung zu approximieren. Mar-
kov chain Monte Carlo (MCMC) Methoden sind eine Klasse von Methoden, die in
der Literatur sehr erfolgreich zum Approximieren der A-posteriori-Verteilung genutzt
werden. Abhängig von der Menge der verfügbaren Daten und der Art des A-priori-
Feldes haben MCMC Methoden dennoch zwei Nachteile: In einigen Problemklassen
sind die vorhandenen MCMC Methoden zu rechenintensiv, um auch außerhalb der

XIX



Wissenschaft praktikabel zu sein. In anderen Problemklassen existieren keine passen-
den MCMC Methoden. In dieser Arbeit gehe ich diese Herausforderungen an, indem
ich neue MCMC Methoden entwickle, die eine Bayes’sche Inversion entweder ermög-
lichen oder beschleunigen. Im zweiten Schritt wird das Problem betrachtet, dass alle
MCMC Methoden (geostatistische) A-priori-Modelle voraussetzen. Die Auswahl geeig-
neter geostatistischer A-priori-Modelle kann mittels Bayes’scher Modellauswahl (eng.
Bayesian model selection, BMS) erfolgen. Für diese Modellauswahl werden Messdaten
benötigt. Diese Arbeit zeigt, dass sich die BMS Ergebnisse je nach Modellierung des
Messrauschens unterscheiden können und gibt Hinweise zur korrekten Modellierung des
Messrauschens.

Meine Beiträge Diese Arbeit umfasst insgesamt fünf Publikationen und Manuskrip-
te. In Reuschen et al. [2021b] wird die sequential pCN-MCMC Methode entwickelt.
Diese kombiniert die sequential Gibbs sampling Methode mit der pre-conditioned Crank
Nicolson MCMC (pCN-MCMC) Methode für Gauß’sche A-priori-Felder. Es wird ge-
zeigt, dass die kombinierte Methode für Gauß’sche A-priori-Felder und schwach infor-
mative Daten bis zu 6, 5 mal effizienter ist als die derzeitig besten Alternativen.

Für hochinformative Daten und Gauß’sche A-priori-Felder sind die Bayes’sche Inversion
und das A-posteriori-Sampling anspruchsvoller, da die A-posteriori-Verteilung haupt-
sächlich von der Likelihood-Funktion abhängt. Xu et al. [2020] präsentiert den pCN-PT
MCMC, welcher die Bayes’sche Inversion mit hochinformativen Daten ermöglicht. Da-
für werden in dieser Publikation die Ideen von parallel tempering und des pCN-MCMC
Ansatz kombiniert.

Im nächsten Schritt wird die pCN-PT Methode auf Gauß’sche A-priori-Felder mit un-
sichererem Variogramm verallgemeinert. Xiao et al. [2021] fasst zusammen, wie die
Variogramm-Hyperparameter, z. B. die Längenskala oder die Varianz, gemeinsam mit
dem Parameterfeld geschätzt werden können. Außerdem gibt diese Publikation Einbli-
cke darauf, welche Art von Messungen sich für Rückschlüsse auf die Hyperparameter
am besten eignen.

Während sich die ersten drei Beiträge auf Gauß’sche A-priori-Modelle konzentrieren,
wird in Reuschen et al. [2020] eine MCMC Methode vorgestellt, welche die Bayes’sche
Inversion mit hierarchischen A-priori-Modellen durchführt. Dies ermöglicht eine rea-
listischere Darstellung der Natur. Die vorgestellte MCMC Methode ist mit hoch- und
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schwach-informativen Daten anwendbar und die Unterschiede in den resultierenden A-
posteriori-Verteilungen werden analysiert.

Die zweite große Herausforderung, neben der A-posteriori-Approximation mittels MCMC
Methoden, ist die Auswahl geeigneter geostatistischer A-priori-Modelle unter Verwen-
dung von BMS. Reuschen et al. [2021a] zeigt, dass die BMS Ergebnisse stark davon
abhängen, an welcher Stelle (im Modell und/oder in den Daten) Messrauschen model-
liert wird. Außerdem wird erläutert und diskutiert, wie Messrauschen in BMS modelliert
werden sollte und welche philosophische Frage durch diese Wahl beantwortet wird. Ab-
schließend wird auf mögliche Fehler in der BMS Berechnung hingewiesen, um diese in
zukünftigen BMS Studien zu vermeiden.

Zusammenfassung Diese Arbeit stellt neue Methoden zur Inferenz und Unsicher-
heitsquantifizierung von Untergrundparameterfeldern vor. Die vorgestellten Methoden
ermöglichen einem breiten Anwenderkreis, in Wissenschaft und Praxis, bessere Vorher-
sagen bei geringerem Rechenaufwand. Weiterhin zeigt diese Arbeit die theoretischen
Implikationen der Modellierung von Messrauschen auf. Insgesamt ermöglichen diese
Beiträge damit eine bessere Planung von untergrundbezogenen Anwendungen wie der
Trinkwasserversorgung oder der Atommüll-Endlagerung.
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1 Introduction

The importance of subsurface parameters

Drinking water supply, subsurface CO2 storage, nuclear waste storage, saltwater in-
trusion, and water management in mining are only a few applications where subsur-
face characteristics are highly relevant for decision making. The challenges in these
applications are twofold. On the one hand, having a good estimate for the spatial
distribution of decision-relevant parameters (e.g., hydraulic conductivity) is crucial be-
cause it enables good predictions of the expected system behavior. On the other hand,
knowing the uncertainty of subsurface parameters is equally important in many appli-
cations. Picture the planning of a long-term nuclear waste storage. Here, it is crucial
to give probabilities of failure, which are only accessible with uncertainty quantifica-
tion. Hence, we, as a society, need characterizations and uncertainty quantification of
subsurface parameters.

This thesis aims to enhance existing methods to infer and quantify the uncertainty of
key characteristics of aquifers, i.e., the spatial distribution of subsurface parameters.
But why is this difficult? Unlike in many other disciplines of science, direct measure-
ments of subsurface parameters are difficult, expensive, or even impossible to get due
to different reasons. First, most measurements require a borehole (or a sample from a
borehole), which is expensive to drill. Second, each borehole changes the characteristics
of the subsurface due to the drilling itself. As a result, one will never (with classical
methods) be able to measure the whole spatial distribution of parameters without al-
tering them. Third, measurements can not be taken at arbitrary positions. Legal
constraints, e.g., private properties or nature reserves, and physical constraints, e.g.,
mountain ranges or water bodies, reduce the number of permitted and feasible drilling
locations significantly. As a result, often only a few sparse measurements are available.



2 1 Introduction

These measurements can be used to predict the spatial distribution of parameters and
their uncertainty. To generalize from point measurements to spatial predictions, prior
assumptions on the structure of subsurface parameters need to be made. These a priori
assumptions on the structure of parameters are called prior models in the remainder of
this thesis.

Inference of spatial parameter fields

Statistical prior models incorporate the structural information of any spatially hetero-
geneous system before taking measurements. A large variety of prior models exist in
various scientific applications. In subsurface modeling, multi-Gaussian random fields
[e.g. Kitanidis, 1997], multiple-point geostatistics using training images [Strebelle, 2002,
Mariethoz et al., 2010], level set methods [Iglesias and McLaughlin, 2011, Iglesias et al.,
2014, 2016] and object-based methods [Jussel et al., 1994, Bennett et al., 2019] are some
prominent examples. For an overview of subsurface modeling approaches, I refer to
Koltermann and Gorelick [1996]. Here, each prior model incorporates different specific
assumptions as prior knowledge.

After taking measurements, these prior models are calibrated to data. This calibration
with the goal of predicting the parameter distribution is called inversion or inference.
Bayesian statistics (i.e., Bayes theorem) provides a rigorous framework to combine prior
knowledge with measurement information. This process is called Bayesian inversion
or Bayesian inference. This process yields a so-called posterior parameter distribution,
which consists of predictions and uncertainties of the parameter fields.

Calculating or estimating the posterior distribution can be challenging. For direct mea-
surements and multi-Gaussian prior and likelihood, the Kriging procedure (or Gaus-
sian process regression) can be used to analytically calculate the posterior distribution
[e.g. Kitanidis, 1997]. Most geostatistical inverse problems use indirect measurements
because parameter fields occur as factors in the governing differential equations [e.g.
Kitanidis, 1997]. As a result, Kriging is often not applicable and numerical sampling
methods or linearization-based methods are used to approximate the posterior dis-
tribution. Ensemble Kalman filters [e.g. Evensen, 2009] are sampling methods that
linearize forward models (relating parameters to observable data), which enables them
to exploit analytical approximations for multi-Gaussian priors and likelihoods. Purely
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linearization-based approaches like the Quasi-Linear Geostatistical Approach (QLGA)
[Kitanidis, 1995] and the Successive Linear Estimator (SLE) [Yeh et al., 1996] also only
converge towards approximations of the true posterior. For convergence towards the ex-
act posterior, rejection sampling [e.g. Gelman et al., 1995, chapter 10.2] is efficient, but
only for low-dimensional prior distributions or very weakly informative data. For high-
dimensional distributions, iterative numerical estimators such as the smooth bootstrap
filter [Smith and Gelfand, 1992] or Markov chain Monte Carlo (MCMC) methods are
applicable but computationally expensive. In this thesis, I focus on MCMC methods
because they are universally applicable for Bayesian inversion with non-linear measure-
ments [e.g. Qian et al., 2003].

The computational effort of most common MCMC methods, e.g., the Metropolis-
Hastings algorithm [Metropolis et al., 1953, Hastings, 1970], increases drastically with
higher dimensions. In the context of Bayesian inversion, high-dimensional distribu-
tions are the result of discretization refinements. Hence, acquiring posterior parameter
distributions with a high spatial resolution is unfeasible with most MCMC methods.

Hamiltonian MCMC methods [e.g. Betancourt, 2018] can sample high-dimensional pos-
terior distributions but use derivatives for fast convergence. The derivatives of the pos-
terior are not analytically available in subsurface Bayesian inversion and a numerical
approximation of them is numerically expensive. As a result, Hamiltonian MCMCs
are impracticable for posterior estimation. Other popular MCMC-based methods rely
on concepts such as spectral parameterization [Laloy et al., 2015], pilot point methods
[e.g. Jardani et al., 2013] and Karhunen-Loeve expansions [e.g. Mondal et al., 2014].
These are dimension reduction approaches to reduce the computational effort at the
cost of only converging to an approximate solution of the true posterior. This thesis
focuses on exact approximations of the posterior only, and hence does not apply these
approaches.

On the contrary, specialized MCMC methods exist that can sample high-resolution spa-
tial posterior parameter distributions. Existing methods include the pre-conditioned
Crank Nicolson MCMC (pCN-MCMC) [Beskos et al., 2008, Cotter et al., 2013] and
the Gibbs approach [e.g. Gelman et al., 1995, chapter 11.3]. The latter achieves a
discretization-independent efficiency by iteratively modifying different subsets of pa-
rameters [Fu and Gómez-Hernández, 2008, 2009a,b, Hansen et al., 2012]. This modifi-
cation respects the conditional prior distribution given by the prior covariance structure
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and the surrounding fixed values of parameters. Both approaches are well suited for
weakly informative data and have dimension-independent convergence rates for Gaus-
sian prior fields. This reduces the computational burden for highly discretized fields.
However, they are not appealing to many researchers due to their still high computa-
tional costs.

This thesis tackles this challenge in the first four contributions by developing new
efficient MCMC methods for accurate, high-dimensional Bayesian inversion with non-
linear measurements. Here, the focus lies on MCMC methods for two prior types:
(1) For Gaussian priors (contributions one, two, and three) due to their popularity
in geoscience and (2) for hierarchical priors (contribution four) because of their good
representation of nature.

Model selection

Calibrating a prior model to data yields posterior predictions of the spatial parameter
distribution. The remaining challenge is to choose a good prior model. In this thesis,
the terms prior model and model will be used interchangeably for shorter notation.
In many practical applications, various competing models exist and modelers need
to decide which one to use. Bayesian statistics and Bayes theorem offer a rigorous
framework called Bayesian model selection (BMS) [e.g. Wasserman et al., 2000] to
choose between competing models.

In BMS, posterior model weights are calculated that predict the probabilities of models
given data [e.g. Höge, 2019]. This calculation has two downsides. First, it is computa-
tionally expensive because it requires to estimate the so-called Bayesian model evidence
(BME) [Schöniger et al., 2014], which is a high-dimensional integral. Hence, the BME
is approximated using Monte Carlo sampling [Schöniger et al., 2014, 2015] or MCMC
methods using thermodynamic integration [Lartillot and Philippe, 2006], which are
both computationally expensive. Second, the posterior model weights can be indecisive
by resulting in similar weights for all models. For these scenarios, the so-called model
justifiability analysis [Schöniger et al., 2015] reveals whether weakly informative data
or similarity between the candidate models is the reason for this occurrence. Based on
that information, decision-makers can either decide to take more informative measure-
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ments (to make the model selection more decisive) or to use any one of the proposed
models due to their high similarity.

One big remaining challenge in BMS is the presence of measurement noise. All measure-
ments in real-world experiments are noisy. So far, the BMS literature misses a detailed
study of where measurement noise should be modeled in BMS. The fifth contribution
of this thesis aims to close this gap. It shows that the way where measurement noise
is modeled can change the results of BMS drastically and gives guidance on where to
model noise correctly.

Objectives and structure of thesis

The overarching goal of this thesis is to improve the prediction and uncertainty quan-
tification of subsurface parameter fields. To reach this goal, I enhance MCMC methods
in Bayesian inversion and give guidance on how to handle noisy data in BMS. A sum-
mary of common prior models and the state of the art in Bayesian inversion, BMS, and
MCMC methods are presented in Chapter 2. In Chapter 3, the objectives and contri-
butions of this thesis are summarized. The corresponding publications are presented in
Appendix A-E. Chapter 4 draws conclusions and gives an outlook on potential future
research.





2 State of the art

This chapter gives an overview of state of the art methods in subsurface modeling.
The statistical Bayesian framework is presented in Chapter 2.1. In Chapter 2.2, the
prior probability fields used within this thesis are summarized. Finally, Chapter 2.3
introduces state of the art MCMC methods for sampling the posterior in Bayesian
inversion.

2.1 Bayesian framework

There are two perspectives to think of probabilities: The frequentist’s and the Bayesian-
ist’s perspective. For frequentists, a probability is the frequency of occurrence of a
particular event. As a result, only probabilities of repeating processes, e.g., the result
of a dice roll, can be defined.

On the contrary, Bayesianists see probabilities as a representation of the state of knowl-
edge. As a result, Bayesian statistics can define probabilities of processes that only
occur once or of the state of knowledge of some unknown parameter. Describing the
state of knowledge of subsurface parameters using probability distributions is the goal
of this thesis.

To formulate probabilities for singular events or states (such as parameter values in
aquifers), Bayesian statistics takes the following approach: First, a prior distribution
is selected to define the prior belief of a parameter θ. Maximum entropy priors (Maxi-
mum entropy probability distributions) [Jaynes, 1957] can be used to reflect the state of
knowledge for one-dimensional distributions correctly. In most geoscience applications,
one is not interested in a single parameter at some position but rather in the spatial dis-
tribution of parameters. Hence, specific priors that account for the correlation between
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spatially neighboring parameters are used. Chapter 2.2 summarizes popular prior mod-
els for spatially distributed parameters. Dependent on the chosen prior model Mm, the
prior distribution p(θm|Mm) of parameters varies. Here, the subscript m denotes the
m-th prior model in a potential set of models.

Next, this prior belief is updated using data d as shown in Chapter 2.1.1. This update
leads to the final prediction of parameters which is called posterior distribution or just
posterior p(θm|d,Mm). In reality, often several prior models are available. Hence, the
best prior model (here: prior probability distribution p(θm|Mm)) needs to be chosen
from the ensemble of possible models. Bayesian model selection (BMS), as presented in
Chapter 2.1.2, shows how to do this consistently. After that, Chapter 2.1.3 introduces
the Model justifiability analysis, which helps to interpret the obtained BMS results.

Throughout this thesis, I solely use the (probabilistic) Bayesian framework which does
not give deterministic predictions. Instead, probabilities of models p(Mm|d) (discrete)
and probability distributions of parameters p(θm|d,Mm) (mostly continuous) given
data d are calculated as shown in the following.

2.1.1 Bayesian inversion

The goal of Bayesian inversion (also called Bayesian inference) is to update the prior
knowledge with data d using the Bayes’ theorem

p(θm|d,Mm) =
p(d|θm,Mm)p(θm|Mm)

p(d|Mm)
∝ p(d|θm,Mm)p(θm|Mm) (2.1)

to get the posterior p(θm|d,Mm). This posterior distribution is the updated belief on
the parameter θm given the prior knowledge p(θm|Mm), data d and model Mm.

The likelihood p(d|θm,Mm) defines how likely the data d is, given the parameter θm

and model Mm. A popular approach is to use a normal distributed likelihood function

p(d|θm,Mm) = N
((

y(θm,Mm)− d
)
,R

)
(2.2)

= (2π)
Nd
2 |R|

1

2 exp
(
1

2

(
y(θm,Mm)− d

)T

R−1
(
y(θm,Mm)− d

))
(2.3)
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where Nd is the number of data points and y(θm,Mm) are the deterministic predictions
of the measurement values d given the parameters θm and model Mm. y(θm,Mm) = θm

means that the parameters are measured directly and is referred to as direct measure-
ments. In this thesis, I focus on indirect measurements where y(θm,Mm) can be any
function or simulation that connects the parameter θ to the measured values d. Here,
I use the groundwater simulation framework MODFLOW [McDonald and Harbaugh,
1988, Harbaugh et al., 2000], to calculate predictions y(θm,Mm) of measured hydraulic
head (pressure) values h(x, y, t), given the uncertain isotropic hydraulic conductivity
field K(x, y) (θ = K(x, y)). To make this prediction, MODFLOW numerically solves
the saturated groundwater flow equation

∇ [K(x, y)∇h(x, y, t)] = η(x, y) + S0
∂h(x, y, t)

∂t
, (2.4)

where η encapsulates all source and sink terms and the specific storage S0.

For many sampling approaches (e.g., MCMC methods), it is sufficient to evaluate
p(d|θm,Mm)p(θm|Mm) because it is proportional to p(θm|d,Mm). The Bayesian model
evidence (BME) p(d|Mm) is a normalizing constant which ensures that the posterior
p(θm|d,Mm) integrates to one, which can be accounted for implicitly by many meth-
ods. In some applications, however, the BME p(d|Mm) of model m is explicitly needed
and defined as

p(d|Mm) =

∫
p(d|θm,Mm)p(θm|Mm)dθm . (2.5)

The BME can be interpreted as the probability of the data given the model Mm.

2.1.2 Bayesian model selection

In reality, often several models are available and one has to choose between them.
Bayesian model selection [e.g. Höge, 2019] is a rigorous framework to choose one model
out of a set of models. Here, posterior model weights p(Mm|d) define the probability



10 2 State of the art

of the model given the data. They are calculated using Bayes’ theorem with discrete
models instead of continuous parameters:

p(Mm|d) =
p(d|Mm)p(Mm)∑

i p(d|Mi)p(Mi)
. (2.6)

Here, p(Mm) represents the prior probability of model m. Typically, a uniform prior
distribution (p(M1) = p(M2) = p(M3)...) between all models is assumed. This uniform
prior is updated using the BME p(d|Mm) of each model. The resulting posterior model
weights p(Mm|d) are the probabilities of each model being the data-generating model
and they sum up to one.

These posterior model weights can be used in several ways [e.g. Hoeting et al., 1999,
Höge et al., 2019]. First, they are used in Bayesian model selection (BMS) to choose the
best model. Here, the model with the highest posterior weight is selected and used for
parameter inference as presented in Chapter 2.1.1. Second, posterior model weights are
used to combine several models to one multi-model framework using Bayesian model
averaging. Third, Bayesian model ranking ranks the models from highest to lowest
posterior weight.

2.1.3 Model justifiability analysis

Independent of the purpose, the interpretation of posterior model weights is difficult
because all results are always conditional on the considered set of models, which do
not reflect the infinitely large space of possible models. As a result, the weights are
always dependent on the very limited set of candidate models and do not reflect model
probabilities on a universal, absolute scale. The model justifiability analysis [Schöniger
et al., 2015] was introduced to help with the interpretation of posterior model weights.
It shows whether a lack of confidence in model choice is due to weakly informative data
or high similarity between models.

The model justifiability analysis samples all candidate models to produce many artifi-
cial data sets d̃ij. Here, i denotes the i-th model while j denotes the j-th randomly
generated artificial data sample. Then, the posterior model weights of all models given
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data d̃ij are calculated using Equation 2.6. Averaging the posterior weights of model k
over the Nr random realizations of data of model i leads to the average posterior model
weights

p(Mk|Mi) =
Nr∑

j=1

p(Mk|d̃ij)

Nr

. (2.7)

In principle, p(Mk|Mi) can be seen as a similarity measure between models. Large
p(Mk|Mi) indicate high similarities of models, while low p(Mk|Mi) indicate strong dis-
crepancies between models i and k. Consequently, p(Mk|Mk) ≥ p(Mk|Mi) holds true
for all i.

This analysis can be further used to compare the so-called self identification p(Mk|Mk)

with the posterior model weight p(Mk|d). Assuming that model Mk is a perfect rep-
resentation of nature, p(Mk|Mk) would be the expected value of p(Mk|d) because it
calculates the average posterior model weight given data from model Mk. In turn,
similar p(Mk|Mk) and p(Mk|d) indicate that model Mk represents nature reasonably
well. On the contrary, distinct p(Mk|Mk) and p(Mk|d) are an indication that model
Mk is not a good representation of nature. This holds true, even if p(Mk|d) is the
highest posterior model weight out of a set of models. In this case, none of the models
represents nature well.

2.2 Prior geostatistical models

Several geostatistical prior models exist in the literature. I focus on two fundamentally
different approaches. In Chapter 2.2.1, Gaussian random fields are presented. They
define a covariance between any two spatial parameters. While they lack geological re-
alism, they are mathematically convenient. In contrast, Chapter 2.2.2 gives an overview
of multiple-point statistical approaches using training images that use more than two
parameters to characterize the spatial parameter structure. They are computationally
cumbersome to handle, yet offer more geological realism than Gaussian random fields.
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2.2.1 Two-point statistics: Gaussian random fields

Random fields describe random functions over arbitrary domains. In geostatistics,
Gaussian random fields are commonly used to describe the prior distribution of param-
eters. In general, Gaussian random fields are defined on continuous domains (e.g. R

2).
To handle them numerically, they are discretized on a grid. This results in a multivari-
ate distribution. Each discretization point is presented by one random variable which
is correlated to other random variables. Gaussian random fields have the property that
the resulting multivariate distribution is multivariate Gaussian. Hence, a discretization
of Gaussian random fields prior p(θG|MG) can be written as

p(θG|MG) = N(µ,Σ) (2.8)

= (2π)
Nv
2 |Σ|

1

2 exp
(
1

2
µTΣ−1µ

)
. (2.9)

In this formula, MG explicitly denotes that a Gaussian prior is used and Nv represents
the number of discretization points. Let θi

G be the i-th entry of the vector θG. Then,
each θi

G corresponds to the probability distribution of the Gaussian random field at
some position in space. Assuming a two-dimensional domain, each variable θi

G(x)

corresponds to one position x = (x1, x2).

To fully describe a Gaussian random field, only the mean vector µ and the covariance
matrix Σ need to be defined. Although it is commonly not written explicitly, each
entry of µ(x) corresponds to some position x. Here µ(x) is the expected value of θ(x)
at position x. Often, a constant µ(x) is used because it reflects the state of knowledge
best. However, if more information about the expected values is available, any function
µ(x) = f(x) can be used to describe them.

Σ(x1,x2) defines the covariance between x1 and x2. Any positive semi-definite sym-
metric square matrix can be used to define a Gaussian random field. In geostatistics
and other fields of science, the so-called stationary models using variogram statistics
[Kitanidis, 1997] are used commonly. Here, a constant known mean function µ and a
stationary covariance function is assumed. Latter means, that the value of covariance
matrix entries Σ12 are solely dependent on the distance between points:
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Σ12(x1,x2) = R(h) = R(|x1 − x2|) . (2.10)

Different definitions of the covariance function R(h) exist and lead to different random
field structures. A summary of popular covariance functions can be found in Kitanidis
[1997]. Note, that Σ(x1,x2) only defines the point-wise covariance between any two
points. Therefore, this approach is called a two-point statistical approach. Taken
together with the stationarity assumption represented by Equation 2.10, the covariance
(correlation) of points are only dependent on pairs of parameters and their distance to
each other. In the following, the exponential and Gaussian covariance functions are
presented.

Exponential covariance

The exponential covariance function is given by

R(h) = σ2

(
1− exp

(
h

ℓ

))
(2.11)

where σ2 is the variance of the field and ℓ is a lengthscale parameter. Figure 2.1 (top
row) visualizes Equation 2.11 and shows two samples from Gaussian random fields
using an exponential variogram with different lengthscales. One can see that small ℓ
lead to low covariances of neighboring parameters and hence a quick succession of high
and low values of the parameter. A large lengthscale leads to higher covariance and
larger areas of similar values.

Gaussian covariance

The Gaussian or squared exponential covariance function is given by

R(h) = σ2

(
1− exp

(
h2

ℓ2

))
(2.12)

with σ2 being the variance of the field and the lengthscale parameter ℓ. Figure 2.1
(bottom row) visualizes 2.12 and shows two samples of the Gaussian random fields
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Figure 2.1: Visualization of covariance function R(h) of Equation 2.11 and 2.12 (left) and
samples from the two-dimensional random field with the respective covariance
structure (center, right). The differences in field structure of exponential model
(top row) and Gaussian model (bottom row) as well as the differences with differ-
ent lengthscale parameter ℓ can be observed. All samples are created with µ = 0
and σ = 1.
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with different lengthscales. Again, small values of ℓ lead to small areas of similar values
whereas large values of ℓ lead to highly correlated fields consisting of large areas with
similar values.

The Gaussian covariance function and the exponential covariance function lead to dif-
ferent structures of the resulting samples. The Gaussian covariance field (Figure 2.1
bottom) is smooth, whereas the exponential covariance field (Figure 2.1 bottom) is
jagged and not differentiable. Both are possible priors and encapsulate different prior
knowledge.

The lengthscale ℓ, the variance σ2, and the mean µ have a big influence on the field
structure in both cases. They can be either chosen as distinct values that are assumed
to be known or they can be treated as additional unknown so-called hyperparameters.
Consequently, a prior distribution of ℓ, σ2 and µ can be defined. Then, the goal of
parameter inference is to jointly infer the parameters of the field and the hyperparam-
eters.

2.2.2 Multiple-point statistics: utilizing training images

In many subsurface applications, the geological object and structures of interest have a
complex geometry, e.g., sand channels from ancient river beds, that can not be modeled
with the (two-point) variogram statistics presented in the previous chapter. Instead,
multiple-point statistics (MPS) are used. In MPS methods, not only the information
between any two points is used to define a random field. Instead, the whole geometry
of a so so-called training image (TI) is used. A TI (see Figure 2.2, left) is an image of
the expected parameter field structure. Different MPS algorithms were proposed in the
literature [Strebelle, 2002, Mariethoz et al., 2010] that can use the spatial information of
the TI and randomly generate samples with similar structure. The SNESIM algorithm
[Strebelle, 2002] is one popular example and samples from that algorithm are shown in
Figure 2.2 (center and right).

The prior p(θMPS|MMPS) of MPS algorithms is not defined explicitly as compared
to the explicit definition of Gaussian fields in Equation 2.8. Instead, each MPS al-
gorithm (e.g. SNESIM) combined with a TI (e.g. Figure 2.2, left) implicitly defines



16 2 State of the art

0 100 2000

100

200

Training Image

0 20 40 60 80 1000
20
40
60
80

100
SNESIM sample

0 20 40 60 80 1000
20
40
60
80

100
SNESIM sample

Figure 2.2: Visualization of training-image (left) and samples form the two-dimensional
training-image-based random fields (center right). Both samples were created
using the SNESIM algorithm [Strebelle, 2002]. In this example, two facies (e.g.
sand channels and shale aquifers) are shown as examples (represented with yellow
and blue colors).

a prior p(θMPS|MMPS) by the samples (e.g. Figure 2.2, center and right) it (ran-
domly) produces. As a result, it is impossible to calculate the probability density
p(θMPS|MMPS) for a given parameter θMPS. Only sampling from the probability
distribution p(θMPS|MMPS) is possible. This sampling property is used in MCMC
methods with asymmetric proposals.

Figure 2.2 shows a categorical TI with two categories. Alternatively, TIs with more
categories or even continuous TIs can be used that will lead to samples with many
categories or continuous samples. Independent of the type of TI, the main challenge
of MPS approaches is to get a good TI for the problem at hand. In 2D, images of a
slice of an aquifer can be used as TI. However, acquiring a slice of an aquifer is often
tricky and expensive. Instead, hand-drawn images of some field expert are often used
as training image. In 3D, the task of getting a TI is even more challenging. While 3D
tomography can be used for 3D binary TI, this is really expensive already for small
domains and almost impossible for larger domains [e.g. Li et al., 2019, Wu et al., 2020].
In a nutshell, MPS approaches with TI are a powerful tool to generate random samples
that replicate complex structures. However, obtaining a good TI is a challenge.
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2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are popular approaches to sample from
any probability distribution π. Sampling from a distribution means to produce sam-
ples randomly drawn from π, i.e., with a frequency proportional to the corresponding
probability density. As a result, the histogram over the MCMC samples converges to-
wards π as shown in the center of the top row in Figure 2.3. The bottom row of Figure
2.3 shows three independent visualizations of a plain vanilla random walk MCMC. All
MCMC methods have the same structure as defined in Algorithm 1.

Algorithm 1: MCMC
Input : Probability distribution π(θ) that can be evaluated for any

parameter θ

Output: Samples θi from distribution π(θ)
Set i = 1
Draw θ0

while i ≤ Nmax do
Propose θj = g(θi), given by e.g. Equation 2.20.
Compute α(θi,θj), given by e.g. Equation 2.22.
Draw r ∼ U(0, 1)
if r ≤ α (with probability α) then

θi+1 = θj

else
θi+1 = θi

end
i = i+ 1

end

First, all MCMC methods start with a random sample (e.g. θ0 = 0 in Figure 2.3).
Second, a new sample θj is proposed given the current sample θi. Third, the new
sample θj gets accepted, i.e. becomes the new current samples θi+1, with probability
α(θi,θj). With probability 1 − α, θj is rejected, and the old sample θi becomes the
next current sample θi+1. Then, steps two and three are repeated until the predefined
number of MCMC samples (e.g. Nmax = 2000 in Figure 2.3) is reached. Using this
procedure, MCMC methods can sample from any π(θ) without making any assump-
tions about its form. The only differences between different MCMC methods are their
proposal functions and their expressions to obtain the acceptance probabilities.
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Figure 2.3: Visualization of random walk Metropolis-Hastings MCMCs with too small pro-
posals (left), good proposals (center), and too large proposals (right). The bottom
row shows the value of each MCMC sample (x-axis) over the 2000 iterations of
the chain (y-axis). The top row shows the target distribution π and the (scaled)
histograms of MCMC samples (shown in the bottom row).
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As the basis for my contributions, I name all properties that an MCMC method needs
to fulfill to converge to the exact distribution π and then derive the formulas for differ-
ent methods. Afterwards, I focus on the random walk Metropolis-Hastings algorithm
[Metropolis et al., 1953, Hastings, 1970] with symmetric proposals in Chapter 2.3.1
and on asymmetric proposal MCMCs in Chapter 2.3.2. Chapter 2.3.3 concludes with
a short summary of parallel tempering for MCMC methods.

MCMC methods converge to an arbitrary distribution π (at the limit of infinite runtime)
if and only if irreducibility, aperiodicity, and the detailed balance are fulfilled [Smith and
Roberts, 1993]. Irreducibility is the condition that the MCMC can move from any point
(with π(θ) > 0 ) to any other point (with π(θ) > 0 ) in the parameter space within
a finite number of steps with a positive probability. Aperiodicity is the condition that
the Markov chain can not get trapped in periodic loops. These conditions are almost
always fulfilled for continuous parameter spaces and continuous proposal distributions
with the same linear span. Hence, I focus on the detailed balance from now on. It is
defined as

π(θi)h(θi,θj) = π(θj)h(θj,θi) (2.13)

with the transition kernel h, which is usually defined as

h(θi,θj) = q(θi,θj)α(θi,θj) . (2.14)

Here, q(θi,θj) is called the proposal distribution and α(θi,θj) is the so-called accep-
tance probability. Inserting Equation 2.14 into Equation 2.13 leads to

π(θi)q(θi,θj)α(θi,θj) = π(θj)q(θj,θi)α(θj,θi). (2.15)
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This equation can be restructured to find

α(θi,θj) =
π(θj)q(θj,θi)

π(θi)q(θi,θj)
α(θj,θi). (2.16)

The property of 0 ≤ α ≤ 1 can be added to this equation to find that

α(θi,θj) = min

[
π(θj)q(θj,θi)

π(θi)q(θi,θj)
, 1

]
. (2.17)

For any distribution π and any proposal distribution q, Equation 2.17 provides an α

such that the detailed balance is fulfilled. Further, only the fraction π(θj)

π(θi)
is used when

calculating α. Hence, any multiple of π can be used for MCMC methods because
multiplicative constants cancel out. In many applications, using multiples of π makes
the numerical computation faster, specifically when π is given only by a proportionality
as it is the case in most applications of Bayesian inference. Then, the normalizing
constant in Equation 2.1 can be neglected.

MCMC in Bayesian Inversion

In this thesis, I want to use MCMCs to sample posterior distributions of Bayesian
inverse problems as defined in Equation 2.1. Thus, the target distribution π is defined
as

π(θ) = P (θ)L(θ) = p(θm|Mm)p(d|θm,Mm) ∝ p(θm|d,Mm) (2.18)

Here, I define the prior P (θ) = p(θm|Mm) and likelihood L(θ) = p(d|θm,Mm) for
shorter notation within this chapter. While p(θm|d,Mm) would be a properly normal-
ized distribution, π(θ) is not, which is no problem for MCMC methods as explained
above. Inserting Equation 2.18 into Equation 2.17 leads to
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α(θi,θj) = min

[
P (θj)L(θj)q(θj,θi)

P (θi)L(θi)q(θi,θj)
, 1

]
. (2.19)

Assuming that irreducibility and aperiodicity are fulfilled, we can construct an MCMC
with arbitrary proposal distributions q. This yields the question of how to choose q for
fast convergence?

In general, different MCMC proposals are better suited for different problem classes.
Suitable MCMC methods stand out by their ability to explore the parameter space
fast [Gelman et al., 1996]. It is desirable to propose large changes in the parameter
space and accept them with a high probability [Gelman et al., 1996]. In practice, these
two conditions contradict each other. Proposing small changes in θ usually results in
similar π(θj) and π(θi). This results in α close to 1 and the fact that most proposals get
accepted. In contrast, proposing large changes in θ results in distinct π(θj) and π(θi).
Hence, α will often assume very small values and only a few proposals get accepted. As
a result, a trade-off between the magnitude of the proposed change and the acceptance
rate needs to be found [Gelman et al., 1996].

Figure 2.3 visualizes a plain vanilla random walk Metropolis-Hastings (MH) algorithm
that shows this trade-off. The goal of an MCMC method is to sample the posterior
distribution. Visually speaking, this means that the histogram of the MCMC sample
should resemble the target distribution π. The magnitude of change in the proposals is
defined by a scale parameter σ (resembling the standard deviation of proposed jumps,
see Chapter 2.3.1) in the MH algorithm. Small values of σ are synonymous with
small changes and lead to high acceptance rates α. The acceptance rates α denote the
percentages of accepted proposals. Figure 2.3 shows, that small changes (left) lead to
very correlated samples along the chain. As a result, the chain cannot explore the whole
parameter space within the first 2000 samples. On the contrary, too large proposed
jumps (right column of Figure 2.3) lead to a low α. Only very few proposals get
accepted, which also prevents the chain from exploring the parameter space. Finding a
good proposal as shown in the center of Figure 2.3 (which is neither too large nor too
small) is not trivial.
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This example only shows the MH algorithm and how modifications of σ change its
behavior. Other MCMC approaches design smart proposals that make distant jumps
with high acceptance rates. To realize this, additional information about the target
distribution π is needed. Chapter 1 discussed several MCMC approaches that use
knowledge of the derivative of π. In Bayesian inversion, derivatives are routinely not
available. Instead, Equation 2.19 and the knowledge that π(θ) = P (θ)L(θ) can be
used to create asymmetric proposal distributions as discussed in Chapter 2.3.2.

2.3.1 Symmetric proposal distributions

The simplest realization of an MCMC method is the Metropolis-Hasting (MH) [Metropo-
lis et al., 1953, Hastings, 1970] random walk algorithm. It assumes a symmetric proposal
function

g(θi) = θi + ǫ, ǫ ∼ N(0, σ2) . (2.20)

This function g(θi) fulfills

q(θi,θj) = q(θj,θi) . (2.21)

because the normal distribution N(0, σ), with mean µ = 0 and standard deviation σ,
is symmetric. Inserting this into Equation 2.19 yields that

α(θi,θj) = min

[
P (θj)L(θj)

P (θi)L(θi)
, 1

]
= min

[
π(θj)

π(θi)
, 1

]
, (2.22)

i.e. the proposal distribution cancels out. As discussed earlier, Figure 2.3 visualizes
the random walk MH algorithm with different σ. For an extensive explanation of the
MH algorithm, I refer to Chib and Greenberg [1995].
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The downside of this algorithm is, that the acceptance rate of the proposal function
(Equation 2.22) depends on both the prior and the likelihood. This leads to a fast
decrease of α for increasing σ, especially in high-dimensional problems [Roberts and
Rosenthal, 2002]. This can be improved as shown in the following.

2.3.2 Asymmetric proposal distributions

The core idea of the algorithms presented in this work is to use the knowledge that
π(θ) = P (θ)L(θ) to increase the efficiency of MCMC methods. In typical geo-
science problems, the prior P (θ) is usually complex and high-dimensional. Here,
high-dimensional does not refer to physical dimensionality but to a mathematical di-
mensionality, i.e., the number of uncertain parameters to be inferred. As a result,
the acceptance rate α of the MH algorithm mostly depends on the prior fraction of
subsequent samples.

Hence, it is reasonable to define the acceptance probability α independent of the prior
P (θ) and to enforce the prior within the proposal density explicitly. Changing the
proposal distribution to

q(θi,θj) =
P (θj)

P (θi)
q(θj,θi), (2.23)

achieves this behavior [Mosegaard and Tarantola, 1995]. Inserting Equation 2.23 into
Equation 2.19 results in [e.g. Tarantola, 2005]

α(θi,θj) = min

[
L(θj)

L(θi)
, 1

]
. (2.24)

This idea was termed ”extended Metropolis sampling” by Hansen et al. [2012] and
I named it ”sampling from the prior distribution” in my contributions. With this
technique, new proposed samples are only rejected due to the likelihood ratio and not
due to the prior. This makes ”sampling from the prior” MCMCs converge faster because
they accept proposals with a higher probability.
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In a nutshell, the presented asymmetric proposal distributions implicitly enforce the
prior (Equation 2.23). Here, the asymmetry of the proposals cancels out, even with
non-uniform prior distributions. As a result, the acceptance step does only depend
on the likelihood fraction (Equation 2.24). In the special case of uniform prior distri-
butions (P (θj) = P (θi)∀θi,θj), the so-constructed asymmetric proposal distributions
degenerate to symmetric proposal distributions. This can be easily verified by in-
serting P (θj) = P (θi) into the presented equations. In the following, I present the
pCN-MCMC and the Gibbs approach as two prominent existing asymmetric methods
that sample from the prior.

pCN-MCMC

The preconditioned Crank-Nicolson algorithm (pCN-MCMC) fulfills Equation 2.23 for
multi-Gaussian priors [Beskos et al., 2008, Cotter et al., 2013]. It proposes

g(θi) =
√

(1− β2) (θi − µ) + βξ+ µ, ξ ∼ N(0,Σ) (2.25)

with Σ being the covariance matrix of the prior as defined in Equation 2.10. The pro-
posed Equation in 2.25 fulfills Equation 2.23 for multi-Gaussian priors. Consequently,
the resulting acceptance probability α is given by Equation 2.19 and only depends on
the likelihood. Analogously to σ in the MH algorithm, the tuning-parameter β is used
to specify the change between subsequent samples in the pCN-MCMC. The main dif-
ference is, that β is restricted to values between zero and one in the pCN approach.
For β = 1, subsequent samples are independent of each other. The smaller β gets, the
higher the similarity between subsequent samples up to the theoretical limit of identical
samples for β = 0.

Gibbs sampling

The Gibbs approach fulfills the property in Equation 2.23 by conditionally resampling
parts of the parameter space [Geman and Geman, 1984]. Assuming a parameter vector
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θ of size Np × 1 (Np denotes the number of parameters) and some permutation matrix
M (also called Pπ in the literature), the parameter can be ordered into two parts

[
θ1

θ2

]
= Mθ with size

[
q × 1

(Np − q)× 1

]
, (2.26)

where θ1 incorporates the parameters which will be resampled conditionally on the
parameters θ2. The number of resampled parameters is given by q and the remaining
non-resampled parameters are named r. The Gibbs approach defines a new proposal
as

g(θ) = MT

[
ξ

θ2 = r

]
, ξ ∼ pP (θ1|θ2 = r) . (2.27)

This proposal can be used in any application where conditional samples from the prior
(ξ ∼ pP (θ1|θ2 = r)) can be drawn without the need to evaluate the prior P (θ) ex-
plicitly. This enables Gibbs-based approaches to also sample from prior distributions
with unknown closed form such as MPS random field generators that use training im-
ages [e.g. Strebelle, 2002]. Several authors [Fu and Gómez-Hernández, 2008, 2009a,b,
Hansen et al., 2012] have shown the effectiveness of the Gibbs approach to resam-
ple boxes in the parameter space with multi-Gaussian or MPS-induced priors. This
sequential resampling of boxes is called sequential Gibbs approach.

2.3.3 Parallel tempering

In this thesis, I distinguish between weakly and highly informative data. The difference
is, that L(θ) is narrow for highly informative data and broad for weakly informative
data. As a result, the posterior of highly informative data mainly depends on the
likelihood function and can become complex and multi-modal. In contrast, weakly
informative data lead to prior-dominated posteriors, which are easier to sample with
”prior sampling MCMCs”.
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Sampling from the posterior with highly informative data is difficult for MCMC meth-
ods for two reasons. First, because they suffer from long burn-in times (the period in
which the MCMC converges towards the final range of values). Second, because the
MCMC chain can get stuck in one mode of the distribution (i.e. in one local optimum).
Parallel tempering can solve both these problems [Earl and Deem, 2005, Geyer and
Thompson, 1995].

Laloy et al. [2016] applied parallel tempering to categorical high-dimensional geosta-
tistical MCMCs and showed that it increases ”convergence towards appropriate data
misfit and [the] sampling diversity”. Further, they confirmed that it reduces the risk of
getting stuck in one local optimum of the posterior.

The idea of parallel tempering [e.g. Earl and Deem, 2005] is to run Npt chains with
different temperatures T = [T1, ...TNpt

] with 1 = T1 < T2 < ...TNpt
. The so-called

tempered posterior density at temperature T is defined by

p(θ, T |d) ∝ P (θ)L(θ)
1

T . (2.28)

Large temperatures T flatten the posterior towards the prior and thereby make the
problem simpler. For T → ∞, the tempered distribution p(θ, T |d) converges towards
the prior distribution p(θ). The other limit (T = 1) leads to p(θ, T |d) being equal to
the actual posterior distribution p(θ|d). As a result, only the T = 1 chain can be used
for posterior sampling. All remaining chains are used to help the first (productive)
chain explore the posterior.

To realize this, we take the likelihood fraction given in Equation 2.24 to the power of
1
T

, which brings the acceptance probability of tempered chains

α(θi,θj) = min

[(
L(θj)

L(θi)

) 1

T

, 1

]
(2.29)

closer to one. This enables hot chains to make farther jumps than colder chains with
similar acceptance rates because they run on a simplified problem. Consequently, they
explore the posterior distribution faster.
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To communicate ”good” regions from one chain to another, between-chain swaps are
proposed. Therefore, after a few in-chain MCMC steps (e.g. Equation 2.25), a between-
chain swap is proposed. In this swap, the parameters θi of chain i with temperature
Ti are swapped with parameters θj of chain j with temperature Tj with probability

αs(θi,θj) = min


L(θj)

L(θi)

(

1

Ti
−

1

Tj

)

, 1


 . (2.30)

Parallel tempering can be computationally expensive, because several chains are run,
only to support the sampling from the first chain. This computational effort is not
as significant as it might seem at first glance because parallel tempering MCMC can
be easily parallelized. Each chain can run independently on a different worker and
only between-chain jumps need to be communicated. Hence, the total runtime only
increases dramatically if the number of chains exceeds the number of workers (cores)
of the used computing system.
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The overarching goal of this thesis is to improve the prediction and uncertainty quan-
tification of subsurface parameter fields. To reach this goal, I enhance MCMC methods
in Bayesian inversion and give guidance on how to handle noisy data in BMS. A fully
Bayesian approach is chosen in this thesis because it can quantify the uncertainties
in model parameters, model structures, and data accurately as discussed in Chapter
2.1. My goal is to find and approximate (i.e., to sample) the full posterior parameter
probability distribution.

A two-step approach is taken to reach this goal. In contributions 1-4 of this thesis,
I assume that the prior model structure is known and I focus on the uncertainties in
spatially distributed model parameters. MCMC methods are chosen to sample from the
posterior parameter distribution because they can perform Bayesian inversion without
making assumptions. However, MCMC methods are time-intensive. Therefore, speed-
ing up MCMC methods is important to make them more attractive to the community. I
focus on building new and faster MCMC methods for different types of prior parameter
field models.

Furthermore, in contribution five of my thesis, the model structure is assumed to be
unknown and BMS is used to select the best prior model. To do so, measurement data
is needed. However, the available data in subsurface modeling has a lot of measurement
noise. I show that BMS results change, depending on where noise is considered in BMS
and give guidance on how to model noise correctly.

As discussed in Chapter 2.3.3, I distinguish between weakly and highly informative
data. Weakly informative data refers to data from few measurements that result in a
broad likelihood function. As a result, the resulting posterior mainly depends on the
prior. On the contrary, highly informative data refers to the case where the likelihood
function dominates the resulting posterior.
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To improve the prediction and uncertainty quantification of subsurface parameter fields,
the following research questions are addressed in this thesis:

1. How can the efficiency of MCMC methods in Bayesian inversion be increased for
multi-Gaussian priors and weakly informative data?

2. How can the efficiency of MCMC methods in Bayesian inversion be increased for
multi-Gaussian priors and highly informative data?

3. How can hyperparameters of the parameter field be included in the inversion with
MCMC methods?

4. How can we model nature more realistically and still find an appropriate MCMC
method?

5. How should we handle noisy data in BMS?

The following five contributions address these research questions one by one.

Contribution 1: Speeding up Bayesian inversion for multi-Gaussian priors with
weakly informative data (sequential pCN-MCMC)

Gaussian random fields are commonly used as a prior for subsurface parameters. Se-
quential Gibbs sampling and the pCN-MCMC are both popular methods that sample
from the prior, and hence, have shown great performance in Bayesian inversion. Both
methods are applicable to Gaussian random field priors and work well for weakly in-
formative data. For highly informative data in non-linear inversion problems, both
methods run the risk of getting stuck in one local mode of the posterior as discussed
in the next contribution. In Reuschen et al. [2021b], I focus on weakly informative
data and combine the ideas of sequential Gibbs and the pCN-MCMC to create a more
efficient method with faster convergence. I named the combined method the sequential
pCN-MCMC. This method uses two tuning parameters β and κ. Optimizing these tun-
ing parameters is difficult, and classical approaches, e.g., tuning the acceptance rate,
do not work. Instead, I develop a novel approach that optimizes the tuning parameters
during the runtime of the algorithm. Finally, the sequential pCN-MCMC is tested on
several test cases with weakly informative measurements.
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Contribution 2: Speeding up Bayesian inversion for multi-Gaussian priors with
highly informative data (pCN-PT)

Using highly informative data (many measurements) in non-linear Bayesian inversion
can lead to complex (e.g. multi-modal) posterior distributions. One challenge of com-
mon MCMC methods is that they get stuck in local optima or are not able to get to
high-likelihood regions of such complex posteriors. Previous work showed that paral-
lel tempering can solve this issue. However, it has not yet been combined with the
highly efficient pCN-MCMC. In Xu et al. [2020], we used parallel tempering with the
pCN-MCMC to sample efficiently from multi-Gaussian priors with highly informative
data. This combined method was named pCN-PT and was tested on different types of
Bayesian inverse problem. With this, we show that we gain a higher efficiency compared
to state-of-the-art alternatives.

Contribution 3: Enable joint Bayesian inversion of multi-Gaussian fields and
hyperparameters (extended pCN-PT)

All previous contributions assume that the hyperparameters of the Gaussian random
fields (e.g. σ and ℓ in Equation 2.12) are known. This is seldom the case in real-world
applications. Instead, the hyperparameters can be treated as unknowns with respective
prior distributions. Logically, the next challenge arises: Can we infer the hyperparame-
ters together with the subsurface parameters? This poses a broader, harder, and more
realistic problem. In Xiao et al. [2021], we show how the pCN-PT can be extended to
infer the hyperparameters and the parameters jointly. To reach this goal, the original
parameters are decomposed into hyperparameters (mean, standard derivation, and cor-
relation lengths) and white noise (a standard normal random vector). This makes the
white noise independent from the hyperparameters, which allows running the pCN-PT
on white noise and hyperparameters independently. Finally, the original parameters
are recovered by recombining white noise with hyperparameters. We test the extended
pCN-PT in different scenarios, e.g., with direct and indirect measurements, and report
the varying results of different priors and types of data.
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Contribution 4: Enable Bayesian inversion for hierarchical geostatistical models
(parallel-tempering sequential Gibbs MCMC)

Gaussian random fields are often not a good prior representation of complex subsurface
structures. Instead, hierarchical geostatistical models can be used as prior to reflect the
complex structure of nature. In this contribution, I use a hierarchical joint model that
accounts for two (and possibly more) categories using an MPS tool and heterogeneities
inside each category using Gaussian random fields. Bayesian inversion of such combined
models is challenging and has only been performed using approximate methods such as
Ensemble Kalman filters. These methods do not converge towards the true posterior
distribution. In Reuschen et al. [2020], I present the first efficient MCMC method that
can perform Bayesian inversion of these combined models and converges towards the
true posterior. Here, the categorical fields (which facies is present) and the heterogene-
ity fields within each facies are inferred jointly. This enables realistic inversion of, e.g.,
channelized flow in the subsurface. To show the performance of the presented parallel-
tempering sequential Gibbs MCMC, I test it in a synthetic channelized flow scenario
with weakly and highly informative data.

Contribution 5: How to handle measurement noise in BMS (Model confusion
analysis)

All previous contributions showed how to calibrate parameters for a given prior (geo-)
statistical model. In the next step, I choose between competing models to select the
best one using BMS. In Reuschen et al. [2021a], I discuss where and for which reasons
measurement noise should be treated in BMS. I distinguish between four cases which
represent four ways to model measurement noise that differ philosophically and math-
ematically. Only two of them are logically consistent and answer two different research
questions: (1) ”Which model is best in modeling the pure physics?” and (2) ”Which
model is best in predicting the data-generating process (i.e., physics plus noise)?”. Using
synthetic scenarios and real-world test cases, I show that the choice of research question
significantly impacts BMS results. Hence, the decision of where to model measurement
noise can not be neglected. Furthermore, I show that the practical implementation of
BMS to answer question (1) is challenging or even impossible. However, exploiting the
other three cases can help to approximate the BMS results of question (1).
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This thesis advances statistical methods to predict subsurface parameters in groundwa-
ter modeling. To reach this goal, contributions 1-4 enhance existing and develop new
MCMC methods for a more efficient Bayesian geostatistical inversion. Going one step
further, contribution five focuses on BMS to select the best prior model. The main
findings of this thesis are summarized in the following.

Contribution 1: Combining the pCN-MCMC with sequential Gibbs sampling

First, I focused on Bayesian inversion of multi-Gaussian priors with weakly informative
data. I combined the ideas of the two state-of-the-art methods pCN-MCMC and se-
quential Gibbs sampling and named the combination sequential pCN-MCMC. Here, the
pCN-MCMC makes global proposals and slightly changes all parameters in one pro-
posal step. On the contrary, the sequential Gibbs sampling makes local proposals, which
means, that it makes large changes in a small spatial domain. The presented sequential
pCN-MCMC is designed to make semi-global proposals with medium changes.

All three methods were tested on several test cases. Interestingly, I observed that the
methods show different behavior based on the type of measurements used for the inver-
sion. For local measurements, such as head or direct measurements that convey local
information around the measurement position, the sequential Gibbs sampling with its
local proposals showed a good performance. On the contrary, the pCN-MCMC, with
global proposals, showed good performance for global, e.g., transport-related measure-
ments. Hence, local proposals show good performance for local measurements and
global proposals are suitable for global measurements.

The presented sequential pCN-MCMC always chooses the best trade-off between the
two. This is done by optimizing its two tuning parameters during the run time of
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the algorithm. This leads to a speedup of 1 − 5.5 over the pCN-MCMC and 1 − 6.5

over sequential Gibbs sampling. Hence, this contribution reduced the computational
cost of Bayesian inversion with Gaussian priors and few measurements by up to 85%

dependent on the test case. These reduced computational costs enable more researchers
and decision-makers to use the presented MCMC instead of using (fast) approximate
methods as, e.g., ensemble Kalman filters, which make approximation errors by design.
This leads to better prediction and uncertainty quantification with weakly informative
data.

Contribution 2: The benefit of parallel tempering in combination with the
pCN-MCMC

In contrast to the previous contribution, my second contribution focuses on handling
multi-Gaussian priors with highly informative data. Highly informative data makes
the posterior more dependent on the likelihood and less on the prior. Consequently,
the pCN-MCMC is combined with parallel tempering to obtain fast convergence with
highly informative data. The combination is called pCN-PT.

This contribution revealed how large the difference between weakly and highly infor-
mative data is. For weakly informative data, we show that the pCN-MCMC and
the pCN-PT have similar efficiency, although the latter method needs a multiple of
computational power (due to parallel tempering). Hence, it is better to use the pCN-
MCMC for weakly informative data. On the contrary, for highly informative data, the
pCN-PT outperforms the pCN-MCMC, despite the additional computational costs of
parallel tempering. As a result, the pCN-PT enables efficient Bayesian inversion of
multi-Gaussian priors with highly informative data.

Currently, there is no Bayesian inversion benchmark with highly-informative data. The
presented method is designed to be able to produce exact high-resolution reference
solutions for Bayesian inversion benchmarks. We plan to write a follow-up paper that
defines benchmarks and makes their reference solution (produced by the pCN-PT)
available to the community. The long-term goal of this contribution is that all future
proposed Bayesian inversion methods can be tested on these benchmarks to enable a
quantitative comparison between methods.



35

Contribution 3: A joint approach to infer parameters and hyperparmeters

The third contribution extends the approach of my second contribution to infer the hy-
perparameters jointly together with the parameters. The presented approach is tested
in different scenarios, and we present the results of Bayesian inversion with uncertain
hyperparameters.

This contribution illustrates how significant the influence of hyperparameters is. While
they are often assumed to be known, small changes in hyperparameters change the
inverse solution drastically. Hence, modeling them is important but also challeng-
ing. Especially with indirect measurements, it is almost impossible to narrow down
the hyperparameters. This leads to higher posterior uncertainties in parameters and
hyperparameters.

In a nutshell, the presented MCMC method allows for efficient Bayesian inversion of
multi-Gaussian priors with highly informative data and uncertain hyperparameters. In
doing so, it enables a more realistic inverse modeling of subsurface parameters with
appropriate uncertainty quantification. Similar to contribution two, this method will
be used to create exact high-resolution reference solutions for Bayesian inversion bench-
marks with highly informative data and uncertain hyperparameters. This will enable
a quantitative comparison of inversion methods, which is currently impossible due to
the lack of inverse reference solutions.

Contribution 4: The benefit of parallel tempering in combination with sequential
Gibbs sampling

Fourth, I have investigated how to model nature more realistically. Here, I used hi-
erarchical geostatistical models for a better approximation of nature. The prior and
posterior of these models are highly multi-modal. As a result, most MCMC meth-
ods have trouble sampling the whole parameter space because they get stuck in local
modes. To counteract this, I used parallel tempering and combined it with the se-
quential Gibbs sampling method. The latter resamples boxes of the parameter fields
(categorical field and heterogeneity fields jointly) with increasing box size for larger
temperatures. I named this approach parallel-tempering sequential Gibbs MCMC and
showed convergence with different amounts of available data.
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Interestingly, this work showed different behavior of the posterior distribution depen-
dent on the amount of measurement data. For highly informative measurements, the
structure of the artificial test aquifer was reconstructed with only a few uncertainties.
With weakly informative data, the uncertainty of the predictions increased drastically
and resulted in a multi-modal posterior where the position of subsurface structures was
uncertain. Visualization of such distributions with only mean and variance does not
help to understand the posterior. To remedy this issue, I used non-supervised clustering
to visualize and quantify each mode separately.

To summarize, this contribution presents the parallel-tempering sequential Gibbs MCMC,
which lays the groundwork to model and infer subsurface parameters more realistically.
It is not restricted to solely using Gaussian random fields or MPS-induced priors but
can perform Bayesian inversion with hierarchical prior models consisting of both. In
the long run, this will lead to better, i.e., more realistic models of nature.

Contribution 5: The strong influence of measurement noise in BMS

Fifth, I discussed how and where measurement noise should be modeled in BMS. My
results show that BMS results can change drastically depending on where noise is
modeled and that these results correspond to different research questions that could be
posed.

If the measurement noise is modeled in data and models, one answers the question
”which model is best in predicting the data-generating process (i.e., physics plus noise)?”.
Performing BMS to answer this question is straightforward. However, I argue that most
researchers are not interested in this question. Instead, ”which model is best in mod-
eling the pure physics?” is the question most researchers want to pose. To answer
this question, measurement noise needs to be removed from models and data. This
comes with two challenges: First, noise-free data is not available with real-world mea-
surements and the numerical computation of the BME is challenging. I show how to
circumvent both challenges and approximate the BMS results. Interestingly, it is re-
vealed that the easier ”data-generation question” is not a good proxy for the ”physics
question”. Instead, an inconsistent case that uses noisy data and noise-free models can
better approximate the ”physics questions”. Here, the model justifiability analysis can
be used to evaluate how trustworthy the approximation is.
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This contribution revealed and discussed the fundamental challenges of measurement
noise in BMS. It demonstrates that ignoring this issue can lead to wrong results. To
prevent mistakes, this contribution gives guidelines on how to handle measurement
noise in BMS to avoid pitfalls that would distort the BMS results. This will lead future
researchers to make the correct decision when selecting between models. As a result,
more suitable models will be selected and used in practice, which gives decision-makers
a better understanding of subsurface processes.

Summary of contributions

This thesis showed that the amount and uncertainty of measurements is an essential
factor when inferring subsurface parameters. On the one hand, the amount of measure-
ments, and hence the information content of the data, is vital to choose the appropri-
ate MCMC method for Bayesian Inversion. On the other hand, the way measurement
noise is handled in Bayesian model selection greatly influences the results. With my
contributions, I enhanced the existing methods to infer and quantify the uncertainty
of subsurface parameter fields.

I hope that future generations use the presented methods to infer the spatial distri-
butions of subsurface parameters better. This helps to make better (or at least more
informed) decisions when deciding over possible drinking water extraction wells or nu-
clear waste storage sites. In particular, the contributions of this thesis can prevent
unexpected contamination of drinking water supply or wrong uncertainty quantifica-
tion of leakages in nuclear waste storage sites.

Remaining research questions

The first three contributions introduced efficient MCMC methods for Bayesian inver-
sion with multi-Gaussian priors. In contribution one, the pCN-MCMC is combined
with Gibbs sampling, while contributions two and three show the effectiveness of a
combination of the pCN-MCMC with parallel tempering. Future research can combine
both ideas and develop a combination of sequential pCN-MCMC (from contribution
one) and parallel tempering. I assume that the resulting approach would be even more
efficient than both developed approaches for posterior sampling with weakly and highly
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informative data. The main challenge in developing such an MCMC is that the method
introduced in contribution one, to optimize the tuning parameters β and κ during the
algorithm’s runtime, does not work in combination with parallel tempering. Further,
each chain deployed in parallel tempering needs its own tuning parameters. As a result,
systematic testing of β and κ is impossible, and a novel intelligent solution to optimize
tuning parameters needs to be found.

The fourth contribution introduced a hierarchical framework to model subsurface struc-
tures. This framework was only tested with two categories and two Gaussian fields cor-
responding to each of the categories. I believe that the presented MCMC will perform
well with training images with more than two categories and more Gaussian random
fields. However, this was not proven, and the computational effort increases at least
linearly with the number of categories used.

The fifth contribution discusses that the research question ”which model is best in
modeling the pure physics?” can not be answered with real data using BMS. Instead,
the answer to this question can only be approximated. Furthermore, I present one
scheme of how this approximation can be done. Discussing and comparing different
approximation schemes and giving general guidelines for when to use which scheme is
an important task for the future.
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1. Introduction

The heterogeneity of soil parameters is a key control on subsurface flow and transport. Geostatistical meth-

ods are usually used to characterize these heterogeneities (e.g., Refsgaard et al., 2012). In general, all soil 

parameters can be described by random functions. In this work, we focus on soil parameters which can be 

(a priori) described by Gaussian processes. A Gaussian process is a stationary random function, in which 

any finite collection of variables can be described by a multivariate normal distribution. Such a distribution 

is fully described by a mean vector and a covariance matrix.

The goal of Bayesian inversion is to predict (and give uncertainties) of parameters given measurements. The 

probability distribution of parameters before measurements is called prior probability distribution, whereas 

the conditional probability (after measurements) is called a posterior probability distribution. If the param-

eters are measured directly, the Kriging (also called Gaussian process regression) procedure allows us to 

calculate the posterior probability distributions of all parameters analytically (e.g., Kitanidis, 1997). How-

ever, if the parameters are not measured directly (here: measure the hydraulic head and infer the hydraulic 

conductivity), Kriging is not applicable.

Instead, sampling methods can be used to solve this problem. Examples are rejection sampling (e.g., Gel-

man et al., 1995, Chapter 10.2), which is applicable to low-dimensional prior distributions or weak data, 

Ensemble Kalman filters (e.g., Evensen, 2009), which are used to linearize forward models for multi-Gauss-

ian posteriors, and more. Here, we will focus on Markov chain Monte Carlo (MCMC) methods which are 

universally applicable for Bayesian inference (e.g., Qian et al., 2003) but computationally expensive.

In MCMC approaches, the random function is discretized to enable numerical computations. The main 

problem of most common MCMC methods, for example, the Metropolis-Hastings algorithm (Hastings, 1970; 

Abstract In geostatistics, Gaussian random fields are often used to model heterogeneities of soil 

or subsurface parameters. To give spatial approximations of these random fields, they are discretized. 

Then, different techniques of geostatistical inversion are used to condition them on measurement data. 

Among these techniques, Markov chain Monte Carlo (MCMC) techniques stand out, because they yield 

asymptotically unbiased conditional realizations. However, standard Markov Chain Monte Carlo (MCMC) 

methods suffer the curse of dimensionality when refining the discretization. This means that their 

efficiency decreases rapidly with an increasing number of discretization cells. Several MCMC approaches 

have been developed such that the MCMC efficiency does not depend on the discretization of the random 

field. The preconditioned Crank Nicolson Markov Chain Monte Carlo (pCN-MCMC) and the sequential 

Gibbs (or block-Gibbs) sampling are two examples. This paper presents a combination of both approaches 

with the goal to further reduce the computational costs. Our algorithm, the sequential pCN-MCMC, will 

depend on two tuning-parameters: the correlation parameter   of the pCN approach and the block size 

  of the sequential Gibbs approach. The original pCN-MCMC and the Gibbs sampling algorithm are 

special cases of our method. We present an algorithm that automatically finds the best tuning-parameter 

combination (  and ) during the burn-in-phase of the algorithm, thus choosing the best possible hybrid 

between the two methods. In our test cases, we achieve a speedup factors of 1–5.5 over pCN and of 1–6.5 

over Gibbs. Furthermore, we provide the MATLAB implementation of our method as open-source code.
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Metropolis et  al.,  1953), is, that a refinement of discretization leads to worse convergence speed of the 

methods (Cotter et al., 2013). Different approaches have been presented in the literature to overcome this 

challenge. In the following, we present two approaches.

The key idea of the (sequential) Gibbs approach (e.g., Gelman et al., 1995, Chapter 11.3) is to randomly 

modify only one (or a subset of) parameter(s). This modification respects both the prior distribution and 

the surrounding values of the parameters that stay fixed. In subsequent steps, different parameter(s) get 

modified. This leads to a discretization-independent efficiency for arbitrary prior distributions (e.g., Fu & 

Gómez-Hernández, 2008). The limitations of the Gibbs approach are that the conditional sampling from 

the prior needs to be possible and computationally cheap (e.g., Fu & Gómez-Hernández, 2008). In most 

applications, however, the forward simulation is the computational bottleneck. One specific version of this 

approach was proposed by Fu and Gómez-Hernández (2008, 2009a, 2009b), who resampled boxes of the 

multi-Gaussian parameter field. Hansen et al. (2012) applied this idea to resample boxes of the parameter 

field in a binary classification problem. A combination of these approaches for binary classification prob-

lems with multi-Gaussian heterogeneity was presented by Reuschen et al. (2020).

The second discretization-independent approach we discuss is the preconditioned Crank Nicolson MCMC 

(pCN-MCMC) (Beskos et al., 2008; Cotter et al., 2013). It is easy to implement and computationally fast, as 

demonstrated in the respective original papers and in a recent effort to construct reference solutions algo-

rithms for geostatistical inversion benchmarks (e.g., Xu et al., 2020). In fact, pCN-MCMC has been derived 

for inverting random functions, so that the numerical discretization of the random field does not matter for 

its convergence speed by construction. However, the pCN-MCMC can only be used for multi-Gaussian pri-

ors. The reason for this restriction is that the pCN proposed modifications to random fields by a small-mag-

nitude random field to a dampened version of the current field, thus resembling an autoregressive process 

of order one along the chain (Beskos et al., 2008). While this way of proposing new solutions is highly ef-

fective and independent in convergence speed of the spatial discretization, it can only be constructed when 

the prior is multi-Gaussian.

Other alternatives using spectral parametrization (Laloy et  al.,  2015), Karhunen-Loeve expansions (e.g., 

Mondal et al., 2014) or pilot point methods (e.g., Jardani et al., 2013) use dimension reduction approaches 

for fast convergence. The consequences of these approaches are twofold: On the one hand, dimension re-

duction approaches can reduce computational cost. On the other hand, they only converge toward approx-

imate solutions of the true posterior. In this work, we focus on methods that converge to the true posterior.

Another direction of research uses derivatives of the posterior distribution to increase the efficiency of 

MCMC methods (e.g., Hamiltonian MCMC as summarized in Betancourt,  2017). Analytical derivatives 

of the likelihood function are possible in some scenarios, but in most hydraulic forward models, they are 

impossible. Numerical approximation of gradients is an alternative. However, numerical differentiation is 

computationally expensive and often negates the advantage of these methods. Hence, we focus on methods 

that do not require gradient information.

Reducing the computational costs of state-of-the-art MCMC methods is an integral part to make MCMC 

methods more attractive to a broad community. We combine the sequential Gibbs idea with the pCN-MC-

MC idea and create a hybrid method called sequential pCN-MCMC to reduce this computational burden. 

However, the hybrid method comes with two tuning-parameters. The standard way of finding the optimal 

tuning-parameters in MCMC algorithms for high-dimensional inverse problems is to tune them for an ac-

ceptance rate equal to 23.4% (see Gelman et al., 1996). In our hybrid method, this is not possible anymore 

because infinitely many tuning-parameter combinations lead to the same acceptance rate. Hence, we re-

frain to the efficiency defined in Gelman et al. (1996) to find the optimal tuning-parameter combination.

Overall, the novelty of our paper is a combination of the sequential Gibbs MCMC and the pCN-MCMC, 

which we call sequential pCN-MCMC. Here, the pCN-MCMC and sequential Gibbs are special cases of the 

sequential pCN-MCMC. Our hypothesis is that the most efficient method is neither of the special cases.

We compare the new hybrid method to the two original algorithms for Bayesian inversion of fully saturated 

groundwater flow. Here, we use different scenarios where we alter the prior information, discretization, and 

measurement type to test and confirm our hypothesis. A variety of different measurement types are used for 
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geostatistical Bayesian inversion (e.g., Butera & Soffia, 2017; Ezzedine & Rubin, 1996; Gutjahr et al., 1994; 

Zimmerman et al., 1998) and optimal choices can be made (Nowak et al., 2010). Here, however, we use a 

typical benchmarking setup of Xu et al. (2020) with hydraulic head or concentration measurements, be-

cause it ensures intercomparability of results. However, our method is not restricted to this choice of data. 

The performance of all methods is investigated using the acceptance rate, efficiency (Gelman et al., 1996), 

Kullback-Leibner divergence (Kullback & Leibler, 1951), and R-statistic (Gelman & Rubin, 1992). The MAT-

LAB implementation of our code is available at https://bitbucket.org/Reuschen/sequential-pcn-mcmc.

The paper is structured as follows: Section  2gives a definition of the inverse problem, an overview over 

existing methods and introduces metrics to evaluate the performance of algorithms. In Section 3, we pres-

ent our proposed sequential pCN-MCMC method. After that, we introduce our test cases in Section 4. Our 

results are shown in Section 5 and discussed in Section 6. Finally, Section 7 concludes the most important 

findings in a short summary.

2. Methods

In this section, we briefly recall existing MCMC methods for multi-Gaussian priors. We focus on those 

without dimensionality reduction and without derivatives. First, we give the definition of the problem class 

in Section 2.1. In Section 2.2, we introduce the generic MCMC approach. After that, we recall the Metrop-

olis-Hastings approach in Section 2.3 and discuss the differences to the so-called prior sampling methods 

in Section 2.4. Sections 2.5 and 2.6 introduce the existing algorithms pCN-MCMC and sequential Gibbs 

sampling, respectively, which are both instances of prior sampling methods. Finally, we present metrics to 

evaluate the presented methods in Section 2.7.

2.1. Bayesian Inference

Let

( )F d Θ e (1)

be the stochastic representation of a forward problem. ( )F Θ  is an error-free deterministic forward model. 

Equation 1 describes the relation between the unknown and uncertain parameters Θ and the measure-

ments d. The noise term e aggregates all error terms. The goal of Bayesian inversion is to infer the posterior 

parameter distribution of Θ based on prior knowledge of Θ and the data d under the model F.

We use the parameters θ to refer to realizations of the random variable Θ with some prior distribution ( )p Θ  

and a posterior distribution p( ) d . The resulting posterior density can be evaluated for each realization θ as

p
p p

p
p p P L( )

( ) ( )

( )
( ) ( ) ( ) ( ).

 
   d

d

d
d d   (2)

In this paper, we define the prior distribution ) :=( ) ( P pθ θ  and the likelihood L p( ) ( )  := d  for shorter 

notation. This likelihood assumes that the data d do not change during the runtime of the algorithm. The 

challenge in high-dimensional Bayesian inversion is to sample efficiently from the posterior distribution 

p( ) d .

2.2. Generic Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a popular, accurate, but typically time-intensive algorithm to sam-

ple from the posterior distribution. In contrast to other methods, it only needs the unnormalized posterior 

density

 ( ) ( ) ( ) ( )    P L p d (3)

to sample from the posterior distribution p( ) d .
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In the following, we name all properties that an MCMC method needs to fulfill to converge to the exact pos-

terior distribution. Based on these, we derive the formulas of our proposed MCMC. A general introduction 

to MCMC can be found in Chib and Greenberg (1995).

MCMC methods converge to   (as presented in Equation 3) at the limit of infinite runtime (Smith & Rob-

erts, 1993) if and only if irreducibility, aperiodicity and the detailed balance are fulfilled. Irreducibility and 

aperiodicity are fulfilled for multi-Gaussian proposals (see below) in continuous problems, which are typi-

cally used for engineering purposes. Consequently, we focus on the detailed balance in the following. Given 

any two parameter sets θ and θ, the detailed balance is defined as

 ( ) ( , ) ( ) ( , )     h h   (4)

with the transition kernel h, which is defined as

  ( , ) ( , ) ( , ).h qθ θ θ θ θ θ (5)

The term ( , )q θ θ  refers to the proposal distribution and  ( , )θ θ  to the acceptance probability. Here, θ is pro-

posed based on the current parameter θ. Equations 3–5 can be combined to


  




( ) ( ) ( , )
( , ) ,1 .

( ) ( ) ( , )

P L q
min

P L q

 
   
  

θ θ θ θ
θ θ

θ θ θ θ
 (6)

Equation 6 provides an   such that the detailed balance is fulfilled. This holds for any prior P, any likeli-

hood L and any proposal distribution q. Consequently, an infinite number of possible proposal distributions 

q exist (Gelman et al., 1995, Chapter 11.5). This raises the questions of how to choose q for fast convergence 

in a given problem class.

Fast convergence (after burn-in) is mainly a question of low autocorrelation of successive samples (Gelman 

et al., 1996). This is achieved by large changes in the parameter space. As a result, it is desirable to propose 

far jumps for new candidate points θ via the proposal function q and still hope to accept them with a high 

probability  . However, in most practical cases, these two properties contradict each other: making large 

changes in θ results in distinct  ( ) ( )P Lθ θ  and ( ) ( )P Lθ θ , which results in a small  . In contrast, small changes 

in θ results in similar  ( ) ( )P Lθ θ  and ( ) ( )P Lθ θ  (if the prior and the likelihood function are smooth), which 

results in   close to 1. Thus, Gelman et al. (1996) stated that a trade-off between the size of the change and 

the acceptance rate needs to be found.

2.3. Metropolis Hastings

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) can be used with arbi-

trary proposal functions. Here, we present the random walk MH algorithm. It assumes a symmetric pro-

posal distribution

 ( , ) ( , ).q qθ θ θ θ (7)

Inserting this into Equation 6, it follows that




   ( ) ( ) ( )
( , ) min ,1 min ,1 .

( ) ( ) ( )

P L

P L

   
          

θ θ θ
θ θ

θ θ θ
 (8)

The MH algorithm samples from any parameter distribution  ( )θ . The specific proposal function q of the 

so-called random walk MH is given by

    =   , N ( , ).0 (9)

Here, the parameter   controls how big the change between successive parameters θ is. The proposal func-

tion q of the random walk MH algorithm fulfills Equation  7 because the proposal step (Equation  9) is 

symmetric per definition.

The main weakness of the Metropolis-Hastings algorithm is that the acceptance rate in Equation 7 decreas-

es rapidly for increasing  , especially in high-dimensional problems (Roberts & Rosenthal, 2002). This can 
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be improved by using the additional information that  ( ) ( ) ( )P Lθ θ θ . This enables us to make the accept-

ance rate   only dependent on ( )L θ  in the next section.

2.4. Prior Sampling

Bayesian inversion methods often exploit the knowledge that the posterior distribution follows by construc-

tion from  ( ) ( ) ( )P Lθ θ θ  to increase the efficiency (see Section 2.7.2 for the definition of efficiency). To ex-

ploit this situation, the a priori knowledge contained in the prior distribution ( )P θ  is used to define a tailored 

proposal distribution ( , )q θ θ  (which is only efficient for the respective prior distribution). Mathematically, 

this is realized by defining ( , )q θ θ  such that it fulfills

 ( )
( , ) ( , ).

( )

P
q q

P
 θ

θ θ θ θ
θ

 (10)

Combining Equations 6 and 10 results in (e.g., Tarantola, 2005)


 ( )

( , ) min ,1 .
( )

L

L

 
    

θ
θ θ

θ
 (11)

Many problem classes, for example, high-dimensional geoscience problems, have a complex prior ( )P θ . As a 

result, the acceptance rate   is almost exclusively dependent on the prior. This leads to decreasing efficien-

cies of the MCMC (Roberts & Rosenthal, 2002). Equations 10 and 11 enable us to circumvent that problem 

by making the acceptance rate   only dependent on the likelihood, because the prior is already considered 

in the proposal distribution. This makes it possible to have high acceptance rates   even for far jumps in 

the parameter space, which is synonymous with a high efficiency (see Section 2.7.2). We call this approach 

“sampling from the prior distribution” (Reuschen et al., 2020).

In the following, we will present the preconditioned Crank Nicolson MCMC (pCN-MCMC) and the block-

Gibbs MCMC algorithms. The proposal functions of both methods fulfill Equation 10. Based on them, we 

propose our new sequential pCN-MCMC algorithm, which combines the approaches of pCN and Gibbs.

2.5. pCN-MCMC

The idea of the preconditioned Crank Nicolson MCMC (pCN-MCMC) was first introduced by Beskos 

et al. (2008), who called it a Langevin MCMC approach. In 2013, Cotter et al. (2013) revived the idea and 

named it pCN-MCMC.

The pCN-MCMC takes the assumption that the prior ( )P θ  is multi-Gaussian ( ( , )Nθ μ Σ ). For these priors, 

the proposal step of the pCN-MCMC

   ( ) 2 ( ) ( ) ( )(1 ) , ( , )i i i i N     θ θ μ ξ μ ξ 0 Σ (12)

fulfills Equation 10. Hence, the acceptance probability   is only depended on the likelihood as denoted in 

Equation 6. The tuning-parameter   of the pCN-MCMC specifies the change between subsequent samples. 

For  1 , subsequent samples are independent of each other. For lower  , the similarity of samples in-

creases up to the theoretical limit of  0  where subsequent samples are identical. In most applications, 

similar samples lead to similar likelihoods and a high acceptance rate. Hence, the tuning-parameter   can 

be used to adjust the acceptance rate of pCN-MCMC algorithms (large   lead to low acceptance rates and 

vice versa). A pseudocode of the pCN-MCMC is presented in the Appendix A.

2.6. Sequential Gibbs Sampling

In 1987, Geman and Geman (1984) introduced Gibbs sampling as a specific instance of Equation 10. The 

basic concept of Gibbs sampling is to resample parts of the parameter space θ. In the geostatistical context, 

this typically means to select a random box within the parameter field, and then to generate a new random 

field within that box while keeping the parts outside the box fixed. The new random part is sampled from 
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the prior, but under the condition that it must match (e.g., by conditional sampling) with the outside part. 

For illustrative examples on Gibbs sampling, we refer to (Gelman et al., 1995).

Assuming a random parameter vector θ of size 1
p

N   (
p

N  denotes number of parameters) and some per-

mutation matrix M (usually called P  in the literature), we can order the random variables into two parts

1

2

1
with size ,

( ) 1
p

q

N q

                

θ
Mθ

θ
 (13)

where 1
θ  incorporates all parameters which will be resampled conditionally on 2

θ . The number of resam-

pled parameters is given by q. A new proposal is defined as



 


 
1 11

1 2
22 2

, ( | ).T T p
     
                       

θ θ ξ
θ M M M ξ θ θ r

θ rθ θ
 (14)

Here, the values r of 2
θ  remain constant, whereas the first part of the parameter space 1

θ  gets resampled 

conditional on 2
θ . This approach is applicable to any probability distribution for which the conditional 

probability distribution  1 2
( | )p θ θ r  can be sampled.

In this work, we follow the approach of Fu and Gómez-Hernández (2008, 2009a, 2009b) to resample boxes 

in a parameter space representing a two-dimensional domain. Let θ be a discretization of some parame-

ter field (e.g., hydraulic conductivity). Here ( , )x yθ  is the value of the parameter θ at the spatial position 

( , ) ([0, ],[0, ])x yx y l l . Hereby, let 
x

l  and 
yl  be the length of the investigated domain in x and y direction. To 

determine M, we use a parameter and  (0,1]  that defines the size of the resampled box as defined in 

Equation 15, where a larger   corresponds to a larger resampling box. To include the dependence of M on 

 , we will denote it as M  in the following.

Based on a randomly chosen center point * *( , )x y  (which is rechosen every MCMC step), we can choose M  

such that

 

 


 

 

* *

1

* *
2

( , ) , with and

.

( , ) , with or

x y

x y

x x y y
x y

l l

x x y y
x y

l l

                     
 
 

θ
θ

M θ
θ

θ

 (15)

This means that all parameters ( , )x yθ  with a distance smaller than   to the centerpoint ( , )x y  are part of the 

parameter set 1
θ  and all ( , )x yθ  with a distance larger than   are part of the parameter set 2

θ . Pseudocode for 

computing M  is shown in the Appendix A.

Following Fu and Gómez-Hernández (2008, 2009a, 2009b), this work will focus on multi-Gaussian priors. 

In a multi-Gaussian prior setting, the prior probability distribution is only based on the mean vector μ and 

covariance matrix Σ. According to Equation 13, we portion μ and Σ as follows:

1
with sizes ,

( ) 1
p

q

N q

                 

μ
μ

μ

1

2
 (16)

11 12

21 22

( )
with sizes .

( ) ( ) ( )

p

p p p

q q q N q

N q q N q N q

                      

Σ Σ
Σ

Σ Σ
 (17)

Here, μ1 and μ2 are the mean vectors of 1
θ  and 2

θ , respectively. 11
Σ  and 22

Σ  signify the covariance matrices 

of 1
θ  and 2

θ  whereas 12
Σ  and 21

Σ  denote the cross-covariance matrices between 1
θ  and 2

θ . With that, we can 

express the resampled parameter distribution for 
1

θ  as  
1 2 1 11

( | ) ( , )P N θ θ r μ Σ  using the Kriging theory.

The Kriging (or Gaussian progress regression) theory (e.g., Rasmussen & Williams, 2006) states that the 

conditional probability is multi-Gaussian with mean

 1
1 1 12 22 2

( )  μ μ Σ Σ r μ (18)

and the covariance matrix

REUSCHEN ET AL.

10.1029/2021WR030051

6 of 21



Water Resources Research

 1

11 11 12 22 21
. Σ Σ Σ Σ Σ (19)

After combining Equation 14, Equations 18 and 19, we arrive at the proposal distribution


  1

1 1 11

2

, ( , )T N

 
   
  

θ
θ M θ μ Σ

θ
 (20)

which fulfills Equation 10.

The tuning-parameter   specifies the size of the resampling box and therefore the change between subse-

quent samples. Thereby, smaller   will lead to more similarity of subsequent samples and hence, to higher 

acceptance rates. The Appendix A includes a pseudocode of the sequential Gibbs sampling method.

2.7. Metrics

The quality of MCMC methods can be quantified using different metrics. An overview over such metrics 

can be found in Cowles and Carlin (1996) or Roy (2020). We use the following four test metrics.

2.7.1. Acceptance Rate 

The acceptance rate   is the fraction of proposals that get accepted divided by the total number of pro-

posals. Gelman et al. (1996) showed empirically that  0.234  is optimal for normal target distributions. 

This value of   is often used to optimize the tuning-parameter (e.g., ) of MCMC runs because it is easy to 

implement.

2.7.2. Efficiency

The efficiency of one parameter j within a MCMC chain is defined as (e.g., Gelman et al., 1996)

inf

1

1

1 2
j

ii

eff
=

=
+ ⋅ å

 (21)

where 
i
 is the autocorrelation of the chain with lag i. With this, the effective sample size (ESS) (Robert & 

Casella, 2013) is defined as

j jESS eff N  (22)

with N  being the total number of MCMC samples. The ESS represents the number of independent samples 

equivalent (i.e., having the same error) to a set of correlated MCMC samples. Hence, the efficiency (or ESS) 

can be used to estimate the number of MCMC samples needed to get a certain number of independent 

samples.

In the following, we aggregate the individual efficiencies of all parameters to one combined efficiency. 

Therefore, we define the efficiency of several parameters as

inf

,1 1

1

1
1 2

N p
i jj i

p

eff

N
= =

=
+ ⋅ å å

 (23)

with 
p

N  being the number of parameters and 
,i j being the autocorrelation of length i of the jth parameter.

2.7.3. R-Statistic

The potential scale reduction factor R̂  introduced by Gelman and Rubin (1992) is a popular method for 

MCMC diagnostics. It measures the similarity of posterior distributions, generated by different independent 

MCMC chains, by comparing their first two moments. Similarity between posterior distributions suggests 

convergence of the chains. This enables a convergence test in the absence of reference solutions. Gelman 

et al. (1995) stated that ˆ 1.2R  signifies acceptable convergence.
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2.7.4. Kullback-Leibler Divergence

The Kullback-Leibler divergence (Kullback & Leibler, 1951) is a measure to compare probability density 

functions. In this paper, we estimate the marginal density of each parameter and compute the KL-diver-

gence of the MCMC chain to a reference solution. This leads us to as many KL-divergences as we have 

parameters. To aggregate the KL-divergences over all parameters, we only report the mean value.

The KL-divergence is used solely as a postprocessing metric in our work. The advantage in comparison to 

the R-statistic is twofold in our case: first, we use the R-statistic to show that two independent chains con-

verge to the same distribution. In contrast, we use the KL-divergence to show convergence to a previously 

calculated reference distribution. Second, the R-statistic shows convergence in the first two moment where-

as the KL-divergence shows convergence in the entire distribution.

3. Sequential pCN-MCMC

In this section, we present our proposed sequential pCN-MCMC. To understand the underlying idea, let 

us look at the different MCMCs from a conceptual point of view. On the one hand, the proposal method 

of the pCN-MCMC makes global, yet small, changes that sample from the prior (left column of Figure 1). 

On the other hand, the sequential Gibbs method makes local, yet large, changes that also sample from the 

prior (right column of Figure 1). We want to combine these two approaches to make medium changes in a 

medium-sized area which again sample from the prior (center column of Figure 1).

We take the same preparatory steps as in the sequential Gibbs approach (Equations 13–19). However, we 

propose a new sample within the resampling box based on the pCN approach (Equation 12)

    ( )2
1 1 1 1 11

(1 ) , ( , ).i
N     θ θ μ ξ μ ξ 0 Σ (24)


1

μ  and 
11

Σ  have been defined in Equation  18 and Equation  19, respectively. Consequently, the proposal 

distribution is defined as
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Figure 1. Proposal step of pCN-MCMC, sequential pCN-MCMC and sequential Gibbs sampling. The pCN-MCMC 
makes a small global change. The sequential Gibbs sampling makes a large local change. The sequential pCN-MCMC 
makes a medium change in a medium-sized area. This figure is only for visualization. Realistic problems lead to smaller 
changes in all three algorithms.
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


 1

1
2

, see equation 24 .T

 
   
  

θ
θ M θ

θ
 (25)

This allows for sequential pCN-MCMC proposal in blocks of the parameter space.

Any combination of the tuning-parameter   of the pCN-MCMC approach and the tuning-parameter   of 

the Gibbs approach can be chosen. Alike the pure cases, increasing   and   will lead to larger changes in 

subsequent samples and lower acceptance rates. Both, the sequential Gibbs and the pCN-MCMC are special 

cases of the proposed sequential pCN-MCMC. The sequential Gibbs method is the special case for  1  

and  1  leads to the pCN-MCMC approach.

3.1. Adaptive Sequential pCN-MCMC

Section 2.7.1 stated that the acceptance rate   is often used to tune the tuning-parameters of MCMC meth-

ods. This tuning does only work for one tuning-parameter. In our proposed method, we have two tuning-pa-

rameter, namely the box size   of the sequential Gibbs method and the pCN parameter  . The presence of 

two tuning-parameters destroys the uniqueness of the optimum ( 0.234 ). Hence, we need to find the 

optimal (or good enough) parameter combination in another way.

We propose an adaptive version of the sequential pCN-MCMC, which finds the optimal tuning-parameter 

during its burn-in period. For this, we take a gradient descent approach. As starting values, we choose ran-

dom values between 410  and 010  for   and  . We evaluate the performance of tuning-parameters by run-

ning the MCMC for 
hpN  steps, for example, 310  steps, with the same tuning-parameters. Then we evaluate 

the produced subsample based on the efficiency (see Section 2.7.2). The efficiency is used because it can 

be evaluated, unlike the R-statistic or KL-divergence, during the runtime of the algorithm. The R-statistic 

and the KL-divergence need several independent chains to assess performance. The presented approach 

uses one chain, so it cannot build its optimization on the R-statistic or KL-divergence (while it can use the 

efficiency), but we use them as independent and complementary checks.

However, the autocorrelation, on which the efficiency is based on, is normalized by the total variance of the 

sample. Hence, the efficiency is independent of the total variance of the sample. To favor tuning-parameters 

that explore the posterior as much as possible, even in a small subsample, we add a standard derivation term 

to the objective function. For an increasing size of the subsamples, the effect of the standard derivation di-

minishes as the standard derivation of all subsamples converges to the standard derivation of the posterior. 

This leads to the objective function (which should be maximized) of a subsample

1

1
( , )

N p

j j
jp

f eff s
N

 
=

= ⋅å (26)

where 
j

s  is the current standard derivation of the jth parameter.

The adaptive sequential pCN-MCMC starts with a random (or expert-guess) tuning-parameter combination 
 

0 0
, . Then, the derivatives of the objective functions are approximated numerically by

   
  

( , ) ( , )k k k k

k k

f ff  

 

 
  (27)

   
  

( , ) ( , )k k k k

k k

f ff  

 

 
  (28)

with




    

1

, ,
k k k k

     (29)
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


    

1

, ,
k k k k

     (30)

where    2   in our implementation. This selection of evaluation points leads to an equal spacing 

of evaluation points in the log-space. Next, the algorithm moves a predefined distance (in the loglog-space) 

toward the steepest descent (here: rise, because we maximize the objective function) and restarts evaluating 

the tuning-parameters.

Two things are important here. First, we use the loglog-space because the results (Figures 3 and 4) suggest 

that the efficiency does not have sudden jumps in the loglog-space which makes the optimization easy. Op-

timizing in the “normal” space would lead to a more complex optimization problem due to a more complex 

structure of good values (banana shaped instead of a straight line) and high derivatives for small   and  . 

Second, the predefined distance is important because the objective function is stochastic, that is, starting it 

twice with the same parameters will not lead to the same result f . Not predefining the distance (which is 

done in vanilla steepest descent methods) leads to some, randomly happening, high derivatives that prevent 

convergence of the algorithm.

4. Testing Cases and Implementation

4.1. Testing Procedure

We test our method by inferring the hydraulic conductivity of a confined aquifer based on measurements 

of hydraulic heads in a fully saturated, steady state, 2-D groundwater flow model. The data for inversion 

are generated synthetically with the same model as used for inversion. We are interested in several different 

cases: First, we test our method in a coarse-grid resolution [50 50]  cells. Here, we systematically test tun-

ing-parameter ( , ) combinations to find the optimal parameter combination. Further, we developed the 

adaptive sequential pCN-MCMC in this case.

Second, we used the same reference solution with more informative measurement data and conducted the 

same systematic testing of tuning-parameters as in test Case 1. We test the adaptive sequential pCN-MCMC 

on this new test case on which it was not developed. This enables us to make (more or less) general state-

ments about the performance of this tool. After that, we try different variants of the original model to test 

our algorithm in different conditions and at higher resolutions.

In all test cases, we run the sequential pCN-MCMC methods with 2 million samples of which we save every 

200th sample. We discard the first half of each run due to burn-in and calculate the metrics presented in 

Section 2.7 based on the second half. Hence, each metric is calculated using 5,000 samples. This is done 

three times for each tuning-parameter combination in test case 1–4 and we report the mean value in the 

following. In test Case 5, we test each adaptive method (adaptive sequential Gibbs, adaptive pCN-MCMC, 

adaptive sequential pCN-MCMC) three times and report the mean values of these runs. Here, the adaptive 

sequential Gibbs (or adaptive sequential pCN-MCMC) corresponds to the case where we optimize   (or ) 

as proposed in Section 3.1 and set  1  (or  1 ).

To evaluate the KL-divergence, a reference solution is calculated using the best tuning-parameter combina-

tion of each test case and running the sequential pCN-MCMC for 10 million samples. We save every 200th 

sample and remove the first million samples as burn-in.

4.2. Description of Test Cases

4.2.1. Base Case

We consider an artificial steady state groundwater flow in a confined aquifer test case as proposed in Xu 

et al. (2020). It has a size of 5,000 5,000[ ]m  with a constant depth of 50 m and is discretized into 50 50  

cells as shown in Figure 2.
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We assume a multi-Gaussian prior model with mean 2.5
m

d

 
 
  

 and var-

iance equal to 1. Further, we assume an anisotropic exponential vario-

gram with lengthscale parameters [1,500,2,000] rotated by 135°. The high-

er value of the lengthscale is pointing from the bottom left to the top right 

(see Figure 2).

We assume no-flow boundary conditions at the top and bottom boundary, 

a fixed head boundary condition with 20h   m at the left and 0h   m 

at the right side. Further, we assume four groundwater extraction wells 

as shown in Table 1.

Figure 2 shows the hydraulic conductivity distribution of the artificial 

true aquifer and the 41 measurement locations marked in black. We 

corrupt each of the 41 simulated (with the hydraulic conductivity of the 

artificial true aquifer) head values with a variate drawn at random from 

a zero-mean normal distribution with variance of 0.05 [m] to obtain syn-

thetic data for the inversion

The flow in the domain can be described by the saturated groundwater 

flow equation

( , ) ( , , ) ( , ),K x y h x y t x y      (31)

where K  is the isotropic hydraulic conductivity, h is the hydraulic head and  encapsulates all source and 

sink terms. We solve the equation using the flow solver described in Nowak (2005) and Nowak et al. (2008) 

numerically.

4.2.2. Test Case 2

The sole difference between test Case 2 and the base case is that a standard derivation of the measurement 

error of 0.02 m is used. This leads to a more likelihood-dominated Bayesian inverse problem. Hence, slightly 

changing parameters results in higher differences in the corresponding likelihoods. This leads to a smaller 

acceptance rate which is dependent on the quotient of subsequent likelihoods. To keep a constant accept-

ance rate, a smaller jump width is needed. Hence, we expect the optimal   and   to decrease for a more 

likelihood-dominated posterior.

4.2.3. Test Case 3

The only difference between test Case 3 and the base case is that only 16 instead of 41 measurement po-

sitions were used. This leads to a less likelihood-dominated Bayesian inverse problem and reverses the 

variation done in test Case 2.

4.2.4. Test Case 4

Test Case 4 has different reference solution with a Matern covariance with  2.5  and isotropic lengthscale 

parameter  1,000 . All other parameters are identical to the base case setup. We do this variation to test 

the influence of the prior covariance structure on our proposed method.

4.2.5. Test Case 5

Test Case 5 uses a refined reference solution with a [100,100] discretiza-

tion grid. Here, the higher discretization in the inversion makes the prob-

lem numerically more expensive, serving to demonstrate the efficiency 

and applicability of our method.

4.2.6. Test Case 6

Test Case 6 uses the artificial true aquifer of the base case. However, in-

stead of inferring the hydraulic conductivity with head measurements, 

we infer the hydraulic conductivity with concentration measurements. 
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Figure 2. Log-conductivity field of the synthetic reference aquifer with 
a fixed head boundary condition on the left side and right side, no-flow 
boundary conditions at top and bottom and groundwater extraction wells 
marked with gray crosses. The positions of the measurement wells are 
marked in black.

Position x [m] Position y [m]

Pump strength 

[ ]
m

d

3

500 2,350 120

3,500 2,350 70

2,000 3,550 90

2,000 1,050 90

Table 1 
Position and Pumping Strength of Groundwater Extraction Wells
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We assume a dissolved, conservative, nonsorbing tracer transported by the advection dispersion equation 

in steady state flow

( ) 0c c    v D (32)

with the seepage velocity v and the local dispersion tensor D. We assume that some concentration c is con-

stantly entered in the center third of the left boundary by setting the boundary condition to 
0

1
c

c

  there, 

where 
0

c  is for example, a solubility limit. Then, we calculate the steady state solution of Equation 32 under 

time-constant boundary conditions and measure the concentration at the 5 upmost right measurement lo-

cations shown in Figure 2. Here, we assume a standard derivation of the measurement error equal to 0.05. 

This test case shows the influence that different measurements types have to our results. We use the flow 

and transport solver described in Nowak (2005) and Nowak et al. (2008) to solve the equations numerically. 

This solver uses a streamline upwind Petrov Galerkin finite element method with bilinear elements on a 

regular grid with 50 50  cells and cell-wise constant K  values.

5. Results

5.1. Base Case

The acceptance rate of the MCMC, the efficiency, the R-statistic and the (log of the) KL-divergence to a 

reference solution are visualized in Figure 3. As discussed in Section 2.7, we aim for an R-statistic equals 

1, a high efficiency and a low log KL conductivity which corresponds to an acceptance rate equals 23%. 

We focus on two things in this plot. First, we see that all metrics have a similar appearance. Hence, a tun-

ing-parameter combination that performs well in one metric also performs well in the other two metrics 
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Figure 3. Results of base case. The sequential pCN-MCMC was tested with all combinations marked by black points. 
All in-between values are interpolated. The efficiency was not calculated in the top right corner (white area) because 
the MCMC did not finish the burn-in during runtime. The pCN-special case is at the top with  1  and the Gibbs 
special case is at the right with  1 . The acceptance rate shows no unique optimum ( 0.234 ), but rather a line of 
optimal tuning-parameters combinations. The efficiency, the R-statistic and the KL-divergence indicate similar optima. 
The optimal efficiency is at  0.75  and  0.07 .



Water Resources Research

and vice versa. Second, the optimal tuning-parameter combination ( , ) is around  0.75  and  0.07  

for all norms. Hence, neither the pCN ( 1 ) nor the sequential Gibbs special case ( 1 ) is optimal. The 

sequential pCN-MCMC has a better performance than the special cases. Further, the efficiency plot (or ta-

ble 2) indicates a speedup of approximately 5.1 over pCN-MCMC and of 1.3 over sequential Gibbs sampling.

5.2. Test Case 2

Using the second test case, we visualize the acceptance rate of the MCMC, the efficiency, the R-statistic and 

the KL-divergence to a reference solution in Figure 4. As discussed in Section 5.2, we expect smaller opti-

mal tuning-parameters compared to test Case 1. Comparing Figures 3 and 4, we see that our expectations 

are partly met. The light blue line of acceptance rates of approximately 40% is moving to the bottom left, 

to smaller   and  , as expected. However, the optimal values change from  0.75  and  0.07  in the 

first test case to  1  and  0.06  in the second case. Hence, the optimal tuning-parameters tend more 

toward the Gibbs approach (no pCN correlation at  1 , instead a smaller window). In fact, we find that 

the sequential Gibbs approach is as good as the sequential pCN-MCMC approach because the optimal pa-

rameter   equals 1.

5.3. Further Test Cases

Next, we test our algorithm with fewer measurement locations (Case 3), with a Matern variogram model 

(Case 4) and with a finer discretization (Case 5) as summarized in Table 2. In short, the results indi-

cate that the sequential pCN-MCMC has at least the same performance as the Gibbs or pCN-MCMC 

approach. We achieve a speedup (measured by the ratio of efficiencies) of 1–5.5 over pCN and of 1–6.5 

over Gibbs.

In test cases 1–4, structured testing as shown in Sections 5.1 and 5.2 was performed. For the high-dimension-

al test Case 5 and the transport test Case 6 this testing procedure was too computationally expensive. Hence, 

the previous tested adaptive sequential pCN-MCMC was used to find the best parameter distribution.

5.4. Adaptive Sequential pCN-MCMC

Gelman et al. (1996) stated that a wide range of tuning-parameters are satisfactory (close to optimal) for 

MCMCs with one tuning-parameter. Figure 3 shows that this holds for this two tuning-parameter MCMC as 

well. The efficiency, the R-statistic and the KL-divergence have a broad area of near-optimal tuning-param-

eters. Hence, the adaptive sequential pCN-MCMC only needs to find some point in this good area to choose 

near-optimal parameters. Figure 5 shows five paths of the adaptive sequential pCN-MCMC during burn-in 

with random start tuning-parameters for the first and second test cases. Each path consists of all tested 
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Efficiency Maximal R-statistic KL-divergence Optimal

se. pCN pCN Gibbs se. pCN pCN Gibbs se. pCN pCN Gibbs  

Base case 0.0082 0.0016 0.0065 1.0572 2.0697 1.1222 0.0036 0.0660 0.0066 0.75 0.07

Case 2 0.0061 0.0011 0.0061 1.2888 5.4102 1.9264 0.0326 0.5923 0.0419 1 0.06

Case 3 0.0087 0.0029 0.0063 1.0521 1.2661 1.0854 0.0051 0.0212 0.0072 0.3 0.1

Case 4 0.0019 0.0012 0.0018 1.8374 3.9433 2.5057 0.0694 0.6710 0.1103 0.3 0.1

Case 5a 0.0065 0.0019 0.0065 1.1315 2.25 1.1315 — — — 1 0.0579

Case 6a 0.1711 0.1711 0.0264 1.002 1.002 1.024 — — — 0.1741 1

aNo systematic testing was performed. Optimal tuning-parameters were found using the adaptive sequential pCN-MCMC.

Table 2 
Test Metrics of Algorithms With Optimal Tuning-Parameters
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tuning-parameter combinations. Figure 5 shows that all paths converge to the targeted area of near-optimal 

tuning-parameters.

We note here, that many tuning-parameter optimization steps 
hpN  are needed to achieve these results. Using 

fewer MCMC steps per tuning-parameter iteration leads to less exact tuning-parameter tuning. Although 

the tuning is less exact with smaller 
hpN , we find in additional experiments that the adaptive sequential 

pCN-MCMC converges to acceptable tuning-parameters with small 
hpN  due to broad high-efficiency areas. 
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Figure 4. Results of test Case 2. The sequential pCN-MCMC was tested with all combinations marked by black points. 
All in-between values are interpolated. The efficiency was not calculated in the top right corner (white area) because 
the MCMC did not finish the burn-in during runtime. The pCN-special case is at the top with  1  and the Gibbs 
special case is at the right with  1 . The acceptance rate shows no unique optimum ( 0.234 ), but rather a line of 
optimal tuning-parameters combinations. The efficiency, the R-statistic and the KL-divergence indicate similar optima. 
The optimal efficiency is at  1  and  0.06 .

Figure 5. Convergence of adaptive sequential pCN-MCMC in test Case 1 (left) and test Case 2 (right). The chosen 
parameter for production is marked with a cross. The efficiency is shown in the background.
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The needed size of 
hpN  depends on the amount of measurement information. Having more information 

leads, even for near-optimal tuning-parameters, to a smaller step size (of the MCMC) and lower efficiency. 

Hence, we need more samples for good MCMC results and simultaneously for each tuning-parameter tun-

ing iteration.

6. Discussion

6.1. Global Versus Local Proposal Steps

The results in Table 2 indicate that the pure (local) Gibbs approach is superior to the pure (global) pCN 

approach when used with head measurements. We did further testing using a simple Kriging (measuring 

the parameters directly) example and found that the Gibbs approach is superior to the pCN approach in that 

case as well. In transport scenarios (test Case 6), the (global) pCN approach is superior to the (local) Gibbs 

approach.

We explain this behavior in the following way: direct (and head measurements) typically yield us local (or 

relatively local) information of the aquifer (Rubin, 2003). It only lets us infer the hydraulic conductivity in a 

small area around the measurement location because the influence of hydraulic conductivity on the meas-

urement decreases rapidly with distance (Rubin, 2003). This leads to the conclusion, that measurements 

with localized information (head, direct measurements) work better with local updating schemes (Gibbs), 

whereas measurements with global information (transport) work better with global updating schemes 

(pCN). Note, that we only tested these algorithms on a few geostatistical problems and encourage research-

ers to compare global and local proposal steps and endorse or oppose our findings.

6.2. Limits of Sequential pCN-MCMC

In our test cases, the sequential pCN-MCMC and the sequential Gibbs approach have higher efficiencies 

than the pCN-MCMC. However, this speedup comes at the increased cost of the proposal step. Computing 

the conditional probability (Equations 18 and 19) is time consuming due to the computation of 1

22

Σ . In 

most applications, the forward simulation (i.e., the calculation of the likelihood) is much more expensive 

than the inversion of the matrix 22
Σ  and the time difference in the proposal step can be neglected. However, 

with simple forwards problems, this might make the pCN approach a viable alternative to the sequential 

pCN-MCMC because all norms discussed in this paper neglect this time difference.

Fu and Gómez-Hernández (2008) discuss different schemes on how the conditional sampling can be per-

formed without the need to compute 1

22

Σ . The downside of these schemes is, that they do not sample from 


1 11
( , )N μ Σ  directly but from some approximation of it. On regular, equispaced grids, FFT-related methods 

and sparse linear algebra methods (Fritz et al., 2009; Nowak & Litvinenko, 2013) offer exact and very fast 

solutions.

The sequential pCN-MCMC is not designed to handle multimodal posteriors. However, applying parallel 

tempering approaches (e.g., Laloy et al., 2016) can solve this challenge. They can be applied straightfor-

ward to our method but come with one downside. The adaptive sequential pCN-MCMC will not work in 

a parallel tempering setup because the efficiency depends on the autocorrelation. In parallel tempering, 

the autocorrelation is dominated by between-chain swaps and hence will not be a good estimator for the 

performance of MCMC. Finding another way to tune the tuning-parameters during burn-in will be the big 

challenge in generalizing the sequential pCN-MCMC to parallel tempering.

6.3. Limits of Optimizing the Acceptance Rate

Our results suggest that acceptance rate values of 10–60%, (Case 1: 37%, Case 2: 10%, Case 3: 59%, Case 4: 

57%) are optimal. This is in conflict with the literature, especially Gelman et al. (1996), stating that accept-

ance rates equal 23.4% are optimal for multi-Gaussian settings. The reason for this is the synthetic setting of 

Gelman et al. (1996). As a consequence, when using the acceptance rate   for optimizing the jump width, 

researchers should be aware that  23.4%  is not always optimal. Apart from that, we endorse Gelman 

et al. (1996) that a wide area of acceptance rates leads to near-optimal results. Hence, the error by tuning for 
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the wrong acceptance rate might be neglectable. We cannot give a solution to this challenge but only point 

out that the suggested optimal acceptance rate of 23.4% might not be the one you should always aim for.

6.4. Transfer to Multipoint Geostatistics

The idea of building a hybrid between global and local jumps in parameter distributions can be applied 

to training image-based sampling methods in multipoint geostatistics as well. Both global (resampling a 

percentage of parameters scattered over the domain, e.g., Mariethoz et al., 2010) and local approaches (re-

sampling a box of parameters, e.g., Hansen et al., 2012) exist and a combination might speed up the con-

vergence for training image-based approaches as well. Thereby, a hybrid method should resample a higher 

percentage of scattered parameters in a larger box.

7. Conclusion

We presented the sequential pCN-MCMC approach, a combination of the sequential Gibbs and the 

pCN-MCMC approach. All approaches have discretization-independent convergence rates, which means 

that their efficiency does not decrease with higher resolutions of the inferred parameter field. We show that 

the (local) Gibbs approach is better for local measurements (head measurements) and the (global) pCN 

approach is better for global measurements (tracer experiments).

The presented sequential pCN-MCMC can choose the best trade-off between the two existing methods. To 

do so, it has two tuning-parameters, the parameter   of the pCN approach and   of the Gibbs approach. Set-

ting either one of them to 1 makes the algorithm collapse to either the pCN or the Gibbs approach. We show 

that the proposed method is as efficient or more efficient than the sequential Gibbs and pCN-MCMC meth-

ods by testing all possible tuning-parameters of the sequential pCN-MCMC method. To be more precise, a 

speedup of 1–5.5 over the pCN-MCMC method and 1–6.5 over the sequential Gibbs method is observed.

Using more than one tuning-parameter has the downside that finding the optimal tuning-parameters is 

difficult. We presented the adaptive sequential pCN-MCMC to find good tuning-parameters during the 

burn-in of the algorithm. This work can be extended to parallel tempering easily. However, the presented 

approach of finding the optimal tuning-parameters during burn-in needs to be adapted to fit the challenges 

of multiple chains.

For practical applications, the presented adaptive sequential pCN-MCMC is a fast and easy to handle 

MCMC method for Bayesian inversion. It requires no manual adjustment of tuning-parameters because 

the method optimizes them automatically during burn-in. Further, it is at least as fast and usually faster 

than the state-of-the-art alternatives on all tested data types. Hence, we recommend using the open-source 

implementation of our method on your inversion problem.

APPENDIX A

The pseudocodes of the algorithms discussed in this work are shown in the following.
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Algorithm 1: sequential Gibbs sampling
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Algorithm 2: get box algorithm
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Algorithm 3: pCN-MCMC
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Data Availability Statement

The implementation of the adaptive sequential pCN-MCMC is available at https://bitbucket.org/Reuschen/

sequential-pcn-mcmc.
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Abstract Geostatistical inversion with quantified uncertainty for nonlinear problems requires

techniques for providing conditional realizations of the random field of interest. Many first‐order

second‐moment methods are being developed in this field, yet almost impossible to critically test them

against high‐accuracy reference solutions in high‐dimensional and nonlinear problems. Our goal is to

provide a high‐accuracy reference solution algorithm. Preconditioned Crank‐Nicolson Markov chain Monte

Carlo (pCN‐MCMC) has been proven to be more efficient in the inversion of multi‐Gaussian random fields

than traditional MCMC methods; however, it still has to take a long chain to converge to the stationary

target distribution. Parallel tempering aims to sample by communicating between multiple parallel Markov

chains at different temperatures. In this paper, we develop a new algorithm called pCN‐PT. It combines the

parallel tempering technique with pCN‐MCMC to make the sampling more efficient, and hence converge to

a stationary distribution faster. To demonstrate the high‐accuracy reference character, we test the accuracy

and efficiency of pCN‐PT for estimating a multi‐Gaussian log‐hydraulic conductivity field with a relative

high variance in three different problems: (1) in a high‐dimensional, linear problem; (2) in a

high‐dimensional, nonlinear problem and with only few measurements; and (3) in a high‐dimensional,

nonlinear problem with sufficient measurements. This allows testing against (1) analytical solutions

(kriging), (2) rejection sampling, and (3) pCN‐MCMC in multiple, independent runs, respectively. The

results demonstrate that pCN‐PT is an asymptotically exact conditional sampler and is more efficient than

pCN‐MCMC in geostatistical inversion problems.

1. Introduction

Good predictions of subsurface dynamics, subsurface environmental risk assessment, and good design of

remediation actions are hard to achieve without proper characterization of subsurface properties. In almost

all applications, there are not enough direct (hard) data (e.g., hydraulic conductivity and porosity) to con-

struct subsurface property fields. On the contrary, indirect (soft) data (e.g., piezometric head and contami-

nant concentration) are easier to collect. How to properly characterize subsurface properties from indirect

data is still an important and active research topic in many disciplines, such as, petroleum engineering,

mining engineering, meteorology, or hydrology. Methods to characterize the desired properties from the

information contained in indirect data, while quantifying the remaining uncertainties, are called stochastic

inverse modeling.

Many different stochastic inverse modeling approaches have been developed, such as the Representer

method (e.g., Franssen et al., 2009; Valstar et al., 2004), the ensemble Kalman filter (Chen & Zhang, 2006;

Hendricks Franssen & Kinzelbach, 2008; Li et al., 2011; Xu et al., 2013; Zhou et al., 2014), the ensemble

smoother (e.g., Bailey et al., 2012; Crestani et al., 2013; Evensen & Van Leeuwen, 2000), the Pilot

Points method (e.g., Alcolea et al., 2006; Christensen & Doherty, 2008; RamaRao et al., 1995), the inverse

sequential simulation method (e.g., Xu & Gómez‐Hernández, 2015a, 2015b), the sequential self‐calibration

(e.g., Franssen et al., 2003; Gómez‐Hernánez et al., 1997; Wen et al., 2002), and the Markov chain Monte

Carlo method (MCMC) (e.g., Fu & Gómez‐Hernández, 2009; Laloy et al., 2013; Oliver et al., 1997). Among

these methods, MCMC is commonly regarded as a classical but computationally expensive method,
©2020. American Geophysical Union.
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though it is good for dealing with complex construction of subsurface properties and nonlinearity

(Saley et al., 2016). All other methods mentioned above rely on some sort of linearization or first‐order,

second‐moment approximation. They are often much faster than MCMC but are only approximations that

get more and more inaccurate and instable with increasing nonlinearity of the problems. Thus, for problems

that require high accuracy and for critically testing the advancement of approximate methods, asymptoti-

cally exact methods such as MCMC are the only solution.

To handle the computational cost problem of MCMC, many advanced versions have been proposed in the

literature. For example, Duane et al. (1987) proposed the Hybrid Monte Carlo algorithm (also called

Hamiltonian Monte Carlo algorithm) that can exploit gradient information, and Saley et al. (2016) applied

it for the characterization of hydraulic conductivity; Cui et al. (2011) developed an adaptive delayed accep-

tance Metropolis Hasting algorithm that was shown to greatly improve the computational efficiency in a

geothermal application; Martin et al. (2012) presented a Stochastic Newton method to accelerate MCMC

by building a local Gaussian approximation based on local gradient and Hessian information; Andrieu et al.

(2010) proposed a combination of MCMC and sequential Monte Carlo methods, in which efficient proposal

distributions are built by using sequential MCMC schemes; Scott et al. (2016) proposed a consensus MCMC

algorithm (a scalable MCMC method), which runs separate MCMC samplers independently for each data

subset on each machine, and averages individual MCMC samplers from each subset across machines.

When we have high‐performance computing available, the most direct method to accelerate MCMC is to

design parallel architectures and run many MCMC chains in parallel (e.g., Angelino et al., 2014;

Calderhead, 2014; Terenin et al., 2015).

A remaining key problem is the low efficiency obtained with MCMC in geostatistical inverse problems: Most

samples proposed within MCMC are rejected because they are impossible against the (prior) geostatistical

model. To overcome this problem, Cotter et al. (2013) proposed a preconditioned Crank‐Nicolson Markov

chain Monte Carlo method (pCN‐MCMC) by combining the preconditioned Crank‐Nicolson method with

MCMC to make MCMC faster for Bayesian inversion of multi‐Gaussian hydraulic conductivity fields. This

algorithm was shown to be capable for Bayesian inversion of multi‐Gaussian subsurface properties in many

applications (e.g., Cotter et al., 2013; Hu et al., 2017; Iglesias et al., 2012). Still, when pCN‐MCMC explores

the target posterior distribution, it may still need a long chain and it is still difficult to explore a large poten-

tial model space since the MCMC simulation proceeds by local jumps in the vicinity of the current solutions

(Robert et al., 2018). Parallel tempering can handle the dilemma with exploring large model spaces and can

improve the efficiency of exploring the target posterior by exchange swaps between cold chains and hot

chains. The hot chains mainly explore the solution and colder chains exploit the found high‐likelihood

regions (e.g., Earl & Deem, 2005; Geyer, 1991). Due to this merit, the technique has received a lot of attention

and applications in recent years. For example, Laloy et al. (2016) merged parallel tempering with sequential

geostatistical resampling to improve posterior exploration of subsurface categorical conductivity fields;

Blatter et al. (2016) coupled the technique with a reversible‐jump MCMC method for Bayesian inversion

of 2‐D models from airborne transient EM data; Bertrand et al. (2001) coupled it with MCMC to solve the

magnetoencephalography inverse problem.

Parallel Tempering is a meta‐algorithm that can be integrated into many existing MCMC methods

(Sambridge, 2013). Therefore, in this work, we combine the parallel tempering method with pCN‐MCMC

for Bayesian inversion of multi‐Gaussian random fields. To the best of our knowledge, we are the first to

use this combination for Bayesian inversion of continuous multi‐Gaussian hydraulic conductivity fields.

While improving an algorithm is always a valuable scientific endeavor on its own right, we bear two specific

motivations in mind: (1) to provide a method for application cases that require high‐accuracy solutions in

improved time, and (2) to provide amethod that can offer high‐accuracy reference solutions for critically test-

ing improvement of much faster, approximate techniques such as quasi‐linear ones or first‐order second‐

momentmethods. To demonstrate the high‐accuracy reference character, we test the accuracy and efficiency

of pCN‐PT for estimating a multi‐Gaussian log‐hydraulic conductivity field with a relative high variance

against analytical solutions (kriging) in a high‐dimensional, linear problem (based on direct observations

of log‐hydraulic conductivity), against rejection sampling in a high‐dimensional, nonlinear problem (based

on observations of piezometric head linked to hydraulic conductivity through a groundwater flow equation)

with only fewmeasurements, and against pCN‐MCMC inmultiple, independent runs in a high dimensional,
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nonlinear problemwith sufficient measurements. Note that we have the first two cases to build confidence in

the algorithm. In the second case we use only fewmeasurements so that it is possible with rejection sampling

to calculate the true solution. Moreover, the newmethod is tested for high‐dimensional problems and a rela-

tive high variance of log‐hydraulic conductivity, which results in a strong statistical nonlinearity. Dealing

with these kinds of problems is challenging for first‐order second‐moment methods.

The remainder of the paper is structured as follows. First, we introduce the algorithms of all relevant meth-

ods (pCN‐MCMC, parallel tempering, pCN‐PT, kriging, and rejection sampling), and then compare pCN‐PT

with simple kriging, rejection sampling, and pCN‐MCMC on a synthetic confined aquifer. The paper ends

with a summary and discussion.

2. Methodology

2.1. MCMC and pCN‐MCMC

pCN‐MCMC is anMCMC‐based method proposed by coupling the pCN technique with the MCMCmethod.

It draws samples from a chain that automatically honors the prior distribution in multi‐Gaussian problems

and therefore is more computationally efficient than classical MCMCs when dealing with highly resolved

geostatistical problems (e.g., Cotter et al., 2013; Gilks et al., 1995). Hence, before we introduce the algorithm

of pCN‐MCMC, we briefly recall the classical Metropolis‐Hastings MCMC algorithm, and the reader can

refer to the literature (e.g., Geyer, 1992; Gilks et al., 1995; Hastings, 1970; Metropolis et al., 1953) for a more

detailed description.

According to the Bayesian theorem, the posterior distribution p(u | y) of a parameter vector u conditioned on

observations y is dependent on the likelihood L(u) and prior distribution of p(u) (in this study, u and y cor-

respond to hydraulic conductivity K and piezometric head H in our later application, respectively)

pðujyÞ ∝ LðuÞ ∗ pðuÞ (1)

MCMC algorithms sample from p(u | y) by sequentially proposing jumps

ui þ 1 ¼ ui þ ▵ui (2)

where ▵ui is randomly drawn (with certain rules) from a jump distribution. In these jumps, the most impor-

tant rule is that the so‐called detailed balance condition should be satisfied. This means that for any conse-

cutive two states ui and uj, the jumps ui→ uj and uj→ ui are equally probable. In the Bayesian context, this

can be expressed as

LðuiÞ ∗ pðuiÞ ∗ hðui; ujÞ ¼ LðujÞ ∗ pðujÞ ∗ hðuj; uiÞ (3)

where h denotes the so‐called transition kernel, and it is defined as

hðui; ujÞ ¼ qðui; ujÞ ∗ aðui; ujÞ (4)

where q(ui, uj) is a proposal density and a(ui, uj) is a corresponding acceptance probability. Hence,

Equation 3 can be rewritten as

LðuiÞ ∗ pðuiÞ ∗ qðui; ujÞ ∗ aðui; ujÞ ¼ LðujÞ ∗ pðujÞ ∗ qðuj; uiÞ ∗ aðuj; uiÞ (5)

where, in order to enforce the detailed balance, the acceptance probability can be expressed as

aðui; ujÞ ¼ min 1;

LðujÞ ∗ pðujÞ ∗ qðuj; uiÞ
LðuiÞ ∗ pðuiÞ ∗ qðui; ujÞ

� �

(6)

As was mentioned before, pCN‐MCMC is a combination of the pCN technique and MCMC, specifically for

multi‐Gaussian prior (Cotter et al., 2013), and changes Equation 3 to
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pðujÞ ∗ qðuj; uiÞ ¼ pðuiÞ ∗ qðui; ujÞ (7)

so that the acceptance probability Equation 6 can be reexpressed as

aðui; ujÞ ¼ min 1;

LðujÞ

LðuiÞ

� �

(8)

In comparison with the acceptance probability in MCMC (Equation 6), we can see the acceptance probabil-

ity in pCN‐MCMC (Equation 8) is only dependent on the likelihood; but no longer on the prior p(u). This

contributes to a relatively large decrease of computational cost, because there will be no rejections due to

the prior. In the following, without loss of generality, we will consider multi‐Gaussian random fields discre-

tized on some fine meshes, with the mean removed. Hence, we can write p(u)¼N(0,C), where C is the cov-

ariance matrix of the random field. Overall, the procedure of the pCN‐MCMC algorithm can be described as

follows:

1. Generate an initial realization u0, u0∼N(0,C).

2. Generate a pCN proposal vk at the kth sampling iteration according to the proposal function

vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
q

uk þ βεk; εk ∼ Nð0; CÞ (9)

where uk is the sampling realization at the kth sampling iteration, ε is colored noise following the same

distribution as the prior, and β denotes a jumping factor.

3. Set the new sampling realization uk+ 1¼ vk with acceptance probability a(uk, vk),

aðuk; vkÞ ¼ min 1;

LðvkjyÞ

LðukjyÞ

� �

(10)

4. Otherwise, set uk+ 1¼ uk.

5. k→ k+ 1.

If all observation errors and modeling errors follow Gaussian distributions, the log‐likelihood ϕ(u)¼

ln L(u | y) is

ϕðuÞ ¼ lnLðujyÞ ¼ ln ð2πÞ−
m
2 ‖Cy‖

−

1
2exp −

1

2
ðy − yoÞTC−1

y ðy − yoÞ

� �� �

(11)

y ¼ gðuÞþη; η ∼ Nð0; CnÞ (12)

where y and yo are simulated and measured observations, respectively; g(·) is a model parameterized by u

(in our later application, the steady‐state groundwater flow model); η is the measurement‐and‐model

error; Cn is the covariance matrix of these errors. Then, Equation 8 can be rewritten as

aðuk; vkÞ ¼ min 1; exp ϕðvkÞ−ϕðukÞ
� �	 


(13)

Note that the proposal density in Equation 9 tries to construct a multivariate autoregressive process of order

one (AR1), which by design is multi‐Gaussian at each step k and with distributionN(O,C). The term
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p

is the correlation coefficient along the chain. Then, β¼ 1 leads to independent sampling, while β→ 0 leads

to small steps with high autocorrelation along the chain.

2.2. Parallel Tempering

Parallel tempering employs multiple parallel Markov chains at different temperatures to work with samples

from multiple tempered posterior distributions (e.g., Earl & Deem, 2005; Geyer, 1991; Swendsen & Wang,

1986). In the temperature system, cold chains with precise sampling may become trapped in local models
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and/or progress too slowly because they must use narrow proposal distri-

butions to achieve a meaningful acceptance rate. In contrast, the hot

chains are capable of sampling in a large model space due to their flatter

and broader likelihood, which allows them to use wide proposal distribu-

tions. Therefore, parallel tempering can help the cold chain with unit tem-

perature (also called the target chain) achieve good sampling by swapping

solutions between cold chains and hot chains. This leads to improvedmix-

ing, and hence to better exploration. Many studies have proven that paral-

lel tempering is superior to simple Monte Carlo and simulated annealing

in the reconstruction of random fields (e.g., Earl & Deem, 2005;

Makrodimitris et al., 2002; Moreno et al., 2003;Wang et al., 2015). The pro-

cedure of the algorithm can be described as below:

1. First, design a temperature ladder T1< T2<…< Ti…<Tn, with T1¼ 1,

then the posterior πt(u) gets flattened toward the prior by temperatures

πtðuÞ ∝ LðuÞ
1
TpðuÞ (14)

2. Then, for the ith chain with temperature Ti, the acceptance probability

aðuki ; v
k
i Þ in Equation 6 turns into

aðuki ; v
k
i Þ ¼ min 1;

Lðvki Þ

Lðuki Þ

� �

1
Ti

∗
pðvjÞ ∗ qðvj; uiÞ
pðuiÞ ∗ qðui; vjÞ

( )

(15)

3. Last, for any two chains with temperatures Ti and Tj, at intervals of
1

d
steps (where d is a swap proposal

frequency), swaps are proposed between cold chains and hot chains, with swap acceptance probability

as(ui, uj).

asðui; ujÞ ¼ min 1;

LðujÞ
1
Ti ∗ pðujÞ ∗ qðuj; uiÞ ∗ LðuiÞ

1
Tj ∗ pðuiÞ ∗ qðui; ujÞ

LðuiÞ
1
Tj ∗ pðuiÞ ∗ qðui; ujÞ ∗ LðujÞ

1
Ti ∗ pðujÞ ∗ qðuj; uiÞ

( )

(16)

2.3. pCN‐PT

In this work, we take advantage of pCN‐MCMC in efficiently dealing with highly resolved multi‐Gaussian

problems and explore parallel tempering for improving efficiency by faster mixing. Therefore, we blend

pCN‐MCMC and parallel tempering to develop a new fast MCMC algorithm named pCN‐PT. On the basis

of the above algorithms, the pCN‐PT algorithm can be summarized as follows:

1. Set initial realizations u0i ; u
0
i ∼ Nð0; CÞ, a temperature ladder T1< T2<…< Ti<…< Tn, with T1¼ 1, a

jumping factor ladder β1< β2<…< βi<…< βn, with βn< 1, where i is the number of chain, i∈ (1,n),

and a swap proposal frequency d. Note that, to make an acceptance rate close to optimal for each chain,

the jumping factor should increase with increasing temperature.

2. Generate a pCN proposal vki at the kth sampling iteration and for all chains i¼ 1,… , n,

vki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2i

q

uki þ βiε
k
i ; ε

k
i ∼ Nð0; CÞ (17)

3. For each chain i, set uk þ 1
i ¼ vki with acceptance probability aðuki ; v

k
i Þ,

aðuki ; v
k
i Þ ¼ min 1; exp

ϕðvki Þ−ϕðuki Þ

T i

� �� �

(18)

4. Otherwise, set uk þ 1
i ¼ uki .

Figure 1. Distribution of pumping and observation wells used in

computational experiments. Red circles denote observation wells; blue

asterisks denote pumping wells.

Table 1

Pumping Wells Used for Computational Experiments

Well number Grid position Pumping rate (m
3
/day)

#1 (10,47) 120

#2 (70,47) 70

#3 (40,71) 90

#4 (40,21) 90
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5. For any pairs of chains, for example, ith and jth chain, if
k

d
¼ integer, swap values between pairs of chains

uki ⇋ ukj with swap acceptance probability asðu
k
i ; u

k
j Þ,

asðu
k
i ; u

k
j Þ ¼ min 1; exp ϕðukj Þ−ϕðuki Þ


 �

∗
1

T i

−

1

T j

� �� �� �

(19)

6. k→ k+ 1.

The tuning parameters of pCN‐PT are the number n of chains, the temperature ladder T1,… , Tn, the jump-

ing factor ladder β1,… , βn, and the swap proposal frequency d. How to handle these tuning parameter values

and the settings in our later application can be found in section 3.3.

2.4. Simple Kriging

In this work, we will use simple kriging to construct an analytical test case. Simple kriging is a best linear

unbiased estimator assuming the first moment over the entire domain to be a known constant and the cov-

ariance to be stationary (e.g., Deutsch & Journel, 1998; Remy et al., 2009). The main difference between sim-

ple kriging and ordinary kriging is that the mean is known for simple kriging, whereas it is unknown for

ordinary kriging.

Simple kriging is a linear estimator, meaning the difference between the estimate û0 and mean m is a

weighted linear combination of the difference between the neighboring data ui and mean m,

û0 ¼ mþ ∑
n

i¼1

λi ∗ ðui þ εi −mÞ; i ¼ 1; 2; …; n (20)

where λi and εi denote the kriging weight and measurement data error for the ith data position, respec-

tively; m is the mean. As can be seen from the presence of εi, we adopt the version for imprecise data,

so that a comparison with a method that assumes a likelihood (our MCMC) is meaningful.

The weights are found by solving the simple kriging equation system:

∑
n

j¼1

λj ∗ Ci; j þ λiσ
2
ε ¼ Ci; 0 (21)

whereCi,j corresponds to the covariance between the pairs of random vari-

ables at positions i and j (i and j are measurement locations); Ci,0 corre-

sponds to the covariance between the pairs of random variables at

positions i and position 0 (0 is a position for which an estimation is

required); σ2ε is the variance of data error.

The estimation variance is then given by

Figure 2. Reference (left) lnK field and reference piezometric (right) head solution.

Table 2

Parameters of the Random Functions Describing the Heterogeneity of lnK

Mean Variogram type λmax λmin Std.dev Angle

Reference −2.5 Exponential 2,000 1,500 2 135

Note. λmax and λmin are the correlation ranges in the x and y directions.
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σ2R ¼ C0; 0 þ ∑
n

j¼1

∑
n

i¼1

λiλjCi; j − 2∑
n

i¼1

λiCi; 0 þ ∑
n

i¼1

λ2i σ
2
ε (22)

where C0,0 is the variance of the random variables.

In our current context, the kriging estimate is the exact posterior mean, and the estimated variance is the

exact posterior variance of the inverse problem stated in Equation 1, if the prior is multivariate Gaussian

with constant, known mean, if the likelihood is independent and identically distributed Gaussian with var-

iance σ2n, and if the data are direct point observations of the unknown u.

2.5. Rejection Sampling

Rejection sampling is a basic technique used to draw samples from almost arbitrary distributions by select-

ing, accepting, or rejecting samples from a proposal distribution. In the Bayesian setting of Equation 1, it is a

simple but computationally expensive method that can provide independent and unbiased samples from a

posterior distribution (e.g., Tarantola, 2005; von Neumann, 1951). Rejection sampling is very efficient in

many low‐dimensional problems, but may be difficult in high‐dimensional problems. This is because propo-

sal distributions typically become less efficient in higher dimensions, which can make the acceptance rate

dramatically low (Tarantola, 2005). For Bayesian updating, the algorithm can be described as follows:

1. Generate an ensemble of samples uk, k∈ (1,n) from the prior p(u) as proposals.

2. Calculate the acceptance probability P(uk), which is a function of the ratio of the likelihood L(uk) to the

supremum Lmax of the sampled likelihoods,

PðukÞ ¼
LðukÞ

Lmax
(23)

3. Accept uk with probability P(uk), otherwise reject.

We will use rejection sampling for comparison as reference solution, because it is unbiased and provides

independent samples, while MCMC is only asymptotically unbiased and can only provide dependent

samples along its domain. To escape the problems that rejection sampling can have in high dimensions,

we will have to limit the corresponding test case to only a few and weakly

informative data, such that the prior distribution is still an efficient propo-

sal distribution for the posterior.

2.6. Testing Criteria

As testing criteria, we use (1) the closeness of posterior samples uk or pos-

terior mean fields to a synthetic reference field uref, (2) the attained

log‐likelihoods for the closeness to the synthetic data, and (3) a conver-

gence metric for MCMC chains.

First, we evaluate the goodness of the generated sampling fields using the

root‐mean‐square error (RMSE) against the synthetic reference field,

Table 3

Definition of Scenarios

Method

Scenario Sampling iterations Kriging Rejection‐sampling pCN‐PT pCN‐MCMC

25 lnK measurements S1 400,000 √
(std.dev ¼ 0.02) S2 400,000 √
Two head measurements S3 2,000,000 √
(std.dev ¼ 1.5) S4 400,000 √

S5 400,000 √
25 head measurements S6 800,000 √
(std.dev ¼ 0.05) S7 800,000 √

Table 4

(Base) Jumping Factor and (Base) Temperature Used to Construct Ladder

in pCN‐PT (S2, S4, S6) and pCN‐MCMC (S5, S7)

Scenario Jumping factor Temperature

S2 0.765 1.73

S4 0.97 1.06

S5 0.53

S6 0.78 1.76

S7 0.005
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RMSEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
N

j¼1

ðurefj − ukj Þ
2

s

(24)

whereN is the number of model gridblocks;u
ref
j is the value of the reference field at the jth gridblock;ukj is the

value of the samplingfield at the jth gridblock in the kth iteration. As a globalmatrix independent of k, we can

also use Equation 24 with the posterior mean field. When comparing samples to the kriging solution, we will

use the posterior mean fields from MCMC and assess the RMSE against the kriging solution.

Second, for log‐likelihood, we simply take the log‐likelihood from Equation 11.

Third, for convergence, a major consideration for any MCMC chain is whether it is long enough to converge

and fully explore the target posterior. Here, we evaluate the convergence of multiple independent MCMC

runs using the Gelman‐Rubin convergence diagnostic (Gelman et al., 2013; Gelman & Rubin, 1992). For

each model parameter, the convergence is quantified using the potential scale reduction factor R̂ by compar-

ing the estimated between‐chain and within‐chain variances. The reader is referred to the literature (Brooks

& Gelman, 1998; Gelman & Rubin, 1992) for a detailed description of the method:

R̂ ¼

ffiffiffiffiffi

V

W

r

(25)

where V is the estimated variance of the stationary distribution as a weighted average of the within‐chain

(W) and between‐chain (B) variance

V ¼ 1 −
1

n
W þ

1

n
B (26)

where

Figure 3. The maps show the estimates and std.dev obtained analytically by simple kriging (top row, S1) and obtained by

pCN‐PT (bottom row, S2). The locations of the 25 lnK measurements are also displayed on the maps.
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W ¼
1

mðn − 1Þ
∑
m

i¼1

∑
n

k¼1

ðuki − ūiÞ
2 (27)

B ¼
n

m − 1
∑
m

i¼1

ūi −
1

m
∑
m

i¼1

ūi

� �2

(28)

where m is the number of multiple independent chains; n is the number of samples in each chain; ūi is the

mean of samples for the ith chain. Note that the samples we mention here are the second half of samples

in each chain, already discarding the burn‐in period.

3. Application

3.1. Setup

For testing our proposed pCN‐PT method, we consider fully saturated, steady‐state groundwater flow in a

synthetic confined, two‐dimensional aquifer in a 5,000 m by 5,000 m domain with 50 m thickness. It is dis-

cretized into 100 by 100 by 1 cells, where each cell is 50 m by 50m by 50m. The west and the east boundaries

are specified head boundaries, with heads fixed at 20 and 0m, respectively; the north and the south bound-

aries are impermeable. Four pumping wells are located in the domain, as can be seen in Figure 1. The exact

locations and pumping rates are provided in Table 1. A reference log‐conductivity field is generated follow-

ing a multi‐Gaussian distribution with mean −2.5 ln [m/day] and standard deviation (std.dev) 2 ln [m/day]

Figure 4. The 25 lnK measurements. (top left) Log‐likelihood, (top right) RMSE, (bottom left) the evolution of mean (blue) and maximum (red) potential scale

reduction factor, and (bottom right) potential scale reduction factor field obtained by pCN‐PT (S2). The red dashed line, pink dashed line, and black dash‐diamond

line in the figure of the log‐likelihood correspond to the log‐likelihood of the reference and kriging, and the mean of the log‐likelihood for pCN‐PT (S2),

respectively; the pink dashed line and black dash‐diamond line in the figure of the RMSE correspond to the RMSE of kriging and the mean of the RMSE for

pCN‐PT (S2); the red dashed line, the blue line, and the brown line in the evolution of mean and maximum potential scale reduction factor correspond to the value

1.2, the mean value and the maximum value for posterior samples, respectively.
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(Figure 2), using a sequential Gaussian simulation module (SGSIM) of the GSLIB software (Deutsch &

Journel, 1998). The details of the parameters used to generate the reference field are provided in Table 2.

The steady‐state groundwater flow Equation 29 is solved by using the groundwater flow simulator

MODFLOW (McDonald & Harbaugh, 1988):

∇ · ðK∇HÞþq ¼ 0 (29)

where∇· denotes the divergence operator;K is the hydraulic conductivity [m/day];∇ is theNabla operator;H

denotes piezometric head [m], and q is the volumetric injection flow rate per unit volume of aquifer [1/day].

3.2. Testing Scenarios

In this work, seven scenarios are designed to test the pCN‐PT method for Bayesian inference of

multi‐Gaussian random fields in different situations. They can be grouped into three categories: (1) a

Figure 5. Two head measurements. Mean and std.dev of 10,728 accepted lnK realizations obtained by rejection sampling

(top row, S3), lnK realizations obtained by pCN‐PT (middle row, S4), and pCN‐MCMC (bottom row, S5).
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Figure 6. Two head measurements. Log‐likelihood, RMSE, the evolution of mean (blue) and maximum (red) potential scale reduction factor and potential scale

reduction factor field obtained by pCN‐PT (top 2 rows, S4) and pCN‐MCMC (bottom 2 rows, S5). The red dashed line, pink dashed line, and black

dash‐diamond line in the figure of the log‐likelihood correspond to the log‐likelihood of the reference, and the mean of the log‐likelihood for rejection sampling

(S3), pCN‐PT (S4), or pCN‐MCMC (S5), respectively; the pink dashed line and black dash‐diamond line in the figure of the RMSE correspond to the mean of the

RMSE for rejection sampling (S3), pCN‐PT (S4), or pCN‐MCMC (S5); the red dashed line, the blue line, and the brown line in the evolution of mean and

maximum potential scale reduction factor correspond to the value 1.2, the mean value, and the maximum value for posterior samples, respectively.
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high‐dimensional, linear problem; (2) a high‐dimensional, nonlinear problem with only few measurements;

(3) and a high‐dimensional, nonlinear problem with many measurements. The first category serves to

compare the performance of pCN‐PT (scenario S2) against an accurate analytical solution obtained by

simple Kriging (scenario S1). Therefore, we only consider 25 direct measurements of lnK (no head data)

at the positions marked with red circles in Figure 1. The second category is designed to allow a

high‐fidelity reference solution by rejection sampling (scenario S3). Here, we can test pCN‐PT (scenario

S4) and pCN‐MCMC (scenario S5) against rejection sampling, but only in a low‐information regime with

two head measurements (labeled as positions #5 and #6 in Figure 1) and with large measurement errors

that lead to a wide likelihood function. Finally, the last category serves to test pCN‐PT (scenario S6)

against pCN‐MCMC (scenario S7) on a problem with 25 more accurate head measurements. The details

of scenarios can be found in Table 3.

For scenarios S2 and S6 and S7 conditioned to 25 measurements, 800,000 MCMC realizations are generated

and saved every 20 realizations. For scenarios S4 and S5 conditioned to two head measurements, 400,000

MCMC realizations are generated, again saved every 20 realizations. For scenario S3 performed by rejection

sampling, we generate 2,000,000 sampling realizations due to its dramatically low acceptance rate even with

a high std.dev for themeasurement error. There are only 10,728 realizations accepted. For all scenarios tested

by pCN‐PT or pCN‐MCMC (S2 and S4–S7), we discard the first half of all sampling realizations as a burn‐in

period, and the calculation of mean, std.dev, and scale reduction factor R rests on the second half of sampling

realizations. Besides, the potential scale reduction factor R is calculated for each grid of a posterior sampler.

3.3. Algorithmic Settings

Many studies have indicated that the optimal acceptance rate forMCMC‐basedmethods is close to 23.4% and

that acceptance rates between 10% and 40% perform close to optimal (e.g., Gelman et al., 1996; Roberts et al.,

Figure 7. Histogram. The histogram of the reference lnK field (top row), the histogram obtained by pCN‐PT (bottom left, S6), and pCN‐MCMC(bottom right, S7).

The vertical dashed line indicates the mean of the random functions used in the SGSIM.
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1997, 2001). There are also many analyses for the optimal acceptance swap rate for parallel tempering.

However, there is no well‐recognized optimal setting. The optimal acceptance swap rate differs with

respect to the specific applications, such as, Rathore et al. (2005) found an optimal acceptance swap rate at

20%, whereas Predescu et al. (2005) and Laloy et al. (2016) mentioned optimal acceptance swap rates at

39% and 8%, respectively. In this work, we control the acceptance rate in a range from 20% to 30% and the

swap acceptance rate in a range from to 10% to 30% by adjusting the jumping factor and temperature

ladders. For scenarios S2, S4, and S6 using pCN‐PT, we run 20 parallel chains for each scenario. Each

chain runs independently on a dedicated computing node, and data commutation only occurs for

between‐chain swaps. Hence, if the number of sampling iterations is the same, the computational wall

clock time for pCN‐PT and pCN‐MCMC is almost the same. For constructing the temperature ladder, the

temperatures increase exponentially with a base temperature (larger than 1) and powers increasing by

integers from 0 to 19, while the jumping factors increase exponentially with a base jumping factor (less

than 1) and powers decrease by integers from 20 to 1. The base jumping factors and base temperatures for

scenarios S2, S4, and S6 as well as the jumping factors for scenarios S5 and S7 can be found at Table 4.

4. Results

4.1. Comparison to Kriging (S1 and S2)

Figure 3 shows the estimatedmulti‐Gaussian lnK field and the corresponding std.dev obtained by simple kri-

ging (top row, S1) and the ensemble mean and std.dev of the last 200,000 sampling lnK realizations obtained

by pCN‐PT (bottom row, S2). We can see, obviously, that both results capture the main features of the refer-

ence field and look very similar. Additionally, the std.dev around the conditioning points is close to zero.

Even so, the area with small std.dev for scenario S2 is a bit larger than that for scenario S1. This demonstrates

qualitatively that pCN‐PT is capable of estimating a multi‐Gaussian random field in a high‐dimensional lin-

ear problem.

Figure 8. The maps show the mean and std.dev of lnK realizations obtained by pCN‐PT (top row, S6) and pCN‐MCMC

(bottom row, S7). The locations of the 25 head measurements are also displayed on the maps.
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Figure 9. The 25 head measurements. RMSE, the evolution of mean (blue) and maximum (red) potential scale reduction factor and potential scale reduction

factor field obtained by pCN‐PT (top 2 rows, S6) and pCN‐MCMC (bottom 2 rows, S7). The red dashed line and black dash‐diamond line in the figure of the

log‐likelihood correspond to the log‐likelihood of the reference and the mean of the log‐likelihood, respectively; the black dash‐diamond line in the figure of the

RMSE corresponds to the mean of the RMSE; the red dashed line, the blue line, and the brown line in the evolution of mean and maximum potential scale

reduction factor correspond to the value 1.2, the mean value, and the maximum value for posterior samples, respectively.
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Figure 4 shows the log‐likelihood (upper left), RMSE (upper right), themean andmaximumpotential scale r-

eduction factor R (lower left), and the spatially resolved potential scale reduction factor R field (lower right)

for the target chain obtained by pCN‐PT (S2). The log‐likelihood and RMSE for the kriging estimates and the

mean of the log‐likelihood and RMSE for pCN‐PT are also included. From the log‐likelihood and RMSE

results, we can see that the burn‐in and convergence to the reference log‐likelihood is very fast, the mean

of the log‐likelihood for pCN‐PT is close to that of the reference, and the log‐likelihood and RMSE for kriging

are smaller than the mean of those for pCN‐PT. Besides, the potential scale reduction factor R keeps decreas-

ing and drops below the recommended value of 1.2 already at around 135,060 sampling iterations. It means

that a stationary distribution can be achieved after around 135,060 sampling iterations.

4.2. Comparison to Rejection Sampling (S3, S4, and S5)

To make rejection sampling accessible as feasible reference solution algorithm, we selected only two head

data values, and we widened the likelihood by manual trial and error. We enlarged the std.dev of the mea-

surement error to 1.5, and the acceptance rate of rejection sampling increased to 0.5364% with 10,728 sam-

pling realizations accepted in 2,000,000 iterations. This is a compromise between a suitably large number of

accepted realizations versus an unrealistically large measurement error. Figure 5 shows the ensemble mean

and std.dev of 10,728 accepted realizations obtained by rejection sampling (top row, S3), and the ensemble

mean and std.dev obtained by pCN‐PT (middle row, S4) and pCN‐MCMC (bottom row, S5), respectively.

As can be expected whenmeasurement error is large, themean of the estimates is smooth with a large uncer-

tainty in most parts of the domain, where the std.dev is close to the prior std.dev of 2. Figure 6 shows the

log‐likelihood, RMSE, the mean and maximum potential scale reduction factor R, and spatially resolved

potential scale reduction factor R field for the target chain obtained by pCN‐PT (top 2 rows, S4) and

pCN‐MCMC (bottom 2 rows, S5). We can see from Figures 5 and 6, that the estimates are similar for the

three methods, pCN‐PT and pCN‐MCMC burn in fast. The mean of the log‐likelihood for the three methods

is smaller than the reference, but the mean of the log‐likelihood for pCN‐PT and pCN‐MCMC is much closer

to the reference. Plus, the mean of the RMSE for the rejection sampling overlaps that for pCN‐PT and pCN‐

MCMC. When comparing the convergence between pCN‐PT and pCN‐MCMC (Figure 6), we can see that

parallel tempering really helps to improve pCN‐MCMCwith better mixing (the potential scale reduction fac-

tor R of pCN‐PT drops below the value of 1.2 around 940 sampling iterations, while the potential scale reduc-

tion factor R of pCN‐MCMC needs 2,200 sampling iterations to drop below the value of 1.2). It demonstrates

that pCN‐PT can deal with high‐dimensional, nonlinear problems as accurate as rejection sampling, but

more efficient than rejection sampling and pCN‐MCMC. We also show these results for scenarios S4a and

S5a in Figures A1 and A2 in Appendix A. The setting of scenarios S4a and S5a is the same as that of scenarios

S4 and S5, respectively, except that the std.dev of measurement error is 0.05 instead of 1.5. The figures in the

appendix display that for the case of the std.dev of the error of 0.05, the estimates get closer to the reference.

However, comparison for rejection sampling is impossible, so we refer to the next section for performance

assessment in realistic cases.

4.3. Convergence in a Realistic Case (S6 and S7)

Figure 7 shows the histogram of the reference lnK field and the histogram for pCN‐PT and pCN‐MCMC.We

can observe that the Gaussianity for both methods is preserved and similar to the reference one. Figure 8

shows themean, std.dev of lnK sampling realizations for pCN‐PT (S6) and pCN‐MCMC (S7). We can see that

both methods can capture the main features of the reference lnK field, and the mean obtained by pCN‐PT

(S6) is a bit smoother. Figure 9 shows the log‐likelihood, RMSE, the mean and maximum potential scale

reduction factor R, and spatially resolved potential scale reduction factor R field for the target chain of the

two methods for comparison. As anticipated in the visual analysis, the log‐likelihood for pCN‐PT (S6) con-

verges faster and is closer to the reference than the one for pCN‐MCMC (S7) and the mean of the

log‐likelihood for both methods is close to the reference. Moreover, the RMSE for pCN‐PT (S6) decreases

much faster and converges more quickly. Overall, pCN‐PT shows a better mixing and faster burn‐in than

pCN‐MCMC. Besides, as we can see in Figure 9, the potential scale factor R for pCN‐PT (S6) keeps decreas-

ing with the increase of the length of the chain, and after 800,000 sampling iterations, the potential scale fac-

tor R can reduce to less than 1.2 in most parts of the domain. However, for pCN‐MCMC (S7), although the

potential scale factor R also decreases as the length of the chain increases, it is still larger than 1.2 in most

parts of the domain at the end of our chain solution runtime. This shows that pCN‐PT can arrive at the
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stationary distribution faster than pCN‐MCMC. Given this analysis, we can conclude that pCN‐PT can han-

dle high‐dimensional nonlinear problems better than pCN‐MCMC.

5. Summary and Discussion

In this study, a pCN‐PT algorithm has been developed and we have demonstrated that it works more effi-

ciently than rejection sampling and pCN‐MCMC for Bayesian inversion of multi‐Gaussian hydraulic con-

ductivity fields. Besides, we have also demonstrated it can be used to deal with multi‐Gaussian random

fields in both high‐dimensional linear problems and high‐dimensional nonlinear problems. Note that the

simulation problem in this paper is relatively high dimensional compared to the number of parameters

which has been estimated until now in other MCMC‐applications in groundwater hydrology. For

real‐world problems we will often have to estimate more uncertain parameters, as the number of grid cells

is larger and there are more unknown variables.

Especially, the main focus of this study is to evaluate the accuracy and efficiency of pCN‐PT in the estimation

of multi‐Gaussian random fields. In our follow‐up research, we plan to design and implement a suite of

well‐defined benchmark scenarios for stochastic inversion and will invite interested researchers in testing

their approaches (such as pCN‐PT, MCMC‐based methods; e.g., DREAM, Vrugt et al., 2008, 2009), the

ensemble Kalman filter, and the inverse sequential simulation for joint scenarios. This will allow to evaluate

and discuss the drawbacks and benefits of the approaches based on the comparisons.

In terms of the results, parallel tempering is clearly helpful for improving the performance of pCN‐MCMC.

How to design an optimal temperature configuration is still an ongoing discussion (e.g., Atchadé et al., 2011;

Carter & White, 2013). Here, we choose an exponential distribution for temperatures and the details can be

found in section 3.3. There may be other optimal temperature configurations. If others exist, the configura-

tion in this work can be treated as a benchmark for the comparison.

In this study, we implemented the algorithms running in a hybrid parallel environment. Although this par-

allel computer architecture is helpful to improve the computational efficiency, there is a tradeoff between

includingmore processors and increasing the efficiency of the calculations, which is related to the increasing

communication cost between different processors for problems where many processors are used.

Appendix A

In the above context, we have showed the results of scenarios S4 and S5 with high std.dev of the measure-

ment error in Figures 5 and 6. But the high uncertainty of the measurement error induces a large uncertainty

Figure A1. Two head measurements. Mean and std.dev of lnK realizations for scenarios (top row) S4a and

(bottom row) S5a.
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Figure A2. Two head measurements. Log‐likelihood, RMSE, the evolution of mean (blue) and maximum (red) potential scale reduction factor, and potential scale

reduction factor field obtained by pCN‐PT (top 2 rows, S4a) and pCN‐MCMC (bottom 2 rows, S5a). The red dashed line and black dash‐diamond line in the

figure of the log‐likelihood correspond to the log‐likelihood of the reference and the mean of the log‐likelihood, respectively; the black dash‐diamond line in

the figure of the RMSE corresponds to the mean of the RMSE; the red dashed line, the blue line, and the brown line in the evolution of mean and

maximum potential scale reduction factor correspond to the value 1.2, the mean value, and the maximum value for posterior samples, respectively.
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for Bayesian inversion of log Gaussian hydraulic conductivity fields. And there is no big difference between

pCN‐PT and pCN‐MCMC from the three figures. Here, we show the results of two new scenarios S4a and S5a

in Figures A1 and A2, which have the same settings as scenarios S4 and S5, respectively, just replacing the

std.dev of the measurement error 1.15 with a low value of 0.05.

Data Availability Statement

Codes and related data are available from this site (https://data.mendeley.com/datasets/9zphw6c8xx/ draft?

a¼34ae2274-f505-4bff-84ed-305d22c3b752).
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C Contribution 3: Bayesian inversion
of multi-Gaussian log-conductivity
fields with uncertain
hyperparameters: an extension of
preconditioned Crank‐Nicolson
Markov chain Monte Carlo with
parallel tempering





1. Introduction

The characterization of hydraulic properties of aquifers and soils is essential to better predict water flow in 

the subsurface and the transport of heat or solutes. Typically, not enough direct data (e.g., hydraulic con-

ductivity) are available to characterize the heterogeneous subsurface. Thus, additional indirect data (e.g., 

hydraulic heads) are important for improving characterization and, in turn, predictions by subsurface flow 

and transport models. In the geostatistical context, the resulting inverse problem for subsurface problems 

is typically underdetermined. Therefore, approaches were developed which limited the number of inde-

pendent parameters to be estimated, either by defining a limited number of zones with constant parameters 

(Carrera & Neuman, 1986) or parameterizing the spatially variable parameter field by a geostatistical func-

tion with a few unknown parameters (Kitanidis & Vomvoris, 1983). Later, methods were formulated to es-

timate a series of equally likely solutions to the groundwater inverse problem, either by an ensemble-based 

variational data assimilation approach (Gómez-Hernández et al., 1997) or by a sequential data assimilation 

approach for an ensemble of random parameter fields (Chen & Zhang, 2006). In summary, the combination 

of regularization and casting the problem in a stochastic framework, helped to tackle groundwater inverse 

problems.

Bayesian inversion has been widely used for model parameter inference (Bui-Thanh et al., 2013; Buland & 

Omre, 2003; Cotter et al., 2009; Mariethoz et al., 2010; Stuart, 2010). However, it is often not trivial to define 

Abstract In conventional Bayesian geostatistical inversion, specific values of hyperparameters 

characterizing the prior distribution of random fields are required. However, these hyperparameters 

are typically very uncertain in practice. Thus, it is more appropriate to consider the uncertainty of 

hyperparameters as well. The preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel 

tempering (pCN-PT) has been used to efficiently solve the conventional Bayesian inversion of high-

dimensional multi-Gaussian random fields. In this study, we extend pCN-PT to Bayesian inversion 

with uncertain hyperparameters of multi-Gaussian fields. To utilize the dimension robustness of the 

preconditioned Crank-Nicolson algorithm, we reconstruct the problem by decomposing the random 

field into hyperparameters and white noise. Then, we apply pCN-PT with a Gibbs split to this “new” 

problem to obtain the posterior samples of hyperparameters and white noise, and further recover the 

posterior samples of spatially distributed model parameters. Finally, we apply the extended pCN-PT 

method for estimating a finely resolved multi-Gaussian log-hydraulic conductivity field from direct data 

and from head data to show its effectiveness. Results indicate that the estimation of hyperparameters 

with hydraulic head data is very challenging and the posterior distributions of hyperparameters are only 

slightly narrower than the prior distributions. Direct measurements of hydraulic conductivity are needed 

to narrow more the posterior distribution of hyperparameters. To the best of our knowledge, this is a first 

accurate and fully linearization free solution to Bayesian multi-Gaussian geostatistical inversion with 

uncertain hyperparameters.
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the prior distribution, for example, there may not be enough information to confidently determine the prior 

mean and prior variance (Malinverno & Briggs, 2004). In addition, in subsurface hydrological problems, we 

are typically dealing with heterogeneous parameter fields (e.g., hydraulic conductivity) to be estimated, and 

we need to define a spatial covariance function which characterizes this spatial variability. The hyperparam-

eters that define the spatial covariance function (e.g., nugget, range, and sill) are typically very uncertain. 

This uncertainty roots back to the limited amount of direct measurements of the parameter of interest, to 

very incomplete geological information and to the absence of geophysical surveys that could provide indi-

rect information on spatial correlation structures. Nevertheless, the large majority of geostatistical inversion 

studies does not consider hyperparameter uncertainty.

A seminal cornerstone to tackle this problem was the quasi-linear geostatistical approach by Kitanid-

is (1995), where parameters that govern the covariance function are jointly iterated with the spatial het-

erogeneous field of transmissivity. This approach actually includes the restricted maximum likelihood al-

gorithm to update the hyperparameters for the spatial covariance model. It provides a first-order estimate 

of hyperparameters, together with a first-order variance to specify the remaining hyperparameter uncer-

tainty. However, most of the published studys using the quasi-linear geostatistical approach did not imple-

ment the estimation of the hyperparameters, with only few exceptions (Malinverno & Briggs, 2004; Nagel 

& Sudret, 2016; Nowak & Cirpka, 2006; Woodbury & Ulrych, 2000). Another geostatistical approach, the 

successive linear estimator (Yeh et al., 1996; Zha et al., 2018), updates the spatial covariance using the pos-

terior covariance, which is sort of similar to the update of hyperparameters, if the inverted data are strong 

enough to dominate over the prior. Recently, Zhao and Luo (2021a) also used the posterior covariance for 

the correction of biased prior hyperparameters.

Many hydrogeological practitioners may just want the best-estimate solution to an inverse problem, not its 

uncertainty. Yet, as the hyperparameters govern the structure of the best estimate, it is still important to es-

timate them well (i.e., linearization-free). This is important due to several reasons: (a) the hyperparameters 

control the regularization of the best-estimate inversion result by the prior covariance, and thus should be 

chosen well; (b) they are the only information available about the spatial variability unresolved by the best 

estimate, which appears both in the estimation variance and in the structure of conditional realizations; (c) 

both the resolved structure and the unresolved heterogeneity are highly important for predicting scale-sen-

sitive processes such as contaminant transport. This third reason becomes apparent in classical studies on 

macrodispersion (Dagan, 1988), on effective dispersion and contaminant dilution (Dentz et al., 2000), and 

in the fact that transport simulations on best-estimate fields clearly lack dispersion (Cirpka & Nowak, 2003; 

Nowak & Cirpka, 2006). One may argue whether one needs to know the values of hyperparameters as such. 

But one must know the structure, and the structure is governed by the hyperparameters.

Once acknowledging the relevance of inferring the structure (i.e., the hyperparameters), the joint estima-

tion problem of hyperparameters and random field is an extended Bayesian inversion, which is also known 

as “hierarchical Bayes” (Gelman et al., 2013), where the hyperparameters are also uncertain. Now, the final 

result of Bayesian inversion will be the joint posterior distribution of model parameters and hyperparame-

ters that govern the spatial covariance function.

When sufficient data are available, the joint posterior distribution will be dominated by the data. Several 

studies did synthetic test cases to show that enough information can override a “wrong fixed” choice of 

hyperparameters (if not too far off), especially EnKF-based studies (Li et al., 2012). However, in real-world 

applications, this situation will hardly appear: Research sites such as MADE (Boggs et al., 1992) or Borden 

Airforce Base (Sudicky, 1986) have a dense enough instrumentation, but practical sites (e.g., in remediation 

Troldborg et al., 2012) do not.

In most cases, it is not possible to get an analytical expression of the posterior distribution in hierarchical 

Bayes, especially for a nonlinear inverse problem. The above studies all rest on linearization concepts and 

then utilize an analytical first-order expression in an iterative scheme. At large variances and for strongly 

nonlinear problems, these methods have limitations. A widely used method to approximate the inverse 

solution is the sampling method Markov chain Monte Carlo (MCMC). Within MCMC, the random field is 

discretized to enable numerical computation. However, a refinement of the discretization (or an increase 

of the problem size), resulting in more parameters to be estimated, will usually lead to slower convergence 
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rates of plain MCMC methods, such as the Metropolis-Hastings algorithm (Hastings,  1970; Metropolis 

et al., 1953). In the literature, different approaches have been presented to overcome this challenge. The 

pre-conditioned Crank Nicolson MCMC (pCN-MCMC) (Cotter et al., 2013) is one of these approaches. Its 

main advantage is that the acceptance probability for proposed solutions only depends on the proposal's 

likelihood to match with the data, not on the proposal's position in the prior distribution. However, when 

pCN-MCMC is applied to nonlinear inverse problems with multi-modal posterior distributions, it may still 

need a long chain and a large potential space may still be missed since the MCMC simulation proceeds 

by local jumps in the vicinity of the current state (Robert et al., 2018). To deal with this problem, parallel 

tempering (Altekar et al., 2004; Earl & Deem, 2005) is a good candidate, which runs multiple chains with 

different temperatures simultaneously. The hot chains can more easily explore the whole parameter space, 

while the cold chains perform precise sampling in high-likelihood regions of the parameter space.

In a previous study (Xu et  al.,  2020), pCN-MCMC was combined with parallel tempering (pCN-PT) for 

Bayesian inversion of multi-Gaussian fields with fixed hyperparameters. The focus was to gain efficiency 

by combining these two ideas, while still focusing on the simpler problem with fixed hyperparameters. In 

this study, we will extend pCN-PT to Bayesian inversion with uncertain hyperparameters of multi-Gaussian 

fields. That means, our focus now is to extend the applicability of the highly efficient pCN-PT to a harder, 

wider and more realistic problem. If we apply pCN-MCMC or pCN-PT to the extended Bayesian inversion 

directly, the acceptance probability would still depend on the prior (Malinverno, 2002), which destroys the 

efficiency trick of pCN. To let the acceptance probability only depend on the likelihood, we will reconstruct 

the problem, that is, we decompose the random field model parameters into hyperparameters and white 

noise. The latter, after coloring through the covariance function, represents the subsurface field of hydraulic 

properties. Then, we have a “new” problem with hyperparameters and white noise as the primary inver-

sion parameters. Thanks to this reconstruction, the acceptance probability is now only depending on the 

likelihood when using pCN-MCMC or pCN-PT. This allows to approach the hyperparameter inversion and 

the white noise inversion with specialized sub-algorithms within a joint iteration. In addition, this will also 

allow us to assess the feasibility to estimate hyperparameters. As indicated, hyperparameters are associated 

with significant uncertainty, and constraining this uncertainty by inversion is important. Previous inversion 

studies relied on linearization and it remains unclear to which degree measurement data like hydraulic 

conductivity and hydraulic heads carry enough information to reduce uncertainty with respect to hyperpa-

rameters. This study will also give more insight on the value of hydraulic conductivity and hydraulic head 

data for constraining hyperparameters with possible implications for the design of monitoring network.

The rest of this study is organized as follows. Section 2 gives the definition of the extended Bayesian in-

version problem and the extended pCN-PT method (specifically in Section 2.4). In Section 3, we introduce 

a model setup, algorithmic settings, test cases for demonstration and testing criteria. Section 4 shows the 

results. Finally, Section 5 gives the conclusion.

2. Methodology

2.1. Bayesian Geostatistical Inversion With Uncertain Hyperparameters

Our forward problem can be formulated as follows:

 ( ) ,Md θ e (1)

where M is a deterministic forward model (e.g., for groundwater flow), θ denotes the uncertain (hydraulic) 

parameters for the (groundwater flow) model, d represents the measurements, and e contains measurement 

errors. Parameter θ is a vector containing the discretized values of the random space function. The purpose 

of Bayesian geostatistical inversion is to infer the posterior distribution of uncertain parameters θ given the 

data d and prior knowledge about θ. Then, we can make a better estimation of the uncertain parameter θ.

The posterior distribution of the uncertain parameters θ can be obtained through Bayes' rule as 

(Congdon, 2003)

( ) ( | )
( | ) ( ) ( | ),

( )

p p
p p p

p
 

θ d θθ d θ d θ
d

 (2)
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where ( )p θ  is the prior distribution of the unknown (hydraulic) parameters, which describes the prior 

knowledge of θ independently of the data d; ( | )p d θ  is the likelihood function, which quantifies how proba-

ble are the measurement data d for a given realization of uncertain parameters θ; and ( )p d  is the marginal 

likelihood.

The marginal likelihood ( )p d  is a normalizing factor for the posterior distribution. Since the marginal likeli-

hood is not a function of parameters θ, it is often ignored when making inference of parameters. This allows 

writing the posterior distribution as proportional to the product of prior and likelihood, as reflected in the 

last part of Equation 2 (Duijndam, 1988; Cary & Chapman, 1988).

The prior distribution of parameters θ is dependent on some hyperparameters h, such as the mean and pa-

rameters that govern a covariance function. In a conventional Bayesian geostatistical inversion, fixed values 

are given to h. Generally, we can also let the hyperparameters have their own uncertainty and assume a 

prior distribution for them to reflect our prior knowledge of hyperparameters (Kitanidis, 1995; Woodbury 

& Ulrych, 2000). Then, we can similarly update this prior distribution and get the corresponding posterior 

distribution. This is an extended Bayesian inversion (Malinverno & Briggs, 2004), and we can get the joint 

posterior distribution of model parameters θ and hyperparameters h through Bayes' rule as

( , ) ( | , )
( , | ) ( , ) ( | , ),

( )

p p
p p p

p
 

θ h d θ h
θ h d θ h d θ h

d
 (3)

where ( , )p θ h  is the joint prior distribution of θ and h, ( | , )p d θ h  is the likelihood and ( )p d  is the marginal 

likelihood.

Using the definition of conditional distribution, we can write the joint prior and posterior distributions as

( , ) ( | ) ( ),p p pθ h θ h h (4)

( , | ) ( | , ) ( | ),p p pθ h d θ h d h d (5)

where ( )p h  and p( | )h d  are the prior and posterior distributions of h separately, while ( | )p θ h  and ( | , )p θ h d  are 

the prior and posterior distributions of θ separately for a given choice of h. We can see that the distribution 

of model parameters θ depends on hyperparameters h. Based on the joint posterior distribution of θ and h,  

we can get the marginal prior and posterior distributions of θ and h by marginalization. In general, the 

integral required for marginalization cannot be solved in closed form. This is the problem solved by Kitanid-

is (1995) by restricted maximum likelihood in successive linearization. Sampling methods, such as Markov 

chain Monte Carlo, can avoid this need for an explicit calculation of the integral, the need for restrictions 

and the need for linearization.

2.2. Markov Chain Monte Carlo

MCMC is an interesting method to get samples from a target probability distribution. It has been found to be 

well suited for Bayesian inversion problems (Besag et al., 1995; Gelman & Rubin, 1992; Grandis et al., 1999; 

Mosegaard & Tarantola, 1995; Schott et al., 1999; Tierney, 1994). Basically, MCMC algorithms construct a 

Markov chain, that is, a specific sequence of realizations of the solution where the next realization in the 

sequence only depends on the previous realization. For sampling, the equilibrium distribution of that chain 

is equal to the target distribution. To guarantee this property, the most important rule for the transition 

from the current realization to the next is that the so-called detailed balance condition has to be satisfied. 

After an initial “burn-in” period that is, influenced by the initialization of the chain (e.g., van Ravenzwaaij 

et al., 2018), the Markov chain samples the target distribution, that is, it provides a set of realizations follow-

ing the target distribution. For Bayesian inversion problems, the posterior distribution is the target distribu-

tion. We can sample it with an MCMC and then we can easily estimate any desired properties of the poste-

rior distribution, such as mean and variance or relevant probabilities. An important property of MCMC is 

its memory mechanism, which can make the Markov chain stay in the parameter space with high posterior 

probability (Malinverno, 2002). This property makes MCMC more efficient compared to other sampling 

approaches such as rejection sampling, but only if the MCMC is adapted well to the problem at hand.
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At each stage with the current sample θ, one needs to propose a candidate sample θ based on a proposal 

distribution ( | )q θ θ . Then, one needs to decide whether to accept the candidate as the next sample with the 

following acceptance probability (Hastings, 1970)

( | ) ( | )
min ,1

( | ) ( | )

( ) ( | ) ( | )
min ,1 .

( ) ( | ) ( | )

p q

p q

p p q

p p q


    
  
    
  

 


  


θ d θ θ
θ d θ θ

θ d θ θ θ
θ d θ θ θ

 (6)

If the candidate sample θ is accepted, the next sample of the chain will be changed into θ. Otherwise, the 

chain will stay at θ.

For the case of extended Bayesian inversion, we need to extend Equation 6 from θ to ( , )θ h . Then, the corre-

sponding acceptance probability can be written as

( , ) ( | , ) ( , | , )
min ,1 .

( , ) ( | , ) ( , | , )

p p q

p p q


    
  

     

 
θ h d θ h θ h θ h

θ h d θ h θ h θ h (7)

Since the model parameters θ depend on the hyperparameters h, it is intuitive to divide the proposal of a 

candidate into two steps: first propose a candidate hyperparameter set h based on the current hyperparame-

ter set h, then propose a candidate model parameter field θ based on h and on the current model parameter 

field θ. Thus, the proposal distribution can be written as (Malinverno, 2002)

( , | , ) ( | ) ( | , ).q q q    θ h θ h h h θ h θ (8)

Then, the acceptance probability can be written as

( | ) ( ) ( | , ) ( | ) ( | , )
min ,1 .

( | ) ( ) ( | , ) ( | ) ( | , )

p p p q q

p p p q q


    
  

      
  

θ h h d θ h h h θ h θ
θ h h d θ h h h θ h θ

 (9)

Generally, we can choose (almost) any proposal distribution q. However, different proposal distributions 

will affect the convergence in a given problem. Therefore, it is important to choose a proper q to have a fast 

convergence.

2.3. pCN-MCMC With Fixed Hyperparameters

pCN-MCMC (Cotter et al., 2013) combines the pCN proposal with the MCMC algorithm. It is an approach 

where the proposal automatically samples from the prior distribution if the prior is (multi-)Gaussian. A 

significant feature of the pCN-MCMC algorithm is its dimension robustness (Hairer et al., 2014), which 

makes it interesting for high-dimensional sampling problems, such as finely resolved multi-Gaussian ran-

dom fields.

In pCN-MCMC, one assumes that the prior ( )p θ  follows a multivariate normal distribution, that is, 

 ( , )Σθ μ . For these priors, the candidate sample in pCN-MCMC can be written as

       2
1 ( ) , ( , ).0 Σθ θ μ ξ μ ξ  (10)

The parameter   is a jumping factor that can be chosen freely (or optimized for statistical effi-

ciency), and it follows the constraint  0 1. The corresponding proposal can also be written as 
2 2

( | ) ( 1 ( ) , )q      Σθ θ θ μ μ . It fulfills the following condition

( | ) ( )
,

( )( | )

q p

pq


 


θ θ θ

θθ θ
 (11)

which confirms that it samples from the prior per construction. Inserting Equation 11 into Equation 6, the 

acceptance probability   can be simplified as
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( | )
min ,1 .

( | )

p

p


    
  

d θ
d θ (12)

Compared to the acceptance probability in conventional MCMC (Equation 6), the acceptance probability 

  with the pCN proposal (Equation 12) is only dependent on the likelihood. This contributes to a relatively 

large increase of efficiency, because there will be no rejections due to the prior.

2.4. Extending pCN-MCMC for Uncertain Hyperparmaeters

Now, we extend, as our key contribution, the pCN-MCMC to the case of uncertain hyperparameters while 

maintaining the highly efficient acceptance probability as in Equation 12. For the case of extended Bayesian 

inversion, we can also use the pCN proposal for q( | )h h  and ( | , )q  θ h θ . The pCN proposal of hyperparameters 

can be written as

2 2
( | ) 1 ( ) , ,h hq       

 
Σ

h h hh h h μ μ (13)

where hμ  is the mean of h, Σh is the covariance matrix of h and  0 1
h  is the jumping factor. For Equa-

tion 13, we still have the following condition

q

q

p

p

( | )

( | )

( )

( )
.




h h
h h

h
h

 (14)

The pCN proposal for the model parameters can be written as

2 2
( | , ) ( 1 ( ) , ),q      

Σ
    

μ μθ h θ θ h h h (15)

where 
μh  denotes the mean components in the hyperparameters h, 

Σ
h  denotes covariance components in 

the hyperparameters h and  0 1 is the jumping factor. However, due to the difference between h and 
h, we have

( | , ) ( | )
.

( | )( | , )

q p

pq


   


θ h θ θ h

θ hθ h θ
 (16)

Therefore, the acceptance probability will still depend on the prior. One can find more details in Malinver-

no (2002). To let the acceptance probability stay independent of the prior just as in Equation 12, we will do 

the following reconstruction.

For the model parameters θ following a conditional multivariate Gaussian distribution (for given values 

of the hyperparameter h), that is,  ( , )Σθ μ  (μ and Σ are the hyperparameters), we can rewrite (Al-

abert, 1987; Davis, 1987)

  ,θ μ Aw (17)

where  T
Σ AA ,  ( )A A h  is a matrix square root of  ( )Σ Σ h , and w  is a standard normal random vector  

(  ( , )0w I , I  is the identity matrix). We will denote w  as white noise from here onwards. We can see that 

the model parameters are decomposed into their hyperparameters h (i.e., to define μ and Σ(or A)) and white 

noise w. Then, the forward problem from Equation 1 can be rewritten as

 ( ( , )) .Md θ h w e (18)

Now, we can argue that h and w  are the “fundamental model parameters” in Equation 18. Then, we can 

infer the posterior distribution of hyperparameters h and white noise w  at first, and then reconstruct the 

posterior distribution of the original model parameters θ based on h and w  through Equation 17. In this 

fashion, the extended Bayesian inversion problem can also be rewritten as

p p p( , | ) ( , ) ( | , ).h w d h w d h w (19)

Since the hyperparameters h and white noise w  are independent, the joint prior distribution ( , )p h w  can be 

written as
( , ) ( ) ( ),p p ph w h w (20)
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and the proposal can also be written as

q q q( , | , ) ( | ) ( | ).   h w h w h h w w (21)

Therefore, the acceptance probability can be written as

  min
( ) ( ) ( | , ) ( | ) ( | )

( ) ( ) ( | , ) (

p p p q q

p p p q

     


h w d h w h h w w
h w d h w hh h w w| ) ( | )

, .
q 

1











 (22)

Now, we can use the pCN proposal for h and w  separately. The pCN proposal for h is the same as in Equa-

tion 13. The pCN proposal for w  can be written as

q
w w

( | ) ( , ),w w w I  1
2 2  (23)

Now, we will have

p

p

q

q

p

p

q

q

( )

( )

( | )

( | )
,

( )

( )

( | )

( | )
,

 


 


h
h

h h
h h

w
w

w w
w w

  (24)

and then, the acceptance probability can again be simplified as

 











min

( | , )

( | , )
, .

p

p

d h w
d h w

 
1 (25)

In Equations 14 and 24, we assumed that the prior distributions of hyperparameters and white noise fol-

low multivariate Gaussian distributions. This is true for white noise since it is i.i.d. standard normal (the 

simplest case of multivariate Gaussian). For the hyperparameters   T
1 2( , , , )

k
h h hh , the prior distribution 

may not be a Gaussian. Then, assuming that the hyperparameters are independent from each other, we can 

do an isoprobabilistic transformation at first, that is,    1
( ( )), 1,2, ,

i i i
v F h i k. Here, i

F is the cumulative 

distribution function of i
h  and  is the cumulative distribution function of the standard normal distribu-

tion. Then, i
v  will be a random variable following the standard normal distribution, and we can just perform 

the pCN procedure on   T
1 2( , , , )

k
v v vv , which is also i.i.d. standard normal. The final posterior samples 

of hyperparameters h can be obtained based on the samples of v through the isoprobabilictic back-transfor-

mation, that is,  1
( ( ))i i ih F v . In the following, we assume that hyperparameters follow standard normal 

distribution just for simple expression.

2.5. Parallel Tempering

Parallel tempering (Altekar et al., 2004; Earl & Deem, 2005; Hukushima & Nemoto, 1996), also called Me-

tropolis coupled MCMC, is a method for improving traditional MCMC algorithms for multi-modal distribu-

tions. In parallel tempering, multiple Markov chains are simulated at different temperatures simultaneous-

ly. The lower-temperature chains perform precise sampling in high-density regions of the parameter space, 

but they could easily get stuck in local modality. The higher-temperature chains can more easily explore the 

whole parameter space due to their flatter and broader likelihood. These different chains will regularly swap 

their members in a way that preserves the detailed balance condition. Therefore, the hotter chains will make 

sure the coldest chain with unit temperature (target chain) can access the desired regions of the parameter 

space. Several studies have also shown the superiority of parallel tempering compared to simple Monte 

Carlo, simulated annealing and simple MCMC (Moreno et al., 2003; Xu et al., 2020).

To implement parallel tempering, a temperature ladder   
1 2 n

T T T , with 
1

1T , needs to be designed at 

first. Then, we can get a series of tempered posterior distributions corresponding to different temperatures:

p p p i ni
Ti( , | ) ( , ) ( | , ) , , , .h w d h w d h w  
1

1
 (26)

Apparently, the likelihood is taken to the power of the inverse temperature. Therefore, temperature 
1

1T  

corresponds to the original target posterior distribution. With increasing the temperature, the correspond-

ing likelihood will become flatter, with a fully flat likelihood (i.e., just the prior) at the limit of  
i

T .
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Then, for the ith chain with temperature 
i

T , if we use the pCN proposal, the acceptance probability in Equa-

tion 25 would turn into

 


























min
( | , )

( | , )
, .

p

p

Tid h w
d h w

 
1

1 (27)

For two different chains with temperatures 
i

T  and jT , there would be a potential swap between the states of 

them, that is,

{( , , ),( , , )} {( , , ),( , , )},i i i j j j j j i i i jT T T Th w h w h w h w (28)

where ( , )
i i
h w  and ( , )j jh w  are the states of two chains corresponding to the temperatures 

i
T  and jT  before the 

potential swap. The acceptance probability of this potential swap can be written as

s

j j

i i

Ti Tjp

p


































min
( | , )

( | , )
,

d h w
d h w

1 1

1










. (29)

Two candidate chains need to be determined at first to implement the potential swap. A common choice is 

restricting them to the neighboring chains (Earl & Deem, 2005), which will be used in this work.

2.6. Final Algorithm: Extended pCN-PT With Gibbs Split

In a recent study (Xu et al., 2020), pCN-PT (pCN-MCMC and parallel tempering) was used for the con-

ventional Bayesian inversion with fixed values of hyperparameters. In this work, we will extend it to the 

extended Bayesian inversion problem with uncertain hyperparameters in Equation 19.

Since hyperparameters and white noise play different roles for generating a Gaussian random field and 

are a priori mutually independent (see Equation 20), we can update them separately during the MCMC 

process. This corresponds to a classical Gibbs sampler (Casella & George, 1992), blocked together to split 

between h and w. It allows fine-tuning the corresponding MCMC parameters separately (here: h and 
w

) 

for improved efficiency. Considering the independence between hyperparameters h and white noise w, the 

pCN-PT algorithm can be summarized as follows:

1.  Initialize a temperature ladder   
1 2 n

T T T  with 
1

1T , two pCN jumping factor ladders 

  ,1 ,2 ,, , ,
h h h n

 and   ,1 ,2 ,, , ,
w w w n

 corresponding to hyperparameters and white noise separately. 

Then, set initial realizations (0)
i
h  and (0)

i
w , where  {1,2, , }i n  is the number of the chain in the parallel 

tempering.

2.  Generate a pCN proposal ( )k

ih  of hyperparameters at the kth sampling iteration for each chain  1,2, ,i n,

    ( ) 2 ( )
, ,1 , ( , ).

k k

i h i i h i h h
0h h ξ ξ I (30)

3.  For each chain i, accept or reject ( )k

ih :

h
h h h

hi

k i

k

i

k

i

k

i

k

( )

( ) ( ) ( )

( )

( , ) 1
 with probability

otherwise


,,






 (31)

 where

 ( , ) min
( | , )

( | , )

( ) ( )
( ) ( )

( ) ( )
h h

d h w
d h wi

k
i

k i
k

i
k

i
k

i
k

p

p



































1

1
Ti

, . (32)

4.  Generate a pCN proposal  ( )k

iw  of white noise at the kth sampling iteration for each chain  1,2, ,i n,

     ( ) 2 ( )
, ,1 , ( , ).

k k

i w i i w i w w
0w w ξ ξ I (33)
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5.  For each chain i, accept or reject  ( )k

iw :

w
w w w

wi

k i

k

i

k

i

k

i

k

( )

( ) ( ) ( )

( )

( , ) 1
 with probability

otherwise


,,






 (34)

 where

 ( , ) min
( | , )

( | , )

( ) ( )
( ) ( )

( ) ( )
w w

d h w
d h wi

k
i
k i

k
i
k

i
k

i
k

p

p













1

1



























1

1
Ti

, . (35)

6.  For the neighboring chains i and j, swap values between them ( ) ( ) ( ) ( )
( , ) ( , )

k k k k
i i j jh w h w  with swap ac-

ceptance probability

s
j
k

j
k

i
k

i
k

Ti Tjp

p























min
( | , )

( | , )

( ) ( )

( ) ( )

d h w
d h w

1 1























, .1 (36)

7.    1k k  and restart at step 2.

The tuning parameters of the pCN-PT algorithm are the number of chains, the temperature ladder and the 

two jumping factor ladders (the latter for both h and w, separately). Details about dealing with these tuning 

parameters are shown in Section 3.2.

As intuitive illustration, step 2 uses a change in covariance to morph the given field θ, step 3 tests the mor-

phed field, step 4 tries out a new field with the same covariance, and step 5 tests the new field. The overall 

chain stores a new realization after an attempted morph and innovation. This also provides an option to 

extend other MCMC algorithms for the extended Bayesian inversion.

3. Application

3.1. Model Setup

We consider fully saturated, steady-state groundwater flow as test case, which is an extension of the test case 

of Xu et al. (2020). The flow equation can be written as

    ( ) 0,K H S (37)

where   denotes the divergence operator, K  is the hydraulic conductivity (m/day),  is the Nabla operator, 

H denotes hydraulic head (m), and S denotes the source/sink term as volumetric injection flow rate per unit 

volume of aquifer (1/day). The flow equation is solved with the groundwater flow simulator MODFLOW 

(McDonald & Harbaugh, 1988).

We consider a synthetic confined, two-dimensional aquifer in a 5,000 m  5,000 m domain with 50 m thick-

ness. The domain is discretized into 100  100  1 cells with cell sizes of 50 m  50 m  50 m. The west and 

east boundaries are specified head boundaries with heads fixed to 20 and 0 m, respectively. The north and 

the south boundaries are impermeable. There are four pumping wells in the domain. The corresponding 

locations and pumping rates are listed in Table 1. A reference ln-conductivity field is generated based on a 

multi-Gaussian random field with the parameters listed in Table 2 (Xu et al., 2020). The reference ln-con-

ductivity field and hydraulic head solution (obtained by MODFLOW) are shown in Figure 1. We will con-

sider the ln-conductivity as the model parameter θ, which has a prior multivariate Gaussian distribution 

(conditionally on h) with exponential covariance function. The following hyperparameters h will also be 

considered as uncertain: (a) mean ; (b) standard deviation  ; (c) correlation length 1; (d) correlation 

length 2. The angle of anisotropy is fixed as in Table 2. This extends the test cases already used by Xu 

et al. (2020) toward uncertain hyperparameters, while using the same reference field.
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Well number Position x (m) Position y (m) Pumping rate ( 3
m /day)

#1 500 2,350 120

#2 3,500 2,350 70

#3 2,000 3,550 90

#4 2,000 1,050 90

Table 1 
Locations and Pumping Rates of the Four Pumping Wells
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3.2. Algorithmic Settings and Adaptivity

Previous studies have shown that the optimal acceptance rate for MCMC-based methods is close to 23.4% 

and that acceptance rates between 10% and 40% still perform close to optimal (Gelman et al., 1996; Roberts 

& Rosenthal, 2001; Roberts et al., 1997). The parameter   in the pCN proposal affects the acceptance rate 

of each chain. Basically, high (low) values of   will lead to low (high) acceptance rate. Therefore, to obtain 

an acceptance rate close to the optimal one, we will use an adaptive way to adjust the values of   during the 

“burn-in” period. First, we set an initial value for each  . Then, we estimate the acceptance rate by running 

the Markov chain for a
N  steps without changing  . If the acceptance rate is too high (low), we will try to 

increase (decrease) the value of   a little. Thus, we can set an initial value, for example, 0.5, for all jumping 

factors. Then, through repeating this procedure several times, we can get an acceptance rate close to the 

optimal one. Here, the   values for hyperparameters and white noise are adjusted based on their own ac-

ceptance rates separately. To adjust   values adaptively, we set  3
10

a
N . The first 5

10  steps in each Markov 

chain are used for adjusting, which means the adjusting procedure above is repeated 100 times.

In addition, the acceptance swap rate is also an important feature for parallel tempering. The optimal ac-

ceptance swap rate differs with respect to the specific applications (Laloy et al., 2016; Predescu et al., 2005; 

Rathore et al., 2005). In this study, we will control the acceptance swap rate between 10% and 30% just as in 

the previous work (Xu et al., 2020). The temperature ladder will affect the swap acceptance rate. A smaller 

(larger) distance between the neighboring temperatures will lead to a higher (lower) swap acceptance rate. 

Therefore, we will also adjust the temperature ladder adaptively similar to that for adjusting   during the 

“burn-in” period. First, we set an initial temperature ladder and run the Markov chain for a
N  steps. Then we 

can estimate the current acceptance rate. If it is too high (low), we will try to increase (decrease) the distance 

between the neighboring temperatures a little. After repeating this procedure several times, we can obtain 

an acceptance swap rate between 10% and 30%. Similarly, we set  3
10

a
N  and use the first 5

10  steps in each 

Markov chain for adjusting.
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Figure 1. Reference ln-conductivity field (left) and reference hydraulic head solution (right).

Variogram type  (m/day)   (m/day) 
1 (m) 

2 (m) Angle (deg)

Exponential −2.5 2 2,000 1,500 135

Note.   is the mean,   is the standard deviation, 1 and 2 are the correlation lengths in the x and y directions.

Table 2 
Parameters of the Gaussian Random Field Generating the Reference Ln-Conductivity Field
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For each test case presented in the upcoming section, we will run 20 par-

allel chains. Each chain runs independently on a dedicated computing 

node, and data commutation only occurs for between-chain swaps.

For each pair of hyperparameters h and white noise w, we need to com-

bine them to get the original model parameters (Equation 17), and then 

we can calculate the model response and likelihood. A traditional way 

to achieve this purpose is the Cholesky decomposition of the covariance 

matrix (Alabert, 1987; Davis, 1987), which is simple and can handle any 

grid structure. However, it is restricted to moderate numbers of discrete 

cells for the random field. For problems with finer resolution (100  100 in this work), the Cholesky decom-

position will be very slow. For a case with n discrete cells, the best algorithm for Cholesky decomposition 

has a complexity of 
2

( )n  (Dietrich & Newsam, 1997).

In this study, we will use the circulant embedding approach (Dietrich & Newsam, 1993, 1997) as imple-

mented in Fritz et al. (2009). Although this method is only suitable for regularly meshed grids, it is more 

computationally efficient compared to the Cholesky decomposition. The computational complexity of 

the circulant embedding approach is only ( log )n n . An example of the computational cost of these two 

approaches is shown in Table  3, which is performed with MATLAB 2018a in a computer with Intel(R) 

Core(TM) i7-7700 CPU @ 3.60 GHz and 32 GB RAM. We can see that the circulant embedding approach 

is more than 30 times faster than the Cholesky decomposition approach in our setup. For larger fields, this 

advantage will grow due to the almost-linear complexity of the FFT. A recent study (Nowak & Litvinen-

ko, 2013) has even upgraded FFT-based geostatistics to safely handle up to 1 million voxels per direction in 

3D space (i.e., 18
10  cells).

Options for irregular grids include, for example, the Karhunen-Loeve decomposition (which relies on a 

numerical eigendecomposition of the auto-covariance matrix without the circulant embedding and hence 

without FFT assistance). While this sounds much slower, the Karhunen-Loeve decomposition is usually 

truncated, such as in the dimension-reduced approach by Zhao and Luo (2021b), and it could be truncat-

ed early if desired. Yet another option is to re-parameterize, on a coarser grid, the random field through 

pilot points (Doherty et al., 2010), followed by interpolation or conditional simulation in between (Keller 

et al., 2021).

3.3. Test Cases

In this section, we will consider four different test cases. For all test cases, we use the following likelihood

T 11
exp ( ( ( , ))) ( ( ( , )))

2
( | ( , )) ,

(2 ) det( )
nd

M M

p



 
   
 

e

Σ

Σ

ed θ h w d θ h w
d θ h w (38)

where e
Σ  is the covariance matrix of the error term e, and d

n  is the number of measurements. In this study, 

the measurement standard deviation is set to   0.05e , that is, e
Σ  is a diagonal matrix with constant diago-

nal elements  2

e . All test cases use the exponential model for the covariance function with hyperparameters 

 (for the mean),  2 (for the variance), and  1 2,  (for the length scales). Further comments on the problem 

of covariance-model choice are provided in out last section.

In test cases 1, 2, and 3, we will directly use ln-conductivity data, which will lead to a high-dimensional lin-

ear estimation problem. For this situation, we can analytically get the marginal likelihood function p( | )d h  

for the direct inference of hyperparameters. Thus, we can easily get posterior samples of the hyperparam-

eters with MCMC at first. Then, we can use kriging to interpolate the ln-conductivity field for each given 

posterior sample of hyperparameters and finally obtain the average result quasi-analytically. These results 

can be used for very precise comparison. The details can be found in Appendix A. For test Case 4, we will 

use hydraulic head data, which will lead to a high-dimensional nonlinear inverse estimation problem closer 

to reality.
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Method Cholesky decomposition Circulant embedding

Time (s) 4.542 0.128

Table 3 
Computational Time to Generate One Realization of a Gaussian Random 
Field (Zero Mean, Unit Variance, Exponential Covariance Function) on a 
Domain Discretized Into 100  100 Cells
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The data is taken from the reference ln-conductivity field and hydraulic head solution in Figure 1 plus an 

artificial error (random value from a normal distribution with mean zero and standard deviation 0.05) at the 

predefined locations. A summary of the settings for each test case can be found in Table 4.

3.3.1. Test Case 1

In the first test case, we consider 25 direct measurements of ln-conductivity (no head data) at the positions 

marked with red circles in Figure 2. Among these 25 measurements, 16 measurements are uniformly dis-

tributed and the remaining nine measurements are randomly distributed. For the hyperparameters, we 

assume the following prior distributions






 









( , ),

( , ),

( , ),

( , ).

10 10

0 20

0 5000

0 5000

1

2

 (39)

A constraint for the anisotropic ratio between the two correlation lengths 1 and 2 is also considered as 

0 1 10
1 2

. /   . In this test case, we use uniform distributions for the hyperparameters over a broad in-

terval to assume that we only have weak prior information about the hyperparameters. This tests the ex-

ploration capabilities of our proposed algorithm, while allowing to compare to a quasi-analytical solution.

3.3.2. Test Case 2

In the second test case, we still consider the same measurements of ln-conductivity as in test Case 1 so that 

we can again compare to quasi-analytical results. But for the hyperparameters, we now assume the follow-

ing prior distributions






 









( , ),

log ( , . ),

log ( , . ),

log ( , . )

4 1

2 0 5

3 0 5

3 0 5

2

10 1

10 2 ..

 (40)

The same constraint 0 1 10
1 2

. /    for the anisotropic ratio is adopted. 

In this test case, we use (log)normal distributions for the hyperparame-

ters to assume that we have more prior information about the hyperpa-

rameters. This allows testing the exploitation capability of our proposed 

algorithm in a much more restricted prior setting.

3.3.3. Test Case 3

In the third test case, we consider 500 direct measurements of ln-conduc-

tivity at the positions marked with red circles in Figure 3. Among these 

500 measurements, 400 measurements are uniformly distributed and the 

remaining 100 measurements are randomly distributed. The prior distri-

butions of the hyperparameters are the same as those in test Case 2 with 

the same constraint for the anisotropic ratio. The large number of meas-

urement data enhances test Case 2 by enforcing a highly restrictive like-

lihood function. This is the last test case against quasi-analytical results.
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Test case Data type Iterations Iterations for parameter tuning Methods

T1 25 ln-conductivity 1,200,000 100,000 pCN-PT & AML-Kriging

T2 25 ln-conductivity 1,200,000 100,000 pCN-PT & AML-Kriging

T3 500 ln-conductivity 1,600,000 100,000 pCN-PT & AML-Kriging

T4 25 head 1,200,000 100,000 pCN-PT

Abbreviation: AML, analytical marginal likelihood; pCN-PT, preconditioned Crank-Nicolson-parallel tempering.

Table 4 
Settings for Each Test Case

Figure 2. Twenty-five ln-conductivity measurement locations (red circles) 
used in test cases 1 and 2.
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3.3.4. Test Case 4

In the fourth test case, we consider 25 head measurements as used in 

Xu et al.  (2020). The positions (red circles) of these measurements are 

shown in Figure  4. The prior distributions of the hyperparameters are 

still (almost) the same as those in test Case 2 with the same constraint for 

the anisotropic ratio. The only difference is that we truncate the log-nor-

mal distributions of the correlation lengths 1 and 2 at  
1

4500 m and 

 
2

4500 m. The reason is that the log-normal distribution has no up-

per bound, head data are very weakly informative for scales due to their 

diffuse character, and numerical problems could arise within the FFT-

based algorithm (Fritz et al., 2009) at correlation length values close to (or 

above) the domain size. As no quasi-analytical reference is available for 

test Case 4, we run two independent repetitions and assess convergence 

by comparison between these repetitions based on the potential scale re-

duction factor R.

3.4. Testing Criteria

We compare the posterior samples or posterior mean to the synthetic ref-

erence. For the test cases 1, 2 and 3, the posterior mean and standard 

deviation of the ln-conductivity field will also be compared to the quasi-analytical kriging results, and the 

posterior distributions of hyperparameters will also be compared to the results obtained by MCMC with 

analytical marginal likelihood. We will also evaluate the difference between the posterior samples of the 

ln-conductivity field and the synthetic reference field through the root mean square error (RMSE)


  ( ) ( ) 2

1

1
( ) ,

N
i i ref

j j
j

RMSE
N

θ θ (41)

where N  is the number of cells in the entire domain, ( )i
jθ  is the value of posterior estimate of ln-conductivity 

at the jth cell in the ith iteration, ref
jθ  is the value of ln-conductivity at the same grid cell for the reference 

field.

Second, we will use ln-likelihood to measure the closeness of the posterior samples to the synthetic data, 

and we will just take ln( ( | ( , )))p d θ h w  based on Equation 38.

Third, we will evaluate the convergence of the Markov chain by the po-

tential scale reduction factor R introduced by Gelman and Rubin (1992). 

A R value less than 1.2 is considered as an acceptable convergence 

(Brooks & Gelman, 1998). The factor R is defined for a set of m Markov 

chains, each of which has n samples. The within-chain variance (for each 

pixel separately) is estimated as

 
   


( ) 2

1 1

1
( ) ,

( 1)

m n
i

j j
j i

W
m n

θ θ (42)

where 
( )i
jθ  is the ith sample of the jth chain and jθ  is the mean of the 

samples in the jth chain (for each pixel separately). The pixel-wise be-

tween-chain variance is estimated as

 

 
       

2

1 1

1
.

1

m m

j j
j j

n
B

m m
θ θ (43)

Then, the estimated variance V  is a weighted average of the within-chain 

variance and between-chain variance:

 
   
 

1 1
1V W B

n n
 (44)
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Figure 3. Five hundred ln-conductivity measurement locations (red 
circles) used in test Case 3.

Figure 4. Twenty five head measurement locations (red circles) used in 
test Case 4.
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Finally, the pixel-wise potential scale reduction factor R is defined as

 .

V
R

W
 (45)

We compute R for ln-conductivity in each model cell and for all hyperparameters. For ln-conductivity, 

hence, we can show a map of R, and summarize the map by its mean and maximum.

3.5. Obtaining the (Reference) Solutions

For test cases 1, 2, and 3, when using the analytical marginal likelihood (AML) for direct inference of hy-

perparameters as reference solution, we only have a 4-dimensional small problem. Therefore, we generate 1 

million posterior samples of hyperparameters by pCN-MCMC (running only on the Gaussian-transformed 

hyperparameters h) and assume these samples are enough to obtain an accurate estimation of the posterior 

distribution as reference solution. These posterior samples are saved every 10th iteration and the first half 

of them are discarded as a “burn-in” period. The second half of these samples are used to obtain the average 

(conditional) kriging results of the ln-conductivity field (denoted as AML-Kriging) and to plot the posterior 

distribution of hyperparameters (denoted as pCN-AML).

For the proposed pCN-PT method, 1.2 million posterior samples are generated for test cases 1, 2, and 4, 

1.6 million posterior samples are generated for test Case 3. Similarly, these samples are saved every 10th 

iteration and the first half are discarded as a “burn-in” period. The second half of these samples are used 

to calculate the mean and standard deviation of the ln-conductivity field, plot the posterior distribution of 

hyperparameters, and estimate the potential scale reduction factor R.

4. Results

4.1. Test Case 1 (T1)

Figure  5 shows the posterior mean and standard deviation of the ln-conductivity field for test Case 

1 obtained by pCN-PT (top row) and AML-Kriging (bottom row). We can see that both results look 

very similar and the mean of the results captures the main features of the reference field. Addition-

ally, the standard deviation around the measurement points is close to zero and the area with small 

standard deviation obtained by pCN-PT is only a little larger than that obtained by kriging. To quan-

titatively measure the closeness between these two results, we calculate the RMSE between them, see 

Table 5. The RMSE between these two results is 0.195 and 0.135 for mean and standard deviation of 

the ln-conductivity field. We also calculate the root mean square of the mean and standard deviation 

of the ln-conductivity field obtained by AML-Kriging, which is 2.607 and 2.185. Thus, we can see that 

the RMSE between the two results is small compared to the root mean square of the reference solution. 

These results show that pCN-PT is capable of estimating the hyperparameters and (conditionally) mul-

ti-Gaussian ln-conductivity field in a high-dimensional linear problem with limited prior information 

on hyperparameters.

Figure 6 shows the marginal posterior and prior distributions of the hyperparameters for test Case 1 ob-

tained by pCN-PT and pCN-AML. We can see that the posterior distributions of hyperparameters   and 

  obtained by pCN-PT are very close to the reference distributions obtained by pCN-AML. For hyperpa-

rameters 1 and 2, although there are still some differences between the posterior distributions obtained 

by pCN-PT and pCN-AML, their shapes are similar, that is, the posterior PDF increases significantly for 

small values of 1 (2) and decreases gradually until the upper bound of 1 (2). In addition, we also use 

the Kolmogorov-Smirnov statistic (maximum difference between the cumulative distribution functions 

in [0,1]) to quantitatively compare the marginal posterior distributions of hyperparameters obtained by 

pCN-PT and pCN-AML, and the results are shown in Table 6. It also shows small differences between these 

two results. Based on these results, we can see that pCN-PT can obtain a reliable estimate of the posterior 

distribution of the hyperparameters in a high-dimensional linear problem when there is only little prior 

information.
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Figure 7 shows the ln-likelihood, RMSE, and potential scale reduction factors R of the ln-conductivity re-

alizations and hyperparameters for test Case 1 obtained by pCN-PT along the MCMC chain. According to 

the results of ln-likelihood and RMSE, we can see that the ’burn-in’ and convergence to the reference is 

very fast. Observing the potential scale reduction factors R, we can see that these factor values decrease as 

the length of the Markov chain increases and finally drop below the recommended value (Brooks & Gel-

man, 1998) of 1.2. We can also see that all the final pixel-wise potential scale reduction factor values on the 

map are close to 1. This shows a good convergence of the results obtained 

by pCN-PT.

4.2. Test Case 2 (T2)

Figure  8 shows the posterior mean and standard deviation of the 

ln-conductivity field for test Case 2 obtained by pCN-PT (top row) and 

AML-Kriging (bottom row). We can see that both solutions have a very 

similar appearance. The RMSE between the two results is 0.163 and 

0.122, while the root mean squares of the results obtained by AML-Krig-

ing (reference solution) are 2.605 and 2.315. Again, this indicates small 
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Figure 5. Posterior mean and standard deviation of the ln-conductivity field for test Case 1. Top row: results obtained by preconditioned Crank-Nicolson 
Markov-parallel tempering. Bottom row: results obtained by analytical marginal likelihood-Kriging.

Test cases RMSE of mean RMSE of standard deviation

T1 0.195 0.135

T2 0.163 0.122

T3 0.403 0.233

Table 5 
Root Mean Square Error (RMSE) Between the Results (Mean and 
Standard Deviation of Ln-Conductivity Field) Obtained by Preconditioned 
Crank-Nicolson-Parallel Tempering and Analytical Marginal Likelihood-
Kriging for Test Cases 1, 2, and 3
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RMSE and shows the similarity between these two results. Now, we see that pCN-PT is also able to estimate 

the multi-Gaussian ln-conductivity field in a high-dimensional linear problem with more prior information 

about the hyperparameters. In addition, these results are also very close to the results of test Case 1. This 

indicates that, although different prior knowledge of hyperparameters is assumed in test Case 1 and 2, we 

can still get similar results for the ln-conductivity field based on the same data set.
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Figure 6. Marginal posterior (colored bars) and prior (horizontal lines) distributions of the hyperparameters for test Case 1. The vertical dot-dashed lines 
denote the nominal values of the hyperparameters used to generate the synthetic data.

Test cases

Kolmogorov-Smirnov statistic

  
1


2

T1 0.023 0.046 0.055 0.065

T2 0.042 0.015 0.070 0.091

T3 0.217 0.255 0.195 0.211

Table 6 
Quantitative Comparison of Marginal Posterior Distributions of Hyperparameters Obtained by Preconditioned Crank-Nicolson-Parallel Tempering and 
Preconditioned Crank-Nicolson-Analytical Marginal Likelihood Through Kolmogorov-Smirnov Statistic
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The marginal posterior and prior distributions of hyperparameters for test Case 2 obtained by pCN-PT 

and pCN-AML are shown in Figure 9. It confirms that pCN-PT provides similar results compared to the 

reference results obtained by pCN-AML also in this case. The Kolmogorov-Smirnov statistic in Table  6 

again confirms the similarity between these two results. This denotes that pCN-PT can also estimate reli-

ably the posterior distribution of the hyperparameters and conductivity field in problems with more prior 

information.
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Figure 7. Testing criteria for test Case 1: Ln-likelihood of the posterior samples of the ln-conductivity field, root 
mean square error between the posterior samples of the ln-conductivity field and the synthetic reference field, the 
evolution of mean and max potential scale reduction factor of the ln-conductivity field, the evolution of the potential 
scale reduction factor of the hyperparameters, and the final potential scale reduction factor of the ln-conductivity 
field obtained by preconditioned Crank-Nicolson-parallel tempering. The dashed line in the figure of ln-conductivity 
corresponds to the ln-likelihood of the reference. The dashed lines in the evolution of the potential scale reduction 
factor denote the value of 1.2.
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Figure 10 shows the ln-likelihood, RMSE, and pixel-wise potential scale reduction factors R of the ln-con-

ductivity field and the hyperparameters for test Case 2 obtained by pCN-PT. We can see that the Markov 

chain converges very fast based on the results of ln-likelihood and RMSE. The potential scale reduction 

factor values also decrease as the length of Markov chain increases. We can see that all the final potential 

scale reduction factor values are very close to 1, which indicates a good convergence of the results obtained 

by pCN-PT also for test Case 2 with a more constraining prior.

4.3. Test Case 3 (T3)

Figure 11 shows the posterior mean and standard deviation of the ln-conductivity field for test Case 3 ob-

tained by pCN-PT (top row) and AML-Kriging (bottom row). Compared to test cases 1 and 2, more (500) 

measurements are used in test Case 3. First, we can see that both results are very close to each other. The 

RMSE in Table 5 also confirms the similarity between these two results (the root mean square of the results 

obtained by kriging is 2.7757 and 0.8657). This indicates that pCN-PT still has a good performance with a 

large number of data (highly restrictive likelihood function). Second, we can see that the posterior mean is 

also very close to the reference ln-conductivity field. This follows the plain expectation that a fully Bayesian 
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Figure 8. Posterior mean and standard deviation of the ln-conductivity field for test Case 2. Top row: results obtained by preconditioned Crank-Nicolson-
parallel tempering. Bottom row: results obtained by analytical marginal likelihood-Kriging.
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inversion executed via pCN-PT can recover the multi-Gaussian ln-conductivity field with a large number 

of (direct) measurements.

Figure 12 shows the marginal posterior and prior distributions of hyperparameters for test Case 3 obtained 

by pCN-PT and pCN-AML. We find again a large overlap between the posterior distributions obtained by 

pCN-PT and pCN-AML. The Kolmogorov-Smirnov statistic between these two results is also shown in 

Table 6. Compared to test cases 1 and 2, the Kolmogorov-Smirnov statistic is a little larger for test Case 3. 

One reason is that parallel tempering does not provide significant help in test Case 3. In this test case, the 

contribution of the likelihood function is much larger than for test cases 1 and 2 (see Figures 7, 10 and 13). 

To ensure enough swap between the neighboring chains, the distance between the neighboring temper-

atures has to be chosen very small. Therefore, with 20 chains, the hottest chain still does not have a very 

flat likelihood and cannot explore the whole parameter space very easily. Thus, more chains are needed to 

let the parallel tempering provide more help, which will also need more computational resources. How-

ever, the current results of pCN-PT still look good, especially for the peak values of the marginal posterior 

distributions.

Figure 13 shows the ln-likelihood, RMSE, and pixel-wise potential scale reduction factors R of the ln-con-

ductivity field and the hyperparameters for test Case 3 obtained by pCN-PT. We can see that the ln-likeli-

hood and RMSE become stable very fast, which shows a short “burn-in” period and fast convergence of the 
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Figure 9. Marginal posterior (colored bars) and prior (red curves) distributions of the hyperparameters for test Case 2. The vertical dot-dashed lines denote the 
nominal values of the hyperparameters.
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Markov chain. The overall potential scale reduction factor R of the ln-conductivity field keeps decreasing 

as the length of the Markov chain increases and finally becomes less than 1.2 in most parts of the domain. 

The potential scale reduction factor R of hyperparameters stays around 1.2 and is finally close to 1. This also 

shows a good convergence of the results obtained by pCN-PT.
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Figure 10. Testing criteria for test Case 2: Ln-likelihood of the posterior samples of the ln-conductivity field, root 
mean square error between the posterior samples of the ln-conductivity field and the synthetic reference field, the 
evolution of mean and max potential scale reduction factor of the ln-conductivity field, the evolution of the potential 
scale reduction factor of the hyperparameters, and the final potential scale reduction factor of the ln-conductivity 
field obtained by preconditioned Crank-Nicolson-parallel tempering. The dashed line in the figure of ln-likelihood 
corresponds to the ln-likelihood of the reference. The dashed lines in the evolution of the potential scale reduction 
factor denote the value of 1.2.
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4.4. Test Case 4 (T4)

For test Case 4 with hydraulic head data, we only have the results obtained by pCN-PT. Figure 14 shows 

the posterior mean and standard deviation of the ln-conductivity field. Compared to the reference ln-con-

ductivity field, we can see that the mean of the results captures the main features in the high conductivity 

areas. The marginal posterior and prior distributions of the hyperparameters for test Case 4 are shown in 

Figure 15. We can find that all the posterior distributions have similar shapes compared to the prior distri-

butions and have a slight shift to the nominal values of the hyperparameters, which can also be seen from 

Table 7. This means the data helps to calibrate the hyperparameters a little, although head values are less 

informative for hyperparameters compared to direct data. Figure 16 shows the testing criteria for test Case 

4. The ln-likelihood once again shows a fast convergence of the Markov chain. Although the RMSE is a little 

larger for some realizations, most realizations in the second half still have a small RMSE. For the ln-conduc-

tivity field, the potential scale reduction factor R decreases as the length of Markov chain increases. Finally, 

most parts of the ln-conductivity field have a pixel-wise R value less than 1.2. The potential scale reduction 

factor R of the hyperparameters also decreases and finally is less than 1.2. Overall, pCN-PT still gets a good 

result for this test case with a high-dimensional nonlinear problem.
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Figure 11. Posterior mean and standard deviation of the ln-likelihood field for test Case 3. Top row: results obtained by preconditioned Crank-Nicolson-
parallel tempering. Bottom row: results obtained by analytical marginal likelihood-Kriging.
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5. Conclusion, Final Discussion, and Outlook

In this work, we extend the highly efficient pCN-PT algorithm for geostatistical inversion and estimation 

of unknown spatially variable hydraulic conductivity fields to the extended Bayesian inversion prob-

lem with the estimation of uncertain hyperparameters of multi-Gaussian fields besides the hydraulic 

conductivities. This extended Bayesian inversion poses a harder, wider and more realistic problem since 

the values of hyperparameters are not fixed a priori, but one performs a formal joint Bayesian infer-

ence of hyperparameters together with the geostatistical field. To keep the high efficiency of the pCN-

PT algorithm, we first reconstruct the original problem by decomposing the original model parameters 

(ln-conductivity) into hyperparameters (mean, standard deviation, correlation lengths) and white noise 

(a standard normal random vector). Then, we perform the Bayesian inversion with pCN-PT by consid-

ering hyperparameters and white noise as the primary inversion parameters. With this approach, the 

acceptance probability is still only dependent on the likelihood when using pCN-PT. Finally, the posterior 

samples of original model parameters are recovered by combining the posterior samples of hyperparam-

eters and white noise.
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Figure 12. Marginal posterior (colored bars) and prior (red curves) distributions of the hyperparameters for test Case 3. The vertical dot-dashed lines denote 
the nominal values of the hyperparameters.
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In this extended pCN-PT algorithm, we update hyperparameters and white noise separately during the 

MCMC process since they can be considered as independent to each other. This leads to the classical 

Gibbs sampler and allows a better fine-tuning of the corresponding MCMC parameters. There are main-

ly two kinds of tuning parameters, that is, a jumping factor   in the pCN proposal and temperatures 

T  for the parallel chains. We adjust the jumping factor   adaptively based on the recent acceptance 

rate in each chain. The temperature T  is adjusted based on the recent swap acceptance rate between 

neighboring chains. This adaptive parameter tuning can help us easily find proper values of the MCMC 

parameters.
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Figure 13. Testing criteria for test Case 3: Ln-likelihood of the posterior samples of the ln-conductivity field, root 
mean square error between the posterior samples of the ln-conductivity field and the synthetic reference field, the 
evolution of mean and max potential scale reduction factor of the ln-conductivity field, the evolution of the potential 
scale reduction factor of the hyperparameters, and the final potential scale reduction factor of the ln-conductivity 
field obtained by preconditioned Crank-Nicolson-parallel tempering. The dashed line in the figure of ln-likelihood 
corresponds to the ln-likelihood of the reference. The dashed lines in the evolution of the potential scale reduction 
factor denote the value of 1.2.
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Based on the results of the test cases, we see that the extended pCN-PT algorithm is applicable for the 

extended Bayesian inversion with uncertain hyperparameters of multi-Gaussian random fields in both 

high-dimensional linear problems and high-dimensional nonlinear problems. We also find that it is difficult 

to constrain hyperparameters, especially with a relative small set of hydraulic head data. The posterior dis-

tribution of the hyperparameters is a bit narrower than the prior distribution for such a case, and approach-

es the reference value, but considerable uncertainty is left. This points to the importance of direct data 

(hydraulic conductivity) and other data sources which give information on spatial structures of hydraulic 

conductivity, like data from geological maps and geophysical surveys. The use of these data sources in this 

inversion framework requires further research.

There are many other data types that could be included in the inverse problem. In this study, we just use 

head and conductivity data for demonstration on a well-known benchmark case. Whether other data types 

(e.g., hydraulic tomography data, borehole dilution or tracer data) would make hyperparameters almost cer-

tain is another research question. This question can be answered only after one has an accurate algorithm, 

as the one proposed in the current study.

In fact, since our test case is not too large to be ergodic, some degree of uncertainty will always remain in 

the hyperparameters. However, we should still do our best to let the data speak about the structural assump-

tions of geostatistical models, and have the algorithms at hand to see the remaining structural uncertainty 

while doing the inversion.

Our test cases all used the exponential covariance function, and inferred its hyperparameters (i.e., 

mean, variance, and scale). However, smoothness and distribution-across-scales is also an important 

issue, which means the type of covariance function is known to be equally important. This could be 

included either as a Bayesian model selection problem or by using the Matérn covariance function 

(Handcock & Stein, 1993). The latter includes an additional shape parameter that controls the differ-

entiability and scale-distribution of the covariance function. In fact, the exponential, Gaussian and 

power-law variograms are included as special cases and/or limit cases in the Matérn model. Therefore, 

it was successfully applied to parameterize the choice across covariance models (Leube et  al.,  2012; 

Nowak et al., 2010).

Such extensions toward more complicated (nonlinear) data types and additional structural uncertainty will 

make the problem harder to solve. In the current work, we used 20 chains, and more chains may become 

necessary to optimally explore and exploit the solution space. Additionally, larger domains and transient 3D 
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Figure 14. Posterior mean and standard deviation of the ln-conductivity field for test Case 4 obtained by preconditioned Crank-Nicolson-parallel tempering.
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problems will consume more computing time. Then, there will be the ubiquitous trade-off between compu-

tational resources and computational accuracy.

The core contribution of our work, that is, the decomposition of the problem into white noise at the ba-

sis of our pCN-MCMC extension, can be used to extend other geostatistical MCMC algorithms for uncer-

tain hyperparameters. For example, one could extend the blocking MCMC approach as used in Fu and 

Gómez-Hernández  (2009). The idea would be to repeat a random simulation (via sequential simulation 
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Figure 15. Marginal posterior and prior distributions of the hyperparameters for test Case 4 obtained by preconditioned Crank-Nicolson-parallel tempering. 
The vertical dot-dashed lines denote the nominal values of the hyperparameters.

| prior mean—Nominal value| | posterior mean—Nominal value|

 1.50 1.05

 2.36 1.19


1

666.48 527.05


2

166.48 144.30

Table 7 
Difference Between the Prior (Posterior) Mean and the Nominal Value of Hyperparameters
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algorithms) with the same random seed decisions (white noise and sequential simulation path), but with 

a new covariance to do the morphing step, Then, one can use a conventional blocking MCMC step (which 

also uses sequential simulation) to achieve a change in the parameter field.

XIAO ET AL.

10.1029/2021WR030313

26 of 30

Figure 16. Testing criteria for test Case 4: Ln-likelihood of the posterior samples of the ln-conductivity field, root 
mean square error between the posterior samples of the ln-conductivity field and the synthetic reference field, the 
evolution of mean and max potential scale reduction factor of the ln-conductivity field, the evolution of the potential 
scale reduction factor of the hyperparameters, and the final potential scale reduction factor of the ln-conductivity 
field obtained by preconditioned Crank-Nicolson-parallel tempering. The dashed line in the figure of ln-likelihood 
corresponds to the ln-likelihood of the reference. The dashed lines in the evolution of the potential scale reduction 
factor denote the value of 1.2.
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Appendix A

The posterior distribution p( | )h d  of hyperparameters h can be obtained through marginalization based on 

the joint posterior distribution ( , | )p θ h d  obtained through Equation 3. However, it can also be obtained 

directly through Bayes' rule as (Malinverno & Briggs, 2004)

p p p( | ) ( ) ( | ),h d h d h (A1)

where the marginal likelihood function p( | )d h  can be calculated by

( | ) ( | , ) ( | )d ,p p p d h d θ h θ h θ (A2)

where ( | , )p d θ h  is the likelihood function in Equation 3.

For the test cases with ln-conductivity data only, the forward problem transforms into a simple linear prob-

lem according

  .d θ e (A3)

For this simple linear problem, the likelihood function ( | , )p d θ h  can be written as

T 11
exp ( ) ( ))

2
( | , ) .

(2 ) det( )
nd

p



 
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e

Σ

Σ

ed θ d θ
d θ h (A4)

Here, θ denotes the model parameters at the measurement locations, that is, the dimension of θ is equal to 

the number of data points.

Since we assume a priori a conditionally multivariate Gaussian distribution for model parameters θ, ( | )p θ h  

can be written as

T 11
exp ( ) ( ))

2
( | ) .

(2 ) det( )
nd

p



 
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 

Σ

Σ

θ μ θ μ
θ h (A5)

Here, μ and Σ are the mean vector and covariance matrix of model parameters θ at the measurement loca-

tions, with  ( )μ u h  and  ( )Σ Σ h .

Utilizing the properties of Gaussian distributions, the marginal likelihood function p( | )d h  in Equation A2 

can be calculated analytically as (Tarantola, 2005, Section 6.21)

T 11
exp ( ) ( ) ( ))

2
( | ) .

(2 ) det( )
nd

p



 
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

e

e

Σ Σ

Σ Σ

d μ d μ
d h (A6)

In this study, we have four hyperparameters, that is, mean , standard deviation   and two correlation 

lengths 
1
 and 

2
. In Equation A6, the mean vector μ is constructed based on the hyperparameter mean , 

and the covariance matrix Σ is constructed based on the hyperparameters standard deviation   and cor-

relation lengths  1 2, . Then, we can easily sample the posterior distribution p( | )h d  based on Equations A1 

and A6 through MCMC (e.g., Metropolis-Hastings algorithm or pCN-MCMC).

For a given posterior sample of hyperparameters, we can use kriging to obtain a best linear unbiased estima-

tor K
m  of ln-conductivity over the entire domain and obtain the corresponding variance 

K
v  of the estimator. 

Then, for all posterior samples of hyperparameters, we can get a set of kriging estimators ( )i
K

m  (  1, ,i n, 

where n is the number of posterior samples of hyperparameters) and the corresponding variances ( )i
K

v   

(  1, ,i n). The final statistical mean of the ln-conductivity field based on all realizations of hyperparame-

ters is estimated by the average of all kriging estimators as


  ( )

1

1
.

n
f i
K K

i

m m
n

 (A7)
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The final statistical variance of the ln-conductivity field across all realizations of hyperparameters is esti-

mated based on the law of total variance as

 
    


( ) ( ) 2

1 1

1 1
( ) .

1

n n
f i i f
K K K K

i i

v v m m
n n

 (A8)

In this study, kriging is implemented with the FFT-based algorithm in Fritz et al. (2009).

Data Availability Statement

The code and related date are available from this site https://data.mendeley.com/datasets/mtk879vsst/

draft?a=a9a048b5-f7de-4a37-907b-27ecb1159d5f.
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a b s t r a c t 

The feasibility of probabilistic Bayesian inversion strongly depends on the dimensionality and complexity of the 
statistical prior model. Most geostatistical inversion approaches assume multi-Gaussian fields, and some assume 
(non-Gaussian) categorical fields, e.g., via multiple-point geostatistics. We combine these two into one hierarchi- 
cal joint problem, which accounts for two (and possibly more) categories as well as heterogeneities inside each 
category. Recent works developed the conditional probability field method based on the Ensemble Kalman filter 
(EnKf) for this scenario. However, EnKf-type approaches take implicit linearity and (trans-)Gaussian assumptions, 
which are not feasible in weak-information regimes. Therefore, we develop a tailored Gibbs sampler, a kind of 
Markov chain Monte Carlo (MCMC) method. It can do this inversion without assumptions. Our algorithm extends 
an existing Gibbs sampler with parallel tempering for categorical fields to account for multi-Gaussian internal 
heterogeneity. We show our key idea and derive our algorithm from the detailed balance, required for MCMC 
algorithms. We test our algorithm on a synthetic channelized flow scenario for different levels of data available: 
A highly informative setting (transient flow data) where the synthetic truth can be recovered and a weakly in- 
formative setting (steady-state data only) where the synthetic truth cannot be recovered. Instead, we obtain a 
multi-modal posterior. For the proper testing of convergence, we use the scale reduction factor by Gelman and 
Rubin. Overall, the test illustrates that our algorithm performs well in both settings. 

1. Introduction 

Heterogeneity of hydraulic parameters is a key control on subsur- 
face flow, transport and energy transfer processes. Characterizing these 
heterogeneities is difficult because we cannot measure subsurface pa- 
rameters directly and at sufficient resolution. 

Bayesian geostatistical inversion is one way to obtain spatially vari- 
able estimates of parameters. Bayesian inversion combines prior knowl- 
edge of the system with the likelihood of observation data. The result- 
ing estimate is obtained as a posterior probability distribution. In this 
process, a model of the prior knowledge for spatial heterogeneity is 
needed. Conventionally, multi-Gaussian fields (e.g., Matheron, 1975 ) 
or categorical fields (e.g., Hansen et al., 2012; Laloy et al., 2016; Stre- 
belle, 2002 ) are used. Following Iglesias et al. (2014) , Xu and Gómez- 
Hernández (2015) and Mo et al. (2020) , we combine these two ap- 
proaches and create a hierarchical model consisting of categorical fields 
with internal Gaussian fields. 

Formulating an analytical solution of the posterior based on avail- 
able data is not possible for such an inverse hierarchical model. In- 
stead, the problem is solved numerically. For this purpose, two dif- 
ferent approaches can be taken: approximate or exact methods. Ex- 

∗ Corresponding author. 
E-mail address: sebastian.reuschen@iws.uni-stuttgart.de (S. Reuschen). 

amples for approximate methods were proposed by Xu and Gómez- 
Hernández (2015) and Mo et al. (2020) who used an ensemble Kalman 
filter and an ensemble smoother approach, respectively. Both converge 
to an approximate solution of the Bayesian inverse problem, because 
they take implicit linearity and (trans-)Gaussian assumptions as dis- 
cussed for geostatistical inversion by Nowak (2009) . Especially the 
Gaussian assumption is not reasonable for multi-facies systems. This 
can be addressed using normal score transformations ( Zhou et al., 2011; 
Schöniger et al., 2012 ). However, the normal score transformation only 
removes the multi-modality of the parameters. The non-linear forward 
models still introduce an error. Consequently, ensemble Kalman filters 
converge (with increasing sample size) to an implicitly linearized ap- 
proximation of the true Bayesian solution. 

On the contrary, Iglesias et al. (2014) presented a Markov chain 
Monte Carlo (MCMC) method that converges to the exact solution of 
the Bayesian inverse problem. However, their work assumes that the 
categorical field can be parameterized by a low (here: 5) number of ge- 
ometrical parameters. This is a strong assumption on the structure of 
the categorical field and is often not reasonable in applied geostatistical 
and geological setups. Hence, our work will present an approach that as- 
sumes the same spatial discretization (here: 50 × 50) for the categorical 
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and the multi-Gauss fields and avoids a low-dimensional parametriza- 
tion. This enables solutions to be more appropriate and more flexible 
representations of geological reality. The difference in dimensionality 
leads Iglesias et al. (2014) to use a Metropolis Hastings proposal for the 
geometrical parameters. Instead, we use a parallel tempering sequential 
Gibbs approach tailored to the high-dimensional situation. 

Many MCMC methods have been presented in the literature to solve 
Bayesian inverse problems. In this work, we use a Gibbs-based approach. 
This means to resample one (or several) parameter(s) conditional (with 
respect to the posterior distribution) on the remaining (unmodified) pa- 
rameters. For geostatistical inversion, Hansen et al. (2012) proposed 
a sequential Gibbs sampler that resamples different spatial blocks of 
the geostatistical parameter field. With this algorithm, they were able 
to sample from categorical fields efficiently. We extend their approach 
(of resampling blocks of the parameter field) to hierarchical models, 
where the parameter field consists of a categorical field with internal 
multi-Gaussian heterogeneity per category. To speed up convergence, 
we adopt the parallel tempering approach ( Geyer and Thompson, 1995 ). 
Parallel tempering is a method in which several MCMC chains run on 
similar problems with increasing hardness. The chains communicate 
their results with each other to improve the exploitation of possible so- 
lutions. Laloy et al. (2016) showed that this enables faster and more 
efficient computation on geostatistical problems. 

We test our proposed algorithm in two fundamentally different 
information regimes for a fully saturated, two-dimensional ground- 
water flow. First, we feature a high-information regime (many mea- 
surements) where accurate inversion is challenging. Xu and Gómez- 
Hernández (2015) showed that Ensemble Kalman filters can get good 
approximations in this regime because the implicit multi-Gaussian as- 
sumption of EnKfs holds well over narrow unimodal posterior distri- 
butions. Second, we feature a weak-information regime (few measure- 
ments) that results in a multi-modal posterior. We show that our pro- 
posed method can reliably find and quantify all modes. The key contri- 
bution of our paper is to develop a method that can handle both weakly 
and highly informative regimes for hierarchical geostatistical models 
with multiple-point geostatistics and internal heterogeneity. 

In Section 2 we derive our MCMC algorithm. Section 3 presents the 
test cases and implementation of our model. In Section 4 we show and 
discuss our results. Finally, in Section 5 we conclude the most important 
findings with a short summary. 

2. Methods 

In this section we give an overview over related MCMC approaches 
and present how our algorithm extends them. First, we present our 
problem in the framework of Bayesian inference ( Section 2.1 ). Then, 
we present our key idea in Section 2.2 and present the details of our 
Gibbs-based MCMC algorithm in Section 2.3 . Finally, we extend it in 
Section 2.4 by parallel tempering for increased efficiency. 

2.1. Bayesian inference 

We assume a stochastic representation of a forward problem 

𝐹 ( 𝜽) = 𝒅 + 𝒆 (1) 

where F ( 𝜽) is an error-free deterministic forward model that describes 
the relation between the measurement data 𝒅 and the unknown param- 
eters 𝜽. The noise term e condenses all possible error terms. Our goal is 
to infer the parameters 𝜽 based on the data 𝒅 and the prior knowledge 
of 𝜽. 

The parameters 𝜽 are viewed as random variables with some prior 
distribution p ( 𝜽) and a posterior distribution 𝑝 ( 𝜽|𝒅 ) . The posterior is 
given as 

𝑝 ( 𝜽|𝒅 ) = 
𝑝 ( 𝜽) 𝑝 ( 𝒅 |𝜽) 

𝑝 ( 𝒅 ) 
∝ 𝑝 ( 𝜽) 𝑝 ( 𝒅 |𝜽) = 𝑃 ( 𝜽) 𝐿 ( 𝜽|𝒅 ) . (2) 

We define the likelihood 𝐿 ( 𝜽|𝒅 ) ∶= 𝑝 ( 𝒅 |𝜽) and the prior distribution P ( 𝜽) 
as P ( 𝜽) ≔ p ( 𝜽) for a clearer notation in the next subsection. The probabil- 
ity density of the data 𝑝 ( 𝒅 ) = ∫ 𝑝 ( 𝒅 |𝜽) 𝑝 ( 𝜽) 𝑑 𝜽, also called Bayesian Model 
Evidence, can be obtained by numerical integration over the parameter 
space. However, this integration is difficult and is not required for the 
parameter inference when the parameter dimensionality is fixed ( Laloy 
et al., 2016 ). Therefore, we use the unnormalized density 

𝜋( 𝜽) = 𝑃 ( 𝜽) 𝐿 ( 𝜽|𝒅 ) ∝ 𝑝 ( 𝜽|𝒅 ) , (3) 

assuming some fixed data 𝒅 , where the unnormalized posterior proba- 
bility 𝜋 equals prior P times likelihood L . We will sample from 𝜋( 𝜽) in 
the following. 

The likelihood 𝐿 ( 𝜽|𝒅 ) can often assume values, close to machine pre- 
cision. In order to avoid numerical underflow error, it is convenient to 
use the log-likelihood 𝑙( 𝜽|𝒅 ) ∶= log ( 𝐿 ( 𝜽|𝒅 )) instead. Assuming an uncor- 
related, normally distributed error term e with standard deviation 𝜎e , 
the log-likelihood is 

𝑙( 𝜽|𝒅 ) = 𝑁 ⋅ log 

⎛ ⎜ ⎜ ⎜ ⎝ 
1 √ 

2 𝜋𝜎2 𝑒 

⎞ ⎟ ⎟ ⎟ ⎠ 
− 

1 

2 𝜎2 𝑒 

𝑁 ∑
𝑖 =1 

(
𝑑 𝑖 − 𝐹 𝑖 ( 𝜽) 

)2 
(4) 

where F i ( 𝜽) are the simulated equivalents to the measured data d i and 
N is the number of measurements. However, any other distribution of 
errors is possible as well. 

To simplify our notation, we define the likelihood 𝐿 ( 𝜽) ∶= 𝐿 ( 𝜽|𝒅 ) 
(and 𝑙( 𝜽) ∶= 𝑙( 𝜽|𝒅 ) ) independent of the data 𝒅 because we assume con- 
stant 𝒅 during the run-time of the algorithm. 

2.2. Markov chain Monte Carlo 

Markov chain Monte Carlo (MCMC) is a popular, accurate, yet 
sometimes inefficient algorithm to solve Bayesian inverse problems. 
Most modern MCMC methods are based or inspired by the Metropolis- 
Hastings algorithm ( Metropolis et al., 1953; Hastings, 1970 ). We name 
all properties an MCMC method needs to fulfill to have proven conver- 
gence to the exact distribution. Based on these, we derive the formulas 
needed for our proposed MCMC algorithm. For a general introduction 
to MCMC methods, we point to Chib and Greenberg (1995) . 

MCMC methods converge to 𝜋 presented in Eq. 3 (at the limit of infi- 
nite runtime) if and only if irreducibility, aperiodicity and the detailed 
balance are fulfilled ( Smith and Roberts, 1993 ). The first two are almost 
always fulfilled. Hence, we focus on the detailed balance from now on. 
It is defined as 

𝜋( 𝜽𝒊 ) ℎ ( 𝜽𝒊 , 𝜽𝒋 ) = 𝜋( 𝜽𝒋 ) ℎ ( 𝜽𝒋 , 𝜽𝒊 ) (5) 

with the transition kernel h , which is usually defined as 

ℎ ( 𝜽𝒊 , 𝜽𝒋 ) = 𝑞 ( 𝜽𝒊 , 𝜽𝒋 ) 𝛼( 𝜽𝒊 , 𝜽𝒋 ) . (6) 

Here, q ( 𝜽i , 𝜽j ) is the so-called proposal distribution and 𝛼( 𝜽i , 𝜽j ) is called 
the acceptance probability. 

Combining Eqs. 3, 5 and 6 (see Appendix for derivation) leads to 

𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝑚𝑖𝑛 

[ 
𝑃 ( 𝜽𝒋 ) 𝐿 ( 𝜽𝒋 ) 𝑞( 𝜽𝒋 , 𝜽𝒊 ) 

𝑃 ( 𝜽𝒊 ) 𝐿 ( 𝜽𝒊 ) 𝑞( 𝜽𝒊 , 𝜽𝒋 ) 
, 1 

] 
. (7) 

For any prior P , any likelihood L and any proposal distribution q , 
Eq. 7 provides an 𝛼 such that the detailed balance is fulfilled. Hence, 
we can construct an MCMC with (almost) any proposal distribution q . 
The only restriction is that irreducibility and aperiodicity are not al- 
ways fulfilled for arbitrarily chosen proposal distributions. This yields 
the question of how to choose q for fast convergence for a given problem 

class. 
The convergence rate of the MCMC algorithm depends on how fast 

it can explore the parameter space. The faster it moves through the pa- 
rameter space, the faster it converges ( Gelman et al., 1996 ). Hence, it is 
desirable to make large changes to the parameter set and accept them 

with a high probability ( Gelman et al., 1996 ). In practice, however, these 
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two things contradict each other: Making small changes in 𝜽 results in 
similar P ( 𝜽j ) L ( 𝜽j ) and P ( 𝜽i ) L ( 𝜽i ) (if the prior and the likelihood func- 
tion are smooth), so that 𝛼 is around 1. Making large changes in 𝜽 re- 
sults in distinct P ( 𝜽j ) L ( 𝜽j ) and P ( 𝜽i ) L ( 𝜽i ), which results in a small 𝛼. 
Thus, a trade-off between the size of the change and the acceptance rate 
needs to be found ( Gelman et al., 1996 ). Other approaches, e.g., Hamil- 
tonian MCMC ( Betancourt, 2017 ) construct clever proposal distributions 
to make far jumps with high acceptance rates. However they are not ap- 
plicable to our problem class, because they use they use derivatives of 
the prior distribution, which are not attainable for hierarchical models. 

2.2.1. Metropolis-Hasting 
The standard Metropolis-Hasting algorithm ( Metropolis et al., 1953; 

Hastings, 1970 ) assumes a symmetric proposal distribution 

𝑞( 𝜽𝒊 , 𝜽𝒋 ) = 𝑞( 𝜽𝒋 , 𝜽𝒊 ) . (8) 

Inserting this into Eq. 7 yields that 

𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝑚𝑖𝑛 

[ 
𝑃 ( 𝜽𝒋 ) 𝐿 ( 𝜽𝒋 ) 

𝑃 ( 𝜽𝒊 ) 𝐿 ( 𝜽𝒊 ) 
, 1 

] 
= 𝑚𝑖𝑛 

[ 
𝜋( 𝜽𝒋 ) 

𝜋( 𝜽𝒊 ) 
, 1 

] 
. (9) 

The Metropolis Hasting algorithm can sample from 𝜋( 𝜽) without taking 
any assumptions about its form. A standard realization of this approach 
is the random walk proposal function 

𝑔( 𝜽𝒊 ) = 𝜽𝒊 + 𝜖, 𝜖 ∼ 𝑁(0 , 𝜎) . (10) 

This function g ( 𝜽i ) fulfills Eq. 8 because the normal distribution N (0, 
𝜎), with mean 𝜇 = 0 and standard deviation 𝜎, is symmetric. However, 
the acceptance rate ( Eq. 8 ) depends on the prior and the likelihood, 
which leads to a fast decrease of 𝛼 for increasing 𝜎 especially in high- 
dimensional problems ( Roberts and Rosenthal, 2002 ). We want to im- 
prove this by using all available information about 𝜋( 𝜽), to increase 𝛼
and speed up convergence. 

2.2.2. Sampling from the prior 
The basic idea of many Bayesian inversion methods is to use the 

knowledge that 𝜋( 𝜽) = 𝑃 ( 𝜽) 𝐿 ( 𝜽) . Using this information, the perfor- 
mance of MCMC methods can be increased. In many problem classes, 
especially in high-dimensional geoscience problems, the prior P ( 𝜽) is 
complex. Hence, the acceptance rate 𝛼 often depends almost exclusively 
on the prior if a standard Metropolis-Hastings algorithm is used. Further- 
more, there are cases where the prior P ( 𝜽) can not be evaluated for any 
given 𝜽 because no closed-form is known. Examples are multiple-point 
geostatistics tools that use training images ( Strebelle, 2002 ) or any other 
prior P ( 𝜽), which is implicitly defined by some random (field) generator. 
In our work, we use training images. 

In these cases, it is more reasonable to have an acceptance rate 𝛼
independent of the prior P ( 𝜽), but explictily enforcing the prior within 
the proposal density. Through changing the proposal distribution q ( 𝜽i , 
𝜽j ) to 

𝑞( 𝜽𝒊 , 𝜽𝒋 ) = 
𝑃 ( 𝜽𝒋 ) 

𝑃 ( 𝜽𝒊 ) 
𝑞( 𝜽𝒋 , 𝜽𝒊 ) , (11) 

this can be achived ( Mosegaard and Tarantola, 1995 ). Inserting 
Eq. 11 into Eq. 7 results in (e.g. Tarantola, 2005 ) 

𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝑚𝑖𝑛 

[ 
𝐿 ( 𝜽𝒋 ) 

𝐿 ( 𝜽𝒊 ) 
, 1 

] 
= 𝑚𝑖𝑛 

[
𝑒 𝑙 ( 𝜽𝒋 )− 𝑙 ( 𝜽𝒊 ) , 1 

]
. (12) 

This idea was termed “extended Metropolis sampling ” by Hansen et al. 
(2012) . This strategy can be nicknamed “sampling from the prior distri- 
bution ” for easy understanding. New proposed values are only rejected 
based on the likelihood ratio and not based on the prior. Sampling from 

the prior distribution makes the algorithm converge faster because we 
can make larger changes with similar acceptance rates. This leads to the 
conclusive question: How can we find a proposal distribution which satisfies 
Eq. 11 for a given problem class? 

Different algorithms in the literature satisfy Eq. 11 . In the follow- 
ing, we name two approaches. First, the preconditioned Crank-Nicolson 

algorithm (pCN-MCMC) fulfills this property for multi-Gaussian priors 
( Beskos et al., 2008; Cotter et al., 2013 ). Second, the Gibbs approach 
fulfills this property by conditional resampling parts of the parameter 
space ( Geman and Geman, 1984 ). In Hansen et al. (2012) , this approach 
was used for resampling boxes in the parameter space of a categorical 
field. We are extending this approach and make it applicable to hierar- 
chical models in the next section. 

2.3. Sequential box resampling 

In this subsection, we first describe how we express categorical geo- 
statistical fields with internal heterogeneity as a hierarchical model. 
Then, we present our novel MCMC algorithm, which fulfills Eq. 11 . 

We explain our procedure with the help of Fig. 1 throughout this 
subsection. Let us start by looking at the first column and defining our 
model. We assume a hierarchical model that consists of several multi- 
Gaussian fields. Therefore we assume three things: First, that we have 
an indicator field 𝜽c , which decides which category (facies) is present 
at which location. Second, that each category (facies) 𝜽𝑓 𝑖 is internally 
multi-Gaussian. Third, that N f categories (facies) exist in our domain 
(two categories in Fig. 1 ). 

We assume a fixed discretization of the considered domain. In our 
example in Fig. 1 , we have 50 × 50 elements which results in a total of 
2500 elements. We call this the number of elements N e . With that, the 
categorical (or indicator) field 𝜽𝑐 ∈ {1 , 2 , …𝑁 𝑓 } 

𝑁 𝑒 is a vector of size N e 

which takes integer values. The internal heterogeneity of each category 
𝜽𝑓 𝑖 ∈ ℝ 𝑁 𝑒 are vectors of the same size and take real values. 

For shorter notation, we define 𝜽 as a combination of 𝜽c and 𝜽𝑓 𝑖 

𝜽 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜽𝑐 

𝜽𝑓 1 

⋮ 

𝜽
𝑓 𝑁 𝑓 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (13) 

Here, the parameters 𝜽c and 𝜽𝑓 𝑖 are vectors where each element 𝜽c,k and 
𝜽𝑓 𝑖 ,𝑘 is the parameter at a specific spatial position k . Thus, 𝜽 is a matrix 
of parameters where 𝜽k is the vector containing 𝜽c,k and all 𝜽𝑓 𝑖 ,𝑘 . Given 
the categorical field 𝜽c and the internal heterogeneity 𝜽𝑓 𝑖 we define the 
quantity of interest s (the log-conductivity in our application) as 

𝒔 ( 𝜽) = 

𝑁 𝑓 ∑
𝑖 =1 

𝛿𝑖, 𝜽𝑐 ⋅ 𝜽
𝑓 𝑖 (14) 

with Kronecker delta 𝛿i,j . In this formula, 𝜽
c is an indicator which cate- 

gory is present at which spatial location. 𝛿𝑖, 𝜽𝑐 (which is 𝛿𝑖, 𝜽𝑐,𝑘 ) is a vector 
of zeros and ones, indicating whether category number i is present at 
location k . Taking the element-wise product ( 𝛿𝑖, 𝜽𝑐 ⋅ 𝜽

𝑓 𝑖 ) sets the quantity 
of interest s equals to 𝜽𝑓 𝑖 if and only if 𝑖 = 𝜽𝑐 at that position. This step 
is visualized in the first column of Fig. 1 . 

Next, we want to sample new parameters 𝜽i . In the following, we 
use lower indices (e.g. 𝜽i ) to declare different samples and upper indices 
(e.g., 𝜽c ) to declare a part of a sample. We define the random proposal 
function g ( 𝜽) with proposal distribution q ( 𝜽i , 𝜽j ). Hereby, q ( 𝜽i , 𝜽j ) is the 
probability density that 𝑔( 𝜽𝒊 ) = 𝜽𝒋 under the probilistic proposal func- 
tion g . We take a block-Gibbs approach as presented in Hansen et al. 
(2012) and do this in two steps. First, we decide which parameters to 
keep which one to delete, and second we conditionally resample the 
deleteted parameters. 

To do so, we define a ’box’ of parameters, the set 𝚪 ⊆ {1 , 2 , … , 𝑁 𝑒 } , 
to resample, based on two arguments: A center point and a diameter 
of the box. The center point is chosen randomly and independently of 
𝜽. This independence is needed for convergence (see Appendix). In our 
implementation, each position has the same probability of being the 
center point. 

Next, we need to fix the size of the box. The size of the box defines 
how much the resulting field s ( 𝜃) changes in one step (similar to the 𝜎 in 
the Metropolis-Hastings proposal in Eq. 10 ). A large box diameter leads 
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Fig. 1. Proposal step of sequential box resampling method. The quantity of interest s ( 𝜽) is constructed by combining a categorical field and multi-Gaussian fields 
( Eq. 14 , first column). Next, a box is deleted in the categorical and all gaussian fields (second column) and conditionally resampled (third column). 

to large changes in each proposal and a low acceptance rate, whereas a 
small diameter leads to small changes and a high acceptance rate. 

One could resample a random set of points in the parameter space 
instead of a box at a specific position (e.g., Mariethoz et al., 2010 ). How- 
ever, we found that this is less efficient compared to the box approach. 

Let us first explain some notation. We define the set 𝜽c,k ∉𝚪 which in- 
herits all parameters of the categorical field 𝜽c which are not resampled. 
Respectively, we define 𝜽𝑓 𝑖 ,𝑘 ∉𝚪 as the set of parameters of the internal 
heterogeneity fields 𝜽𝑓 𝑖 which are not resampled. For shorter notation, 
we define 𝜽., k ∉𝚪 as the union of 𝜽c,k ∉𝚪 and 𝜽𝑓 𝑖 ,𝑘 ∉𝚪 (see Eq. 15 ). Further- 
more, we define the resampled parameters of the categorical and the 
internal heterogeneity fields as 𝜽c,k ∈ 𝚪 and 𝜽𝑓 𝑖 ,𝑘 ∈𝚪, respectively. 

With that, we define the selection function v ( 𝜽) 

𝑣 ( 𝜽) ∶= 𝜽.,𝑘 ∉𝚪 ∶= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⋃𝑁 𝑒 
𝑖 =1 

𝜽𝑐,𝑘 ∉𝚪

⋃𝑁 𝑒 
𝑖 =1 

𝜽𝑓 1 ,𝑘 ∉𝚪

⋮ ⋃𝑁 𝑒 
𝑖 =1 

𝜽
𝑓 𝑁 𝑒 ,𝑘 ∉𝚪

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (15) 

to choose the persistent parameters 𝜽., k ∉𝚪 we want to keep for the re- 
sampling. Note, that the same set 𝚪 is used for the categorical field 𝜽c as 
well as the multi-gaussian fields 𝜽𝑓 𝑖 . This step is visualized in the first 
two columns of Fig. 1 . 

Now we need to conditionally resample the chosen box 𝜽., k ∈ 𝚪. 
Therefore, we need to sample from the conditional probabilities 
p q ( 𝜽c,k ∈ 𝚪| 𝜽c,k ∉𝚪) for the categorical field and 𝑝 𝑞 ( 𝜽

𝑓 𝑖 ,𝑘 ∈𝚪|𝜽𝑓 𝑖 ,𝑘 ∉𝚪) for the 
internal heterogeneity field. Here, p q is the conditional probability of 
the prior. Let us start with the resampling of the categorical field 𝜽c . 
Any conditional sampling method u c ( 𝜽c,k ∉𝚪) which can sample from 

p q ( 𝜽c,k ∈ 𝚪| 𝜽c,k ∉𝚪) can do this job for the categorical field. Many multi- 

ple point geostatistic (MPS) methods exist in the literature for this part 
and we use the SNESIM ( Strebelle, 2002 ) algorithm. 

Next, each multi-Gaussian field 𝜽𝑓 𝑖 is repopulated for the internal 
heterogeneity. Therefore, we need a conditional sampler 𝑢 𝑓 𝑖 ( 𝜽𝑓 𝑖 ,𝑘 ∉𝚪) 
which is able to sample from 𝑝 𝑞 ( 𝜽

𝑓 𝑖 ,𝑘 ∈𝚪|𝜽𝑓 𝑖 ,𝑘 ∉𝚪) . Different sequential 
Gaussian simulation (SGSIM) tools exist which are capable of doing 
so. We use the SGSIM algorithm of the GSLIB library described in 
Deutsch and Journel (1992) . We chose the SNESIM algorithm and the 
GSLIB library because they are widely used and freely available on- 
line. The last two columns in Fig. 1 show how the conditional sampling 
method is resampling the deleted parameter box. We can rewrite the 
proposal function g ( 𝜽) as one function and get 

𝜽𝒋 = 𝑔( 𝜽𝒊 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑢 𝑐 ( 𝑣 ( 𝜽𝒊 )) 

𝑢 𝑓 1 ( 𝑣 ( 𝜽𝒊 )) 

⋮ 

𝑢 
𝑓 𝑁 𝑓 ( 𝑣 ( 𝜽𝒊 )) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(16) 

in which v ( 𝜽i ) decides the position of the resampling box, and we use the 
conditional resampling functions u c ( 𝜽c,k ∉𝚪) and 𝑢 𝑓 𝑖 ( 𝜽𝑓 𝑖 ,𝑘 ∉𝚪) discussed 
above. In the Appendix, we show a proof that, if u c and 𝑢 𝑓 𝑖 are chosen 
correctly, we fulfill the detailed balance as in Eq. 11 . 

2.4. Parallel tempering MCMC 

The problem specified in Section 2.3 is high-dimensional and multi- 
modal. This leads to two challenges for MCMC techniques: Long burn-in 
times (the period in which the MCMC chain converges towards the final 
range of values) and the risk of getting stuck in one mode (i.e. one local 
optima). 
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Laloy et al. (2016) showed that parallel tempering solves both these 
problems. First, it increases efficiency in high-dimensional geostatisti- 
cal inversion. They state that parallel tempering increases “convergence 
towards appropriate data misfit and [the] sampling diversity ”. Second, 
it reduces the risk of only finding one mode (local optima) in the pos- 
terior. Especially for complex multimodal problems, not using parallel 
tempering results in being trapped in local optima. This phenomenon is 
less likely with parallel tempering ( Laloy et al. (2016) ). 

The idea of parallel tempering (e.g. Earl and Deem, 2005 ) is to run 
several chains on different temperatures 𝑇 = [ 𝑇 1 , … 𝑇 𝑛 ] with 1 = 𝑇 1 < 

𝑇 2 < … 𝑇 𝑛 . Each temperature defines the posterior density at tempera- 
ture T 

𝑝 ( 𝜽, 𝑇 |𝒅 ) ∝ 𝑝 ( 𝜽) 𝐿 ( 𝜽|𝒅 ) 1∕ 𝑇 . (17) 

Increasing the temperature T flattens the posterior towards the prior. In 
the limit of T → ∞, the tempered distirbution 𝑝 ( 𝜽, 𝑇 |𝒅 ) becomes equal 
to the prior distirbution p ( 𝜽). In the other limit, 𝑇 = 1 yields 𝑝 ( 𝜽, 𝑇 |𝒅 ) 
equal to the real posterior distribution 𝑝 ( 𝜽|𝒅 ) . Thus, only the chain with 
a temperature of 𝑇 = 1 can be used for posterior sampling. The remain- 
ing chains are constructed to help the first (productive) chain in explor- 
ing the posterior distribution. In the meantime, the first chain exploits 
the “good ” regions found by the other chains. Hot chains can be built to 
make farther jumps (due to the smoother tempered likelihood function) 
than the colder chains while accepting a similar percentage of propos- 
als. The farther jumps, in our context, mean larger resampling boxes of 
hotter chains. A chain at T → ∞ always accepts all proposals from the 
prior when using a “sampling from the prior strategy ” as in Eq. 11 . 

To make use of all chains, the chains need to communicate with each 
other. Therefore, between every few in-chain MCMC steps, a between- 
chain swap is proposed, which gets accepted with probability 

𝛼𝑠 ( 𝜽𝒊 , 𝜽𝒋 ) = 𝑚𝑖𝑛 

⎡ ⎢ ⎢ ⎢ ⎣ 

𝐿 ( 𝜽𝒋 ) 

𝐿 ( 𝜽𝒊 ) 

( 
1 
𝑇 𝑖 

− 1 
𝑇 𝑗 

) 

, 1 

⎤ ⎥ ⎥ ⎥ ⎦ 
. (18) 

where T i and T j are the temperatures of the chain of 𝜽i and 𝜽j . If ac- 
cepted, the parameters of these two chains get swapped. 

3. Test cases and implementation 

3.1. Testing procedure 

As application test, we infer the hydraulic conductivity of a confined 
aquifer based on hydraulic head data using a groundwater flow model 
for fully saturated conditions. We chose this problem because it is a typ- 
ical problem in geoscience which is challenging due to dimensionality 
(as a result of the spatial discretization). We focus on channelized flow 

consisting of two different heterogeneous porous media (here: sand and 
shale). 

We are interested in two different test cases. First, a steady-state test 
case with weakly informative data (25 measurements once in time). Sec- 
ond, a transient highly informative test case (25 measurements at ten 
different time steps; 250 measurements in total). In a highly informative 
case, the main challenge lies in finding a suitable parameter set. In con- 
trast, in a weakly informative case with many possible outcomes (due to 
the limited available data), exploring the possibly multi-modal posterior 
is challenging. 

For the latter case, we use clustering algorithms to show the differ- 
ent parameter modes and to quantify how likely they are. This visual- 
ization is an enrichment to only showing mean and variance because 
latter statistics cannot visualize the multi-modality of distributions. 

Next, we show that the algorithm convergences during runtime. 
We do so by independently restarting our algorithm five times and 

then computing the potential scale reduction factor 
√
𝑅 introduced by 

Gelman and Rubin (1992) . 
√
𝑅 measures how similar the results of dif- 

ferent runs are. By showing that the results of different runs are sim- 
ilar, we can conclude that convergence is likely. This way, we can 

Fig. 2. Training image used in the SNESIM algorithm ( Strebelle, 2002 ). 

Table 1 
Parameter of the variograms, modeling the heterogenities in the facies. 

Facies Proportions Mean [ ln ( m / d )] Variogramm type k x k y Sill 

Sand 0.35 2.3 Exponential 48 24 1 

Shale 0.65 -3.5 Exponential 24 24 0.35 

asses convergence without having a reference solution, which cannot 
be produced in our problems due to the high complexity of the model. 

Gelman et al. (1995) proposed that 
√
𝑅 ≤ 1 . 2 signifies acceptable con- 

vergence. We try to reach that value for all parameters i.e., for each 

pixel of the random field. A complete introduction to 
√
𝑅 can be found 

in Gelman et al. (1995) . 

3.2. Setup and test cases 

In this section, we give a short overview of the test cases and de- 
scribe them shortly. We use the benchmark proposed in Xu and Gómez- 
Hernández (2015) . It is a synthetic confined aquifer which is 50m 

× 50m × 5m large. It is discretized into 50 × 50 × 1 cells. It 
is composed of 65% low-conductivity shale and 35% high-conductivity 
sand. The spatial sand and shale distributions are characterized by the 
training image by Strebelle (2002) shown in Fig. 2 . The hydraulic log- 
conductivity inside each facies follows a multi-Gaussian distribution 
with exponential variograms. The parameters for these variograms are 
shown in Table 1 . For simplicity, the specific storage S 0 is homogenous 
with 𝑆 0 = 0 . 1 𝑚 −1 . 

Inside the domain, flow can be described using the saturated ground- 
water flow equation 

∇ [ 𝐾( 𝑥, 𝑦 )∇ ℎ ( 𝑥, 𝑦, 𝑡 ) ] = 𝜂( 𝑥, 𝑦 ) + 𝑆 0 
𝜕ℎ ( 𝑥, 𝑦, 𝑡 ) 

𝜕𝑡 
, (19) 

where K ( x, y ) is the isotropic hydraulic conductivity and 𝜂 encapsulates 
all source and sink terms. This equation can be solved for the hydraulic 
head h ( x, y, t ). Fig. 3 shows the synthetic reference conductivity field 
K ( x, y ) and the used boundary conditions. It consists of a spatially dis- 
tributed conductivity field with a so-called general head boundary con- 
dition ( Harbaugh et al., 2000; Xu and Gómez-Hernández, 2015 ) on the 
left side. Further, we assume no-flow boundary conditions on the top 
and bottom and fixed outflow on the right side at the positions marked 
in Fig. 3 . As an initial condition for the transient case, we assume a 
constant head of 8 m. 

As mentioned earlier, we define a highly informative (transient flow) 
and a weakly informative (steady-state flow) test case. In the transient 
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Fig. 3. Log-conductivity field of the synthetic reference aquifer with a general 
head boundary condition ( Harbaugh et al., 2000 ) on the left side, no-flow bound- 
ary conditions at top and bottom and fixed outflow at the right side. The posi- 
tions of the measurement wells are marked in black. 

Table 2 
Parameters of the transient test case. 

Temperature T 1.7 0 1.7 1 1.7 2 1.7 3 ... 1.7 19 

Box size w 6 7 8 9 ... 25 

flow case, the head values change from the initial conditions towards 
a steady-state solution. We assume 25 measurements at the marked po- 
sitions in Fig. 3 over time. In practice, we save the computed heads at 
these points after [10, 21, 34, 49, 65, 83, 104, 127, 153, ∞] days and 
add normal distributed noise with standard deviation 0.05 m to simu- 
late real-world measurements. In the second scenario, we assume that 
only the steady-state measurements (after ∞ days) are available. 

3.3. Implementation 

This section specifies all parameters of the used algorithms. We first 
introduce our forward solver, then our conditional samplers and then 
focus on parallel tempering. Finally, we report the machine used for the 
numerical experiments. 

The groundwater equation is solved using MODFLOW ( McDonald 
and Harbaugh, 1988; Harbaugh et al., 2000 ). We decided to use this 
solver because it is widely used in the literature. The SNESIM resampling 
is done using the training image shown in Fig. 2 . The SGSIM algorithm 

is run with the parameters presented in Table 1 . 
The parameters of the MCMC are heavily influencing the result. 

The algorithm only converges fast if the right parameters are chosen. 
Choosing these parameters is complicated and is broadly discussed in 
the literature ( Gelman et al., 1996; Roberts et al., 1997; Roberts and 
Rosenthal, 2002 ). A target acceptance rate in the range of 10% − 50% 

is generally recommended. We tried to get an acceptance rate of ap- 
proximately 23.4% ( Gelman et al., 1996 ) for all chains. We recommend 
reading Gelman et al. (1996) for a good introduction on how to chose 
these parameters for one chain and Laloy et al., (2016) for parallel tem- 
pering. 

The box size can be chosen adaptively ( Hansen et al., 2012; Laloy 
et al., 2016 ) during burn-in. We refrain from doing that, because that 
would lead to different box sizes in each test run. This makes it ambigu- 
ous whether differences between independent MCMC runs occur due to 
different box sizes or because of slow convergence of the algorithm. In- 
stead, we did a manual tuning in smaller test runs and used identical 
settings in each independent MCMC run. 

In the transient case, we use 20 parallel chains with the parameters 
shown in Table 2 . In the steady-state case, we use 12 chains with the pa- 
rameters shown in Table 3 . We use different box sizes for each chain be- 

Table 3 
Parameters of the steady-state test case. 

Temperature T 2 0 2 1 2 2 2 3 ... 1.7 11 

Box size w 9 11 13 15 ... 31 

cause preliminary test runs showed that this leads to better results than 
using the same box size for all chains. Assuming some box size w (num- 
ber of pixels for the edge length of a square), the number of resampled 
parameters is always smaller or equal than w 2 . It can be smaller than 
w 2 if the center of the box is close to the border of the domain. In both 
scenarios, we randomly propose swaps between neighboring chains ( T i 
and 𝑇 𝑖 +1 ) after 10 in-chain MCMC steps. 

We run our experiments on a high-performance cluster where each 
node has two Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors 
with 10 cores each. On each node, we run independent repetitions of our 

algorithm to compute 
√
𝑅 . With our implementation, each MCMC step 

takes around 2 seconds in the transient and 1.2 seconds in the steady- 
state case. This time mainly consists of the forward simulation (ground- 
water solver) and the conditional resampling. For 1 million samples, the 
algorithm runs for 23 days in the transient and 14 days in the steady- 
state case. 

Our MATLAB implementation of the algorithm and all data of the 
MCMC runs are available at https://doi.org/10.18419/darus-741 . 

4. Results and discussion 

4.1. Preparatory investigations 

We define the L 2 error of one sample 

𝐿 2 = 

√ √ √ √ √ √ 

1 

𝑁 

𝑁 ∑
𝑖 =1 

( 𝑑 𝑖 − 𝐹 𝑖 ( 𝜽) 
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑒 𝑖 

) 2 = 

√ 

𝑙( 𝜽|𝑑) ⋅ 2 𝜎𝑒 
2 

𝑁 
(20) 

where F i ( 𝜽) are the simulated equivalents to the measured data d i , e i are 
the residuals and N is the number of measurements. This L 2 error can 
be seen as an averaged error of predictions and is a slight variant of the 
log-likelihood l ( 𝜽| d ) defined in Eq. 4 . 

The L 2 error converges roughly to 𝜎e (total error standard derivation, 
here: 0.05) independent of the number of measurements N used if N ≫ 1 
(it converges exactly to 𝜎e for N → ∞). Fig. 4 shows the L 2 error of all 
experiments over the number of iterations. The L 2 error, in the first 
iteration, is high in all cases and converges towards 0.05. The burn- 
in contains samples with extremely low likelihoods (high L 2 errors), 
which would distort all further investigations. Thus, we delete all burn- 
in samples in all further investigations. Detecting the length of the burn- 
in was done manually and chosen to be 10,000 samples in the weakly 
informative case and 100,000 samples in the highly informative case. 
The long burn-in time in the highly informative test case shows that 
finding samples with a good fit to the data is harder (compared to the 
weakly informative test case). The remaining 990,000 samples (out of 
1,000,000) in the weakly informative case and 1,000,000 samples (out 
of 1,100,000) in the highly informative case are used for all statistics 
below. 

A second observation in Fig. 4 , besides the burn in effect, is that 
the L 2 error fluctuates less in the highly informative test case. The key 
explanation is that the number of data over which the squared residuals 
𝑒 2 𝑖 are averaged in Eq. 20 is larger (250 versus 25). This provides a more 
stable L 2 simply by more stable sample statistics. 

The signal to noise ratio (SNR) is defined as 

SNR = 
average 𝐿 2 error of prior samples 

measurement error 
. (21) 
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Fig. 4. L 2 error over sample number of the coldest chain (T = 1). The five conducted runs per test case are shown. The manually chosen burn-in length is marked in 
red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

The transient test case has a SNR of approximately 650 and the steady 
state test case has a SNR of approximately 2000. The SNR in the transient 
case is lower because the head at t = 0 is fixed, leading to a smaller prior 
variance of the heads. This SNR suggests that the sampling problem is 
reasonably hard in both cases. 

4.2. Test case 1: Highly informative data 

First, we have a look at the highly informative test case. Fig. 5 shows 
independent samples of the posterior sampled by our MCMC algorithm. 
All samples are alike and similar to the synthetic solution. 

Next, we want to look at the whole ensemble. Fig. 6 shows the mean 
and standard deviation of the whole ensemble with burn-in removed. 
We can see two things: First, the MCMC can find the spatial position of 
the sand channel. Second, it is uncertain about the exact position of it. 
The latter is expressed by the high standard deviation at the borders of 
the channel. In conclusion, the algorithm can produce results that are 
similar to the synthetic truth. 

Next, we want to make sure that we achieve this behavior every time 
we restart the algorithm. Thus, we want to compare different indepen- 
dent test runs and show that all converge to the same posterior. We do 
that in a two-step approach. First, we have a look at several indepen- 
dent mean and standard deviation fields to get a better understanding of 
where weaknesses could lie. Second, we use the scale reduction factor √
𝑅 to quantify the convergence of our test runs. 
Fig. 7 shows two mean and standard deviation fields of two indepen- 

dent test runs. At first sight, the results look mainly similar, although we 
also see some differences (e.g., in the top right corner). This observation 
emphasizes the question of how crucial these differences are. 

The scale reduction factor 
√
𝑅 can answer this question and is shown 

in Fig. 8 . The left side of Fig. 8 shows the spatial distribution of 
√
𝑅 . 

We see that it did not converge to values lower than 1.2 everywhere. 
We see that the top right corner is an area of concern and we should 
try to improve predictions in this area. The right side of Fig. 8 shows 

the mean and maximum scale reduction factor 
√
𝑅 over the length of 

the Markov chains. This indicates how much longer we need to run 

the MCMC algorithm until the maximum 

√
𝑅 gets smaller than the 1.2 

treshold. Furthermore, it shows that the mean 
√
𝑅 value has reached 

the 1.2 mark after 2 · 10 5 iterations. 

4.3. Test case 2: Weakly informative data 

Let us have a look at the weakly informative test case. Fig. 9 shows 
individual samples of the posterior, sampled by our MCMC algorithm. 
One can see that these samples neither look alike nor similar to the 
synthetic reference solution. Nevertheless, all these samples are valid 
solutions. The reason they look different is that the likelihood is less 
restrictive (weakly informative). This leads to a broader posterior (many 
different possible solutions). 

To investigate this aspect further, we have a look at the mean and 
variance of the whole ensemble. Fig. 10 shows the mean and standard 
deviation of one test run. The posterior has a low uncertainty concerning 
the position of the sand channel at the right and left boundary of the 
domain (similar to the highly informative test case). However, in the 
middle of the domain, the inversion results suggest that the connection 
of the sand channel from left to right is unknown. Hence, based on our 
(limited) measurements, we do not know the spatial course of the sand 
channel between the left and right boundary. 

Only looking at mean and standard deviation is not informative for 
two reasons: First, the mean does not look similar to individual samples 
due to the spatial smoothing that occurs in the ensemble average. Sec- 
ond, the standard deviation is remarkably high, which could indicate a 
multi-modal posterior in such a non-linear and non-Gaussian problem. 
Thus, we need to do further analysis and investigate the mean and stan- 
dard deviation of each potential mode. From a machine learning point 
of view, each mode can be represented by one cluster. Hence, we can 
find modes by clustering the posterior. 

We used k-means clustering with 4 clusters and a euclidean dis- 
tance. An introduction to k-means clustering can be found in Hastie 
et al. (2005) . We chose 4 clusters because it produced the best results 
for our test case. Because the cluster algorithms are susceptible to the 
input data, we want to emphasize that the cluster look remarkably dif- 
ferent when produced for various test runs. Furthermore, other norms 
(instead of the euclidean distance) and different clustering algorithms 
change the results as well. However, the discussed conclusions are not 
affected. Fig. 11 shows the mean and standard deviation of the posterior 
of a representative clustering example. 

On the top row of Fig. 11 , we see the mean fields of the clusters 
and the respective probability of the clusters. The probability is defined 
as the percentage of samples that lie inside the respective cluster. We 
see that 48% of samples are similar to the synthetic reference solution 
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Fig. 5. Independent samples in the highly informative test case. 

Fig. 6. Expected values (left) and standard deviation (right) in the highly informative test case. 

(cluster 1). However, based on the available information, we see that 
three other clusters are also possible. To exclude these other clusters in 
the inversion, one would need more (informative) measurement data. 
We show this example to emphasize clustering as a possible tool to in- 
vestigate multi-modal distributions by splitting them into more homo- 
geneous sub-distributions. This clustering resembles a non-parametric 
version of Gaussian mixture models for the posterior. 

Next, we consider the standard deviation within the clusters. We can 
see that the standard deviation of the clusters is significantly smaller 
than the total standard deviation in Fig. 10 . This observation indicates 
that clustering reduced the uncertainty around the cluster-wise mean 
fields shown in Fig. 11 drastically when compared to the non-clustered 
field in Fig. 10 . Hence, the mean fields of the clusters are more reliable 
and should be used for further investigations. 
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Fig. 7. Expected values (left) and standard deviation (right) in the highly informative test case for two independent test runs (top and bottom). 

Fig. 8. Scale reduction factor 
√
𝑅 in the highly informative test case. On the left the spatial distribution of the scale reduction factor is illustrated. On the right 

the spatial average (blue) and maximum (red) for different lengths of Markov chains is shown. The red dotted line signifies 
√
𝑅 = 1 . 2 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Next, we show the convergence of our algorithm. Fig. 12 shows the 
mean of two different test runs. We can see that the mean fields look 
similar. To quantify this similarity, we have a look at the scale reduc- 

tion factor 
√
𝑅 in Fig. 13 . We see that it is lower than 1.2 everywhere 

in the domain. This indicates that the MCMC algorithm converged suffi- 

ciently well. Furthermore, we can see that this criterion is reached after 
approximately 2 · 10 5 MCMC steps. 

This looks nice but, is the scale reduction factor 
√
𝑅 the right 

statistic to use? The scale reduction factor 
√
𝑅 checks the conver- 

gence of the mean value and not of the distribution. Hence, 
√
𝑅 
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Fig. 9. Independent samples in the weakly informative test case. 

Fig. 10. Expected values (left) and standard deviation (right) in the weakly informative test case. 

might be the wrong norm in multi-modal applications, such as the 
current test case. Other measures like the Kullback-Leibler divergence 
( Kullback and Leibler, 1951 ) might be more suitable. However, we used √
𝑅 because it is widely used in the literature. 

4.4. Summary 

The proposed algorithm converges to the posterior in the weakly and 
highly informative test case settings. The convergence is measured using 

the scale reduction factor 
√
𝑅 . The highly informative test case reaches 

the benchmark value of 
√
𝑅 < 1.2 in 92.76% of the parameter cells and 

the weakly informative test case reaches it everywhere. 
The highly informative test case shows a posterior that is uni-modal 

and similar to the reference solution. The weakly informative test case 
shows a posterior that is multi-modal and can be split using a cluster- 
ing algorithm. We visualize all possible scenarios and their respective 
probabilities. 
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Fig. 11. Clusters of the posterior ensemble. Top: The mean value of the 4 different clusters. Bottom: The respective standard deviation in the clusters. The percentage 
of samples in each cluster is noted over the respective column. 

Fig. 12. Expected values (left) and standard deviation (right) in the weakly informative test case for two independent test runs (top and bottom). 
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Fig. 13. Scale reduction factor R in the weakly informative test case. On the left the spatial distribution of the scale reduction factor is illustrated. On the right 

the spatial average (blue) and maximum (red) for different lengths of Markov chains is shown. The red dotted line signifies 
√
𝑅 = 1 . 2 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

5. Conclusion 

This work enables realistic inversion of channelized flow in the 
subsurface. Thereby it solves the categorical decision (which facies 
is present) and the heterogeneity within each facies in a hierarchical 
framework. To achieve this goal, we propose a novel MCMC algorithm 

that combines parallel tempering and sequential resampling. 
This algorithm is an extension of Laloy et al. (2016) , who only treated 

categorical fields. Compared to existing solution methods such as the 
EnKF approach in Xu and Gómez-Hernández (2015) , it converges to the 
true solution by design, not just to an implicit quasi-linearized solution. 

We test our algorithm on a highly- and weakly-informative test case 
and it converges in both cases. The MCMC converges although the pos- 
terior is extremely narrow in the highly informative test case and broad 
and multi-modal in the weakly informative test case. This shows the 
general applicability of our method. 
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Appendix A 

In the following, we show the derivation of the detailed balance. The 
detailed balance is defined as 

𝜋( 𝜽𝒊 ) ℎ ( 𝜽𝒊 , 𝜽𝒋 ) = 𝜋( 𝜽𝒋 ) ℎ ( 𝜽𝒋 , 𝜽𝒊 ) (A.1) 

with the transition kernel h , which is usually defined as 

ℎ ( 𝜽𝒊 , 𝜽𝒋 ) = 𝑞 ( 𝜽𝒊 , 𝜽𝒋 ) 𝛼( 𝜽𝒊 , 𝜽𝒋 ) . (A.2) 

Combining these equations, the detailed balance can be written as 

𝜋( 𝜽𝒊 ) 𝑞( 𝜽𝒊 , 𝜽𝒋 ) 𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝜋( 𝜽𝒋 ) 𝑞( 𝜽𝒋 , 𝜽𝒊 ) 𝛼( 𝜽𝒋 , 𝜽𝒊 ) . (A.3) 

Inserting Eq. (3) , it follows that 

𝑃 ( 𝜽𝒊 ) 𝐿 ( 𝜽𝒊 ) 𝑞( 𝜽𝒊 , 𝜽𝒋 ) 𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝑃 ( 𝜽𝒋 ) 𝐿 ( 𝜽𝒋 ) 𝑞( 𝜽𝒋 , 𝜽𝒊 ) 𝛼( 𝜽𝒋 , 𝜽𝒊 ) . (A.4) 

After resorting this equation, we find that 

𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 
𝑃 ( 𝜽𝒋 ) 𝐿 ( 𝜽𝒋 ) 𝑞( 𝜽𝒋 , 𝜽𝒊 ) 

𝑃 ( 𝜽𝒊 ) 𝐿 ( 𝜽𝒊 ) 𝑞( 𝜽𝒊 , 𝜽𝒋 ) 
𝛼( 𝜽𝒋 , 𝜽𝒊 ) . (A.5) 

Combining this equation with the property of 0 ≤ 𝛼 ≤ 1, one obtains 
that 

𝛼( 𝜽𝒊 , 𝜽𝒋 ) = 𝑚𝑖𝑛 

[ 
𝑃 ( 𝜽𝒋 ) 𝐿 ( 𝜽𝒋 ) 𝑞( 𝜽𝒋 , 𝜽𝒊 ) 

𝑃 ( 𝜽𝒊 ) 𝐿 ( 𝜽𝒊 ) 𝑞( 𝜽𝒊 , 𝜽𝒋 ) 
, 1 

] 
. (A.6) 

Appendix B 

In the following, we show a proof that our algorithm fulfills the pro- 
posal distribution as specified in Eq. (11) (and hence fulfills the detailed 
balance), assuming that the functions u c and 𝑢 𝑓 𝑖 are able to sample from 

the distribution p q ( 𝜽j 
c | 𝜽., k ∉𝚪) and 𝑝 𝑞 ( 𝜽𝒋 

𝑓 𝑖 |𝜽.,𝑘 ∉𝚪) respectively. 
First, we partion the parameter space into 

𝜽𝒊 = [ 𝜽
.,𝑘 ∉𝚪
𝑖 , 𝜽.,𝑘 ∈𝚪𝑖 ] (B.1) 

with the persistent parameters 𝜽.,𝑘 ∉𝚪𝑖 and the resampled parameters 

𝜽
.,𝑘 ∈𝚪
𝑖 . Eq. (16) defines the proposal function to be 

𝜽𝒋 = 𝑔( 𝜽𝒊 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑢 𝑐 ( 𝑣 ( 𝜽𝒊 )) 

𝑢 𝑓 1 ( 𝑣 ( 𝜽𝒊 )) 

⋮ 

𝑢 
𝑓 𝑁 𝑓 ( 𝑣 ( 𝜽𝒊 )) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.2) 

Evidently, if 𝜽.,𝑘 ∉𝚪𝑖 ≠ 𝜽
.,𝑘 ∉𝚪
𝑗 it follows that 𝑞( 𝜽𝒊 , 𝜽𝒋 ) = 𝑞( 𝜽𝒋 , 𝜽𝒊 ) = 0 

which fulfills Eq. (11) . 
Thus, we know that 𝜽.,𝑘 ∉𝚪𝑖 = 𝜽

.,𝑘 ∉𝚪
𝑗 = 𝜽.,𝑘 ∉𝚪. We can resample the rest 

𝜽i 
r of the parameter space based on fixed part 𝜽., k ∉𝚪. In the given setting, 

we can express q ( 𝜽i , 𝜽j ) as 

𝑞( 𝜽𝒊 , 𝜽𝒋 ) = 𝑝 𝑞 ( 𝜽𝒋 |𝜽.,𝑘 ∉𝚪) 𝑝 𝑤 ( 𝜽.,𝑘 ∉𝚪|𝜽𝒊 ) ∀𝜽.,𝑘 ∉𝚪 (B.3) 
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where p q ( 𝜽j | 𝜽., k ∉𝚪) is the probability density of 𝜽j based on 𝜽., k ∉𝚪 given 
by some conditional re-sampling method and p w ( 𝜽., k ∉𝚪| 𝜽i ) is the proba- 
bility of the persistent data based on the previous sample. Assuming that 
we choose the parameter box indepently of the 𝜽i , 𝜽j , we know that 

𝑝 ( 𝜽.,𝑘 ∉𝚪|𝜽𝒊 ) = 𝑝 ( 𝑠 ) (B.4) 

where p ( s ) is the probability that 𝜽., k ∉𝚪 is chosen. One could imagine it 
as the probability to place the box at a certain position such that it ex- 
cludes exactly 𝜽., k ∉𝚪. Assuming non-zero probabilities p ( s ) and p ( 𝜽., k ∉𝚪) 
it follows that 

𝑞( 𝜽𝒊 , 𝜽𝒋 ) 

𝑞( 𝜽𝒋 , 𝜽𝒊 ) 
= 
𝑝 ( 𝜽𝒋 |𝜽.,𝑘 ∉𝚪) 𝑝 ( 𝑠 ) 
𝑝 ( 𝜽𝒊 |𝜽.,𝑘 ∉𝚪) 𝑝 ( 𝑠 ) 

= 
𝑝 ( 𝜽𝒋 |𝜽.,𝑘 ∉𝚪) 
𝑝 ( 𝜽𝒊 |𝜽.,𝑘 ∉𝚪) 

= 
𝑝 ( 𝜽𝒋 |𝜽.,𝑘 ∉𝚪) 𝑝 ( 𝜽.,𝑘 ∉𝚪) 
𝑝 ( 𝜽𝒊 |𝜽.,𝑘 ∉𝚪) 𝑝 ( 𝜽.,𝑘 ∉𝚪) 

= 
𝑝 ( 𝜽𝒋 ) 

𝑝 ( 𝜽𝒊 ) 

(B.5) 

which is equivalent to Eq. (11) . 
𝑝 ( 𝑠 ) = 0 or 𝑝 ( 𝜽.,𝑘 ∉𝚪) = 0 leads to 𝑞( 𝜽𝒊 , 𝜽𝒋 ) = 𝑞( 𝜽𝒋 , 𝜽𝒊 ) = 0 which fulfills 

Eq. (11) as well. □
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1. Introduction

Models are used to predict and/or investigate and explain phenomena in nature. Often, many hypotheses 

exist for these two tasks. Naturally, the question arises, which of the competing modeling approaches pre-

dicts or explains nature best. Bayesian model selection (BMS, e.g., Wasserman, 2000) is a statistical meth-

od that uses observed data to select between competing models. BMS is settled in a rigorous probabilistic 

framework and follows the scheme of Bayesian updating: A prior belief about the plausibility of each can-

didate model is updated to a posterior model weight in the light of measured data (i.e., the probability of the 

model to have generated the data, given the model set). Posterior model weights are then used as a basis for 

Bayesian model ranking, selection, or averaging (BMA, Hoeting et al., 1999).

To help with the interpretation of posterior model weights, the so-called model confusion matrix (MCM) 

has been introduced by Schöniger, Illman, et al. (2015). It reveals whether a lack of confidence in model 

choice is due to similarity between the candidate models or due to weakly informative data. The MCM is a 

purely synthetic analysis that can be used as a scale of reference for model weights obtained from real data. 

Schäfer Rodrigues Silva et al. (2020) have recently extended the MCM analysis to identify the best surrogate 

model from a set of candidates to replace an expensive full-complexity model in stochastic analysis.

Technically, the Bayesian updating procedure requires calculating the so-called Bayesian model evidence 

(BME). BME is the likelihood of a model to have generated the data, integrated over its whole parameter 

space and all involved probability distributions. While the likelihood accounts for uncertainty in measured 

data, the integration considers parameter uncertainty, and potentially also uncertainty in model drivers or 

boundary conditions. In some cases, the integration even accounts for statistical representations of model 

errors (Leube et al., 2012; Nowak et al., 2012), which is perceived by many studies to be part of the likelihood.

Due to its statistical rigor and its elegance in accounting for uncertainty, BMS has become popular in wa-

ter resources research. It has been applied in various different contexts, such as evaluation of hydrologi-

Abstract Bayesian model selection (BMS) is a statistically rigorous approach to assess the plausibility 

of competing models. It naturally accounts for uncertainties in models and data. In this study, we 

discuss the role of measurement noise in BMS deeper than in past literature. We distinguish between 

four cases, accounting for noise in models and/or data: (1) no-no, (2) no-yes, (3) yes-no, and (4) yes-yes. 

These cases differ mathematically and philosophically. Only two out of these four cases are logically 

consistent, and they represent two potentially conflicting research questions: “Which model is best in 

modeling the pure physics?” (Case 1) and “which model is best in predicting the data-generating process 

(i.e., physics plus noise)?” (Case 4). If we are interested in the “pure physics question,” we face two 

practical challenges: First, we would need noise-free data, which is impossible to obtain; and second, the 

numerical approximation of Bayesian model evidence can be hard when neglecting noise. We discuss how 

to address both challenges and reveal that a fallback to the easier “data-generation question” as a proxy 

for the “physics question” is not appropriate. We demonstrate on synthetic scenarios and a real-world 

hydrogeological case study that the choice of the case has a significant impact on the outcome of posterior 

model weights, and hence on results of the model ranking, model selection, model averaging, model 

confusion analysis, and uncertainty quantification. Reality might force us to use a different case than 

philosophy would suggest, and we provide guidance on how to interpret model probabilities under such 

conditions.
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cal models (Marshall et al., 2005), frequency analysis of hydrological extremes (Laio et al., 2009), climate 

change impact studies (Najafi et al., 2011), model complexity analysis (Höge et al., 2018; Schöniger, Illman, 

et al., 2015), optimal design for model choice (Nowak & Guthke, 2016), as well as hydrogeophysical (Bru-

netti et al., 2017), hydro-morphodynamic (Mohammadi et al., 2018), and groundwater transport modeling 

(Elshall & Ye, 2019).

While the ability to account for uncertainties is the primary reason for the popularity of the Bayesian frame-

work in hydrological multi-modeling analyses, the theoretical basis of how to treat measurement noise in 

BMS has rarely been in the focus. Lu et al. (2013) have investigated the effect of error covariance structure 

in the likelihood function on posterior weights for transport models. Schöniger, Wöhling, and Nowak (2015) 

have demonstrated that posterior weights of soil-plant-atmosphere models can vary significantly under ran-

dom outcomes of measurement noise in the observed data and that this variability can even change model 

ranking and corresponding modeling conclusions. What is missing so far is a theoretical dissection of how 

and for which reasons measurement noise should be treated in BMS. We wish to make modelers aware of 

the impact this treatment has on the final outcome of model ranking results and dependent conclusions.

For our discussion, we assume a deterministic “physics model” 𝐴𝐴 𝐴𝐴𝑘𝑘(𝐮𝐮𝑘𝑘, 𝐯𝐯𝑘𝑘) that produces probabilistic output, 

for example, due to uncertain parameters 𝐮𝐮𝑘𝑘 and/or inputs 𝐯𝐯𝑘𝑘 . The modeled output is potentially comple-

mented by a statistical model error term 𝐴𝐴 𝐴𝐴𝑀𝑀𝑘𝑘
 . The result is a prediction of the true system state (without 

measurement noise) and we call the corresponding hypothetical observation-noise-free data 𝐝𝐝0 . To make 

predictions of real (measurement noise-corrupted) noisy data 𝐝̂𝐝0 , a measurement noise term 𝐴𝐴 𝐴𝐴𝑑𝑑0 is added to 

the physics prediction:

𝐝̂𝐝0 =

Data-generating process: 𝑀̂𝑀𝑘𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Physics: 𝑀𝑀𝑘𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝑓𝑘𝑘(𝐮𝐮𝑘𝑘, 𝐯𝐯𝑘𝑘) + 𝜀𝜀𝑀𝑀𝑘𝑘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐝𝐝0

+𝜀𝜀𝑑𝑑0 .
 (1)

Equation 1 shows that we can either predict physics only (denoted as model 𝐴𝐴 𝐴𝐴𝑘𝑘 ), or we can predict the 

data-generating process (physics + noise, denoted as model 𝑀̂𝑀𝑘𝑘 ). We argue that equipping models with 

noise (𝑀̂𝑀𝑘𝑘 ) and comparing them to noisy data (𝐝̂𝐝0 ) is of course logically consistent, but answers a research 

question that is not at the core scientific interest: “which model is best in predicting the data-generating 

process (i.e., physics plus noise)?” The more intriguing question would be “which model is best in modeling 

the pure underlying physics?” (in the spirit of Bayesian hypothesis testing), and this question could only 

be addressed by comparing noise-free model (𝐴𝐴 𝐴𝐴𝑘𝑘 ) predictions with noise-free data (𝐝𝐝0 ). This is hindered by 

two practical challenges: First, we do not have noise-free observation data (we call this the “data-availability 

barrier”); and second, numerical approximation of BME can become an intractable problem with the likeli-

hood function collapsing to a Dirac delta function (we call this the “numerical-approximation barrier”). We 

comment on these challenges in Sections 3.4 and 3.5.

We put these issues into a consistent frame by enumerating all four combinatorially possible ways of how to 

treat noise in BMS: First, we can assume data to be noise-free, and predict with noise-free models (Case 1). 

Second, we may believe to have noisy data but choose not to simulate it with our models (Case 2). Third, we 

can add noise to our predictions but compare them to (allegedly) noise-free data (Case 3). And fourth, we 

can consider noise in both models and data (Case 4). This is illustrated by the “decision matrix” in Figure 1.

We shed light on the four cases from a philosophical, mathematical, and numerical perspective, and discuss 

ways to overcome or deal with these barriers. We focus on the two logically consistent cases (cf. Figure 1) 

that represent the two potentially conflicting research questions mentioned above and investigate whether 

we can exploit the inconsistent cases to approximate the pure-physics case.

We show that the theoretical differences between the four cases translate into differences in model weight 

outcomes. We test whether these differences matter in real-world applications (i.e., whether there is a 

risk that the model identified as the “most plausible physics model” is different from the identified “most 

plausible data-generating model”). To do so, we investigate in three analytical test case scenarios under 

which conditions the differences in model weights are most pronounced. We also derive a mathematical 
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formulation of model confusion weights for all four cases and use the MCM results as a tool to interpret the 

severity of differences between the cases. Finally, we demonstrate the implications of the four cases on a 

real-world hydrogeological case study that features data from a sandbox aquifer lab experiment by Illman 

et al. (2010).

We here investigate how choosing between our four cases impacts an example of BMS for a set of ground-

water models in a brute-force Monte Carlo setup. Yet, our theoretical discussion is general enough to be 

also applicable (a) to other multi-model approaches such as BMA, pseudo-BMA, or Bayesian stacking (e.g., 

Höge et al., 2020), to (b) other numerical implementation schemes (e.g., Liu et al., 2016; Volpi et al., 2017) 

or mathematical approximations of model weights via information criteria (e.g., Schöniger et al., 2014; Ye 

et al., 2008), and (c) to arbitrary other fields of applications in water resources research and beyond.

The main contributions of this study are the following:

1.  We discuss where and for which reasons measurement noise should be considered in BMS (four cases).

2.  We distinguish between two potentially conflicting research questions and identify the cases in which 

they can be pursued in a logically consistent way.

3.  We reveal practical hindrances and analyze which approximations can be taken to still approach the 

desired research question.

4.  We finally provide a recipe for BMS that ensures philosophically consistent and numerically stable re-

sults under noise.

We summarize the existing mathematical framework of BMS, including the derivation of the MCM, in 

Section 2. In Section 3, we introduce the four different ways to handle measurement noise and discuss them 

from a philosophical, mathematical, and practical perspective. Section 4 demonstrates the differences be-

tween these cases on simplified 1D analytical examples. Then, we present the application of the four cases 

to a real-world hydrogeological case study in Section 5. Finally, we summarize findings and provide a recipe 

for BMS that ensures philosophically consistent and numerically stable results under noise in Section 6.

2. Bayesian Model Selection Framework

2.1. Bayesian Model Selection

BMS is a statistical framework to choose between competing models (Raftery, 1995). It compares the pre-

dictive distributions of the different models and ranks the models in their ability to predict the measured 

data. Besides the goodness-of-fit, BMS takes into account the complexity of the models. It, therefore, yields 

a model ranking that reflects a compromise between performance and parsimony. A general introduction 

to the BMS framework can be found in Höge et al. (2019).

Figure 1. The four ways to compare a model with data, accounting for or ignoring the noise. Green cells represent 
consistent scenarios, red cells represent inconsistent scenarios. Distributions drawn in black indicate whether we 
are dealing with fixed values (Dirac delta function in the case of noise-free data) or random numbers with assigned 
distribution (noisy data, probabilistic physics predictions, and probabilistic data-generating process predictions).
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When using the BMS framework, we implicitly assume that we are in an M-closed setting (Bernardo & 

Smith, 2009). That is, we assume the data was produced by one of the 𝐴𝐴 𝐴𝐴𝑚𝑚 considered models (and hence, 

model selection here means to identify the true model, not “the best”). The goal of BMS is to find the poste-

rior probability that model 𝐴𝐴 𝐴𝐴𝑘𝑘 (𝐴𝐴 𝐴𝐴 = 1,… , 𝑁𝑁𝑚𝑚 ) produced the data 𝐝𝐝0 . This probability 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝0) is also called 

the posterior model weight of model 𝐴𝐴 𝐴𝐴 and is defined as

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝𝐝0) =
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘)𝑃𝑃 (𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑖𝑖)𝑃𝑃 (𝑀𝑀𝑖𝑖)

, (2)

with 𝐴𝐴 𝐴𝐴(.) denoting probability densities of continuous random variables, and 𝐴𝐴 𝐴𝐴 (.) denoting discrete probabil-

ity distributions. The prior model weight 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘) represents the prior belief in model 𝐴𝐴 𝐴𝐴𝑘𝑘 to be the true one. 

This prior belief is updated by the predicted density of the data, 𝐴𝐴 𝐴𝐴(𝐝𝐝0|𝑀𝑀𝑘𝑘) , which is called Bayesian model 

evidence (BME). It is defined as the expected likelihood of the observed data integrated over the model's 

prior parameter space 𝑘𝑘 :

𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘) = ∫𝑘𝑘

𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘, 𝐮𝐮𝑘𝑘)𝑝𝑝(𝐮𝐮𝑘𝑘|𝑀𝑀𝑘𝑘) d𝐮𝐮𝑘𝑘 (3)

Here, the prior distribution of parameters 𝐮𝐮𝑘𝑘 in model 𝐴𝐴 𝐴𝐴𝑘𝑘 is denoted by 𝐴𝐴 𝐴𝐴(𝐮𝐮𝑘𝑘|𝑀𝑀𝑘𝑘) . 𝐴𝐴 𝐴𝐴(𝐝𝐝0|𝑀𝑀𝑘𝑘, 𝐮𝐮𝑘𝑘) represents 

the likelihood of the data 𝐝𝐝0 given the parameters 𝐮𝐮𝑘𝑘 of model 𝐴𝐴 𝐴𝐴𝑘𝑘 .

In practice, we are missing a reference to compare the obtained Bayesian model weights to, in order to judge 

their decisiveness. One way to move forward is to use the so-called Bayes factor (Kass & Raftery, 1995) to 

determine the decisiveness of evidence in favor of one out of two models; however, the Bayes factor does 

not tell us how decisive this choice could ideally be under the given conditions (model set, uncertainty in 

models, and available data). This is where the model justifiability analysis proposed by Schöniger, Illman, 

et al. (2015) comes into play: it determines in a synthetic setting, how decisive model weights could be at 

most (i.e., if any of the models in the set was actually the true one). The core ingredient of the model justifi-

ability analysis is the model confusion matrix, which will be presented in the next Section.

2.2. Model Confusion Matrix

The model confusion matrix (MCM) was proposed by Schöniger, Illman, et al. (2015) as the basis for a so-

called model justifiability analysis. The MCM consists of posterior model weights for the models in the set 

under the condition that the data set was actually produced, in turn, by each one of the models. Since we 

assume model predictions to be probabilistic (due to, e.g., parameter and input uncertainty), there is not a 

single data set representative of each model, but instead, we have to consider the models' predictive distri-

bution. That means, the given data set 𝐝𝐝0 from Equations 2 and 3 now turns into a random number 𝐝𝐝𝓁𝓁 with 

distribution 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝑀𝑀𝓁𝓁) , 𝓁𝓁 = 1…𝑁𝑁𝑚𝑚 .

As we now fulfill the requirement of an M-closed setting, we obtain Bayesian probabilities under ideal condi-

tions. Within this synthetic setting, we can exclude noise, model errors, and other annoyances from the analy-

sis, and put the focus on the theoretical information content of the data set. This information is characterized 

by the type of data and the data set length; or, more specifically: it is given by the sensitivity of model choice to 

the experimental setup. The goal of the justifiability analysis is to identify an upper limit to the decisiveness of 

model weights, which can be used to judge the model ranking result obtained for the real data set 𝐝𝐝0 .

The columns of the MCM represent the data-generating model, whereas the rows list the models to be 

evaluated, that is, that aim to predict the given data. To populate the 𝐴𝐴 𝐴𝐴 -th row and 𝓁𝓁 -th column of the 

MCM, we determine the expected weight for model 𝐴𝐴 𝐴𝐴𝑘𝑘 based on the data produced by model 𝐴𝐴 𝐴𝐴𝓁𝓁 and call it 

𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) . This expected posterior model weight is given by

� (��|�𝓁𝓁) = �̃
[
� (��|𝐝𝐝)

]
= ∫̃

� (��|𝐝𝐝)�(𝐝𝐝|�𝓁𝓁) d𝐝𝐝

= ∫
�(𝐝𝐝|��)� (��)

∑��

�=1
�(𝐝𝐝|��)� (��)

�(𝐝𝐝|�𝓁𝓁) d𝐝𝐝 (4)
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where 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝑀𝑀𝓁𝓁) denotes the distribution of synthetic data generated by model 𝐴𝐴 𝐴𝐴𝓁𝓁 . In the following, we 

assume that prior model weights are uniformly distributed (all 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘) are identical), which simplifies Equa-

tion 4 to:

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) = 𝔼𝔼̃

[
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖)

]
= ∫

𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘)
∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖)

𝑝𝑝(𝐝𝐝|𝑀𝑀𝓁𝓁) d𝐝𝐝. (5)

The MCM provides two major insights. First, the main diagonal reveals the maximum self-identification 

weights given the experimental setup. These weights can be used as a reference for BMS results with real 

data: the diagonal values 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘,𝑀𝑀𝑘𝑘) tell us how large the model weight for model 𝐴𝐴 𝐴𝐴𝑘𝑘 would be if it per-

fectly represented nature. Hence, if our BMS analysis resulted in a posterior weight of 60% for model 1 and 

𝐴𝐴 𝐴𝐴 (𝑀𝑀1,𝑀𝑀1) = 0.6 , we would know that we could not get any higher weight (on average) under the given 

experimental setup. We would conclude that (a) based on the observed data model 1 most probably has 

produced the data and (b) our measurement data is not well suited to distinguish between the competing 

models with high confidence. One way to solve the latter issue is to take more or more informative (i.e., 

more precise or more sensitive) measurements, which will increase the values on the main diagonal of the 

MCM and decrease the values on the off-diagonals.

Second, the off-diagonal entries reveal the similarity between models. The value 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘,𝑀𝑀𝓁𝓁) indicates how 

similar model 𝐴𝐴 𝐴𝐴𝑘𝑘 and model 𝐴𝐴 𝐴𝐴𝓁𝓁 are under the available data. Here, large values represent a high predictive 

similarity of the models. If the value is as large as the diagonal entry of, for example, 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘,𝑀𝑀𝑘𝑘) , it follows 

that models 𝐴𝐴 𝐴𝐴𝓁𝓁 and 𝐴𝐴 𝐴𝐴𝑘𝑘 cannot be distinguished based on this specific experimental setup. Again, taking 

more measurements might solve this problem. A value of zero on the off-diagonals represents perfectly dis-

tinguishable models with no similarity at all. The similarity of models is relevant, for example, identifying 

the best surrogate model for a (too) expensive high-fidelity model. To this end, the column with the data of 

the high-fidelity model is used to identify the most similar surrogate model, that is, the model showing the 

highest confusion with the high-fidelity model (Schäfer Rodrigues Silva et al., 2020).

3. The Four Ways to Consider/Ignore Noise in Bayesian Model Selection

As laid out in Sections 1 and 2, the Bayesian framework for model evaluation is designed to account for 

uncertainty in models and data. Here, we focus on measurement uncertainty. Typically, measurement noise 

is accounted for in the likelihood function. We will explain that this approach is equivalent to adding noise 

to model predictions and that this is only one out of four possible perspectives on the noise handling theme.

Here and in the following, we distinguish between hypothetical noise-free data 𝐝𝐝0 and real noisy data 𝐝̂𝐝0 . 

Noise-free data refers to data that represents the true system state. Noisy data, in contrast, refers to observa-

tions of the system state that suffer from measurement noise. Of course, “measurement noise” is a concep-

tual simplification with a frequentist interpretation: to us, repeated measurements of the same system state 

lead to a set of outcomes that center on the true system state (assuming an unbiased observation procedure) 

and that shows a certain level of variability (= noise). Similarly, our models 𝐴𝐴 𝐴𝐴𝑘𝑘 target the true system state, 

and we can add a noise description to obtain models 𝑀̂𝑀𝑘𝑘 that aim to reproduce the expected value and the 

variability in the data.

We shed light on the four cases defined by Figure  1 from a scientific/philosophical perspective in Sec-

tion 3.1. Then, we provide a rigorous mathematical derivation of posterior model weights and model con-

fusion weights in the four cases in Sections 3.2 and 3.3, respectively. Section 3.4 discusses challenges in nu-

merical implementation, and Section 3.5 discusses constraints posed by limited data availability. Finally, in 

Section 3.6, we combine philosophical, mathematical, and pragmatic considerations to briefly summarize 

implications for model selection in the presence of measurement noise.

3.1. Philosophical Perspective

The different cases are shown in Figure  1 model four different scenarios as schematically illustrated in 

Figure 2.
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3.1.1. Case 1

Figure 2 illustrates that, in Case 1, the model simulates the physical pro-

cesses that cause the (only theoretically observable) true system state; 

these processes are summarized as “physics.” If this true system state 

was observable, we could compare our predictions with noise-free data to 

judge the model's quality. Such comparison would be fair and consistent, 

and very insightful if we wanted to learn about the true processes acting 

in the (hydrological) system. A typical application of Case 1 is to identify 

the most plausible physical model, that is, to increase system understand-

ing by identifying dominant processes.

3.1.2. Case 2

In Case 2, the model shall represent the true system state by simulating 

physics only; but the model output is compared to real noisy data. This case 

is logically inconsistent because model output and data do not match: the 

“noise-generating” observation process is missing in the model formulation. 

We label this case as inconsistent because noise-free predictions are com-

pared to noisy data. Hence, there is no philosophical reason to use this case.

3.1.3. Case 3

Case 3 models what we call the “data-generating process” in Figure 2 and 

in the following. This includes modeling both the physics and the (sim-

plified) observation procedure that introduces measurement noise. Using 

noise-free data for evaluating such a model produces a conceptual error, and hence we label this case as 

inconsistent as well. Again, there is no philosophical reason to use this case.

3.1.4. Case 4

Case 4 models the data-generating process and uses noisy data for model-data comparison. This case is hence 

logically consistent. Similarly, Nearing et al. (2016) argue that a set of modeling hypotheses can only be tested as 

a whole, i.e., by modeling the full measurement (error) process. In our words, they argue that only the ”data-gen-

erating process” question can be answered. Hence, in Case 4, we cannot assess the plausibility of the physics 

model alone. A typical application of Case 4 could be, for example, predicting whether a certain legal threshold 

value will be exceeded - here it is only relevant to predict the combined signal of physics and observation process; 

the true system state cannot be uncovered and hence cannot be the subject of regulatory guidelines.

3.2. Mathematical Definition of Posterior Model Weights

In the specific context of Bayesian model selection, we wish to formalize the impact of the four introduced 

cases on the calculation of posterior model weights, assuming noise-free or noisy model predictions and 

given noise-free or noisy data.

In the noise-free data case, we simply evaluate posterior model weights once on the given data 𝐝𝐝0 . In con-

trast, evaluating posterior model weights given real noisy data is more challenging. What we do in practice 

is to determine model weights once, given the observed noisy data 𝐝̂𝐝0 . This data contain a specific but 

unknown realization of noise 𝐴𝐴 𝐴𝐴0 (note that we drop the subscript 𝐴𝐴 𝐴𝐴 when describing 𝐴𝐴 𝐴𝐴 in the remainder of 

this work), with 𝐴𝐴 𝐴𝐴0 = 𝐝̂𝐝0 − 𝐝𝐝0 . Due to the conceptualization of noise 𝐴𝐴 𝐴𝐴0 as a realization of a random variable, 

also noisy data 𝐝̂𝐝 becomes a random variable 𝐝̂𝐝 = 𝐝𝐝0 + 𝜀𝜀 . Note that we assign fixed given values a subscript 

(𝐝𝐝0,𝐝𝐝0, 𝜀𝜀0 ), while random numbers are written without subscript (𝐝̂𝐝, 𝜀𝜀 ). The random variable 𝐝̂𝐝 reveals its 

randomness, e.g., under repetition of an observation or experiment. The distribution of 𝐝̂𝐝 is given by

𝑝𝑝(𝐝̂𝐝) = 𝛿𝛿𝐝𝐝0 ∗ 𝑝𝑝 (6)

where ∗ denotes a convolution, 𝐴𝐴 𝐴𝐴𝐝𝐝0 is the probability density function of 𝐝𝐝 (a Dirac delta function centered at 

𝐝𝐝0 ), and 𝐴𝐴 𝐴𝐴 is the measurement noise distribution.

Figure 2. Schematic illustration of what is modeled (system physics only 
or complete data-generating process) and what is measured (hypothetical 
noise-free data or real noisy data) in the four cases. Boxes mark the data 
used for model evaluation. Red arrows represent errors made in the two 
inconsistent cases.



Water Resources Research

REUSCHEN ET AL.

10.1029/2021WR030391

7 of 26

To investigate the general differences between the four cases, we integrate over all possible outcomes of 

random noisy data 𝐝̂𝐝 . This means that we compare expected values of posterior model weights given noisy 

data in Cases 2 and 4 with fixed posterior model weights given noise-free data in Cases 1 and 3. For consist-

ency, we formulate all results as expected values over 𝐴𝐴 𝐴𝐴 : in Cases 1 and 3, the expected value is over a Dirac 

delta noise function centered at 0 (𝐴𝐴 𝐴𝐴(𝐝𝐝) = 𝛿𝛿𝐝𝐝0 ∗ 𝐴𝐴 = 𝛿𝛿𝐝𝐝0 ∗ 𝛿𝛿0 = 𝛿𝛿𝐝𝐝0 ), which collapses to the result given 𝐝𝐝0 ; in 

Cases 2 and 4, the expectation is over the random part of 𝐝̂𝐝 , that is, over 𝐴𝐴 𝐴𝐴 .

3.2.1. Case 1

Case 1 compares predictions of the true system state by model 𝐴𝐴 𝐴𝐴𝑘𝑘 with noise-free data 𝐝𝐝0 . Not modeling the 

noise in predictions and having noise-free data leads to posterior model weights

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝𝐝0) =
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑖𝑖)

, (7)

still assuming uniform prior model weights to simplify the equations.

As stated above, in the noise-free data case, the expected posterior model weight over 𝐴𝐴 𝐴𝐴(𝐝𝐝) is equal to the 

posterior model weight given 𝐝𝐝0

𝔼𝔼 [𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝𝐝)] = 𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝𝐝0). (8)

3.2.2. Case 2

In Case 2, we compare predictions of the true system state by model 𝐴𝐴 𝐴𝐴𝑘𝑘 with given noisy data 𝐝̂𝐝0 to obtain 

the posterior model weight 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝̂𝐝0) :

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝̂𝐝0) =
𝑝𝑝(𝐝̂𝐝0|𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝̂𝐝0|𝑀𝑀𝑖𝑖)

. (9)

Since the random outcomes of 𝐝̂𝐝 are defined by the deterministic (but unknown) true 𝐝𝐝0 and random out-

comes of noise 𝐴𝐴 𝐴𝐴 , we can use the convolution formulation (cf. Equation 6) to express the expected posterior 

model weight as a function of 𝐴𝐴 𝐴𝐴 :

𝔼𝔼

[
� (��|𝐝𝐝)

]
= 𝔼𝔼̂

[
� (��|𝐝̂𝐝)

]

= 𝔼𝔼̂

[
�(𝐝̂𝐝|��)

∑��

�=1
�(𝐝̂𝐝|��)

]
= ∫

∞

−∞

�(𝐝̂𝐝|��)
∑��

�=1
�(𝐝̂𝐝|��)

�(𝐝̂𝐝) d𝐝̂𝐝

= ∫
∞

−∞

�(𝐝𝐝0 + �|��)
∑��

�=1
�(𝐝𝐝0 + �|��)

�(�) d� =
�(𝐝𝐝0|��)

∑��

�=1
�(𝐝𝐝0|��)

∗ � .

 (10)

3.2.3. Case 3

In Case 3, we predict the noisy system state with models 𝑀̂𝑀𝑘𝑘 , but use noise-free data 𝐝𝐝0 for model evaluation. 

This leads to

𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝𝐝0) =
𝑝𝑝(𝐝𝐝0|𝑀̂𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝0|𝑀̂𝑀𝑖𝑖)

=
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
(𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑖𝑖) ∗ 𝑝𝑝)

, (11)

using the fact that the predictive PDF produced by 𝑀̂𝑀𝑘𝑘 can be obtained by widening the noise-free predictive 

PDF by 𝐴𝐴 𝐴𝐴𝑘𝑘 via convolution with 𝐴𝐴 𝐴𝐴 .

Like in Case 1, we formally consider the noise distribution defining the outcome of 𝐝𝐝 as a Dirac delta func-

tion at 𝐴𝐴 𝐴𝐴0 = 0 , which leads to

𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝𝐝)

]
= 𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝𝐝0). (12)

One might think that considering noise either in the data (Case 2) or in the model (Case 3) would lead to the same 

results. This is true for the calculation of the expected BME (𝔼𝔼

[
𝑝𝑝(𝐝̂𝐝|𝑀𝑀𝑘𝑘)

]
= 𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝 = 𝔼𝔼

[
𝑝𝑝(𝐝𝐝|𝑀̂𝑀𝑘𝑘)

]
 ). 

However, when targeting expected posterior model weights, the expectation is not over BME. Rather, 

model weights are obtained by normalization with the sum of all BMEs in the denominator before the  
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expectation is taken. This is why expected posterior model weights differ between Cases 2 and 3 

(𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝̂𝐝)

]
≠ 𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝𝐝)

]
 ). In Case 2 (Equation 10), the normalization happens per noise realization, 

while in Case 3 (Equation 11) each model's predictive PDF is widened by convolution with 𝐴𝐴 𝐴𝐴(𝜀𝜀) before the 

normalization.

3.2.4. Case 4

In Case 4, we simulate the noisy system state by model 𝑀̂𝑀𝑘𝑘 and compare these predictions to given noisy 

data 𝐝̂𝐝0 . This leads to posterior model weights:

𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝̂𝐝0) =
𝑝𝑝(𝐝̂𝐝0|𝑀̂𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝̂𝐝0|𝑀̂𝑀𝑖𝑖)

=
𝑝𝑝(𝐝̂𝐝0|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝𝜀𝜀

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝̂𝐝0|𝑀𝑀𝑖𝑖) ∗ 𝑝𝑝𝜀𝜀

. (13)

Averaging this over all possible realization of noise leads to:

𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝐝̂𝐝)

]
=

𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝𝜀𝜀
∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
(𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑖𝑖) ∗ 𝑝𝑝𝜀𝜀)

∗ 𝑝𝑝𝜀𝜀. (14)

3.3. Mathematical Definition of Model Confusion Weights

Next, we derive the model confusion weights for the four cases. The only difference to posterior model 

weights as defined in Section 3.2 is that the data 𝐝𝐝0 is not given in the form of observations anymore. Instead, 

we assume that model 𝐴𝐴 𝐴𝐴𝓁𝓁 produced synthetic data 𝐝𝐝 (noise-free) or 𝐝𝐝 + 𝜀𝜀 (noise-perturbed). Hence, instead 

of a Dirac delta for 𝐴𝐴 𝐴𝐴(𝐝𝐝) , we deal with a distribution of possible synthetic data 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝑀𝑀𝓁𝓁) produced by model 

𝐴𝐴 𝐴𝐴𝓁𝓁 . When accounting for noise, model 𝑀̂𝑀𝓁𝓁 produces noisy synthetic data 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝑀̂𝑀𝓁𝓁) = 𝐴𝐴(𝐝𝐝|𝑀𝑀𝓁𝓁) ∗ 𝐴𝐴 .

3.3.1. Case 1

In Case 1, we use models 𝐴𝐴 𝐴𝐴𝑘𝑘 to predict the noise-free system state and compare against noise-free synthetic 

data by model 𝐴𝐴 𝐴𝐴𝓁𝓁 . Hence, the corresponding expected posterior model weight is given by:

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) = ∫̃
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖)

𝑝𝑝(𝐝𝐝|𝑀𝑀𝓁𝓁) d𝐝𝐝. (15)

This equation is identical to the general MCM formulation in Equation 5, with the only difference that we 

now explicitly specify 𝐝𝐝 to be noise-free (in our general derivation in Section 2.2, data can be noisy or not).

3.3.2. Case 2

Now, while still keeping 𝐴𝐴 𝐴𝐴𝑘𝑘 noise-free, we sample from a model 𝑀̂𝑀𝓁𝓁 that produces noisy data 𝐝𝐝 + 𝜀𝜀 and 

obtain the posterior model confusion weight:

𝑃𝑃 (𝑀𝑀𝑘𝑘|𝑀̂𝑀𝓁𝓁) = ∫̃
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖)

⋅ 𝑝𝑝(𝐝𝐝|𝑀𝑀𝓁𝓁) ∗ 𝑝𝑝 d𝐝𝐝. (16)

3.3.3. Case 3

When we evaluate model confusion weights for model 𝑀̂𝑀𝑘𝑘 that considers noise, but do not add noise to the 

synthetic data produced by model 𝐴𝐴 𝐴𝐴𝓁𝓁 , we obtain the following expression:

𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) = ∫̃
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝𝜀𝜀

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖) ∗ 𝑝𝑝𝜀𝜀

𝑝𝑝(𝐝𝐝|𝑀𝑀𝓁𝓁) d𝐝𝐝. (17)

As for posterior model weights, model confusion weights differ between Cases 2 and 3 due to the normali-

zation in the denominator.

3.3.4. Case 4

In Case 4, we simulate the noisy system state and compare it with noise-perturbed synthetic data. Hence, 

model confusion weights are given by
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𝑃𝑃 (𝑀̂𝑀𝑘𝑘|𝑀̂𝑀𝓁𝓁) = ∫̃
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑘𝑘) ∗ 𝑝𝑝𝜀𝜀

∑𝑁𝑁𝑚𝑚

𝑖𝑖=1

(
𝑝𝑝(𝐝𝐝|𝑀𝑀𝑖𝑖) ∗ 𝑝𝑝𝜀𝜀

) ⋅ 𝑝𝑝(𝐝𝐝|𝑀𝑀𝓁𝓁) ∗ 𝑝𝑝𝜀𝜀 d𝐝𝐝. (18)

3.3.5. Symmetry

By comparing Equations 15–18, we see that some equations are symmetric. 

In Case 1,𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) = 𝐴𝐴 (𝑀𝑀𝓁𝓁|𝑀𝑀𝑘𝑘) , which results in a symmetric MCM. 

The same can be observed in Case 4 where 𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|𝑀̂𝑀𝓁𝓁) = 𝐴𝐴 (𝑀̂𝑀𝓁𝓁|𝑀̂𝑀𝑘𝑘) . 

In contrast, Case 2 and Case 3 lead to asymmetric MCMs because 

𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝑀̂𝑀𝓁𝓁) ≠ 𝐴𝐴 (𝑀𝑀𝓁𝓁|𝑀̂𝑀𝑘𝑘) and 𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) ≠ 𝐴𝐴 (𝑀̂𝑀𝓁𝓁|𝑀𝑀𝑘𝑘) , respectively. 

Hence, the consistent Cases 1 and 4 produce symmetric MCMs, whereas 

the inconsistent Cases 2 and 3 lead to asymmetric MCMs.

3.4. Numerical Implementation

3.4.1. Bayesian Model Evidence

The numerical challenge lies in approximating the BME value per model, as a basis for posterior model 

weights and model confusion weights. If a model's predictive PDF is known analytically, we can determine 

BME easily as the PDF value at the given data value(s). For most real-world applications, however, BME 

cannot be evaluated analytically and the integral in Equation 3 needs to be approximated numerically or 

mathematically instead.

In our study, we will use brute-force Monte Carlo sampling (Gelman et al., 1995, chapter 10) of the prior dis-

tributions. As argued by Schöniger et al. (2014), Monte Carlo is superior to other numerical schemes in that 

it is an unbiased scheme that is known to converge to the correct limit, and its convergence can be easily 

monitored. In our chosen test cases, the computational burden of Monte Carlo is bearable; for computation-

ally heavier practical applications, alternative numerical methods could be used to improve on computa-

tional efficiency, such as nested sampling (Elsheikh et al., 2014; Skilling, 2006), thermodynamic integration 

(Lartillot & Philippe, 2006; Liu et al., 2016), stepping stone sampling (Elshall & Ye, 2019; Xie et al., 2011), or 

Gaussian mixture importance sampling (Volpi et al., 2017), to name a few examples. However, these meth-

ods are less straightforward to implement and bear the risk of introducing biases into the BME estimation.

The Monte Carlo approximation of BME (exemplarily shown here for Case 3) is based on 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀 random 

samples (realizations with subscript 𝐴𝐴 𝐴𝐴 ) of the model's prior parameter space 𝑘𝑘 :

𝑝𝑝(𝐝𝐝0|𝑀̂𝑀𝑘𝑘) ≈

𝑁𝑁𝑀𝑀𝑀𝑀∑

𝑟𝑟=1

𝑝𝑝(𝐝𝐝0|𝑀̂𝑀𝑘𝑘, 𝐮𝐮𝑘𝑘𝑟𝑟 ) =

𝑁𝑁𝑀𝑀𝑀𝑀∑

𝑟𝑟=1

(
𝑝𝑝(𝐝𝐝0|𝑀𝑀𝑘𝑘, 𝐮𝐮𝑘𝑘𝑟𝑟 ) ∗ 𝑝𝑝

)
. (19)

Assuming uncorrelated, unbiased measurement errors (i.e., 𝐴𝐴 𝐴𝐴 being a normal distribution with mean zero 

and standard deviation 𝐴𝐴 𝐴𝐴 ), the likelihood function 𝐴𝐴 𝐴𝐴(𝐝𝐝0|𝑀̂𝑀𝑘𝑘, 𝐮𝐮𝑘𝑘𝑟𝑟 ) can be expressed as:

�(�0|�̂�, ��� ) =
1

√
(2�)

�� |�|
exp

(
−
1

2
(�0 − ��� )

�
�−1(�0 − ��� )

)
, (20)

where 𝐲𝐲𝑘𝑘𝑟𝑟 is the prediction of model 𝐴𝐴 𝐴𝐴𝑘𝑘 with parameters 𝐮𝐮𝑘𝑘𝑟𝑟
 . The error covariance matrix 𝐑𝐑 is of size 𝐴𝐴 𝐴𝐴𝑜𝑜 

(number of observation points) ×𝑁𝑁𝑜𝑜 , and features main diagonal entries of 𝐴𝐴 𝐴𝐴
2 . Other choices of 𝐴𝐴 𝐴𝐴 are pos-

sible and would affect the results of individual BME values; investigating whether and how other likelihood 

functions aggravate the differences between the four cases is beyond the scope of this study.

Approximation of BME with Monte Carlo integration is hence straightforward if we understand the noise 

description as part of the model (Cases 3 and 4). In contrast, Cases 1 and 2 do not consider measurement 

noise in predictions. This could be interpreted as a standard deviation 𝐴𝐴 𝐴𝐴 of zero in Equation 20. Mathe-

matically, this leads to a Dirac delta likelihood function centered about the model prediction y𝑘𝑘𝑟𝑟 , and prac-

tically all parameter realizations would receive a likelihood of zero. Hence, it is practically impossible to 

approximate BME with a likelihood-based numerical scheme in Cases 1 and 2. We call this the “numerical 

Figure 3. Barriers that hinder transitions between the cases: impervious 
data-availability barrier separating Cases 2 and 4 from 1 and 3 vertically, 
and semi-pervious numerical-approximation barrier separating Cases 1 
and 2 from 3 and 4 horizontally. Red data column is impossible to populate 
in real data scenarios. Green model row is numerically straight-forward 
to obtain with satisfying accuracy; the red model row relies on rough 
numerical approximations.
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approximation barrier” and visualize it in Figure 3. Figure 3 illustrates the practical feasibility of the four 

cases. We distinguish between challenges regarding numerical approximation (discussed in this section) 

and regarding data availability (discussed in Section 3.5). The numerical approximation barrier horizon-

tally separates Cases 1 and 2 from Cases 3 and 4. This barrier can be understood as semi-pervious - we can 

push the barrier toward Cases 1 and 2 by applying a numerical trick: we increase the theoretical standard 

deviation from 𝐴𝐴 𝐴𝐴 = 0 , representing zero noise, to a very small value 𝐴𝐴 𝐴 0 . This allows us to obtain a (biased) 

value of BME by using Monte Carlo integration according to Equation 19. An adaptive algorithm that au-

tomatically determines an optimal 𝐴𝐴 𝐴𝐴 for this approximation would be handy and is left for future studies.

3.4.2. Posterior Model Weights

Once BME has been determined for all models in the set, the calculation of posterior model weights ac-

cording to Equation 2 is straightforward. In Cases 2 and 4, we are interested in expected model weights over 

possible outcomes of 𝐝̂𝐝 , that is, over the noise distribution 𝐴𝐴 𝐴𝐴(𝜀𝜀) . Assuming that we hypothetically know the 

true data value 𝐝𝐝0 , we can approximate the expected value using brute-force Monte Carlo integration over 

random realizations of noise in three steps:

1.  Sample from the measurement noise distribution 𝐴𝐴 𝐴𝐴 . We draw 𝐴𝐴 𝐴𝐴𝑑𝑑 samples (realizations) and denote the 

𝐴𝐴 𝐴𝐴 th sample as 𝐴𝐴 𝐴𝐴𝑗𝑗 .

2.  Determine the posterior model weight for each of these data sets: 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝0 + 𝜀𝜀𝑗𝑗) =
𝑝𝑝(𝐝𝐝0+𝜀𝜀𝑗𝑗 |𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚
𝑖𝑖=1

𝑝𝑝(𝐝𝐝0+𝜀𝜀𝑗𝑗 |𝑀𝑀𝑖𝑖)
 .

3.  Report the average value of the posterior model weights over all data samples 𝐴𝐴 𝐴𝐴𝑗𝑗 : 

𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝̂𝐝)

]
≈

1

𝑁𝑁𝑑𝑑

∑𝑁𝑁𝑑𝑑

𝑗𝑗=1
𝑃𝑃 (𝑀𝑀𝑘𝑘|𝐝𝐝0 + 𝜀𝜀𝑗𝑗) .

This example shows the approximation for Case 2 where we use a noise-free model 𝐴𝐴 𝐴𝐴𝑘𝑘 . To calculate poste-

rior model weights in Case 4, simply replace 𝐴𝐴 𝐴𝐴𝑘𝑘 by 𝑀̂𝑀𝑘𝑘 in all three steps.

In real-world applications, we are typically given a single realization 𝐝̂𝐝0 , and 𝐝𝐝0 is unknown. Hence, we can-

not average over repeated outcomes of 𝐴𝐴 𝐴𝐴 , and rely on the model weight given 𝐝̂𝐝0 instead.

3.4.3. Model Confusion Weights

For the calculation of MCM entries, we follow the approach proposed by Schöniger, Illman, et al. (2015) and 

approximate Equation 15 in the same three steps:

1.  Sample from each predictive distribution 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝑀𝑀𝓁𝓁) , 𝐴𝐴 𝐴𝐴 = 1…𝑁𝑁𝑚𝑚 . We draw 𝐴𝐴 𝐴𝐴𝑑𝑑 samples (realizations) per 

model and denote the 𝐴𝐴 𝐴𝐴 th sample as 𝐝𝐝𝑙𝑙𝑙𝑙𝑙 .

2.  Determine the posterior model weight for each of these data sets: 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝𝑙𝑙𝑙𝑙𝑙) =
𝑝𝑝(𝐝𝐝𝑙𝑙𝑙𝑙𝑙 |𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑚𝑚
𝑖𝑖=1

𝑝𝑝(𝐝𝐝𝑙𝑙𝑙𝑙𝑙 |𝑀𝑀𝑖𝑖)
 .

3.  Report the average value of the posterior model weights over all data samples 𝐝𝐝𝑙𝑙𝑙𝑙𝑙 : 

𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝑀𝑀𝓁𝓁) = 𝔼𝔼𝐝𝐝𝑗𝑗

[
𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝𝑙𝑙𝑗𝑗 )

]
≈

1

𝑁𝑁𝑑𝑑

∑𝑁𝑁𝑑𝑑

𝑗𝑗=1
𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝𝑙𝑙𝑙𝑗𝑗) .

This example shows the approximation of Case 1. For Case 3, simply replace 𝐴𝐴 𝐴𝐴𝑘𝑘 by 𝑀̂𝑀𝑘𝑘 ; for Cases 2 and 

4, replace 𝐴𝐴 𝐴𝐴𝓁𝓁 by 𝑀̂𝑀𝓁𝓁 , that is, additionally sample the noise distribution as described for posterior model 

weights above.

3.5. Constraints Due to Data Availability

For model selection given a real experimental or field data set, all we have is noisy data, that is, we are bound 

to the right column of the decision matrix in Figure 1: Cases 2 and 4. We call this constraint the “data-avail-

ability barrier” and illustrate its location in Figure 3. This barrier can be understood as impervious—there 

is no way to remove the noise from the observed data in order to transition to the left column of the decision 

matrix because we do not know the actual outcome of random measurement noise that is added to the true 

system state value (and hence, we are unable to identify the exact true system state).

3.6. Brief Synthesis of Philosophical, Mathematical, and Pragmatic Aspects

We claim that modelers always want to be in Case 1 or Case 4 because these cases are consistent and do 

not introduce conceptual errors. We carefully choose the word “want” instead of “should” here, because we 

might not always be able to choose these cases.



Water Resources Research

REUSCHEN ET AL.

10.1029/2021WR030391

11 of 26

Philosophically, the choice is clear: either one is interested in pure physics, 

then one chooses Case 1, or one is interested in simulating the data-gener-

ating process, then one move to Case 4. If one is interested in identifying 

the model that has most likely produced the noisy data (that mimics the 

data-generating process best), one simply has to pay attention to equip the 

model predictions with noise when calculating model confusion weights. 

Indeed, this is also computationally the most straightforward way to go.

Case 1 is only meaningful if noise-free data are available, for example, 

when aiming to identify the most suitable surrogate model for a given 

reference model. As soon as real noisy data are involved as the basis for 

determining model weights, we are faced with the data-availability barri-

er that forces us to stay with Cases 2 and 4.

In hydro(geo)logical applications, we are additionally faced with the numerical-approximation barrier, be-

cause model output PDFs are typically not given analytically. This leaves us with a straightforward imple-

mentation of Cases 3 and 4; and the barrier can be pushed to approximate Cases 1 and 2 by introducing a 

“small enough” noise level into the likelihood function.

From the mathematical formulation of the four cases, we notice that the MCMs of Case 1 and Case 4 are 

symmetric. It is interesting to note that both consistent cases are symmetric, while the inconsistent cases 

are not. Consequently, we always want to obtain a symmetric MCM; any asymmetry of the MCM indicates 

either conceptual errors due to the choice of an inconsistent case, or numerical approximation errors due 

to the choice of implementation scheme. Hence, the degree of symmetry in the calculated MCM can be 

understood as an indicator of “trustworthyness.”

We summarize that the only safe choice seems to be Case 4 because it is logically consistent, it handles real 

noisy data, and it is numerically straightforward to implement. Scientifically, we would be more interested 

in obtaining results for Case 1. This raises two questions: (a) Is the difference in results for the four cases ac-

tually significant in practical applications? And, if yes, (b) can we find a reasonably good approximation via 

any of the other cases to the desired Case 1? We will investigate these questions in three analytical scenarios 

(Section 4) and a real-world hydrogeological case study (Section 5).

4. Didactic Illustration With Analytical Scenarios

To illustrate how the four ways to consider or ignore measurement noise affect the outcome of BMS, we first 

design three didactic examples. We choose these scenarios such that (a) the model output distribution is 

one-dimensional and therefore easy to visualize, (b) BME values can be obtained analytically and therefore 

all four cases can be determined accurately, and (c) typical challenges encountered in real-world studies are 

represented such as models of varying predictive uncertainty, bounded support of the output PDF, and the 

search for an appropriate surrogate model.

The setup and motivation of the three scenarios is explained in Section 4.1, and results (posterior model 

weights and model confusion weights) are presented in Section 4.2. In Cases 2 and 4 (noisy data), posterior 

model weights are reported as averaged values: the expected value over 𝐴𝐴 𝐴𝐴𝑑𝑑 = 1, 000 possible realizations of 

noise 𝐴𝐴 𝐴𝐴 is numerically approximated by Monte Carlo sampling as described in Section 3.4.

The source code of the analytical scenarios is available at https://bitbucket.org/Reuschen/measurement- 

noise-demo.

4.1. Setup of Scenarios

4.1.1. Scenario 1: Predictive PDFs of Varied Location and Width

In the first analytical example, we consider three models as three Gaussian predictive PDFs of varied loca-

tion and width as defined in Table 1. They are visualized in Figure 4a. These PDFs shall represent model 

output simulating physics only (Cases 1 and 2). A real-world interpretation could be models of varying 

Model Distribution 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴

Blue Normal 0 0.2

Red Normal 3 1

Yellow Normal − 2 2

Noise Normal 0 0.3

Table 1 
Parameter Choices for PDFs in Scenario 1 (Predictive PDFs of Varied 
Location and Width)
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complexity and predictive skill that differ in their maximum a posteriori prediction of the true system and 

in their predictive uncertainty. Panel (b) shows the same three PDFs after convolution with the Gaussian 

measurement noise PDF and hence representing model predictions in Cases 3 and 4. The chosen error 

standard deviation 𝐴𝐴 𝐴𝐴 is also listed in Table 1.

4.1.2. Scenario 2: Predictive PDFs With Bounded or Semi-Infinite Support

The second analytical scenario features a normal, exponential, and uniform PDF to represent model output 

(Figure 5a). PDF parameters are given in Table 2. The focus is here on the effect of stark contrasts in the 

support of the competing models/PDFs: the uniform PDF has bounded support and hence assigns values 

outside of the supported range a probability of zero, and the exponential distribution has semi-infinite sup-

port of only non-negative values. These hard constraints should be honored by the model selection result. 

This didactic scenario is hence designed to illustrate the effect of choosing one of the four ways to account 

Figure 4. Predictive PDFs and posterior model weights of analytical scenario 1 (three predictive PDFs with varied 
location and width). Left column: Predictive PDFs of the three models (a) without noise, (b) with noise. Center and 
right column: Posterior model weights as a function of the true system state value in (c) Case 1—𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|d0) , (d) Case 

2—𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|d̂)

]
 , (e) Case 3—𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|d0) , and (f) Case 4—𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|d̂)

]
 .

Figure 5. Predictive PDFs and posterior model weights of analytical scenario 2 (predictive PDFs with bounded or 
semi-infinite support). Left column: Predictive PDFs of the three models (a) without noise, (b) with noise. Center and 
right column: Posterior model weights as a function of the true system state value in (c) Case 1—𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|d0) , (d) Case 

2—𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|d̂)

]
 , (e) Case 3—𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|d0) , and (f) Case 4—𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|d̂)

]
 .
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for noise in the presence of bounded or semi-infinite PDF support (data 

ranges where at least one of the competing PDFs is zero).

This scenario is highly relevant in real-world applications since many 

variables of natural systems are affected by processes that lead to such 

hard constraints (e.g., conservation of mass, monotonous increase in en-

tropy, water flowing downhill only, non-negative concentration values, 

saturation falling between 0 and 1). Real data affected by measurement 

noise might even lie outside of the value range supported by the model 

(if only predicting physics), but such data points would not automatically 

reject the model's underlying hypotheses. Hence, in such realistic situa-

tions, it is even more important to carefully dissect whether models and 

data contain noise or not.

4.1.3. Scenario 3: Identification of a Surrogate Model

To complete the set of analytical scenarios, we wish to mimic the realistic case of identifying a simpler mod-

el as a suitable surrogate for a complex reference model. That means the model selection task is to choose 

the surrogate model that approximates the high-fidelity model best. This can be achieved using the MCM as 

proposed by Schäfer Rodrigues Silva et al. (2020). The PDFs considered in this scenario are defined by the 

parameters listed in Table 3, and are visualized in Figure 6a. We declare the blue model to be the high-fidel-

ity model which should be approximated by either the red or yellow surrogate model.

4.2. Results and Discussion

For each of the three didactic scenarios, we first present posterior model weights as a function of measured 

data for the four different cases (Section 4.2.1), and then the full MCM (Section 4.2.2).

4.2.1. Posterior Model Weights

4.2.1.1. Scenario 1: Predictive PDFs of Varied Location and Width

Figure 4a shows the predictive PDFs for the true system state obtained by the three competing models; 

Figure 4b shows the predictive PDFs modeling the full data-generating process (including noise), which are 

therefore wider than the pure-physics PDFs. In those subplots, the BME value of model 𝐴𝐴 𝐴𝐴 corresponds to the 

height of the PDF of model 𝐴𝐴 𝐴𝐴 . For example, the blue model without noise in Figure 4a scores a BME value 

of 2 for d0 = 0 . Note that the data vector 𝐝𝐝0 is a scalar value d0 in all three analytical scenarios, since we are 

investigating one-dimensional predictive distributions for simpler illustration.

Further, Figures 4c–4f show the posterior model weights obtained in the four different cases of how to 

consider noise. In these plots, the x-axis corresponds to a noise-free data value d0 and the y-axis corresponds 

to the posterior model weight a model achieves given this data value. In Cases 2 and 4, these are averaged 

values, because we randomly sample the measurement error to be added to the noise-free data and then 

average over the respective posterior model weights to find the corresponding y-value for a given data value 

d0 . Hence, the plots are to be read as follows: the height of each model curve represents the average posterior 

model weight, given that the true system state equals d0 .

Apparently, the four cases yield different results. Let us investigate the 

data point d0 = 1 in Figure 4 in more detail. The posterior model weights 

in Case 1 of models blue, red, and yellow are 0, 0.45, and 0.55, respective-

ly. In Case 2, they are 0.05, 0.45 and 0.50; in Case 3, 0.16, 0.40 and 0.44, 

respectively. Finally, in Case 4, they are 0.26, 0.40, and 0.34. This means 

that, for a noise-free data value of d0 = 1 , the posterior weights per model 

vary between 0 to 0.26, 0.4 to 0.45, and 0.34 to 0.55, respectively, depend-

ing on the choice of how to treat noise. Especially the jump from 0 to 0.26 

is dramatic in terms of Bayes factors and their linguistic interpretation 

(Jeffreys, 1961), where evidence is in favor of the best versus the worst 

Model Distribution 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 Lower Upper

Blue Uniform − 1.5 − 0.5

Red Normal 2 1

Yellow Exponential 2

Noise Normal 0 0.5

Table 2 
Parameter Choices for PDFs in Scenario 2 (Predictive PDFs With Bounded 
or Semi-Infinite Support)

Model Distribution 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 Lower Upper

Blue Uniform − 1 0

Red Uniform 0.2 1.2

Yellow Normal 2 3

Noise Normal 0 0.5

Table 3 
Parameter Choices for PDFs in Scenario 3 (Identification of a Surrogate 
Model)
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model would jump from “decisive” to “not worth more than a bare mention.” Importantly, not only the 

decisiveness in model selection (or rejection) changes but also the ranking itself: in Case 4, the red model 

wins, whereas in all other cases, the yellow one scores best. Hence, conclusions about model selection may 

change dramatically depending on the choice of the case to be in.

Further, we learn from Figure 4 that the differences between the four cases are smallest if one model clearly 

shows the highest predictive density and hence obtains a much higher BME value than the others (here, 

e.g., at the PDF modes d0 = −2, 0, 3 ). Differences are highest in the “transition zones” where BME values are 

not significantly different and model ranking is less decisive. Unfortunately, these are often the scientifically 

most interesting situations.

4.2.1.2. Scenario 2: Predictive PDFs of Bounded or Semi-Infinite Support

Figure 5 visualizes the predictive PDFs of the three competing models in Scenario 2 without noise in panel 

(a) and containing noise in panel (b). In this scenario, the difference is much more pronounced and impor-

tant than in scenario 1: here, adding noise to the models eliminates the bounds of model blue (originally 

only defined on the interval [−1; 1] , now a symmetrical PDF with infinite support) and the semi-infinite 

support of model yellow (now a skewed PDF with infinite support). Hence, if we consider noise in the 

models, results look similar to scenario 1 (in cases 3 and 4, panels (e) and (f)), with differences between the 

two cases of using noise-free or noisy data for model evaluation being relatively small. As expected, using 

noisy data dilutes the decisiveness of model ranking to some degree, which of course depends on the level 

of measurement error standard deviation; a flip in model preference is not observed in this specific example.

If, instead, we model physics only (Cases 1 and 2, panels (c) and (d)), it matters a lot whether we use noise-

free or noisy data for BME evaluation. If we use noise-free data (Case 1), we directly evaluate the predictive 

PDFs in panel (a) to read off BME values, and hence, the blue model scores a model weight of almost one in 

its bounded interval because it shows a much higher predictive density than the red model and because the 

yellow model's PDF is zero in this range. Outside of its interval, the blue model of course obtains a weight of 

zero. Similarly, the yellow model can only gain a weight larger than zero for non-zero values. Consequently, 

the red model scores a weight of one over those data value ranges where none of the other PDFs “lives,” sim-

ply because it is defined there, not because it shows a competitively high predictive density. This scenario 

has the potential to provide a lot of insight about the system under study: if we compared three competing 

hypotheses and were (magically) able to consult noise-free data of the true system state, we could clearly 

reject the individual hypotheses outside of their scope, and hence, only the one hypothesis survives that is 

general enough to cover the full data range.

Figure 6. Predictive PDFs and posterior model weights of analytical scenario 3 (identification of a surrogate model). 
Left column: Predictive PDFs of the three models (a) without noise, (b) with noise. Center and right column: Posterior 

model weights as a function of the true system state value in (c) Case 1—𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|d0) , (d) Case 2—𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|d̂)

]
 , (e) Case 

3—𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|d0) , and (f) Case 4—𝔼𝔼

[
𝑃𝑃 (𝑀̂𝑀𝑘𝑘|d̂)

]
 .
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If we use noisy data (Case 2), the decisiveness in model choice is practi-

cally smoothed out. This is due to the averaging over random samples of 

noise: we evaluate the predictive PDFs in panel (a) at several locations 

around a specific noise-free data value d0 , and then average it to deter-

mine the posterior model weight. Averaging in a neighborhood of d0 is 

dangerous in this scenario, since we possibly cross the boundaries of the 

support of the individual model PDFs. This is why the sharp transitions 

of model preference as seen in panel (c) (Case 1) are diluted in panel (d) 

(Case 2). In reality, however, this averaging procedure cannot be done, 

because we only have one noisy observation d̂0 . Consequently, we rely on 

determining 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|d̂0) instead of 𝔼𝔼

[
𝑃𝑃 (𝑀𝑀𝑘𝑘|d̂)

]
 .

4.2.1.3. Scenario 3: Identification of a Surrogate Model

In the surrogate scenario (Figure 6), we assume that the blue model is 

a high-fidelity model and the red and yellow models are possible sur-

rogates, with the red model being an exact but shifted copy of the blue 

model (e.g., due to some simplification bias), and the yellow model being 

a much more uncertain description of the system with a bias in location. 

Under this setup, noise-free data is in fact available (by the high-fidelity model), so this is the only occasion 

where we can indeed freely choose between Case 1 (using noise-free data) and Case 4 (using noisy data).

The resulting weights are a mix of the results discussed for scenarios 1 and 2: only in Case 1, the bounded 

support of the blue and red model is honored in the posterior model weights. Cases 2, 3, and 4 show differ-

ent types of smearing, with Case 2 being closest to Case 1 with respect to how far the high-weight region 

of each model extends (i.e., steepest slopes at the transition points), and Case 3 being closest to Case 1 with 

respect to decisiveness in model choice (i.e., highest weights for blue and red, but note that the high-weight 

region is shifted in comparison to Case 1). Section 4.2.2 presents how the MCM can be used to choose the 

best surrogate in scenario 3.

4.2.1.4. Influence of Measurement Error Standard Deviation on Differences Between the Four 
Cases

In general, the differences between Case 1 and Case 4 depend on the level of measurement noise. Here, we 

want to show how large the influence of measurement noise is. Figure 7 shows the posterior model weights 

obtained in Case 4 for different standard deviations of noise on the example of scenario 1 (PDFs of varied 

location and width). With a standard deviation of zero, all four cases are the same and collapse to Case 1 

(noise-free model and data). Obviously, the difference between Case 4 and Case 1 increases with increasing 

measurement noise.

It might seem unlikely that the measurement error standard deviation exceeds the variability of the model 

prediction; however, in realistic cases, this might happen for strongly calibrated models that are underdis-

persive in their predictive distribution. To detect whether the present level of noise dominates the model 

selection result in a specific application, we recommend using the MCM as a diagnostic tool (Section 4.2.2).

4.2.1.5. Approximations of Case 1

Recall that Case 1 is scientifically most interesting but intractable in real-data scenarios due to the da-

ta-availability barrier depicted in Figure  3. Since large measurement noise leads to relevant differences 

between the four cases, we search for a suitable alternative to approximate the results of Case 1 as closely 

as possible with the right column of the decision matrix (Cases 2 and 4). Case 4 would be a preferable can-

didate because it is the only consistent case left; however, all three investigated scenarios have shown that 

results for Cases 1 and 4 significantly differ from each other. Especially scenario 2 teaches us to be very 

careful when analyzing Case 4 but interpreting it as a proxy for Case 1: there is a danger that we believe to 

have identified a plausible model although its core hypothesis about the functioning of the system (without 

considering noise) is plainly rejected (e.g., the blue model at d0 = −2 in Figure 5).

Figure 7. Posterior model weights as a function of measurement error 
standard deviation 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 on the example of Case 4 scenario 1. For a 
standard deviation of zero, Case 4 collapses to Case 1.
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Rather, results suggest that, if we are interested in Case 1, we should use 

Case 2 to approximate Case 1. Although being logically inconsistent, 

posterior model weights produced under Case 2 generally show a higher 

agreement with those in Case 1 (Figures 4–6). Thinking of the decision 

matrix and its barriers (Figure 3), we cross one barrier (i.e., going from 

top-left to top-right, crossing the data-availability barrier) to find a good 

proxy for Case 1.

4.2.1.6. Sensitivity of Model Ranking Results to Actual Outcome of 
Noise

We showed that Case 2 can be used as a reasonable proxy for Case 1. 

When using this proxy, we should be aware that all Case 2 results are 

averaged results over random realizations of noise 𝐴𝐴 𝐴𝐴 . In real-world ap-

plications we only have one realization of noise 𝐴𝐴 𝐴𝐴0 and hence only one 

measurement 𝐝̂𝐝0 = 𝐝𝐝0 + 𝜀𝜀0 . Naturally the next question arises: How large 

are the differences in Case 2 between the averaged results (𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝̂𝐝) ) and 

the results based on one realization of noise (𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝̂𝐝0) )?

The largest difference lies in the fact that 𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝̂𝐝0) might be a overcon-

fident posterior model weight if only one realization of data 𝐝̂𝐝0 is used. 

We illustrate this with a simple example. Assume d0 = −0.25 in scenario 

2 (Figure 5). The BMS analysis given this data value (Case 1) results in a 

posterior model weight of 1 for the red model and 0 for the other two (Figure 5c). Because the true system 

state is perturbed by random noise (Case 2), we will end up with one of three possibilities. First, 𝐴𝐴 𝐴𝐴0 could 

be between − 0.25 and 0.25, yielding d̂0 = d0 + 𝜀𝜀0 between − 0.5 and 0. For that range, Case 2 will report the 

same results as Case 1. However, this only happens with a probability of 38% according to the assumed dis-

tribution of measurement noise. Second, with 31% probability the measurement noise 𝐴𝐴 𝐴𝐴0 is in the interval 

[−1.25,−0.25] which leads to a noisy data value d̂0 in the interval [−1.5,−0.5] . For these data values, Case 2 

will report a posterior model weight of almost 1 for the blue (not the red) model. Third, the measurement 

noise 𝐴𝐴 𝐴𝐴0 could be in [0.25, 1.25] (31% ), which results in the yellow model being most likely. Hence, depending 

on the actual outcome of noise 𝐴𝐴 𝐴𝐴0 , any of the three models could win the model ranking.

This uncertainty in which model scores highest is visualized in Figure 8. Instead of posterior model weights, 

we now show the probability of each model to win the model ranking (i.e., being the model with the highest 

posterior model weight) as a function of true system state d0 . We observe that, for noise-free data (left col-

umn), probabilities are binary (0 or 1), because being the best model is completely defined by the constella-

tion of the predictive PDFs in the model set. For noisy data, the randomness in the actual outcome of noise 

𝐴𝐴 𝐴𝐴 leads to probabilities of being the best model smaller than one in the transition areas between high-density 

regions of the three model PDFs. The uncertainty about which model is best is highest in Case 2 for data 

values between −1.5 and 1.5, as discussed above.

To summarize, the shown posterior model weights of blue/red/yellow in Case 2 (e.g., 0.3∕0.45∕0.25 in Fig-

ure 5b) are a weighted average of the described three extreme outcomes of model ranking. If only a single 

data set d̂0 is available, this average cannot be taken and only one of the three extreme cases will occur. 

Hence, in practical applications, we need to keep in mind that the obtained ranking might be overly decisive 

(see also a preliminary summary of findings in Section 4.2.3).

4.2.2. Model Confusion Weights

Building on the obtained posterior model weights, we now use the model confusion matrices (MCMs) of 

the four cases to further investigate the BMS results. We here exemplarily discuss the results of scenario 3. 

Figure 9 displays the MCM obtained for scenario 3. Panel (a) shows the MCM in Case 1, panel (b) shows the 

MCM in Case 2, panel (c) the MCM in Case 3, and panel (d) in Case 4. For the results of scenarios 1 and 2, 

we refer the reader to Figures A1 and A2 in Appendix A.

Figure 8. Probability of being the best model of analytical scenario 3 
(identification of a surrogate model). Probability of having the highest 
posterior model weight as a function of the true system state value in (a) 
Case 1, (b) Case 2, (c) Case 3, and (d) Case 4 (scenario 2).
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4.2.2.1. Self-Identification Potential

The MCM can show if less noisy measurements can lead to more decisive 

posterior model weights. To do so, the self-identification weights (diago-

nal entries) can be used to compare the (expected) self-identification of 

Case 1 and Case 4.

The self-identification potential of the (blue) physics alone (Case 1, 91% ) 

is much higher than the self-identification potential of the data-gen-

erating process (Case 4, 67% ). This is expected because measurement 

noise (when conceptually attached to the model predictions by convolu-

tion) smears out differences between the model PDFs and hence makes 

them more similar (i.e., there is more potential for confusion). Case 1 

can therefore be understood as an upper limit to the self-identification 

potential in Case 4 with the level of noise approaching zero. Practically, 

this means that we can investigate whether (and to which degree) more 

precise measurements could help in model selection by comparing the 

self-identification weights of Cases 1 and 4.

4.2.2.2. Symmetry of the Model Confusion Matrix

As mentioned earlier, the MCM of the consistent cases (Case 1 and Case 4) 

should result in a symmetric MCM, whereas the inconsistent cases should 

not (at least not necessarily). Generally, we can trace back any asymmetry 

in the MCM to either numerical problems or to an inconsistent choice of 

case. Either way, the symmetry of the MCM gives us an indication of how much we can trust our BMS results. 

If the MCM is symmetric, we can assume, yet not guarantee (because errors might cancel out), that everything 

is all right. If the MCM is asymmetric, we know that either numerics or philosophy should be a source of 

headache. Either way, this should motivate us to change something in our approach and/or implementation.

From Figure 9, we see that symmetry almost holds true for this analytical example in Case 1 and Case 4; we 

only see very small asymmetry on the level of rounding errors in Case 4. This happens due to the numerical 

approximation of the expected value over possible realizations of noise 𝐴𝐴 𝐴𝐴 by Monte Carlo sampling. Howev-

er, this numerical asymmetry is much smaller than the theoretically expected asymmetry of the inconsist-

ent cases 2 and 3 (Figures 9b and 9c).

In practice, we can use the asymmetry in the MCM of Case 2 as an indicator for the (lack of) quality in 

approximating posterior model weights in Case 1 with Case 2. The more symmetric Case 2 is, the better it 

approximates Case 1 and the smaller the approximation error by using noisy data instead of noise-free data.

4.2.2.3. Identification of Most Suitable Surrogate Model

The MCM can be used to determine the best suitable surrogate model (Schäfer Rodrigues Silva et al., 2020). 

As shown hereafter, the best suitable surrogate model can depend on the choice of case.

Let us evaluate the red and yellow models' potential as a surrogate model for the blue high-fidelity reference 

model. Considering that the red model has no overlap with the blue model when modeling physics only 

(Case 1, cf. Figure 6a), one would reject its use as a surrogate altogether. This is what we see in the MCM for 

Case 1: there is no confusion between the two models (confusion weight of 0% ), and hence the yellow model 

would be preferred as a surrogate with a (still small) confusion weight of 9% .

If we instead aim to model the data-generating process (Case 4) as represented by the blue model, the red 

model is better suited because if the blue model produced the data, the model weight of red (19% ) is slightly 

larger than the model weight of yellow (14% ) (Figure 9d).

4.2.3. Summary and Implications of Findings From Analytical Scenarios

Our investigations on the three analytical scenarios have clearly demonstrated that the theoretical differ-

ences laid out in Section 3 yield significantly different results, for both posterior model weights, and for 

Figure 9. Model confusion matrix in (a) Case 1, (b) Case 2, (c) Case 3 and 
(d) Case 4 of scenario 3 (identification of surrogate model).
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model confusion weights. Hence, we need to be aware of the assumptions underlying each case and make 

them match the specific modeling context.

The logically inconsistent cases generally lead to problems in interpretation: Using noisy data to test noise-

free model predictions (Case 2) leads to smearing over potential bounds or jumps in the predictive PDFs, 

and hence can mask severe differences between the hypotheses about the modeled system. Predicting the 

data-generating process but testing the competing models with noise-free data (Case 3) can be seen as an 

incomplete assessment of Case 4, because only the expected value of noise (=zero) is tested, which neglects 

the fact that posterior model weights are a nonlinear function of noise.

The logically consistent Case 4 suffers from a lower degree of identifiability per model because model dif-

ferences are smoothened by noise. Yet, for specific applications, this will be the right context to choose (e.g., 

predicting whether or not a certain threshold value will be exceeded in a measurement).

Case 1 is scientifically most interesting because it aims to compare the predictive model PDFs of the true 

system state, that is, it focuses on the way how the models explain the system under study. Unfortunately, it 

suffers from the data-availability barrier and can only be evaluated in the synthetic setup of the MCM, but 

not for model ranking given real observed data. We found that Case 2 is a better proxy for posterior model 

weights of Case 1 than Case 4, even though being logically inconsistent. The approximation error can then 

be estimated from the degree of asymmetry of the corresponding MCM.

One issue remains: model ranking may turn out overly decisive in favor of one model if only one measure-

ment (or data set) is used, that is, if one cannot average over many repetitions of data noise as in most prac-

tical applications. Trusting this overly decisive model ranking is dangerous because it does not necessarily 

represent the ranking given the true system state.

5. Application to Real-World Hydrogeological Case Study

To demonstrate the impact of choosing between the four ways to account for measurement noise when 

comparing models to data under real-world conditions, we have implemented the model ranking and model 

confusion analysis for a hydrogeological case study. All scenarios discussed so far have featured illustrative, 

one-dimensional predictive PDFs. One-dimensional problems are beautiful, easy to visualize, and allow 

for analytical solutions. In real life, we typically have high-dimensional predictive distributions, which are 

expected to amplify the differences between the four cases that arose already in 1D. Further, we are not only 

facing the data-availability barrier, but also the numerical-approximation barrier, since analytical solutions 

typically do not hold in practical applications. Our hydrogeological case features 2D fully-saturated ground-

water flow in a confined sandbox aquifer, with heterogeneity in hydraulic parameters being represented 

by four competing models. We first describe the case study setup in Section 5.1, then present and discuss 

results in Section 5.2.

5.1. Case Study Setup

5.1.1. Experimental Data

For our analysis, we will use the experimental data from Illman et al. (2010). They performed steady-state 

cross-hole pumping tests in a lab-scale sandbox aquifer. These drawdown data sets have been used to infer 

the spatial distribution of hydraulic conductivity in the sandbox via Bayesian updating in Illman et al. (2010) 

and Schöniger, Illman, et al. (2015).

The experimental setup is described in Illman et al. (2010). In the following, we will give a short summary. 

The sandbox is 1.93 m long, 0.826 m high and has a width of 0.0102 m. It is filled with natural sand layering 

as shown in Figure 10a.

48 horizontal hydraulic ports (”wells”) were installed to monitor the pressure loss or to perform pumping. The 

sandbox can be modeled as quasi-2D because the ports penetrate the entire width. In this study, we follow 

Schöniger, Illman, et al. (2015) and use the 36 monitoring ports that provided the largest signal-to-noise ratio 

during the experiment. We consider pumping in the six wells marked in blue in Figure 10a. For the model 
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selection task, we consider two data-availability scenarios: we first assume just a single pumping test has 

been performed (and to obtain representative results, we average resulting model weights of the six data sets 

corresponding to possible six well locations), and second we combine all six pumping tests into one data set.

5.1.2. Model Set

We here use the drawdown predictions of the four alternative groundwater models developed by Schöni-

ger, Illman, et al. (2015). These models vary in their spatial representation of heterogeneity in hydraulic 

conductivity 𝐴𝐴 𝐴𝐴 . All four models use 𝐴𝐴 𝐴𝐴 = ln(𝐾𝐾(𝑥𝑥)) as a random field model, but differ in their assumption 

on the spatial (correlation) structure of 𝐴𝐴 𝐴𝐴(𝑥𝑥) : (a) homogeneous (effective) value, (b) zonation with a homo-

geneous value within each zone, using independent random variables for each zone, and the geometry of 

zones known from visual inspection of Figure 10a, (c) geostatistical interpolation between pilot points (e.g., 

RamaRao et al., 1995), and (d) fully geostatistical parameterization.

To get a visual impression of the models and their differences in the heterogeneity of 𝐴𝐴 𝐴𝐴 , conditional real-

izations of each model are shown in Figures 10b–10e. These realizations show the best fit to drawdown 

induced by a single pumping test in port 44, marked as a black rectangle in each plot. For a detailed descrip-

tion of the models, we refer to Schöniger, Illman, et al. (2015).

Figure 10. Illustration of experimental setup and model set for the hydrogeological case study. (a) 2D view of the 
synthetic sandbox aquifer (Schöniger, Illman, et al., 2015), with black numbers indicating different soil layers and blue 
squares indicating ports used for hydraulic tomography. (b–e) Model realizations conditioned to pumping test in port 44 
(lower left): (b) homogeneous model, (c) zonated model, (d) interpolated model, and (e) geostatistical model.
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5.1.3. Numerical Implementation of Model Ranking and 
Confusion Analysis

In this work, we investigate two different scenarios of data availability 

as mentioned above. In the first scenario, we only consider drawdown 

data induced by a single pumping test. This results in a simple numeri-

cal problem because only a few conditioning data are available, with the 

high-likelihood region being rather spread out. In the second scenario, we 

combine data from all six pumping tests, which leads to a much stronger 

conditioning effect and a very peaked likelihood surface to be sampled. 

This makes the approximation of BME and hence the computation of 

posterior model weights and model confusion weights numerically much 

harder.

We use 𝐴𝐴 𝐴𝐴𝑑𝑑 = 1, 000 Monte Carlo realizations to sample the predictive 

distribution of the data-producing model. BME per model is approximat-

ed using 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀 = 200, 000 Monte Carlo realizations of the homogeneous 

model and 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀 = 1, 000, 000 realizations for of each of the other models. 

As discussed in Section 3.4, the BME approximation is harder than the 

averaging over random model predictions, and hence needs more sam-

ples for convergence.

Further, as discussed in Section 3.4, we approximate the “zero noise in 

models” of Case 1 and Case 2 with a “small noise in models” of 𝐴𝐴 𝐴𝐴 = 0.001 

[m]. This is 4.6 times smaller than the actual level of measurement noise 

(𝐴𝐴 𝐴𝐴 = 0.0046 [m]).

5.2. Results and Discussion

In the previous analytical scenarios, we investigated the question of what 

the posterior model weight would be if the noise-free data d0 be equal to 

some value. We can visualize the answer in one dimension (one meas-

urement). Here, we have 35 drawdown measurements (excluding the 

one at the pumping port) or 210 measurements (when combining data 

from all six pumping tests). As a result, we cannot visualize all possible 

𝐝𝐝0 . We, therefore, focus on the posterior model weights for the noisy ob-

served data 𝐝̂𝐝0 (measured by Illman et al., 2010) and the model confusion 

weights in Figures 11 and 12.

5.2.1. Results Based on Individual Pumping Tests

The goal of BMS is to select the best model out of an ensemble of possible 

models. Here, we demonstrate how posterior model weights should be 

interpreted. To do so, let us first look at the (computationally simple) sce-

nario with drawdown data from individual pumping tests in Figure 11.

5.2.1.1. Which Model is Best (in Case 4)?

Given the data-availability barrier for real data, we can obviously only 

report posterior model weights given experimental data for Cases 2 and 

4 in Figure  11. When inspecting those weights for Case 4, we find a 

60% probability of the zonated model being true. This is more than the 

self-identification potential of the zonated model (48% ) in the MCM. It 

might seem surprising to score a higher posterior model weight than the 

reference value in the MCM. However, there are two causes that can lead 

to such results: First, it can happen by chance. The MCM shows the ex-

pected self-identification weight (48% ) and we can score a higher one (or 

Figure 11. MCM resulting from inversion with drawdown data from 
single pumping test, averaged over six pumping locations, in (a) Case 1, 
(b) Case 2, (c) Case 3, and (d) Case 4. Further, the posterior model weights 
in Case 2 (𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝0) , top right) and Case 4 (𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|𝐝̂𝐝0) , bottom right) are 
shown.

Figure 12. MCM resulting from inversion with drawdown data from six 
pumping tests in (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4. Further, 
the posterior model weights in Case 2 (𝐴𝐴 𝐴𝐴 (𝑀𝑀𝑘𝑘|𝐝𝐝0) , top right) and Case 4 
(𝐴𝐴 𝐴𝐴 (𝑀̂𝑀𝑘𝑘|𝐝̂𝐝0) , bottom right) are shown.
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a lower one) just by coincidence. Second, we might have overestimated the level of measurement noise. 

Here, we chose the measurement noise standard deviation equal to the maximum observed measurement 

noise of 0.46 cm, despite the fact that lower noise levels were observed at many other ports (Schöniger, Il-

lman, et al., 2015). We neglected the spatial distribution of noise in this study to reflect common simplified 

assumptions about measurement noise, but wish to remind the reader that the results of the BMS analysis 

are of course conditional to the choice of error description (and hence the choice of likelihood function).

5.2.1.2. Can Posterior Model Weights be Increased With Less Noisy Data?

We could increase our confidence in model selection by reducing the noise in measurements by more 

precise (expensive) experimentation. Figures 11a indicates that with measurement noise close to zero, a 

self-identification of 92% is possible.

5.2.1.3. Can We Trust the Results?

From the theoretical foundations laid out in Section  3.3, we expect that Cases 1 and 4 yield symmetric 

MCMs. Here, we find this confirmed for Case 4 but not for Case 1. This means that this MCM suffers from 

a numerical approximation error in either (a) sampling the synthetic data, in (b) evaluating BME, or in (c) 

approximating Case 1 with a small-but-not-zero noise level (cf. Section 3.4), and results should be interpret-

ed with caution. These errors could be reduced by increasing the Monte Carlo ensemble size of both the 

BME approximation and random noise sampling; however, it is our intent to demonstrate that the level of 

asymmetry caused by potential numerical errors tends to be much smaller than the compete asymmetry 

seen in Cases 2 and 3 due to their logical inconsistency (potentially further aggravated by numerical errors).

5.2.1.4. Can We Use Case 2 as a Proxy for Case 1?

We could ask ourselves whether the posterior model weights for Case 2 could be used as an approximation 

to the ranking in Case 1 to identify true system behavior instead of the data-generating process. For our spe-

cific case study, we conclude that we should not interpret the weights from Case 2 in that direction, because 

the large asymmetry of the MCM of Case 2 reveals a large gap between the two cases.

5.2.1.5. How Can We Approximate the MCM of Case 1?

To determine the upper limit for self-identification we had a look at the MCM in Case 1. However, we may 

not be able to calculate the MCM in Case 1. As a result, we want to investigate which of the other cases is 

best in approximating the MCM of Case 1. Recall that we did not have to search for a proxy of the MCM in 

Case 1 in our analytical scenarios (Section 4) because BME could be calculated analytically.

Now, with the real-world example, we have to address the numerical approximation barrier. While Case 2 

was found to be a reasonable proxy for posterior model weights, this does not hold for MCMs due to the role 

of variance in the synthetic data as explained below. Instead, we find that Case 3 yields, qualitatively, the 

most similar results to the MCM of Case 1. In fact, we approach Case 1 numerically by starting from Case 3 

(with the noise level chosen a priori from the knowledge about the measurement process) and reducing it 

as much as numerically possible (here: standard deviation reduced by factor 4.6 to obtain the approximated 

result of Case 1).

5.2.1.6. Can We Explain the MCM Structure of the Inconsistent Cases?

From Figure 11, we observe that the MCM of Case 2 has higher values in the bottom left whereas the MCM 

of Case 3 has higher values in the top right. This does not happen by chance but because we sorted the mod-

els from low complexity (homogeneous) to high complexity (geostatistical). This observation shows that 

Case 2 overestimates the posterior model weight of complex models, whereas Case 3 underestimates the 

posterior model weight of complex models. This can be explained, again, with the variance of the models 

and the data: In Case 2, the variance in the data (columns) is much larger than in the tested models (rows), 

and hence, the model with the highest variance has the best chance of scoring non-zero likelihoods. The 

opposite is happening in Case 3: The data show less variance than the noise-free models, and hence, in the 

spirit of the bias-variance tradeoff implicitly performed by BMS (Schöniger, Illman, et al., 2015), the model 

with the smallest variance that still fits the data reasonably well will score the highest model weight.
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5.2.2. Results Based on Six Pumping Tests

We will use this occasion to show that stronger data sets do not only increase numerical errors but make the 

inconsistent cases close to ridiculous.

5.2.2.1. Which model is best (in Case 4)?

Again, the data-availability barrier only allows us to report the posterior model weights given experimental 

data for Cases 2 and 4 in Figure 12. We find a 86% posterior model weight of the zonated model in Case 4. 

This weight is similar to the self-identification potential of the zonated model in the MCM (92% ). Hence, 

we again are optimistic that the zonated model is the quasi-data-generating model and no ”not-in-the-set 

model” generated the data (although the MCM cannot prove that, it could only reject that hope).

5.2.2.2. Can Posterior Model Weights be Increased With Less Noisy Data?

We find that reducing measurement noise will probably only slightly increase our confidence in choosing 

the zonated model because Case 1 only produces a slightly higher expected self-identification weight of 

97% .

5.2.2.3. Can We Trust the Results?

The second (computationally much more challenging) scenario based on six pumping tests shows 

even more difficulties in the resulting MCMs (Figure  12). The matrix of Case 4 is almost symmetric 

(𝐴𝐴 𝐴𝐴 (𝑀𝑀4|𝑀𝑀3) ≈ 𝐴𝐴 (𝑀𝑀3|𝑀𝑀4) ) and hence we conclude that also the posterior model weights given experimen-

tal data can be trusted, especially because the MCM in the row and column of the largest posterior model 

weight (86% ) is almost symmetric. Case 1, instead, is asymmetric. Hence, the results of Case 1 are corrupted 

by numerical errors. This means, that the upper limit of 97% , found previously, might not be trustworthy.

In Case 2, numerics completely broke down and all BME values for all models and all data sets are always 

zero. This happens because the random noise added to the 210 measurements produces completely unlikely 

data values as seen through the noise-free predictive distributions. As a consequence, the likelihood of any 

data set, which equals the multiplication of 210 independent likelihoods of single observations, was smaller 

than machine precision, and hence calculating average posterior model weights failed.

5.2.2.4. Can We Use Case 2 as a Proxy for Case 1?

The posterior weights of Case 2 should not be used for model selection due to the completely “broken” 

MCM. This “broken” MCM indicates that the inconsistency of Case 2 is enormous as discussed earlier. The 

resulting posterior weights cannot be trusted and they certainly should not be used as an approximation of 

Case 1.

5.2.3. Summary and Implications of Findings From Real-World Case Study

The results of our hydrogeological case study showed that the difference between the four cases is even 

more pronounced under real-world conditions with high-dimensional data sets and more dominant 

measurement noise. Further, posterior model weights of Case 2 can only be obtained in scenarios where 

we obtain BME analytically. In this case study (and mostly in practice), Case 2 is not available, so we 

recommend approaching posterior model weights of Case 1 from Case 4 by reducing the noise level in the 

likelihood function. To find out whether better (noise-free) data can make model choice more decisive, 

we recommend approaching the MCM of Case 1 from Case 3 by reducing the noise level in the likelihood 

function.

6. Summary and Conclusions

In this study, we discuss where and for which reasons measurement noise should be considered in Bayesian 

model selection. We distinguish between four different cases (accounting for noise in models and/or data: 

(a) no-no, (b) no-yes, (c) yes-no, (d) yes-yes that differ conceptually as visualized in Figure 2). We have 

demonstrated on three analytical scenarios and a real-world case study that these conceptual differences 
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result in significantly different outcomes of Bayesian model selection. Thus, knowing which case to use is 

of high practical relevance.

Cases 2 and 3 are logically inconsistent because noise is considered either in the models or in the data. 

Therefore, we focus on the two consistent cases 1 and 4. They answer the following research questions:

 1. Case 1: Which model is best in modeling the physics?

 2. Case 4: Which model is best in predicting the data-generating process (i.e., physics plus noise)?

Philosophically, the choice is clear: either you are interested in pure physics, then you choose Case 1, or 

you are interested in simulating the data-generating process, then you move to Case 4. We have shown that 

model selection results under those two modeling goals do not necessarily agree and that the differences 

are especially pronounced for

 1. Large measurement noise

 2. Large data sets

 3. Sudden jumps in the predictive density of models, especially to zero probability

Practically, we face two challenges as visualized in Figure 3: First, in real-world applications, the data-avail-

ability barrier blocks us from using Case 1 and Case 3 for model selection because noise-free data is unavail-

able. One notable exception is the task of identifying a suitable surrogate model for an (expensive) complex 

model because this analysis does not involve real observed data. Second, if no analytical formulation of 

Bayesian model evidence (BME) is available, we can only numerically approximate Case 1 and Case 2 with 

bias (e.g., by using a narrow likelihood function instead of a Dirac delta function). We call this the numeri-

cal approximation barrier. As a result, only Case 4 can be evaluated straightforwardly.

To not give up on the scientifically more interesting Case 1, we investigated the potential of approximating 

Case 1 with any of the other three cases. From the analytical scenarios, we found that Case 2 is the best 

proxy of posterior model weights of Case 1. Hence, the inconsistent Case 2 is the best approximation of the 

“physics” case and a “default fall-back” to Case 4 is not optimal. Remember that Case 2 is only available if 

BME can be obtained analytically. In a general modeling context, Case 2, therefore, needs to be numerically 

approximated by reducing the noise level in the likelihood function of the model, effectively pushing the 

numerical-approximation barrier from Case 4 toward Case 2.

The model confusion matrix (MCM) can be used to evaluate how much we can trust the obtained posterior 

model weights. The MCM can be computed for all cases (with numerical challenges in Cases 1 and 2, as 

mentioned above). We have shown mathematically that the MCM of consistent cases is by design symmet-

ric. Any asymmetry in the MCM, therefore, indicates that either numerical errors or logical inconsistencies 

exist. The degree of asymmetry can be understood as a warning of how much the (approximated) model 

selection results lack interpretability. Further, the MCM can be used to get insight on whether or not a better 

(almost) noise-free measurement device would make model selection more decisive: The self-identification 

potential of models in Case 1 provides an upper limit to decisiveness in model choice under minimal noise.

Based on our findings, we propose the following procedure for Bayesian model selection in the presence 

of measurement noise (visualized in Figure 13). First, the philosophical question (a) must be answered: 

are we interested in modeling physics or the data-generating process? Then, dependent on whether or not 

noise-free data is available (b), the posterior model weights of the corresponding case are calculated (c). 

Next, the corresponding MCM is calculated as a reference for interpreting the posterior model weight re-

sults (d). After that, we check the MCM for asymmetry, which reveals the degree of numerical errors and/or 

logical inconsistency (e). If the resulting MCM is strongly asymmetric, the posterior model weights and the 

MCM are deemed unreliable and one might be forced to change the research question. Finally, the MCM of 

Case 1 can be determined or approximated to find out whether better (noise-free) data can make a model 

choice more decisive (f).

With this recommended procedure, modelers are forced to reveal (and make themselves aware) of their 

motivation for model selection, and results are ensured to be as consistent as possible, given the practical 

limitations of real-world data availability and numerical implementation. We believe that understanding 

the four ways of how to treat measurement noise in Bayesian model selection is relevant to any modeling 
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endeavor in water resources research and beyond, where measurement noise is significant enough to spoil 

a perfectly clear model choice.

Appendix A: Additional Results of Analytical Scenarios

A1 Model Confusion Weights of Scenario 1

Figure A1 displays the MCM obtained for scenario 1. Panel (a) shows the MCM in Case 1, panel (b) shows 

the MCM in Case 2, panel (c) the MCM in Case 3 and panel (d) in Case 4. Figure  A1 reveals that the 

self-identification probability of the red model is almost independent of the chosen case. Differences are 

more pronounced for the blue and yellow model, with self-identification weights between 74% and 89% 

and between 77% and 83% , respectively. Cases 1 and 4 are practically symmetric; Cases 2 and 3 show some 

asymmetry between yellow/blue and blue/yellow.

A2 Model Confusion Weights of Scenario 2

Figure A2 displays the MCM obtained for scenario 2. Panel (a) shows the MCM in Case 1, panel (b) shows 

the MCM in Case 2, panel (c) the MCM in Case 3, and panel (d) in Case 4.

In Case 2 the red/blue (1% ) and blue/red (36% ) entries are completely different. This indicates that Case 2 is 

a bad approximation of Case 1 if we want to select between the red and blue model. And indeed, we can see 

Figure 13. Recommended procedure to perform model selection. The color of the arrows indicates the number of 
approximations needed for model selection: green = few, yellow = many.

Figure A1. Model confusion matrix obtained in (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4 of scenario 1 
(predictive PDFs of varied location and width).
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in Figure 5 that Case 1 and Case 2 differ a lot in the transition areas where the red and blue models show 

high posterior model weights.

In contrast, we can investigate the red and yellow models. Here, the off-diagonal entries (41% and 46% ) are 

similar. Hence, we follow that Case 2 is a good approximation of Case 1 if we are interested in selecting 

between the red and yellow model. Again, Figure 5 confirms this because Case 1 and Case 2 have similar 

behavior in the area where the red and yellow models have high posterior model weights.

Data Availability Statement

The data, models, and ensembles of Schöniger, Wöhling, and Nowak (2015) were used for the real-world 

case study.

References

Bernardo, J. M., & Smith, A. F. (2009). Bayesian Theory (Vol. 405). John Wiley & Sons.

Brunetti, C., Linde, N., & Vrugt, J. A. (2017). Bayesian model selection in hydrogeophysics: Application to conceptual subsurface mod-

els of the south oyster bacterial transport site, Virginia, USA. Advances in Water Resources, 102, 127–141. https://doi.org/10.1016/j.

advwatres.2017.02.006

Elshall, A. S., & Ye, M. (2019). Making steppingstones out of stumbling blocks: A Bayesian model evidence stimator with application to 

groundwater transport model selection. Water, 11(8), 1579. https://doi.org/10.3390/w11081579

Elsheikh, A. H., Wheeler, M. F., & Hoteit, I. (2014). Hybrid nested sampling algorithm for Bayesian model selection applied to inverse 

subsurface flow problems. Journal of Computational Physics, 258, 319–337. https://doi.org/10.1016/j.jcp.2013.10.001

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (1995). Bayesian data analysis. CRC Press.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14(4), 382–401. 

https://doi.org/10.1214/ss/1009212519

Höge, M., Guthke, A., & Nowak, W. (2019). The hydrologist’s guide to Bayesian model selection, averaging and combination. Journal of 

Hydrology, 572, 96–107. https://doi.org/10.1016/j.jhydrol.2019.01.072

Höge, M., Guthke, A., & Nowak, W. (2020). Bayesian model weighting: The many faces of model averaging. Water, 12(2), 309. https://doi.

org/10.3390/w12020309

Höge, M., Wöhling, T., & Nowak, W. (2018). A primer for model selection: The decisive role of model complexity. Water Resources Research, 

54(3), 1688–1715. https://doi.org/10.1002/2017WR021902

Illman, W. A., Zhu, J., Craig, A. J., & Yin, D. (2010). Comparison of aquifer characterization approaches through steady state groundwater 

model validation: A controlled laboratory sandbox study. Water Resources Research, 46(4). https://doi.org/10.1029/2009WR007745

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford Univ. Press.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.108

0/01621459.1995.10476572

Laio, F., Di Baldassarre, G., & Montanari, A. (2009). Model selection techniques for the frequency analysis of hydrological extremes. Water 

Resources Research, 45(7). https://doi.org/10.1029/2007WR006666

Lartillot, N., & Philippe, H. (2006). Computing Bayes factors using thermodynamic integration. Systematic Biology, 55(2), 195–207. https://

doi.org/10.1080/10635150500433722

Leube, P., Geiges, A., & Nowak, W. (2012). Bayesian assessment of the expected data impact on prediction confidence in optimal sampling 

design. Water Resources Research, 48(2). https://doi.org/10.1029/2010WR010137

Figure A2. Model confusion matrix obtained in (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4 of scenario 2 
(predictive PDFs of bounded or semi-infinite support).

Acknowledgments

The authors would like to thank the 

German Research Foundation (DFG) 

for financial support of the project with-

in the Collaborative Research Center 

SFB 1313 “Interface-Driven Multi-Field 

Processes in Porous Media—Flow, 

Transport and Deformation” (project 

number 327154368) and the Cluster of 

Excellence EXC 2075 ”Data-integrated 

Simulation Science (SimTech)” (project 

number 390740016). Open access fund-

ing enabled and organized by Projekt 

DEAL.



Water Resources Research

REUSCHEN ET AL.

10.1029/2021WR030391

26 of 26

Liu, P., Elshall, A. S., Ye, M., Beerli, P., Zeng, X., Lu, D., & Tao, Y. (2016). Evaluating marginal likelihood with thermodynamic inte-

gration method and comparison with several other numerical methods. Water Resources Research, 52(2), 734–758. https://doi.

org/10.1002/2014WR016718

Lu, D., Ye, M., Meyer, P. D., Curtis, G. P., Shi, X., Niu, X.-F., & Yabusaki, S. B. (2013). Effects of error covariance structure on estimation of 

model averaging weights and predictive performance. Water Resources Research, 49(9), 6029–6047. https://doi.org/10.1002/wrcr.20441

Marshall, L., Nott, D., & Sharma, A. (2005). Hydrological model selection: A Bayesian alternative. Water Resources Research, 41(10). https://

doi.org/10.1029/2004WR003719

Mohammadi, F., Kopmann, R., Guthke, A., Oladyshkin, S., & Nowak, W. (2018). Bayesian selection of hydro-morphodynamic models 

under computational time constraints. Advances in Water Resources, 117, 53–64. https://doi.org/10.1016/j.advwatres.2018.05.007

Najafi, M., Moradkhani, H., & Jung, I. (2011). Assessing the uncertainties of hydrologic model selection in climate change impact studies. 

Hydrological Processes, 25(18), 2814–2826. https://doi.org/10.1002/hyp.8043

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., & Weijs, S. V. (2016). A philosophical basis for hydrological uncertainty. 

Hydrological Sciences Journal, 61(9), 1666–1678. https://doi.org/10.1080/02626667.2016.1183009

Nowak, W., & Guthke, A. (2016). Entropy-based experimental design for optimal model discrimination in the geosciences. Entropy, 18(11), 

409. https://doi.org/10.3390/e18110409

Nowak, W., Rubin, Y., & de Barros, F. P. J. (2012). A hypothesis-driven approach to optimize field campaigns. Water Resources Research, 

48(6). https://doi.org/10.1029/2011WR011016

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. https://doi.org/10.2307/271063

RamaRao, B. S., LaVenue, A. M., De Marsily, G., & Marietta, M. G. (1995). Pilot point methodology for automated calibration of an en-

semble of conditionally simulated transmissivity fields: 1. Theory and computational experiments. Water Resources Research, 31(3), 

475–493. https://doi.org/10.1029/94WR02258

Schäfer Rodrigues Silva, A., Guthke, A., Höge, M., Cirpka, O. A., & Nowak, W. (2020). Strategies for simplifying reactive transport models-a 

Bayesian model comparison. Water Resources Research, 56, e2020WR028100. https://doi.org/10.1029/2020WR028100

Schöniger, A., Illman, W. A., Wöhling, T., & Nowak, W. (2015). Finding the right balance between groundwater model complexity and 

experimental effort via Bayesian model selection. Journal of Hydrology, 531, 96–110. https://doi.org/10.1016/j.jhydrol.2015.07.047

Schöniger, A., Wöhling, T., & Nowak, W. (2015). A statistical concept to assess the uncertainty in Bayesian model weights and its impact 

on model ranking. Water Resources Research, 51(9), 7524–7546. https://doi.org/10.1002/2015WR016918

Schöniger, A., Wöhling, T., Samaniego, L., & Nowak, W. (2014). Model selection on solid ground: Rigorous comparison of nine ways to 

evaluate Bayesian model evidence. Water Resources Research, 50(12), 9484–9513. https://doi.org/10.1002/2014WR016062

Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian Analysis, 1(4), 833–859. https://doi.org/10.1214/06-BA127

Volpi, E., Schoups, G., Firmani, G., & Vrugt, J. A. (2017). Sworn testimony of the model evidence: Gaussian mixture importance (game) 

sampling. Water Resources Research, 53(7), 6133–6158. https://doi.org/10.1002/2016WR020167

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44(1), 92–107. 

https://doi.org/10.1006/jmps.1999.1278

Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M.-H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model 

selection. Systematic Biology, 60(2), 150–160. https://doi.org/10.1093/sysbio/syq085

Ye, M., Meyer, P. D., & Neuman, S. P. (2008). On model selection criteria in multimodel analysis. Water Resources Research, 44(3). https://

doi.org/10.1029/2008WR006803



 

Institut für Wasser- und 

Umweltsystemmodellierung 

Universität Stuttgart 
 
 
Pfaffenwaldring 61 
70569 Stuttgart (Vaihingen) 
Telefon (0711) 685 - 60156  
Telefax (0711) 685 - 51073  
E-Mail: iws@iws.uni-stuttgart.de 
http://www.iws.uni-stuttgart.de 

 
 

Direktoren 
Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy 
Prof. Dr.-Ing. Rainer Helmig 
Prof. Dr.-Ing. Wolfgang Nowak 
Prof. Dr.-Ing. Silke Wieprecht 
 
 
 

Vorstand (Stand 21.05.2021) 
Prof. Dr. rer. nat. Dr.-Ing. A. Bárdossy 
Prof. Dr.-Ing. R. Helmig 
Prof. Dr.-Ing. W. Nowak 
Prof. Dr.-Ing. S. Wieprecht 
Prof. Dr. J.A. Sander Huisman 
Jürgen Braun, PhD 
apl. Prof. Dr.-Ing. H. Class 
PD Dr.-Ing. Claus Haslauer  
Stefan Haun, PhD 
apl. Prof. Dr.-Ing. Sergey Oladyshkin 
Dr. rer. nat. J. Seidel 
Dr.-Ing. K. Terheiden 
 
 
 
 

Emeriti 
Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Jürgen Giesecke 
Prof. Dr.h.c. Dr.-Ing. E.h. Helmut Kobus, PhD 

Lehrstuhl für Wasserbau und  

Wassermengenwirtschaft 
Leiterin: Prof. Dr.-Ing. Silke Wieprecht 
Stellv.:  Dr.-Ing. Kristina Terheiden 
Versuchsanstalt für Wasserbau 
Leiter:   Stefan Haun, PhD 
 

Lehrstuhl für Hydromechanik  

und Hydrosystemmodellierung 
Leiter:   Prof. Dr.-Ing. Rainer Helmig 
Stellv.:  apl. Prof. Dr.-Ing. Holger Class 

 

Lehrstuhl für Hydrologie und Geohydrologie 
Leiter: Prof. Dr. rer. nat. Dr.-Ing. András Bárdossy 
Stellv.:  Dr. rer. nat. Jochen Seidel 
Hydrogeophysik der Vadosen Zone 
(mit Forschungszentrum Jülich) 
Leiter:  Prof. Dr. J.A. Sander Huisman 

 

Lehrstuhl für Stochastische Simulation und  

Sicherheitsforschung für Hydrosysteme 
Leiter:  Prof. Dr.-Ing. Wolfgang Nowak 
Stellv.:  apl. Prof. Dr.-Ing. Sergey Oladyshkin 
 

VEGAS, Versuchseinrichtung zur  

Grundwasser- und Altlastensanierung 
Leiter: Jürgen Braun, PhD 
 PD Dr.-Ing. Claus Haslauer 

 
 
 

Verzeichnis der Mitteilungshefte 
 

1 Röhnisch, Arthur: Die Bemühungen um eine Wasserbauliche Versuchsanstalt an der 
Technischen Hochschule Stuttgart, und 
Fattah Abouleid, Abdel: Beitrag zur Berechnung einer in lockeren Sand gerammten, zwei-
fach verankerten Spundwand, 1963 

2 Marotz, Günter: Beitrag zur Frage der Standfestigkeit von dichten Asphaltbelägen im 
Großwasserbau, 1964 

3 Gurr, Siegfried: Beitrag zur Berechnung zusammengesetzter ebener Flächentrag-werke 
unter besonderer Berücksichtigung ebener Stauwände, mit Hilfe von Rand-wert- und 
Lastwertmatrizen, 1965 

4 Plica, Peter: Ein Beitrag zur Anwendung von Schalenkonstruktionen im Stahlwasserbau, 
und  
Petrikat, Kurt: Möglichkeiten und Grenzen des wasserbaulichen Versuchswesens, 1966 



2 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

5 Plate, Erich: Beitrag zur Bestimmung der Windgeschwindigkeitsverteilung in der durch eine 
Wand gestörten bodennahen Luftschicht, und 
Röhnisch, Arthur; Marotz, Günter: Neue Baustoffe und Bauausführungen für den Schutz 
der Böschungen und der Sohle von Kanälen, Flüssen und Häfen; Gestehungskosten und 
jeweilige Vorteile, sowie  
Unny, T.E.: Schwingungsuntersuchungen am Kegelstrahlschieber, 1967 

6 Seiler, Erich: Die Ermittlung des Anlagenwertes der bundeseigenen Binnenschiffahrts-
straßen und Talsperren und des Anteils der Binnenschiffahrt an diesem Wert, 1967 

7 Sonderheft anläßlich des 65. Geburtstages von Prof. Arthur Röhnisch mit Beiträgen von 
Benk, Dieter; Breitling, J.; Gurr, Siegfried; Haberhauer, Robert; Honekamp, Hermann; Kuz, 
Klaus Dieter; Marotz, Günter; Mayer-Vorfelder, Hans-Jörg; Miller, Rudolf; Plate, Erich J.; 
Radomski, Helge; Schwarz, Helmut; Vollmer, Ernst; Wildenhahn, Eberhard; 1967 

8 Jumikis, Alfred: Beitrag zur experimentellen Untersuchung des Wassernachschubs in ei-
nem gefrierenden Boden und die Beurteilung der Ergebnisse, 1968 

9 Marotz, Günter: Technische Grundlagen einer Wasserspeicherung im natürlichen Unter-
grund, 1968 

10 Radomski, Helge: Untersuchungen über den Einfluß der Querschnittsform wellenförmiger 
Spundwände auf die statischen und rammtechnischen Eigenschaften, 1968 

11 Schwarz, Helmut: Die Grenztragfähigkeit des Baugrundes bei Einwirkung vertikal gezoge-
ner Ankerplatten als zweidimensionales Bruchproblem, 1969 

12 Erbel, Klaus: Ein Beitrag zur Untersuchung der Metamorphose von Mittelgebirgsschnee-
decken unter besonderer Berücksichtigung eines Verfahrens zur Bestimmung der thermi-
schen Schneequalität, 1969 

13 Westhaus, Karl-Heinz: Der Strukturwandel in der Binnenschiffahrt und sein Einfluß auf den 
Ausbau der Binnenschiffskanäle, 1969 

14 Mayer-Vorfelder, Hans-Jörg: Ein Beitrag zur Berechnung des Erdwiderstandes unter An-
satz der logarithmischen Spirale als Gleitflächenfunktion, 1970 

15 Schulz, Manfred: Berechnung des räumlichen Erddruckes auf die Wandung kreiszylin-
drischer Körper, 1970 

16 Mobasseri, Manoutschehr: Die Rippenstützmauer. Konstruktion und Grenzen ihrer Stand-
sicherheit, 1970 

17 Benk, Dieter: Ein Beitrag zum Betrieb und zur Bemessung von Hochwasserrückhaltebe-
cken, 1970  

18 Gàl, Attila: Bestimmung der mitschwingenden Wassermasse bei überströmten Fisch-
bauchklappen mit kreiszylindrischem Staublech, 1971, vergriffen 

19 Kuz, Klaus Dieter: Ein Beitrag zur Frage des Einsetzens von Kavitationserscheinungen in 
einer Düsenströmung bei Berücksichtigung der im Wasser gelösten Gase, 1971, vergriffen 

20 Schaak, Hartmut: Verteilleitungen von Wasserkraftanlagen, 1971 

21 Sonderheft zur Eröffnung der neuen Versuchsanstalt des Instituts für Wasserbau der Uni-
versität Stuttgart mit Beiträgen von Brombach, Hansjörg; Dirksen, Wolfram; Gàl, Attila; 
Gerlach, Reinhard; Giesecke, Jürgen; Holthoff, Franz-Josef; Kuz, Klaus Dieter; Marotz, 
Günter; Minor, Hans-Erwin; Petrikat, Kurt; Röhnisch, Arthur; Rueff, Helge; Schwarz, Hel-
mut; Vollmer, Ernst; Wildenhahn, Eberhard; 1972 

22 Wang, Chung-su: Ein Beitrag zur Berechnung der Schwingungen an Kegelstrahlschiebern, 
1972 

23 Mayer-Vorfelder, Hans-Jörg: Erdwiderstandsbeiwerte nach dem Ohde-Variationsverfahren, 
1972 

24 Minor, Hans-Erwin: Beitrag zur Bestimmung der Schwingungsanfachungsfunktionen über-
strömter Stauklappen, 1972, vergriffen 

25 Brombach, Hansjörg: Untersuchung strömungsmechanischer Elemente (Fluidik) und die 
Möglichkeit der Anwendung von Wirbelkammerelementen im Wasserbau, 1972, vergriffen 

26 Wildenhahn, Eberhard: Beitrag zur Berechnung von Horizontalfilterbrunnen, 1972 



Verzeichnis der Mitteilungshefte 3  
 

27 Steinlein, Helmut: Die Eliminierung der Schwebstoffe aus Flußwasser zum Zweck der un-
terirdischen Wasserspeicherung, gezeigt am Beispiel der Iller, 1972 

28 Holthoff, Franz Josef: Die Überwindung großer Hubhöhen in der Binnenschiffahrt durch 
Schwimmerhebewerke, 1973 

29 Röder, Karl: Einwirkungen aus Baugrundbewegungen auf trog- und kastenförmige Kon-
struktionen des Wasser- und Tunnelbaues, 1973 

30 Kretschmer, Heinz: Die Bemessung von Bogenstaumauern in Abhängigkeit von der Tal-
form, 1973 

31 Honekamp, Hermann: Beitrag zur Berechnung der Montage von Unterwasserpipelines, 
1973 

32 Giesecke, Jürgen: Die Wirbelkammertriode als neuartiges Steuerorgan im Wasserbau, 
und Brombach, Hansjörg: Entwicklung, Bauformen, Wirkungsweise und Steuereigenschaf-
ten von Wirbelkammerverstärkern, 1974 

33 Rueff, Helge: Untersuchung der schwingungserregenden Kräfte an zwei hintereinander 
angeordneten Tiefschützen unter besonderer Berücksichtigung von Kavitation, 1974 

34 Röhnisch, Arthur: Einpreßversuche mit Zementmörtel für Spannbeton - Vergleich der Er-
gebnisse von Modellversuchen mit Ausführungen in Hüllwellrohren, 1975 

35 Sonderheft anläßlich des 65. Geburtstages von Prof. Dr.-Ing. Kurt Petrikat mit Beiträgen 
von:  Brombach, Hansjörg; Erbel, Klaus; Flinspach, Dieter; Fischer jr., Richard; Gàl, Attila; 
Gerlach, Reinhard; Giesecke, Jürgen; Haberhauer, Robert; Hafner Edzard; Hausenblas, 
Bernhard; Horlacher, Hans-Burkhard; Hutarew, Andreas; Knoll, Manfred; Krummet, Ralph; 
Marotz, Günter; Merkle, Theodor; Miller, Christoph; Minor, Hans-Erwin; Neumayer, Hans; 
Rao, Syamala; Rath, Paul; Rueff, Helge; Ruppert, Jürgen; Schwarz, Wolfgang; Topal-
Gökceli, Mehmet; Vollmer, Ernst; Wang, Chung-su; Weber, Hans-Georg; 1975 

36 Berger, Jochum: Beitrag zur Berechnung des Spannungszustandes in rotationssym-
metrisch belasteten Kugelschalen veränderlicher Wandstärke unter Gas- und Flüs-
sigkeitsdruck durch Integration schwach singulärer Differentialgleichungen, 1975 

37 Dirksen, Wolfram: Berechnung instationärer Abflußvorgänge in gestauten Gerinnen mittels 
Differenzenverfahren und die Anwendung auf Hochwasserrückhaltebecken, 1976 

38 Horlacher, Hans-Burkhard: Berechnung instationärer Temperatur- und Wärmespannungs-
felder in langen mehrschichtigen Hohlzylindern, 1976 

39 Hafner, Edzard: Untersuchung der hydrodynamischen Kräfte auf Baukörper im Tief-
wasserbereich des Meeres, 1977, ISBN 3-921694-39-6 

40 Ruppert, Jürgen: Über den Axialwirbelkammerverstärker für den Einsatz im Wasserbau, 
1977, ISBN 3-921694-40-X 

41 Hutarew, Andreas: Beitrag zur Beeinflußbarkeit des Sauerstoffgehalts in Fließgewässern 
an Abstürzen und Wehren, 1977, ISBN 3-921694-41-8, vergriffen 

42 Miller, Christoph: Ein Beitrag zur Bestimmung der schwingungserregenden Kräfte an unter-
strömten Wehren, 1977, ISBN 3-921694-42-6 

43 Schwarz, Wolfgang: Druckstoßberechnung unter Berücksichtigung der Radial- und Längs-
verschiebungen der Rohrwandung, 1978, ISBN 3-921694-43-4 

44 Kinzelbach, Wolfgang: Numerische Untersuchungen über den optimalen Einsatz variabler 
Kühlsysteme einer Kraftwerkskette am Beispiel Oberrhein, 1978, ISBN 3-921694-44-2 

45 Barczewski, Baldur: Neue Meßmethoden für Wasser-Luftgemische und deren Anwendung 
auf zweiphasige Auftriebsstrahlen, 1979, ISBN 3-921694-45-0 

46 Neumayer, Hans: Untersuchung der Strömungsvorgänge in radialen Wirbelkammerver-
stärkern, 1979, ISBN 3-921694-46-9 

47 Elalfy, Youssef-Elhassan: Untersuchung der Strömungsvorgänge in Wirbelkammerdioden 
und -drosseln, 1979, ISBN 3-921694-47-7 

48 Brombach, Hansjörg: Automatisierung der Bewirtschaftung von Wasserspeichern, 1981, 
ISBN 3-921694-48-5 

49 Geldner, Peter: Deterministische und stochastische Methoden zur Bestimmung der Selbst-
dichtung von Gewässern, 1981, ISBN 3-921694-49-3, vergriffen 



4 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

50 Mehlhorn, Hans: Temperaturveränderungen im Grundwasser durch Brauchwasserein-
leitungen, 1982, ISBN 3-921694-50-7, vergriffen 

51 Hafner, Edzard: Rohrleitungen und Behälter im Meer, 1983, ISBN 3-921694-51-5 

52 Rinnert, Bernd: Hydrodynamische Dispersion in porösen Medien: Einfluß von Dichteun-
terschieden auf die Vertikalvermischung in horizontaler Strömung, 1983,  
ISBN 3-921694-52-3, vergriffen 

53 Lindner, Wulf: Steuerung von Grundwasserentnahmen unter Einhaltung ökologischer Kri-
terien, 1983, ISBN 3-921694-53-1, vergriffen 

54 Herr, Michael; Herzer, Jörg; Kinzelbach, Wolfgang; Kobus, Helmut; Rinnert, Bernd: Metho-
den zur rechnerischen Erfassung und hydraulischen Sanierung von Grundwasser-
kontaminationen, 1983, ISBN 3-921694-54-X 

55 Schmitt, Paul: Wege zur Automatisierung der Niederschlagsermittlung, 1984,  
ISBN 3-921694-55-8, vergriffen 

56 Müller, Peter: Transport und selektive Sedimentation von Schwebstoffen bei gestautem 
Abfluß, 1985, ISBN 3-921694-56-6 

57 El-Qawasmeh, Fuad: Möglichkeiten und Grenzen der Tropfbewässerung unter besonderer 
Berücksichtigung der Verstopfungsanfälligkeit der Tropfelemente, 1985,  
ISBN 3-921694-57-4, vergriffen 

58 Kirchenbaur, Klaus: Mikroprozessorgesteuerte Erfassung instationärer Druckfelder am 
Beispiel seegangsbelasteter Baukörper, 1985, ISBN 3-921694-58-2 

59 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftransports 
im Grundwasser, Tätigkeitsbericht 1984/85 (DFG-Forschergruppe an den Universitäten 
Hohenheim, Karlsruhe und Stuttgart), 1985, ISBN 3-921694-59-0, vergriffen 

60 Spitz, Karlheinz: Dispersion in porösen Medien: Einfluß von Inhomogenitäten und Dichte-
unterschieden, 1985, ISBN 3-921694-60-4, vergriffen 

61 Kobus, Helmut: An Introduction to Air-Water Flows in Hydraulics, 1985,  
ISBN 3-921694-61-2 

62 Kaleris, Vassilios: Erfassung des Austausches von Oberflächen- und Grundwasser in hori-
zontalebenen Grundwassermodellen, 1986, ISBN 3-921694-62-0 

63 Herr, Michael: Grundlagen der hydraulischen Sanierung verunreinigter Porengrundwasser-
leiter, 1987, ISBN 3-921694-63-9 

64 Marx, Walter: Berechnung von Temperatur und Spannung in Massenbeton infolge Hydra-
tation, 1987, ISBN 3-921694-64-7 

65 Koschitzky, Hans-Peter: Dimensionierungskonzept für Sohlbelüfter in Schußrinnen zur 
Vermeidung von Kavitationsschäden, 1987, ISBN 3-921694-65-5 

66 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftransports 
im Grundwasser, Tätigkeitsbericht 1986/87 (DFG-Forschergruppe an den Universitäten 
Hohenheim, Karlsruhe und Stuttgart) 1987, ISBN 3-921694-66-3 

67 Söll, Thomas: Berechnungsverfahren zur Abschätzung anthropogener Temperaturanoma-
lien im Grundwasser, 1988, ISBN 3-921694-67-1 

68 Dittrich, Andreas; Westrich, Bernd: Bodenseeufererosion, Bestandsaufnahme und Bewer-
tung, 1988, ISBN 3-921694-68-X, vergriffen 

69 Huwe, Bernd; van der Ploeg, Rienk R.: Modelle zur Simulation des Stickstoffhaushaltes 
von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung, 1988,  
ISBN 3-921694-69-8, vergriffen 

70 Stephan, Karl: Integration elliptischer Funktionen, 1988, ISBN 3-921694-70-1 

71 Kobus, Helmut; Zilliox, Lothaire (Hrsg.): Nitratbelastung des Grundwassers, Auswirkungen 
der Landwirtschaft auf die Grundwasser- und Rohwasserbeschaffenheit und Maßnahmen 
zum Schutz des Grundwassers. Vorträge des deutsch-französischen Kolloquiums am 
6. Oktober 1988, Universitäten Stuttgart und Louis Pasteur Strasbourg (Vorträge in 
deutsch oder französisch, Kurzfassungen zweisprachig), 1988, ISBN 3-921694-71-X 



Verzeichnis der Mitteilungshefte 5  
 

72 Soyeaux, Renald: Unterströmung von Stauanlagen auf klüftigem Untergrund unter Berück-
sichtigung laminarer und turbulenter Fließzustände,1991, ISBN 3-921694-72-8 

73 Kohane, Roberto: Berechnungsmethoden für Hochwasserabfluß in Fließgewässern mit 
übeströmten Vorländern, 1991, ISBN 3-921694-73-6 

74 Hassinger, Reinhard: Beitrag zur Hydraulik und Bemessung von Blocksteinrampen in fle-
xibler Bauweise, 1991, ISBN 3-921694-74-4, vergriffen 

75 Schäfer, Gerhard: Einfluß von Schichtenstrukturen und lokalen Einlagerungen auf die 
Längsdispersion in Porengrundwasserleitern, 1991, ISBN 3-921694-75-2 

76 Giesecke, Jürgen: Vorträge, Wasserwirtschaft in stark besiedelten Regionen; Umweltfor-
schung mit Schwerpunkt Wasserwirtschaft, 1991, ISBN 3-921694-76-0 

77 Huwe, Bernd: Deterministische und stochastische Ansätze zur Modellierung des Stick-
stoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau, 
1992, ISBN 3-921694-77-9, vergriffen 

78 Rommel, Michael: Verwendung von Kluftdaten zur realitätsnahen Generierung von Kluft-
netzen mit anschließender laminar-turbulenter Strömungsberechnung, 1993,  
ISBN 3-92 1694-78-7 

79 Marschall, Paul: Die Ermittlung lokaler Stofffrachten im Grundwasser mit Hilfe von Einbohr-
loch-Meßverfahren, 1993, ISBN 3-921694-79-5, vergriffen 

80 Ptak, Thomas: Stofftransport in heterogenen Porenaquiferen: Felduntersuchungen und 
stochastische Modellierung, 1993, ISBN 3-921694-80-9, vergriffen 

81 Haakh, Frieder: Transientes Strömungsverhalten in Wirbelkammern, 1993,  
ISBN 3-921694-81-7 

82 Kobus, Helmut; Cirpka, Olaf; Barczewski, Baldur; Koschitzky, Hans-Peter: Versuchsein-
richtung zur Grundwasser- und Altlastensanierung VEGAS, Konzeption und Programm-
rahmen, 1993, ISBN 3-921694-82-5 

83 Zang, Weidong: Optimaler Echtzeit-Betrieb eines Speichers mit aktueller Abflußregenerie-
rung, 1994, ISBN 3-921694-83-3, vergriffen 

84 Franke, Hans-Jörg: Stochastische Modellierung eines flächenhaften Stoffeintrages und 
Transports in Grundwasser am Beispiel der Pflanzenschutzmittelproblematik, 1995,  
ISBN 3-921694-84-1 

85 Lang, Ulrich: Simulation regionaler Strömungs- und Transportvorgänge in Karstaquiferen 
mit Hilfe des Doppelkontinuum-Ansatzes: Methodenentwicklung und Parameteridenti-
fikation, 1995, ISBN 3-921694-85-X, vergriffen 

86 Helmig, Rainer: Einführung in die Numerischen Methoden der Hydromechanik, 1996, 
ISBN 3-921694-86-8, vergriffen 

87 Cirpka, Olaf: CONTRACT: A Numerical Tool for Contaminant Transport and Chemical 
Transformations - Theory and Program Documentation -, 1996,  
ISBN 3-921694-87-6 

88 Haberlandt, Uwe: Stochastische Synthese und Regionalisierung des Niederschlages für 
Schmutzfrachtberechnungen, 1996, ISBN 3-921694-88-4 

89 Croisé, Jean: Extraktion von flüchtigen Chemikalien aus natürlichen Lockergesteinen mit-
tels erzwungener Luftströmung, 1996, ISBN 3-921694-89-2, vergriffen 

90 Jorde, Klaus: Ökologisch begründete, dynamische Mindestwasserregelungen bei Auslei-
tungskraftwerken, 1997, ISBN 3-921694-90-6, vergriffen 

91 Helmig, Rainer: Gekoppelte Strömungs- und Transportprozesse im Untergrund - Ein Bei-
trag zur Hydrosystemmodellierung-, 1998, ISBN 3-921694-91-4, vergriffen 

92 Emmert, Martin:  Numerische Modellierung nichtisothermer Gas-Wasser Systeme in porö-
sen Medien, 1997, ISBN 3-921694-92-2 

93 Kern, Ulrich: Transport von Schweb- und Schadstoffen in staugeregelten Fließgewässern 
am Beispiel des Neckars, 1997, ISBN 3-921694-93-0, vergriffen 

94 Förster, Georg:  Druckstoßdämpfung durch große Luftblasen in Hochpunkten von Rohrlei-
tungen 1997, ISBN 3-921694-94-9 



6 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

95 Cirpka, Olaf: Numerische Methoden zur Simulation des reaktiven Mehrkomponenten-
transports im Grundwasser, 1997, ISBN 3-921694-95-7, vergriffen 

96 Färber, Arne: Wärmetransport in der ungesättigten Bodenzone: Entwicklung einer thermi-
schen In-situ-Sanierungstechnologie, 1997, ISBN 3-921694-96-5  

97 Betz, Christoph: Wasserdampfdestillation von Schadstoffen im porösen Medium: Entwick-
lung einer thermischen In-situ-Sanierungstechnologie, 1998, SBN 3-921694-97-3 

98 Xu, Yichun: Numerical Modeling of Suspended Sediment Transport in Rivers, 1998, ISBN 
3-921694-98-1, vergriffen 

99 Wüst, Wolfgang: Geochemische Untersuchungen zur Sanierung CKW-kontaminierter 
Aquifere mit Fe(0)-Reaktionswänden, 2000, ISBN 3-933761-02-2 

100 Sheta, Hussam: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbezie-
hung von Hysterese-Effekten, 2000, ISBN 3-933761-03-4 

101 Ayros, Edwin: Regionalisierung extremer Abflüsse auf der Grundlage statistischer Verfah-
ren, 2000, ISBN 3-933761-04-2, vergriffen 

102 Huber, Ralf: Compositional Multiphase Flow and Transport in Heterogeneous Porous Me-
dia, 2000, ISBN 3-933761-05-0 

103 Braun, Christopherus: Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen 
Medien, 2000, ISBN 3-933761-06-9 

104 Hofmann, Bernd: Entwicklung eines rechnergestützten Managementsystems zur Beur-
teilung von Grundwasserschadensfällen, 2000, ISBN 3-933761-07-7 

105 Class, Holger: Theorie und numerische Modellierung nichtisothermer Mehrphasen-
prozesse in NAPL-kontaminierten porösen Medien, 2001, ISBN 3-933761-08-5 

106 Schmidt, Reinhard: Wasserdampf- und Heißluftinjektion zur thermischen Sanierung kon-
taminierter Standorte, 2001, ISBN 3-933761-09-3 

107 Josef, Reinhold: Schadstoffextraktion mit hydraulischen Sanierungsverfahren unter An-
wendung von grenzflächenaktiven Stoffen, 2001, ISBN 3-933761-10-7 

108 Schneider, Matthias: Habitat- und Abflussmodellierung für Fließgewässer mit unscharfen 
Berechnungsansätzen, 2001, ISBN 3-933761-11-5 

109 Rathgeb, Andreas: Hydrodynamische Bemessungsgrundlagen für Lockerdeckwerke an 
überströmbaren Erddämmen, 2001, ISBN 3-933761-12-3 

110 Lang, Stefan: Parallele numerische Simulation instätionärer Probleme mit adaptiven Me-
thoden auf unstrukturierten Gittern, 2001, ISBN 3-933761-13-1 

111 Appt, Jochen; Stumpp Simone: Die Bodensee-Messkampagne 2001, IWS/CWR Lake 
Constance Measurement Program 2001, 2002, ISBN 3-933761-14-X 

112 Heimerl, Stephan: Systematische Beurteilung von Wasserkraftprojekten, 2002,  
ISBN 3-933761-15-8, vergriffen 

113 Iqbal, Amin: On the Management and Salinity Control of Drip Irrigation, 2002,  
ISBN 3-933761-16-6 

114 Silberhorn-Hemminger, Annette: Modellierung von Kluftaquifersystemen:  Geostatistische 
Analyse und deterministisch-stochastische Kluftgenerierung, 2002, ISBN 3-933761-17-4 

115 Winkler, Angela: Prozesse des Wärme- und Stofftransports bei der In-situ-Sanierung mit 
festen Wärmequellen, 2003, ISBN 3-933761-18-2 

116 Marx, Walter: Wasserkraft, Bewässerung, Umwelt - Planungs- und Bewertungsschwer-
punkte der Wasserbewirtschaftung, 2003, ISBN 3-933761-19-0 

117 Hinkelmann, Reinhard: Efficient Numerical Methods and Information-Processing Tech-
niques in Environment Water, 2003, ISBN 3-933761-20-4 

118 Samaniego-Eguiguren, Luis Eduardo: Hydrological Consequences of Land Use / Land 
Cover and Climatic Changes in Mesoscale Catchments, 2003, ISBN 3-933761-21-2 

119 Neunhäuserer, Lina: Diskretisierungsansätze zur Modellierung von Strömungs- und Trans-
portprozessen in geklüftet-porösen Medien, 2003, ISBN 3-933761-22-0 

120 Paul, Maren: Simulation of Two-Phase Flow in Heterogeneous Poros Media with Adaptive 
Methods, 2003, ISBN 3-933761-23-9 



Verzeichnis der Mitteilungshefte 7  
 

121 Ehret, Uwe: Rainfall and Flood Nowcasting in Small Catchments using Weather Radar, 
2003, ISBN 3-933761-24-7 

122 Haag, Ingo: Der Sauerstoffhaushalt staugeregelter Flüsse am Beispiel des Neckars - Ana-
lysen, Experimente, Simulationen -, 2003, ISBN 3-933761-25-5 

123 Appt, Jochen: Analysis of Basin-Scale Internal Waves in Upper Lake Constance, 2003, 
ISBN 3-933761-26-3 

124 Hrsg.: Schrenk, Volker; Batereau, Katrin; Barczewski, Baldur; Weber, Karolin und Ko-
schitzky, Hans-Peter: Symposium Ressource Fläche und VEGAS - Statuskolloquium 2003, 
30. September und 1. Oktober 2003, 2003, ISBN 3-933761-27-1 

125 Omar Khalil Ouda: Optimisation of Agricultural Water Use: A Decision Support System for 
the Gaza Strip, 2003, ISBN 3-933761-28-0 

126 Batereau, Katrin: Sensorbasierte Bodenluftmessung zur Vor-Ort-Erkundung von Scha-
densherden im Untergrund, 2004, ISBN 3-933761-29-8 

127 Witt, Oliver: Erosionsstabilität von Gewässersedimenten mit Auswirkung auf den 
Stofftransport bei Hochwasser am Beispiel ausgewählter Stauhaltungen des Oberrheins, 
2004, ISBN 3-933761-30-1 

128 Jakobs, Hartmut: Simulation nicht-isothermer Gas-Wasser-Prozesse in komplexen Kluft-
Matrix-Systemen, 2004, ISBN 3-933761-31-X 

129 Li, Chen-Chien: Deterministisch-stochastisches Berechnungskonzept zur Beurteilung der 
Auswirkungen erosiver Hochwasserereignisse in Flussstauhaltungen, 2004,  
ISBN 3-933761-32-8 

130 Reichenberger, Volker; Helmig, Rainer; Jakobs, Hartmut; Bastian, Peter; Niessner, Jen-
nifer: Complex Gas-Water Processes in Discrete Fracture-Matrix Systems: Up-scaling, 
Mass-Conservative Discretization and Efficient Multilevel Solution, 2004,  
ISBN 3-933761-33-6  

131 Hrsg.: Barczewski, Baldur; Koschitzky, Hans-Peter; Weber, Karolin; Wege, Ralf:  VEGAS - 
Statuskolloquium 2004, Tagungsband zur Veranstaltung am 05. Oktober 2004 an der Uni-
versität Stuttgart, Campus Stuttgart-Vaihingen, 2004, ISBN 3-933761-34-4 

132 Asie, Kemal Jabir: Finite Volume Models for Multiphase Multicomponent Flow through Po-
rous Media. 2005, ISBN 3-933761-35-2 

133 Jacoub, George: Development of a 2-D Numerical Module for Particulate Contaminant 
Transport in Flood Retention Reservoirs and Impounded Rivers, 2004, 
ISBN 3-933761-36-0  

134 Nowak, Wolfgang: Geostatistical Methods for the Identification of Flow and Transport Pa-
rameters in the Subsurface, 2005, ISBN 3-933761-37-9 

135 Süß, Mia: Analysis of the influence of structures and boundaries on flow and transport pro-
cesses in fractured porous media, 2005, ISBN 3-933761-38-7 

136 Jose, Surabhin Chackiath: Experimental Investigations on Longitudinal Dispersive Mixing 
in Heterogeneous Aquifers, 2005, ISBN: 3-933761-39-5 

137 Filiz, Fulya: Linking Large-Scale Meteorological Conditions to Floods in Mesoscale Catch-
ments, 2005, ISBN 3-933761-40-9 

138 Qin, Minghao: Wirklichkeitsnahe und recheneffiziente Ermittlung von Temperatur und 
Spannungen bei großen RCC-Staumauern, 2005, ISBN 3-933761-41-7 

139 Kobayashi, Kenichiro: Optimization Methods for Multiphase Systems in the Subsurface - 
Application to Methane Migration in Coal Mining Areas, 2005, ISBN 3-933761-42-5 

140 Rahman, Md. Arifur: Experimental Investigations on Transverse Dispersive Mixing in Het-
erogeneous Porous Media, 2005, ISBN 3-933761-43-3 

141 Schrenk, Volker: Ökobilanzen zur Bewertung von Altlastensanierungsmaßnahmen, 2005, 
ISBN 3-933761-44-1 

142 Hundecha, Hirpa Yeshewatesfa: Regionalization of Parameters of a Conceptual Rainfall-
Runoff Model, 2005, ISBN: 3-933761-45-X 

143 Wege, Ralf: Untersuchungs- und Überwachungsmethoden für die Beurteilung natürlicher 
Selbstreinigungsprozesse im Grundwasser, 2005, ISBN 3-933761-46-8 



8 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

144 Breiting, Thomas: Techniken und Methoden der Hydroinformatik - Modellierung von kom-
plexen Hydrosystemen im Untergrund, 2006, ISBN 3-933761-47-6 

145 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Müller, Martin: Ressource Untergrund: 10 
Jahre VEGAS: Forschung und Technologieentwicklung zum Schutz von Grundwasser und 
Boden, Tagungsband zur Veranstaltung am 28. und 29. September 2005 an der Universi-
tät Stuttgart, Campus Stuttgart-Vaihingen, 2005, ISBN 3-933761-48-4 

146 Rojanschi, Vlad: Abflusskonzentration in mesoskaligen Einzugsgebieten unter Berücksich-
tigung des Sickerraumes, 2006, ISBN 3-933761-49-2  

147 Winkler, Nina Simone: Optimierung der Steuerung von Hochwasserrückhaltebecken-
systemen, 2006, ISBN 3-933761-50-6 

148 Wolf, Jens:  Räumlich differenzierte Modellierung der Grundwasserströmung alluvialer 
Aquifere für mesoskalige Einzugsgebiete, 2006, ISBN: 3-933761-51-4 

149 Kohler, Beate: Externe Effekte der Laufwasserkraftnutzung, 2006, ISBN 3-933761-52-2 

150 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS-Statuskol-
loquium 2006, Tagungsband zur Veranstaltung am 28. September 2006 an der Universität 
Stuttgart, Campus Stuttgart-Vaihingen, 2006, ISBN 3-933761-53-0 

151 Niessner, Jennifer: Multi-Scale Modeling of Multi-Phase - Multi-Component Processes in 
Heterogeneous Porous Media, 2006, ISBN 3-933761-54-9 

152 Fischer, Markus: Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknung bindi-
ger Böden, 2006, ISBN 3-933761-55-7 

153 Schneck, Alexander: Optimierung der Grundwasserbewirtschaftung unter Berücksichti-
gung der Belange der Wasserversorgung, der Landwirtschaft und des Naturschutzes, 
2006, ISBN 3-933761-56-5 

154 Das, Tapash: The Impact of Spatial Variability of Precipitation on the Predictive Uncertainty 
of Hydrological Models, 2006, ISBN 3-33761-57-3 

155 Bielinski, Andreas: Numerical Simulation of CO2 sequestration in geological formations, 
2007, ISBN 3-933761-58-1 

156 Mödinger, Jens: Entwicklung eines Bewertungs- und Entscheidungsunterstützungs-
systems für eine nachhaltige regionale Grundwasserbewirtschaftung, 2006,  
ISBN 3-933761-60-3 

157 Manthey, Sabine: Two-phase flow processes with dynamic effects in porous media - 
parameter estimation and simulation, 2007, ISBN 3-933761-61-1 

158 Pozos Estrada, Oscar: Investigation on the Effects of Entrained Air in Pipelines, 2007, 
ISBN 3-933761-62-X 

159 Ochs, Steffen Oliver: Steam injection into saturated porous media – process analysis in-
cluding experimental and numerical investigations, 2007, ISBN 3-933761-63-8 

160 Marx, Andreas: Einsatz gekoppelter Modelle und Wetterradar zur Abschätzung von Nie-
derschlagsintensitäten und zur Abflussvorhersage, 2007, ISBN 3-933761-64-6 

161 Hartmann, Gabriele Maria: Investigation of Evapotranspiration Concepts in Hydrological 
Modelling for Climate Change Impact Assessment, 2007, ISBN 3-933761-65-4 

162 Kebede Gurmessa, Tesfaye: Numerical Investigation on Flow and Transport Characteris-
tics to Improve Long-Term Simulation of Reservoir Sedimentation, 2007,  
ISBN 3-933761-66-2 

163 Trifković, Aleksandar: Multi-objective and Risk-based Modelling Methodology for Planning, 
Design and Operation of Water Supply Systems, 2007, ISBN 3-933761-67-0 

164 Götzinger, Jens: Distributed Conceptual Hydrological Modelling - Simulation of Climate, 
Land Use Change Impact and Uncertainty Analysis, 2007, ISBN 3-933761-68-9 

165 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS – Kolloquium 
2007, Tagungsband zur Veranstaltung am 26. September 2007 an der Universität 
Stuttgart, Campus Stuttgart-Vaihingen, 2007, ISBN 3-933761-69-7 

166 Freeman, Beau: Modernization Criteria Assessment for Water Resources Planning; Kla-
math Irrigation Project, U.S., 2008, ISBN 3-933761-70-0 



Verzeichnis der Mitteilungshefte 9  
 

167 Dreher, Thomas: Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit 
wandnahen turbulenten Strömungsbedingungen, 2008, ISBN 3-933761-71-9 

168 Yang, Wei: Discrete-Continuous Downscaling Model for Generating Daily Precipitation 
Time Series, 2008, ISBN 3-933761-72-7 

169 Kopecki, Ianina: Calculational Approach to FST-Hemispheres for Multiparametrical Ben-
thos Habitat Modelling, 2008, ISBN 3-933761-73-5 

170 Brommundt, Jürgen: Stochastische Generierung räumlich zusammenhängender Nieder-
schlagszeitreihen, 2008, ISBN 3-933761-74-3 

171 Papafotiou, Alexandros: Numerical Investigations of the Role of Hysteresis in Heterogene-
ous Two-Phase Flow Systems, 2008, ISBN 3-933761-75-1 

172 He, Yi: Application of a Non-Parametric Classification Scheme to Catchment Hydrology, 
2008, ISBN 978-3-933761-76-7 

173 Wagner, Sven: Water Balance in a Poorly Gauged Basin in West Africa Using Atmospher-
ic Modelling and Remote Sensing Information, 2008, ISBN 978-3-933761-77-4 

174 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias; Schrenk, Volker: 
VEGAS-Kolloquium 2008  Ressource Fläche III, Tagungsband zur Veranstaltung am 
01. Oktober 2008 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2008,  
ISBN 978-3-933761-78-1 

175 Patil, Sachin: Regionalization of an Event Based Nash Cascade Model for Flood Predic-
tions in Ungauged Basins, 2008, ISBN 978-3-933761-79-8 

176 Assteerawatt, Anongnart: Flow and Transport Modelling of Fractured Aquifers based on a 
Geostatistical Approach, 2008, ISBN 978-3-933761-80-4 

177 Karnahl, Joachim Alexander: 2D numerische Modellierung von multifraktionalem Schweb-
stoff- und Schadstofftransport in Flüssen, 2008, ISBN 978-3-933761-81-1 

178 Hiester, Uwe: Technologieentwicklung zur In-situ-Sanierung der ungesättigten Bodenzone 
mit festen Wärmequellen, 2009, ISBN 978-3-933761-82-8 

179 Laux, Patrick: Statistical Modeling of Precipitation for Agricultural Planning in the Volta Ba-
sin of West Africa, 2009, ISBN 978-3-933761-83-5 

180 Ehsan, Saqib: Evaluation of Life Safety Risks Related to Severe Flooding, 2009,  
ISBN 978-3-933761-84-2 

181 Prohaska, Sandra: Development and Application of a 1D Multi-Strip Fine Sediment 
Transport Model for Regulated Rivers, 2009, ISBN 978-3-933761-85-9 

182 Kopp, Andreas: Evaluation of CO2 Injection Processes in Geological Formations for Site 
Screening, 2009, ISBN 978-3-933761-86-6 

183 Ebigbo, Anozie: Modelling of biofilm growth and its influence on CO2 and water (two-
phase) flow in porous media, 2009, ISBN 978-3-933761-87-3 

184 Freiboth, Sandra: A phenomenological model for the numerical simulation of multiphase 
multicomponent processes considering structural alterations of porous media, 2009,  
ISBN 978-3-933761-88-0 

185 Zöllner, Frank: Implementierung und Anwendung netzfreier Methoden im Konstruktiven 
Wasserbau und in der Hydromechanik, 2009, ISBN 978-3-933761-89-7 

186 Vasin, Milos: Influence of the soil structure and property contrast on flow and transport in 
the unsaturated zone, 2010, ISBN 978-3-933761-90-3 

187 Li, Jing: Application of Copulas as a New Geostatistical Tool, 2010,  
ISBN 978-3-933761-91-0 

188 AghaKouchak, Amir: Simulation of Remotely Sensed Rainfall Fields Using Copulas, 2010, 
ISBN 978-3-933761-92-7 

189 Thapa, Pawan Kumar: Physically-based spatially distributed rainfall runoff modelling for 
soil erosion estimation, 2010, ISBN 978-3-933761-93-4 

190 Wurms, Sven: Numerische Modellierung der Sedimentationsprozesse in Retentionsanla-
gen zur Steuerung von Stoffströmen bei extremen Hochwasserabflussereignissen, 2011, 
ISBN 978-3-933761-94-1 



10 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

191 Merkel, Uwe: Unsicherheitsanalyse hydraulischer Einwirkungen auf Hochwasserschutz-
deiche und Steigerung der Leistungsfähigkeit durch adaptive Strömungsmodellierung, 
2011, ISBN 978-3-933761-95-8 

192 Fritz, Jochen: A Decoupled Model for Compositional Non-Isothermal Multiphase Flow in 
Porous Media and Multiphysics Approaches for Two-Phase Flow, 2010,  
ISBN 978-3-933761-96-5 

193 Weber, Karolin (Hrsg.): 12. Treffen junger WissenschaftlerInnen an Wasserbauinstituten, 
2010, ISBN 978-3-933761-97-2 

194 Bliefernicht, Jan-Geert: Probability Forecasts of Daily Areal Precipitation for Small River 
Basins, 2011, ISBN 978-3-933761-98-9 

195 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2010 In-situ-Sanierung 
- Stand und Entwicklung Nano und ISCO -, Tagungsband zur Veranstaltung am 07. Okto-
ber 2010 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2010, 
ISBN 978-3-933761-99-6 

196 Gafurov, Abror: Water Balance Modeling Using Remote Sensing Information - Focus on 
Central Asia, 2010, ISBN 978-3-942036-00-9 

197 Mackenberg, Sylvia: Die Quellstärke in der Sickerwasserprognose: Möglichkeiten und 
Grenzen von Labor- und Freilanduntersuchungen, 2010, ISBN 978-3-942036-01-6 

198 Singh, Shailesh Kumar: Robust Parameter Estimation in Gauged and Ungauged Basins, 
2010, ISBN 978-3-942036-02-3 

199 Doğan, Mehmet Onur: Coupling of porous media flow with pipe flow, 2011, 
ISBN 978-3-942036-03-0 

200 Liu, Min: Study of Topographic Effects on Hydrological Patterns and the Implication on 
Hydrological Modeling and Data Interpolation, 2011, ISBN 978-3-942036-04-7 

201 Geleta, Habtamu Itefa: Watershed Sediment Yield Modeling for Data Scarce Areas, 2011,  
ISBN 978-3-942036-05-4 

202 Franke, Jörg: Einfluss der Überwachung auf die Versagenswahrscheinlichkeit von Staustu-
fen, 2011, ISBN 978-3-942036-06-1 

203 Bakimchandra, Oinam: Integrated Fuzzy-GIS approach for assessing regional soil erosion 
risks, 2011, ISBN 978-3-942036-07-8 

204 Alam, Muhammad Mahboob: Statistical Downscaling of Extremes of Precipitation in 
Mesoscale Catchments from Different RCMs and Their Effects on Local Hydrology, 2011, 
ISBN 978-3-942036-08-5 

205 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2011 Flache Geother-
mie - Perspektiven und Risiken, Tagungsband zur Veranstaltung am 06. Oktober 2011 an 
der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2011, ISBN 978-3-933761-09-2 

206 Haslauer, Claus: Analysis of Real-World Spatial Dependence of Subsurface Hydraulic 
Properties Using Copulas with a Focus on Solute Transport Behaviour, 2011,  
ISBN 978-3-942036-10-8 

207 Dung, Nguyen Viet: Multi-objective automatic calibration of hydrodynamic models – 
development of the concept and an application in the Mekong Delta, 2011,  
ISBN 978-3-942036-11-5 

208 Hung, Nguyen Nghia: Sediment dynamics in the floodplain of the Mekong Delta, Vietnam, 
2011, ISBN 978-3-942036-12-2 

209 Kuhlmann, Anna: Influence of soil structure and root water uptake on flow in the unsaturat-
ed zone, 2012, ISBN 978-3-942036-13-9 

210 Tuhtan, Jeffrey Andrew: Including the Second Law Inequality in Aquatic Ecodynamics:  
A Modeling Approach for Alpine Rivers Impacted by Hydropeaking, 2012, 
ISBN 978-3-942036-14-6 

211 Tolossa, Habtamu: Sediment Transport Computation Using a Data-Driven Adaptive Neuro-
Fuzzy Modelling Approach, 2012, ISBN 978-3-942036-15-3 

212 Tatomir, Alexandru-Bodgan: From Discrete to Continuum Concepts of Flow in Fractured 
Porous Media, 2012, ISBN 978-3-942036-16-0 



Verzeichnis der Mitteilungshefte 11  
 

213 Erbertseder, Karin: A Multi-Scale Model for Describing Cancer-Therapeutic Transport in 
the Human Lung, 2012, ISBN 978-3-942036-17-7 

214 Noack, Markus: Modelling Approach for Interstitial Sediment Dynamics and Reproduction 
of Gravel Spawning Fish, 2012, ISBN 978-3-942036-18-4 

215 De Boer, Cjestmir Volkert: Transport of Nano Sized Zero Valent Iron Colloids during Injec-
tion into the Subsurface, 2012, ISBN 978-3-942036-19-1 

216 Pfaff, Thomas: Processing and Analysis of Weather Radar Data for Use in Hydrology, 
2013, ISBN 978-3-942036-20-7 

217 Lebrenz, Hans-Henning: Addressing the Input Uncertainty for Hydrological Modeling by a 
New Geostatistical Method, 2013, ISBN 978-3-942036-21-4 

218 Darcis, Melanie Yvonne: Coupling Models of Different Complexity for the Simulation of CO2 
Storage in Deep Saline Aquifers, 2013, ISBN 978-3-942036-22-1 

219 Beck, Ferdinand: Generation of Spatially Correlated Synthetic Rainfall Time Series in High 
Temporal Resolution - A Data Driven Approach, 2013, ISBN 978-3-942036-23-8 

220 Guthke, Philipp: Non-multi-Gaussian spatial structures: Process-driven natural genesis, 
manifestation, modeling approaches, and influences on dependent processes, 2013,  
ISBN 978-3-942036-24-5 

221 Walter, Lena: Uncertainty studies and risk assessment for CO2 storage in geological for-
mations, 2013, ISBN 978-3-942036-25-2 

222 Wolff, Markus: Multi-scale modeling of two-phase flow in porous media including capillary 
pressure effects, 2013, ISBN 978-3-942036-26-9 

223 Mosthaf, Klaus Roland: Modeling and analysis of coupled porous-medium and free flow 
with application to evaporation processes, 2014, ISBN 978-3-942036-27-6 

224 Leube, Philipp Christoph: Methods for Physically-Based Model Reduction in Time: Analy-
sis, Comparison of Methods and Application, 2013, ISBN 978-3-942036-28-3 

225 Rodríguez Fernández, Jhan Ignacio: High Order Interactions among environmental varia-
bles: Diagnostics and initial steps towards modeling, 2013, ISBN 978-3-942036-29-0 

226 Eder, Maria Magdalena: Climate Sensitivity of a Large Lake, 2013,  
ISBN 978-3-942036-30-6 

227 Greiner, Philipp: Alkoholinjektion zur In-situ-Sanierung von CKW Schadensherden in 
Grundwasserleitern: Charakterisierung der relevanten Prozesse auf unterschiedlichen 
Skalen, 2014, ISBN 978-3-942036-31-3 

228 Lauser, Andreas: Theory and Numerical Applications of Compositional Multi-Phase Flow in 
Porous Media, 2014, ISBN 978-3-942036-32-0 

229 Enzenhöfer, Rainer: Risk Quantification and Management in Water Production and Supply 
Systems, 2014, ISBN 978-3-942036-33-7 

230 Faigle, Benjamin: Adaptive modelling of compositional multi-phase flow with capillary pres-
sure, 2014, ISBN 978-3-942036-34-4 

231 Oladyshkin, Sergey: Efficient modeling of environmental systems in the face of complexity 
and uncertainty, 2014, ISBN 978-3-942036-35-1 

232 Sugimoto, Takayuki: Copula based Stochastic Analysis of Discharge Time Series, 2014,  
ISBN 978-3-942036-36-8 

233 Koch, Jonas: Simulation, Identification and Characterization of Contaminant Source Archi-
tectures in the Subsurface, 2014, ISBN 978-3-942036-37-5 

234 Zhang, Jin: Investigations on Urban River Regulation and Ecological Rehabilitation 
Measures, Case of Shenzhen in China, 2014, ISBN 978-3-942036-38-2 

235 Siebel, Rüdiger: Experimentelle Untersuchungen zur hydrodynamischen Belastung und 
Standsicherheit von Deckwerken an überströmbaren Erddämmen, 2014, 
ISBN 978-3-942036-39-9 

236 Baber, Katherina: Coupling free flow and flow in porous media in biological and technical 
applications: From a simple to a complex interface description, 2014,  
ISBN 978-3-942036-40-5 



12 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

237 Nuske, Klaus Philipp: Beyond Local Equilibrium — Relaxing local equilibrium assumptions 
in multiphase flow in porous media, 2014, ISBN 978-3-942036-41-2 

238 Geiges, Andreas: Efficient concepts for optimal experimental design in nonlinear environ-
mental systems, 2014, ISBN 978-3-942036-42-9 

239 Schwenck, Nicolas: An XFEM-Based Model for Fluid Flow in Fractured Porous Media, 
2014, ISBN 978-3-942036-43-6 

240 Chamorro Chávez, Alejandro: Stochastic and hydrological modelling for climate change 
prediction in the Lima region, Peru, 2015, ISBN 978-3-942036-44-3 

241 Yulizar: Investigation of Changes in Hydro-Meteorological Time Series Using a Depth-
Based Approach, 2015, ISBN 978-3-942036-45-0 

242 Kretschmer, Nicole: Impacts of the existing water allocation scheme on the Limarí water-
shed – Chile, an integrative approach, 2015, ISBN 978-3-942036-46-7 

243 Kramer, Matthias: Luftbedarf von Freistrahlturbinen im Gegendruckbetrieb, 2015,  
ISBN 978-3-942036-47-4 

244 Hommel, Johannes: Modeling biogeochemical and mass transport processes in the sub-
surface: Investigation of microbially induced calcite precipitation, 2016,  
ISBN 978-3-942036-48-1 

245 Germer, Kai: Wasserinfiltration in die ungesättigte Zone eines makroporösen Hanges und 
deren Einfluss auf die Hangstabilität, 2016, ISBN 978-3-942036-49-8 

246 Hörning, Sebastian: Process-oriented modeling of spatial random fields using copulas, 
2016, ISBN 978-3-942036-50-4 

247 Jambhekar, Vishal: Numerical modeling and analysis of evaporative salinization in a cou-
pled free-flow porous-media system, 2016, ISBN 978-3-942036-51-1 

248 Huang, Yingchun: Study on the spatial and temporal transferability of conceptual hydrolog-
ical models, 2016, ISBN 978-3-942036-52-8  

249 Kleinknecht, Simon Matthias: Migration and retention of a heavy NAPL vapor and remedia-
tion of the unsaturated zone, 2016, ISBN 978-3-942036-53-5 

250 Kwakye, Stephen Oppong: Study on the effects of climate change on the hydrology of the 
West African sub-region, 2016, ISBN 978-3-942036-54-2 

251 Kissinger, Alexander: Basin-Scale Site Screening and Investigation of Possible Impacts of 
CO2 Storage on Subsurface Hydrosystems, 2016, ISBN 978-3-942036-55-9 

252 Müller, Thomas: Generation of a Realistic Temporal Structure of Synthetic Precipitation 
Time Series for Sewer Applications, 2017, ISBN 978-3-942036-56-6 

253 Grüninger, Christoph: Numerical Coupling of Navier-Stokes and Darcy Flow for Soil-Water 
Evaporation, 2017, ISBN 978-3-942036-57-3 

254 Suroso: Asymmetric Dependence Based Spatial Copula Models: Empirical Investigations 
and Consequences on Precipitation Fields, 2017, ISBN 978-3-942036-58-0 

255 Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, 
András: Grundlagenbericht Niederschlags-Simulator (NiedSim3), 2017, ISBN 978-3-
942036-59-7 

256 Mosthaf, Tobias: New Concepts for Regionalizing Temporal Distributions of Precipitation 
and for its Application in Spatial Rainfall Simulation, 2017, ISBN 978-3-942036-60-3 

257 Fenrich, Eva Katrin: Entwicklung eines ökologisch-ökonomischen Vernetzungsmodells für 
Wasserkraftanlagen und Mehrzweckspeicher, 2018, ISBN 978-3-942036-61-0 

258 Schmidt, Holger: Microbial stabilization of lotic fine sediments, 2018, ISBN 978-3-942036-
62-7 

259 Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbu-
lence and Roughness – Models, Concepts and Analysis, 2018, ISBN 978-3-942036-63-4 

260 Schröder, Hans Christoph: Large-scale High Head Pico Hydropower Potential Assess-
ment, 2018, ISBN 978-3-942036-64-1 

261 Bode, Felix: Early-Warning Monitoring Systems for Improved Drinking Water Resource 
Protection, 2018, ISBN 978-3-942036-65-8 



Verzeichnis der Mitteilungshefte 13  
 

262 Gebler, Tobias: Statistische Auswertung von simulierten Talsperrenüberwachungsdaten 
zur Identifikation von Schadensprozessen an Gewichtsstaumauern, 2018, ISBN 978-3-
942036-66-5 

263 Harten, Matthias von: Analyse des Zuppinger-Wasserrades – Hydraulische Optimierungen 
unter Berücksichtigung ökologischer Aspekte, 2018, ISBN 978-3-942036-67-2 

264 Yan, Jieru: Nonlinear estimation of short time precipitation using weather radar and surface 
observations, 2018, ISBN 978-3-942036-68-9 

265 Beck, Martin: Conceptual approaches for the analysis of coupled hydraulic and geome-
chanical processes, 2019, ISBN 978-3-942036-69-6 

266 Haas, Jannik: Optimal planning of hydropower and energy storage technologies for fully 
renewable power systems, 2019, ISBN 978-3-942036-70-2 

267 Schneider, Martin: Nonlinear Finite Volume Schemes for Complex Flow Processes and 
Challenging Grids, 2019, ISBN 978-3-942036-71-9 

268 Most, Sebastian Christopher: Analysis and Simulation of Anomalous Transport in Porous 
Media, 2019, ISBN 978-3-942036-72-6 

269 Buchta, Rocco: Entwicklung eines Ziel- und Bewertungssystems zur Schaffung nachhalti-
ger naturnaher Strukturen in großen sandgeprägten Flüssen des norddeutschen Tieflan-
des, 2019, ISBN 978-3-942036-73-3 

270 Thom, Moritz: Towards a Better Understanding of the Biostabilization Mechanisms of Sed-
iment Beds, 2019, ISBN 978-3-942036-74-0 

271 Stolz, Daniel: Die Nullspannungstemperatur in Gewichtsstaumauern unter Berücksichti-
gung der Festigkeitsentwicklung des Betons, 2019, ISBN 978-3-942036-75-7 

272 Rodriguez Pretelin, Abelardo: Integrating transient flow conditions into groundwater well 
protection, 2020, ISBN: 978-3-942036-76-4 

273 Weishaupt, Kilian: Model Concepts for Coupling Free Flow with Porous Medium Flow at 
the Pore-Network Scale: From Single-Phase Flow to Compositional Non-Isothermal Two-
Phase Flow, 2020, ISBN: 978-3-942036-77-1 

274 Koch, Timo: Mixed-dimension models for flow and transport processes in porous media 
with embedded tubular network systems, 2020, ISBN: 978-3-942036-78-8 

275 Gläser, Dennis: Discrete fracture modeling of multi-phase flow and deformation in fractured 
poroelastic media, 2020, ISBN: 978-3-942036-79-5 

276 Seitz, Lydia: Development of new methods to apply a multi-parameter approach – A first 
step towards the determination of colmation, 2020, ISBN: 978-3-942036-80-1 

277 Ebrahim Bakhshipour, Amin: Optimizing hybrid decentralized systems for sustainable ur-
ban drainage infrastructures planning, 2021, ISBN: 978-3-942036-81-8 

278 Seitz, Gabriele: Modeling Fixed-Bed Reactors for Thermochemical Heat Storage with the 
Reaction System CaO/Ca(OH)2, 2021, ISBN: 978-3-942036-82-5 

279 Emmert, Simon: Developing and Calibrating a Numerical Model for Microbially Enhanced 
Coal-Bed Methane Production, 2021, ISBN: 978-3-942036-83-2 

280 Heck, Katharina Klara: Modelling and analysis of multicomponent transport at the interface 
between free- and porous-medium flow - influenced by radiation and roughness, 2021, 
ISBN: 978-3-942036-84-9 

281 Ackermann, Sina: A multi-scale approach for drop/porous-medium interaction, 2021, ISBN: 
978-3-942036-85-6 

282 Beckers, Felix: Investigations on Functional Relationships between Cohesive Sediment 
Erosion and Sediment Characteristics, 2021, ISBN: 978-3-942036-86-3 

283 Schlabing, Dirk: Generating Weather for Climate Impact Assessment on Lakes, 2021, 
ISBN: 978-3-942036-87-0 

284 Becker, Beatrix: Efficient multiscale multiphysics models accounting for reversible flow at 
various subsurface energy storage sites, 2021, ISBN: 978-3-942036-88-7 

285 Reuschen, Sebastian: Bayesian Inversion and Model Selection of Heterogeneities in Geo-
statistical Subsurface Modeling, 2021, ISBN: 978-3-942036-89-4 



14 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  

 

 

 

Die Mitteilungshefte ab der Nr. 134 (Jg. 2005) stehen als pdf-Datei über die Homepage des Insti-
tuts: www.iws.uni-stuttgart.de zur Verfügung. 


	Contents
	List of Figures
	Nomenclature
	Abstract
	Zusammenfassung
	Introduction
	State of the art
	Bayesian framework
	Bayesian inversion
	Bayesian model selection
	Model justifiability analysis

	Prior geostatistical models
	Two-point statistics: Gaussian random fields
	Multiple-point statistics: utilizing training images

	Markov chain Monte Carlo
	Symmetric proposal distributions
	Asymmetric proposal distributions
	Parallel tempering


	Objectives & Contributions
	Conclusions & Outlook
	Bibliography
	List of Publications
	Contribution 1: Efficient discretization-independent Bayesian inversion of high-dimensional multi-Gaussian priors using a hybrid MCMC
	Contribution 2: Preconditioned Crank-Nicolson Markov chain Monte Carlo coupled with parallel tempering: an efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields
	Contribution 3: Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank‐Nicolson Markov chain Monte Carlo with parallel tempering
	Contribution 4: Bayesian inversion of hierarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC
	Contribution 5: The four ways to consider measurement noise in Bayesian model selection—And which one to choose

