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ABSTRACT 

The advection–diffusion (A–D) equation plays an important role in the 
simulation of suspended sediment transport, contaminant transport and 
water quality in rivers. In this study, two classes of numerical methods 
are proposed to solve the two-dimensional advection-diffusion equation. 
One is the method of approximate particular solutions (MAPS), which 
is a representative of the meshless numerical family; and the other is 
the FDM method, a mesh-dependent scheme. We utilize the 
localization technique (LMAPS) to resolve two well-acknowledged 
difficulties of the Radial Basis Functions (RBFs). Firstly, the LMAPS 
is used to overcome the ill-conditioned matrix problem, and secondly 
the localization technique can assist in making the MAPS less sensitive 
to the shape parameter. To the best knowledge of the writers, there are 
no systematic techniques or algorithms to evaluate the accuracy or 
stability of the localized RBF methods. To evaluate and compare the 
accuracy and behavior of the LMAPS as a meshless method, a mesh-
dependent technique, say FDM, is employed in this study. The 
proposed numerical schemes are validated against available analytical 
solutions for two-dimensional transport problem. Compared to the 
proposed FDM, the LMAPS has satisfactory accuracy and stability. 
The potential usefulness of the meshless methods for transport 
problems can be demonstrated in this study. 

KEY WORDS:  suspended sediment transport; advection–diffusion 
equation; meshless methods; localization; mesh-dependent methods 

INTRODUCTION 

Understanding the transport of sediment particles is of fundamental and 
practical importance to hydraulic engineering. Accurate simulation of 
suspended sediment transport is essential for water quality management, 
environmental impact assessment and design of hydraulic structures. 
Among others, the advection–diffusion (A–D) equation is crucial to the 
simulation of suspended sediment transport, solute contaminant 
transport and water quality in rivers. Therefore, improving the 
efficiency and accuracy of numerical schemes for the A–D equation has 
been a focus of research (Man and Tsai, 2008). 

Governing equations 

As it was mentioned before, the 2D A-D equation is solved in this study: 

2( . )C v C k C in
t


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
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(1)

where C  is the scalar function which may be a suspended load or
pollutant concentration; k  is the diffusivity; t  is the time; v  is the
given velocity; and   is the computational domain with a boundary
 . The solution of the above governing equation has to be obtained
for the following initial and boundary data: 

Initial conditions (I.C.): 

 0 0,C x t C x 
 

(2)

Dirichlet and Neumann boundary conditions (B.C.): 

 , DC x t C x 
 

(3)
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q x
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
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in which D  and N  represent the Dirichlet and Neumann part of the
boundary  ; x  is the vector space; 0t  is the initial time and n  is

the normal vector on the boundary N  and 0C ; C  as well as q

are known functions. 

Numerical method 

Euler method. The Euler method is a well-known explicit scheme 
which is based on the first two terms in the expansion of the Taylor 
series: 

1 ( , )n n n ny y f y t t    )5(

Applying a stability analysis for the Euler method, it can be shown that 
the step size should be limited to: 
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where   , in this case, is a real, negative constant: 

 0 0,f y t
y

 



)7(

Runge-Kutta methods. Runge–Kutta (RK) methods introduce points 
between nt  and 1nt   and valuate f  at these intermediate points. The
additional function evaluations, of course, result in higher cost per time 
step; but the accuracy is increased.  As it turns out, better stability 
properties are also obtained. With three out of the four constants chosen, 
we have a one-parameter family of second-order Runge–Kutta (RK2) 
formulas (Moin, 2010): 

 1 ,n nk f y t t  (8)

 2 1,n nk f y k t t t      (9)

1 1 2
1 11

2 2n ny y k k
 
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 

(10)

In this study, we choose 0.5  . Again, by applying a stability
analysis for RK2, the following criteria can be obtained: 

 44

1 1
4

t
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
   )11(

where / i  ; and   is the same as in the Eq. )7). The method is
unconditionally unstable for purely imaginary  . However, noting that 
for small values of t , this method is less unstable than the
explicit Euler. 

Mesh discretization in FDM. Since FDM is a well-known method 
and to be concise, here the discretized form of the G.E. is 
provided without extra details: 

 1, ,i j i ju uu O x
x x

 
  

 
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For the both first-order and second order derivatives in y  direction, a
similar expression can be obtained. 

RBFs. RBFs were originally introduced in the early 1970s to obtain 
multivariate scattered data approximations and function interpolations. 
Notably, in contrast to the traditional meshed-based methods such as 

finite difference, finite element, and boundary element methods, the 
RBF collocation methods are mathematically simple and truly meshless, 
which avoid troublesome mesh generation for high-dimensional 
problems involving irregular or moving boundary (Chen et al. 2013). 
Method of approximate particular solution (MAPS) is one of the RBFs 
which would be discussed in the following. 

The localized method of approximate particular solutions. The 
LMAPS is a developing numerical method that is based on the MAPS. 
The MAPS is a series of meshless numerical method for solving 
differential equations that includes various radial basis function 
collocation methods (RBFCM).  Various basis functions such as radial 
basis functions or polynomial equations can be applied. The MAPS, 
first was developed by Chen et al. (2011, 2012). This method can be 
described as the following. A solution of the following form can be 
found for a given variable q  at any computation point within the

computational domain  : 

   
1

,
N

i j i j
j

q x F x x x


     
)14(

where F  is the integrated basis function; and   is the weighting
coefficient to be determined. For numerical implementation of any 
given function or operator   , the MAPS can generate an

approximate summation equation for each computation point as: 

     
1

,
N

i j i j
j

q x F x x x  


     
(15)

By solving the (15, the weighting coefficient of each global point ix  is
found, and therefore the variable q  at any point within the 
computational domain can be approximated as 

   
1

,
N

i j i j
j

q x F x x x


     
 )16(

Localization technique 

The process of finding the weighting coefficient of each global point 
requires solving a linear system with full matrix. Full matrix is more 
likely to cause ill-condition than sparse matrix. The large memory 
loading and long computational time will hinder the application for 
large scale computation. In order to overcome the aforementioned 
problems, localization technique (Yao et al. 2011) is applied to modify 
the MAPS. For each local influence area i , the approximation 
summation equation for variable q  can be depicted as:

     , , , ,
1

,
NL

i k i m i k i m i
m

q x q x F x x x 


       
)17(

According to the collocation method, each point within local influence 
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area should satisfy Eq. )17: 

i i iq F
 

 (18)

where 
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NL NL
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T
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
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 is invertible, the weighting

coefficient can be obtained as 

1
i i iF q 

  )19(

For numerical implementation of any given function or operator 

  , Eq. )17 can be derived as

        , ,
1

NL

i i m i i m
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Defining  f F , we obtain

    , ,
1

NL

i i m i i m
m

q x f x x 


   
)21(

Or in vector-matrix form, 

  i i iq x f 
  (22)

where    ,1 ,,...,i i i i i NLf f x x f x x    
    

. By 

substituting Eq. )19 into Eq. (22, we have 

   1
i i i iq x f F 

   (23)

Let 1
,1 ,,...,i i i i i NLf F       

 
, the equation for variable q

within local influence area can be concluded as 

  i i iq x q 
  (24)

Such local system can be applied for local interpolation. However, for 
boundary value problems, the solution for a local system needs to be 
expanded to a global system. The transformation from local influence 
area to global point gives: 

,1 , ,
, ,

0,
,..., ,

,
j i

i i i N i j
i k j i k i

x
x x


 


          




  (25)

and the global system can be written as 

 q q  
  (26)

Given 1,...,
T

N     
  

, and    1 ,...,
T

Nq q x q x   
  

. 

Finally the solution of q  can be obtained directly by solving the linear
system of Eq. (26 ( Lin et al. 2015). 

There are some relating topics such as local influence area, and 
normalization techniques which are out of scope of this paper. 

Results and discussions 

In this section we will compare the numerical results1 obtained 
by the LMAPS as a meshless scheme to the FDM ones as a 
well-known mesh-dependent method. In this study, I.C. and B.C. 
are given as following: 

I.C.: 

     , , 0 sin sinC x y t x y    (27)

B.C.: 

    
    
    
    

2

2

2

2

0, , sin

1, , sin

, 0, sin

, 1, sin

k t

k t

k t

k t

C x y t y e

C x y t y e

C x y t x e

C x y t x e

























  

  


 


 

(28)

1 In all cases, diffusivity is 100. 
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By defining the velocity vector as 

      , cos , cosv u v y x   


, the analytical solution of 

the G.E. (1 for the present case can be derived from 

       2

, , sin sin k tC x y t x y e     (29)

Since we have the exact solution, Eq. (29, a root-mean-square error 
(RMSE) parameter is defined as following 

 2

1 i i

N
apx exti

f f
RMSE

N




 (30)

where N  is number of total points,
iapxf  and 

iextf  are the numerical

and exact values of the desired function in every points. 

At this juncture, we are ready to present and discuss the results. Fig. 1 
shows the results of the LMAPS comparing to the exact solution. In 
this figure, Euler method has been employed for the transient terms. 
Schematic results, show a good behavior of the LMAPS, as well as the 
RMSE (1.6190e-07) is acceptable.  

By replacing the FDM method with the LMAPS to the latter example 
(the Euler scheme for the transient terms and the same time steps within 
the same size of the domain stencils which were used in the LMAPS 
method), a good approximation with RMSE = 4.5129e-06 has been 
observed in Fig. 2.  Comparing the RMSE of the LMAPS with the 
FDM one (almost 28 times lesser), it is clear to see that the LMAPS 
performs more accurately than the FDM. 

Accuracy is one of the pedagogical aspects of the numerical techniques; 
sometimes, however, the stability causes lots of difficulties and 
problems in a numerical solution. By increasing the time steps to 

2.0 05t e   , which is 20 times bigger than the previous one, the
LMAPS still is able to provide a stable results,  

(a) (b) 

(c) 

Fig. 3, as well as it is well accurate (RMSE= 9.1819e-06), while the 
proposed FDM method failed to converge to a result due to the 
instability conditions. An interesting point here is that, the LMAPS 
with 2.0 05t e    provides accurate results close to the proposed
FDM with 1.0 06t e   .

In continuity, we solved the A-D equation with the RK2 method 
( 1.0 06t e   ), which is a higher order accurate and more stable
method comparing to the Euler scheme, along with the proposed FDM 
scheme, Fig. 4. The RMSE in this case is 1.6649e-07 which is bigger 
than its corresponding value in the LMAPS with the Euler scheme 
(1.6190e-07). In other words, the LMAPS with the Euler scheme is 
more accurate than the proposed FDM with the RK2. 

(a) (b) 

(c) 
Fig. 1 (a) The LMAPS solution of the A-D equation with the 
Euler scheme comparing to the exact one (b), (c) time history of 
the C  at the center point,

 
1.0 06t e  
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(a) (b) 

(c) 
Fig. 2 (a) The proposed FDM solution of the A-D equation with the 
Euler scheme comparing to the exact one (b), (c) time history of the C
at the center point, 1.0 06t e  

(a) (b) 

(c) 

Fig. 3 (a) The LMAPS solution of the A-D equation with the Euler 
scheme comparing to the exact one (b), (c) time history of the C  at the
center point, 2.0 05t e  

(a) (b) 

(c) 

Fig. 4. (a) The proposed FDM solution of the A-D equation with 
the RK2 scheme comparing to the exact one (b), (c) time history 
of the C  at the center point, 1.0 06t e    

It should be mentioned that despite the LMAPS, the proposed FDM 
method still could not converge to a solution even with the RK2 
scheme for 2.0 05t e   . On a side note, as we have expected
here, the RK2 improved the accuracy of the solution which the RMSE 
(=1.6649e-07) is smaller than the Euler scheme (=4.5129e-06). The 
accuracy of the mesh-dependent numerical methods can be improved 
by implementing different spatial discretization methods in addition to 
changing the temporal scheme. On the other hand, the accuracy of the 
meshless methods like the LMAPS also can be modified simply by 
changing the number of local points or the shape parameter2, while for 
the FDM, we need to have more points in the discretization of the G.Es, 
which needs more effort to apply in the numerical coding algorithm. In 
addition, RBFs are really meshless and much easier to apply in coding 
especially when it comes to the complicated geometries or higher 
dimensions. To make a fair judgment, despite the aforementioned 
advantages for the RBFs, the authors want to mention two drawbacks 
of this family of numerical methods; firstly, most of the RBFs are based 
on the shape parameter, which up to now there is no systematic way to 
obtain the optimum value for it; however, some techniques3 have been 
used for finding the optimum shape parameter but they are applicable 
only for the global RBFs. The second disadvantage of the RBFs is, 
whether you are using an implicit scheme or not, you always need to 
solve the inversion of a matrix. Fortunately, with the development of 
the programing languages, this issue is less considered, since a canned 
inversion code can be found in almost all the commonly used 
programing languages such as MATLAB, C family, and Fortran. 

CONCLUSIONS 

2 The shape parameter is a factor in the F function in Eq. 14. 
3 Like the LOOCV 
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A 2D A-D equation was solved by two families of the numerical 
methods: 1- LMAPS, 2- FDM. It was shown that the LMAPS with the 
Euler scheme, comparing to the proposed FDM with the Euler and the 
RK2 scheme, provides more stable and accurate results in this case. 
The potential usefulness of the meshless methods for transport 
problems was demonstrated in this study. 
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