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Abstract

Lakes are driven in part by weather and they are affected by climate. Short-term events can

initiate mixture, but its reach into the deep is bounded by the vertical thermal distribution,

which reflects the longer-term meteorological situation. Intertwined in the physical pro-

cesses are biological ones, like phytoplankton communities that produce turbidity-altering

blooms under the right conditions of light availability, water temperature and stable strati-

fication.

In other words, lakes are complex ecosystems and their reactions to changed climatic

conditions can hardly be determined in a trivial manner.

Hydrodynamic and combined ecological lake models reflect the complexity of natural

lakes to a certain extent and make it possible to conduct experiments with hypothetical in-

put following envisioned climatic changes. The research of lakes with such models can be

enriched by recognizing the influence of the variability within the lake’s boundary condi-

tions. Building stochastic abstractions of weather, so called weather generators, allows to

repeatedly run the same experiment, changing only what is deemed random from run to

run and distilling an aggregate lake response complemented with bounds resulting from

the modelled input uncertainty.

The tools presented in this work are the culmination of years of cooperation with lake

modellers. The intent of the limnologists was not to be supplied with best-guess values

according to a greenhouse gas emission scenario, as done when downscaling output of cli-

mate models, but to have a tool, that allows them to define climate scenarios in accordance

to a given increase in air temperature. Also, changes in variability should be configurable

and defined in terms of air temperature. Air temperature is not the only variable having an

influence on a lake and is correlated with other meteorological variables as sunshine, precip-

itation, relative humidity and more. In order to keep such freely defined temperature-based

scenarios plausible, existing weather generation methods had to be adapted. In order to

propagate changes in air temperature to the rest of the generated meteorological variables,

the statistical dependencies in measured data using linear and non-linear models were ex-

ploited.

The weather generator Vector-Autoregressive Weather Generator (VG) relies on such lin-

ear dependencies and generates daily, single-site time series. It has been used in a few pub-

lished studies, meeting the above requirements. Its central model is a vector-autoregressive

process, a simple extension of the autoregressive process to the multivariate case. In order

to improve long-term variability, it was combined with phase randomization, a method that

uses the Fourier transform to generate “surrogate data”. As vector-autoregressive models

generate time series with normal marginals, transformations of the input and output are
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used to traverse from measurement to standard-normal domain and back after simulation.

To propagate changes in one guiding variable to the rest of the generated variables, the

properties of the parameters of the vector-autoregressive model were exploited and com-

plemented with linear regression.

The multi-site, daily Weather Generator based on Phase Randomization and Vine

Copulas (WeatherCop) uses copulas to model possibly non-linear dependencies between

the modelled variables in source data. In order to reduce the number of parameters, Weath-

erCop uses phase randomization as well. Here it maintains the inter-site and temporal de-

pendencies. Its use was predicated on formulating an inverse sampling algorithm that is

used to decorrelate observations. Copulas are models of multivariate dependence with uni-

form marginals, so transformations of the input are used for this weather generator as well.

As copulas are models of dependence, they lend themselves ideally for propagating changes

in one guiding variable to other variables. The type of copula approach chosen here is the

pair construction method, commonly referred to as Vine copulas. They are flexible tools as

they allow building a multivariate dependence structure from pairs of variables, using the

vast amount of available bivariate copula families.

With these two parametric weather generators, a novel way to generate precipitation

was explored. Both weather generators are multivariate models and as such have more

variables available than just precipitation. The dependency between precipitation and other

variables is usually thought of as implying a direction of causation in which the presence

of rain determines the values of the other simulated variables. This direction of depen-

dency was reversed in order to extract information about a dryness probability from the

non-precipitation variables. Properly mapped, this dryness probability can fill the dry gaps

in the transformed input time series for each of the weather generators. An upside to this

treatment of precipitation is that it does not require a precipitation occurrence model and no

different parameterizations for wet and dry states for the non-precipitation variables.

Testing the weather generators was done in several ways. First, by direct validation of

statistical properties in observed and generated time series. The second, harder extrapo-

lation test for their applicability in climate change scenarios was on how well they could

project a change in the guiding variable temperature to the rest of the generated variables.

This was done by calibrating the models on a cold period and driving them with the tem-

perature difference to a warmer period in the measured data. The ability to extrapolate lies

then not primarily in how well the guiding variable is agreeing with measurements, but in

the other generated variables that are supposed to change accordingly. Extrapolation was

more accurate using the more complex WeatherCop than VG. Still, results of the extrapola-

tion tests show, that only relying on statistical relationships can mis-project the changes in

dependent variables that accompany temperature increases. The last kind of test was only

done for VG, namely an indirect validation, using multiple lake models in cooperation with

lake modellers. Indirect validation tests whether the relevant properties of a measured time

series is still present in generated time series by comparing the output of the lake model run

with generated and measured data.

The two parametric weather generators VG and WeatherCop are contrasted with a non-

parametric K-Nearest Neighbors (KNN) resampler, highlighting differences between those
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approaches and underlining specific weaknesses. Resampling existing records is deemed

unsuitable as it lacks abstraction and with it variability, but the parametric methods sim-

plify dependencies and overestimate spread. The resampling method proved to have lower

variance dependent on the autocorrelation of the source data, which was underlined with

an experiment where time series of varying autocorrelation were generated. A general ten-

dency towards central values was observed in both a uni- and multivariate sense and en-

tropy comparisons showed a higher than measured order in resampled and too low order

in time series generated with the studied parametric models.



Zusammenfassung

Seen werden zum Teil durch das Wetter angetrieben und sie werden über das Klima be-

einflusst. Kurzfristige Ereignisse können eine Vermischung der Wasserschichten auslösen,

aber ihre Reichweite in die Tiefe wird durch die vertikale Wärmeverteilung begrenzt, die die

längerfristige meteorologische Situation widerspiegelt. In die physikalischen Prozesse ver-

flochten sind biologische Prozesse, wie Phytoplankton-Gemeinschaften, die bei passenden

Bedingungen, wie ausreichender Lichtverfügbarkeit, Wassertemperatur und stabiler Schich-

tung, trübungsverändernde Blüten hervorbringen.

Mit anderen Worten: Seen sind komplexe Ökosysteme und ihre Reaktionen auf

veränderte klimatische Bedingungen lassen sich kaum in einer trivialen Art und Weise

abschätzen.

Hydrodynamische und kombinierte ökologische Seenmodelle spiegeln die Komplexität

der natürlichen Seen bis zu einem gewissen Grad wider und machen es möglich Expe-

rimente mit hypothetischen Eingaben durchzuführen, die angenommenen klimatischen

Veränderungen folgen. Die Erforschung von Seen mit Hilfe solcher Modelle kann durch

das Anerkennen des Einflusses der Variabilität der Randbedingungen des Sees bereichert

werden. Das Erstellen stochastischer Abstraktionen von Wetter, so genannter Wettergenera-

toren, erlaubt es dasselbe Experiment wiederholt durchzuführen, wobei von Durchlauf zu

Durchlauf nur das geändert wird, was als zufällig angesehen wird. Neben der Destillation

einer aggregierten Reaktion des Sees kann das Ergebnis durch Ausgabebereiche, die sich

aus der modellierten Eingangsunsicherheit ergeben, ergänzt werden.

Die in dieser Arbeit vorgestellten Werkzeuge sind das Ergebnis jahrelanger Zusammen-

arbeit mit Seenmodellierern. Die Absicht der Limnologen war es nicht mit Werten beliefert

zu werden, die eine Abschätzung entsprechend eines Klimagasemissionsszenarios darstel-

len, was im Rahmen eines Downscalings von Klimamodellausgaben geschieht, sondern ein

Werkzeug zu erhalten, das es ihnen erlaubt, Klimaszenarien in Übereinstimmung mit ei-

nem gegebenen Anstieg der Lufttemperatur zu definieren. Außerdem sollten Änderungen

der Variabilität konfigurierbar sein und in Form von Lufttemperaturänderungen bestimmt

werden. Die Lufttemperatur ist nicht die einzige Variable, die einen Einfluss auf einen See

besitzt und sie korreliert mit anderen meteorologischen Variablen wie Sonnenschein, Nie-

derschlag, relativer Feuchtigkeit und mehr. Um solche frei definierten temperaturbasierten

Szenarien plausibel zu halten, mussten vorhandene Methoden zur Wettergenerierung an-

gepasst werden. Um Veränderungen in der Lufttemperatur auf den Rest der generierten

meteorologischen Variablen zu übertragen, wurden die statistischen Abhängigkeiten in den

Messdaten unter Verwendung linearer und nicht-lineare Modelle ausgenutzt.

Der Wettergenerator Vector-Autoregressive Weather Generator (VG) stützt sich auf sol-

che linearen Abhängigkeiten und generiert tägliche Zeitreihen für einen Ort. Er wurde in ei-
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nigen wenigen veröffentlichten Studien verwendet, wobei er den oben genannten Anforde-

rungen entsprach. Sein zentrales Modell ist ein vektor-autoregressiver Prozess, eine einfache

Erweiterung des autoregressiven Prozesses für den multivariaten Fall. Um die Variabilität

auf längeren Zeitskalen zu verbessern, wurde er mit Phasenrandomisierung kombiniert, ei-

nem Verfahren, das die Fourier-Transformation zur Erzeugung von Surrogatdaten verwen-

det. Da vektor-autoregressive Modelle Zeitreihen mit normalen Randverteilungen erzeu-

gen, werden Transformationen der Eingangs- und Ausgabedaten verwendet, um von der

Messdomäne zum Standard-Normalen und zurück zu gelangen. Um Änderungen in einer

Leitvariablen an die übrigen generierten Variablen weiterzugeben, wurden Eigenschaften

der Parameter des vektor-autoregressiven Models ausgenutzt und mit linearer Regression

ergänzt.

Der für mehrere Orte gleichzeitig generierende, tägliche Wettergenerator Weather Ge-

nerator based on Phase Randomization and Vine Copulas (WeatherCop) verwendet Co-

pulas um eventuell nicht-lineare Abhängigkeiten zwischen den Variablen in den Quellda-

ten zu modellieren. Um die Anzahl an Parametern zu reduzieren, verwendet WeatherCop

auch Phasenrandomisierung. Diese wird hier verwendet um die räumliche und zeitliche

Abhängigkeit aufrecht zu erhalten. Ihre Verwendung basiert auf der Formulierung des in-

versen Sampling-Algorithmus, der für die Dekorrelation der Beobachtungen verwendet

wird. Copulas sind Modelle multivariater Abhängigkeit mit gleichverteilten Randvertei-

lungen, weswegen auch für diesen Wettergenerator Transformationen der Eingangsdaten

verwendet werden. Da Copulas Abhängigkeitsmodelle sind, eignen sie sich ideal für die

Weitergabe von Änderungen einer Leitvariable an andere Variablen. Die hier gewählte Art

des Copula-Ansatzes ist die Paar-Konstruktionsmethode, die üblicherweise auch als Vine

Copula bezeichnet wird. Vines sind flexible Werkzeuge, da sie es erlauben, die multivariate

Abhängigkeitsstruktur aus Paaren von Variablen aufzubauen, wobei die große Menge an

verfügbaren bivariaten Copulafamilien verwendet wird.

Mit diesen beiden parametrischen Wettergeneratoren wurde ein neuartiger Weg Nieder-

schlag zu erzeugen untersucht. Beide Wettergeneratoren sind multivariate Modelle und ha-

ben als solche mehr Variablen zur Verfügung als nur Niederschlag. Die Abhängigkeit zwi-

schen Niederschlag und den anderen Variablen wird gewöhnlich so verstanden, dass sie

eine Richtung der Kausalität impliziert, in der das Vorhandensein von Regen die Werte der

anderen simulierten Variablen beeinflusst. Diese Abhängigkeitsrichtung wurde umgekehrt,

um Informationen über eine Trockenheitswahrscheinlichkeit aus den Nichtniederschlags-

variablen zu extrahieren. Richtig abgebildet kann diese Trockenheitswahrscheinlichkeit die

Trockenlücken in der transformierten Eingabezeitreihe für beide Wettergeneratoren füllen.

Ein Vorteil dieser Behandlung von Niederschlag ist, dass kein Niederschlagsvorkommens-

modell und keine unterschiedlichen Parametrisierungen für nasse und trockene Zustände

der Nicht-Niederschlagsvariablen benötigt werden.

Das Testen der Wettergeneratoren wurde auf mehrere Weisen durchgeführt. Erstens

durch direkte Validierung der statistischen Eigenschaften in beobachteten und generierten

Zeitreihen. Der zweite, schwierigere Extrapolationstest für ihre Anwendbarkeit in Klima-

wandelszenarien bestand darin, wie gut sie eine Änderung der leitenden Variablen Tem-

peratur auf den Rest der generierten Variablen projizieren konnten. Dies wurde erreicht



XVIII Zusammenfassung

indem die Modelle auf eine kalte Periode kalibriert und mit dem Temperaturunterschied

zu einer wärmeren Periode in den gemessenen Daten angetrieben wurden. Die Extrapo-

lationsfähigkeit liegt dann nicht primär darin, wie gut die Leitvariable mit den Messungen

übereinstimmt, sondern in den anderen generierten Variablen, die sich entsprechend ändern

sollen. Die Extrapolationsfähigkeit war mit dem komplexeren WeatherCop besser als mit

VG. Die Ergebnisse der Extrapolationstests zeigen jedoch, dass die alleinige Verwendung

statistischer Beziehungen die Änderungen der abhängigen Variablen, die mit Temperatur-

erhöhungen einhergehen, falsch projizieren kann. Die letzte Art von Test wurde nur für

VG durchgeführt, nämlich eine indirekte Validierung unter Verwendung mehrerer Seen-

modelle in Zusammenarbeit mit Seenmodellierern. Die indirekte Validierung testet ob die

relevanten Eigenschaften einer gemessenen Zeitreihe in generierten Zeitreihen noch vorhan-

den sind, indem die Ausgabe des Seenmodelllaufs mit generierten und gemessenen Daten

verglichen wird.

Die beiden parametrischen Wettergeneratoren VG und WeatherCop wurden einem nicht-

parametrischen K-Nearest Neighbors (KNN)-Resampler gegenübergestellt, was Unter-

schiede zwischen diesen Ansätzen aufzeigt und spezifische Schwächen hervorhebt. Das

Resampling vorhandener Datensätze wird als ungeeignet angesehen, da es ihm an Abstrak-

tion und damit an Variabilität mangelt. Die parametrischen Methoden vereinfachen jedoch

Abhängigkeiten und überschätzen die Streuung. Das Resampling-Verfahren zeigte eine ge-

ringere Varianz in Abhängigkeit der Autokorrelation der Quelldaten, was durch ein Expe-

riment unterstrichen wurde, bei dem Zeitreihen unterschiedlicher Autokorrelation erzeugt

wurden. Eine allgemeine Tendenz zu zentralen Werten wurde sowohl im uni- als auch im

multivariaten Sinne beobachtet, und Entropievergleiche zeigten eine höhere als die gemes-

sene Ordnung in Datenreihen aus Resampling und eine zu niedrige Ordnung in Zeitreihen,

die mit den untersuchten parametrischen Modellen erzeugt wurden.



1 Introduction

Weather Generators (WGs) provide stochastic abstractions of meteorological data. With

these abstractions, synthetic data in the likeness of the source data can be created. The syn-

thetic data resembles the source data, when compared with the help of descriptive statistics,

while being different in “all the details”. Use-cases for and implementations of weather gen-

erators are as numerous as this concept is broad. WGs can be used to generate data where

it is scarce or incomplete. By spatial interpolation of WG parameters, time series can be

generated for location where no measurements exist. They have first been used for hydro-

logical applications (Caskey, 1962), but have been applied in other fields as well. The ability

to produce time series of indefinite lengths allows setting up experiments to study the oc-

currence of extreme or otherwise unusual situations. There exist publications of the use of

WGs for crop modelling (Mavromatis and Hansen, 2001), modelling terrestrial ecosystems

(Kucharik, 2003), modelling water resource systems (Fowler, Kilsby, and O’Connell, 2000)

and flood-risk assessment (Te Linde et al., 2010).

Beyond the use of WGs to generate more data where it is of insufficient length are esti-

mations of possible climate impacts. This can be implemented for example by disturbing

their parameters or conditioning on a large-scale predictor variable from a general circula-

tion model (GCM). An advantage of using a WG for climate impact assessment is that the

inherently unpredictable local short-term variability is modelled stochastically. Hence, the

unpredictable is replaced by the plausible. In a stochastic context, the plausible is not a

singular thing, but a multitude of outcomes which makes it possible to do so-called Monte

Carlo experiments in which a high number of WG output realizations are generated and

evaluated.

There is no, and there never will be, “one true” weather generator that is closer to reality

than every other one. In contrast to physically-based modelling, there is no equivalent to

energy and mass balance equations that can be adhered to. Instead of converging towards a

more precise estimation of known physical laws, a stochastic mechanism that is able to pro-

duce data with similar statistical properties as the source data is sought. WGs differ in the

properties considered important to mimic and the methods used to achieve that similarity.

1.1 Aims of the Weather Generators in this Work

The task of the WGs I designed1 and which I describe here is mainly to provide input time-

series for hydrodynamic and ecological modeling of lakes under changed climatic condi-

1My former colleague Magdalena Eder made contributions to the WG Vector-Autoregressive Weather Gener-

ator (VG).
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tions. The focus here is not to project the most likely climatic change, but to provide a tool to

freely define scenarios independent of climate model output. This helps impact modellers

to better understand if, how and when their studied system might react to changes. As this

work presents new WGs with these applications in mind, a few aims are provided in the

following:

• Balanced “what if” climate scenario output in which a change in one guiding variable

leads to changes in the other variables by exploiting statistical dependencies in the

source data. The type of change should encompass:

– increasing the mean

– increasing variability

– increasing mean and variability simultaneously

– a trend in mean

– enhancing specific local weather patterns

• Flexibility in the choice of generated variables. This enables the generation of variables

that are needed as input for simulation of lakes as well as adopting further variables

for future works in possibly different fields.

• Continuously changing characteristics throughout the year. This should include not

only aspects of marginal distributions, but also dependencies. Important possible im-

pacts of climatic change on ecological systems are the changes in the timing of plant

and animal life cycles. Thus, I want to avoid sudden regime-shifts in the generated

time series.

At the time of writing, these aims together cannot be fulfilled using existing WGs. VG was

the first WG I developed to address the above aims. It employs traditional methods from

the field of time series analysis. In order to contrast its output with widely used and very

different methods, I implemented a resampling approach. Finally, in an effort to innovate in

terms of more modern methods, I developed Weather Generator based on Phase Random-

ization and Vine Copulas (WeatherCop) which employs modern techniques and has a wider

spectrum of possible applications.

1.2 Existing Weather Generators

Central to stochastic weather generation is precipitation. Precipitation occurrence has an

influence on environmental processes and can thus be seen as “controlling” other meteoro-

logical variables (Daniel S. Wilks and R. L. Wilby, 1999). A large number of publications

deal mostly with rain generation (Harrold, 2003; Mehrotra, Srikanthan, and Sharma, 2006;

Bárdossy and Pegram, 2016).

Since the conception of WGs by C. W. C. Richardson (1981), most WGs follow a three-step

process: the generation of rain occurrence, rain amount and non-precipitation variables. Be-

fore generating precipitation values, an occurrence model has to decide on a rain state. After
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the decision of rain occurrence, the rain value and values of the other simulated variables

are generated. Richardson’s “Weather Generator” (WGEN) (C. W. Richardson and Wright,

1984) is the first implementation of Richardson’s approach. Rain occurrence in Richardson-

type WGs is modelled with a two-state Markov-Chain. This means, that, dependent on the

previous time-step’s rain state and transition probabilities, the model decides randomly on

the current time step’s wet or dry state. Racsko, Szeidl, and M. Semenov (1991) suggested a

serial approach to occurrence modelling in order to improve the frequency of longer dry and

wet spells as these are underestimated by short Markov Chains. In Racsko’s model, whole

wet and dry period lengths are drawn from distributions fitted on period lengths within

observed data. The widely used weather generator LARS-WG (M. A. Semenov, 2002) is an

implementation that is close to the Racsko approach. Both Racsko’s and Richardson’s ap-

proach use separate parameter sets for wet and dry state for non-precipitation variables.

LARS-WG assumes serial independence of precipitation amounts during individual wet

spells.

WGs that first generate precipitation and then the rest of the variables are unable to op-

erate in the “balanced scenario”-mode mentioned above if the guiding variable is not pre-

cipitation. While it would be easy to change aspects of precipitation and have the other

variables reflect the change, the other way around is hard, because of the flow of informa-

tion goes from precipitation to the rest of the variables.

Another method used in stochastic weather generation is based on the Non-

Homogeneous Hidden Markov Model (NHMM) (Hughes, Guttorp, and Charles, 1999). It is

“non-homogeneous” as precipitation occurrence is not only modelled dependent on precip-

itation on previous time steps, but on an additional, external variable. The “hidden” refers

to an unobserved weather state that is modelled by a Markov Chain and which determines

rainfall occurrences. At the same time, this state provides a link between a large scale at-

mospheric circulation pattern and local measurements. Similarly to the C. W. Richardson

and Wright (1984) and Racsko, Szeidl, and M. Semenov (1991) type of WGs, the NHMM is

unable to be used in guided scenarios, as all variables are dependent on the hidden state

which enforces the flow of information.

Poisson cluster processes combine simulation of precipitation occurrence and amount

(Onof et al., 2000). “Storms” are generated at random times with random duration. These

storms are made up of a random number of rectangular pulse “cells” of random duration

and intensity which are generated by another Poisson process. For every point in time

within a storm, precipitation intensity is obtained by adding the intensities of every cell.

Two prominent versions of this method are the Bartlett-Lewis and the Neyman-Scott model,

which differ in the way cells are placed in a storm (Rodriguez-Iturbe, 1987). Again, this kind

of generation is hard to be guided by an arbitrarily chosen variable.

Another group of WGs use data resampling methods instead of a parametric models.

These resampling methods reorder (i.e. draw with replacement) measured time series while

conserving important statistics like auto- and cross-correlations. The most commonly used

model is a K-Nearest Neighbors (KNN) model that randomly selects values for the current

day from a candidate set of “K” nearest neighbors, that are near in terms of similarity of

values from previous time steps (Lall and Sharma, 1996).
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The Schaake-Shuffle (Clark et al., 2004) is a method to recreate temporal and spatial vari-

ability in meteorological ensemble forecasts. Ensemble feature vectors (i.e. a vector of all

variables at a time step) are replaced by historical feature vectors by matching the ranks of

forecast values and historical values. Daniel S Wilks (2015) argues that this method can be

interpreted as a simple form of a an empirical copula. Despite its aim to better represent

temporal and spatial variability, the replacement of simulated with observed feature vectors

limits possible values and value combinations to ones that occurred historically.

WGs have also been used as a tool to bridge the resolution gap between GCMs and lo-

cal impact models, a process that has been coined as “stochastic downscaling” (R. Wilby

and Wigley, 1997). Daniel S. Wilks (1992) first described how WGEN-parameters can be

changed so that precipitation and temperature means and variances follow those projected

by a climate model. The changes rely on large sample size statistics of the distributions of

precipitation and temperature in order to change daily distribution parameters according to

monthly output from the GCM2.

There is also extensive literature on generating weather not only at one point in space

(single-site) but at many points simultaneously (multi-site). An early approach by D. Wilks

(1998) employs spatially correlated residuals to drive Richardson-type single-station WGs.

Later came latent Gaussian fields for generating spatially correlated precipitation occur-

rence (Kleiber, Katz, and Rajagopalan, 2012) or for occurrence and precipitation amount

combined (Baxevani and Lennartsson, 2015). The latter addresses the “edge-effect” which

consists of high precipitation amounts appearing on the boundary of wet areas. Resampling

approaches can easily be made to function as multi-site WGs as well, given that they can be

made to select the same time step from a multi-station data set across multiple measurement

stations. Steinschneider and C. Brown (2013) is an example of such a WG.

Another development step further from single-site to multi-site WGs are gridded WGs

which achieve spatially gridded output by interpolation of WG-parameters to unobserved

locations. Their conception followed quickly after multi-site WGs (Daniel S. Wilks, 1999).

A more recent example is the Advanced WEather GENerator for a two-dimensional grid

(AWE-GEN-2d) (Peleg et al., 2017) which combines a total of eight models for different

variables and relies in part on physical relationships instead of a purely statistic treatment

prevalent in most WGs.

A common problem with WGs is their tendency to underestimate long-term variability. A

symptom is a lack of inter-annual variability. This issue is termed “overdispersion”. Various

techniques have been proposed to tackle overdispersion (Kim et al., 2012). Steinschneider

and C. Brown (2013) use autoregressive models of wavelet components to introduce low-

frequency signals into a KNN scheme. Multiple authors include observed time series or

time-series from circulation-models as covariates which contain information on longer-term

behaviour (Mehrotra and Sharma, 2007). The inclusion of a covariate constricts the use of

WGs especially when used to generate scenarios as the covariate might not be available for

the targeted change. This is less of a problem when using a WG for stochastic downscaling

of climate model output, but more so if it used within “what-if”-type experiments as the

ones in the application chapter 6.

2GCM output at the beginning of the 1990s was usually at monthly resolution.
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1.3 Outline of the Thesis

The following chapter 2 explains the methods from existing literature for generating mul-

tivariate time series that are relevant for the remainder of the work. They can be seen

as building blocks for the weather generators presented later. The methods are Vector-

Autoregressive (VAR), Copulas, KNN resampling and phase randomization.

The next chapter 3 presents the first novel weather generator of this thesis, the single-site,

daily VG. This chapter introduces novel or adapted methods used throughout the remainder

of the thesis, like the variable transformation used and the concept of dryness probability

estimation. VG uses transformed dryness probability to treat precipitation as an ordinary

variable during VAR generation. Also VAR generation is enhanced by phase randomization

of residuals.

Following is chapter 4, which gives a description of WeatherCop, a daily, multi-site

weather generator based on copulas and phase randomization.

Chapter 5 starts with a description of a KNN resampling scheme adapted to be directly

comparable to VG and WeatherCop. Then, output of this non-parametric approach is com-

pared to that of the parametric models, highlighting strengths and deficiencies of all meth-

ods.

The penultimate chapter 6 summarizes published applications of the weather generator

VG for Lake Constance at the southern German border to Switzerland and Austria and Lake

Kinneret in Israel.

The last chapter 7 gives some ideas to how the models could be developed and used

further.

The chapters are in a meaningful reading order as one builds upon the other. If familiar

with the used methods, chapter 2 might be omitted, even though the presentation is given

as such that important theoretical aspects are highlighted that have consequences in imple-

mentation and application. I included back-references in later chapters to concrete locations

in the methods chapter to emphasize this. Chapter 4 should not be read without having

read chapter 3, because WeatherCop heavily builds upon VG. If only interested in the appli-

cation, chapter 6 should be understandable to a large extent without familiarity of the rest

of the thesis.
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Multivariate Time Series

The scope of multivariate time series simulation is vast. In the following, only a few ap-

proaches are described in detail. These variable-agnostic methods lack an approach for

handling precipitation generation explicitly and thus have to be adapted for being able to

generate weather.

This chapter serves as a presentation of the building blocks used to construct the Weather

Generators (WGs) in chapters 3 to 5. The methods described here summarize the relevant

literature and in some details differ from it in notation in order to achieve consistency in

presentation. While not providing a rigorous mathematical treatment with derivations from

first principles and proofs, sketches of derivations are shown in order to highlight critical

assumptions. Also while derivations are not outlined for every case, every method is still

accompanied by a short description of its assumptions, which serves to highlight its limita-

tions from a purely theoretical stand-point.

2.1 Vector-Autoregressive Processes

The Vector-Autoregressive (VAR) process is a multivariate extension of the univariate Auto-

regressive (AR) process:

yt =

p
∑

i=1

aiyt−i + ut (2.1)

where yt – value at time step t

p – auto-regressive order

ai – parameter of the AR process

ut – residual

This means, that the value yt of every time step is linearly dependent on the values of p

previous time steps, leaving the residual ut to close the identity. AR processes are simple

models capable of reproducing linear autocorrelations of low separation length. “Vector”

in VAR refers to the fact that for every time-step t there is a vector of values (one value per

variable).

Following the notation in (Lütkepohl, 2006, p. 13), the VAR process is defined recursively

as follows:
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yt =

p
∑

i=1

(Aiyt−i) +m+ ut (2.2)

where yt – (k × 1) vector of values at time-step t

k – number of variables

p – auto-regressive order

Ai – (k × k) matrix containing parameters of the VAR process

m – (k × 1) vector of intercept terms

ut – (k × 1) vector of residuals or error terms

Thus, the deterministic part
∑p

i=1(Aiyt−1) of each value in the time series is constructed

as a multiple linear regression of its own and the other variables’ values of the past p time

steps. If the vector m contains non-zero elements, yt will have a mean vector with non-zero

elements as well. The last term, ut, contains all that is neither attributable to the determinis-

tic part nor m.

Assumptions

Linearity: Values at each time step are linearly dependent on the values of the p previous

time steps.

Normal marginals: Common to linear regression, the error terms ut are assumed to be Gaus-

sian and serially independent, i.e. “white”:

E(ut) = 0k

E(utu
′
s) = 0k×k ∀t ̸= s

(2.3)

where 0k – zero-filled (k × 1) vector

0k×k – zero-filled (k × k) matrix

Stability: Reading equation (2.2), it is apparently possible that for certain values of Ai that

|limt→∞ yt| =∞. These unstable processes are of little practical use and not of interest

here. Conversely, only stable processes are regarded in this work. Formally, a VAR

process is stable if the following polynomial has no roots in or on the complex unit

circle (Lütkepohl, 2006, p. 16):

det

(

Ik −
p
∑

i=1

Aiz
i

)

̸= 0 for |z| ≤ 1 (2.4)

Weak stationarity: The first and second statistical moment (mean and variance) of the pro-

cess do not change with time. This is a weaker form than strong stationarity, which

means that the joint distribution of the vectors (yt, . . . ,yt+n) remains the same irre-

gardless of time shifts for all n ∈ {N|n > 0}. Formulated as such, the time-invariance

includes correlations, auto-correlations and cross-correlations (correlations with time-

shift). Roughly speaking, this means that the statistical properties of the data remain
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the same when looking at different time steps. Weak stationarity is defined in a more

formal way in the following.

Equation (2.5) states that irrespective of the place in the time series, the expected vector

of means is µ.

E(yt) = µ ∀t ∈ {N|t ≤ T} (2.5)

where T – number of time steps

µ – (k × 1) process mean vector

It can be shown that weak stationarity follows from the stability condition given in

equation (2.4).

Estimation

In order to simulate time series with the help of a VAR-process, one needs values for the

parameters Ai and the covariance matrix of u for the drawing of random residuals. Suitable

parameter values can be calculated from data with the help of an estimator. Assembling

observed data in matrices and formulating an expression for the error terms u, yields a

minimization problem that can be solved with linear algebra. Following Lütkepohl (2006,

p. 70):

Y := (y1, . . . ,yT ) (k × T ),

B := (m, A1, . . . , Ap) (k × (pk + 1)),

Zt :=











1

yt
...

yt−p+1











((pk + 1)× 1),

Z := (Z0, . . . , ZT−1) ((pk + 1)× T ),

U := (u1, . . . ,uT ) (k × T )

(2.6)

equation (2.2) can be written in a very compact form:

Y = BZ + U (2.7)

One has to keep in mind, that despite the fact that the terms Ai are related to the covari-

ance matrix Cov(yt,yt), the noise still has a covariance matrix with non-zero off-diagonal

elements:

Σu = E(utu
′
t) (2.8)
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Minimizing the determinant of the error covariance matrix, the estimators for B̂ and Σ̂u

(the covariance matrix of the error terms) become:

B̂ = Y Z ′(ZZ ′)
−1

(2.9)

Σ̂u =
1

T − pk − 1

(

Y Y ′ − B̂ZY ′
)

(2.10)

The denominator T−pk−1 arises due to an adjustment for degrees of freedom (Lütkepohl,

2006, p. 75).

Simulation

A prerequisite for simulation is that it is possible to generate random numbers that resemble

the residuals u. It is possible to draw serially independent random vectors from a multivari-

ate Gaussian distribution with the estimated covariance matrix from equation (2.9) if the

residuals are “white”, meaning that there is no correlation between the residuals at different

time steps.

In principle, one can fill the first p time-steps of the generated time-series ŷ with the pro-

cess mean µ. This would, however, bias the beginning of ŷ towards the mean and thus

reduce variability. In practice one generates more time steps than needed and discards the

ones at the beginning which solves this problem.

In terms of implementation, U can be drawn first from a multivariate Gaussian distribu-

tion with mean µ = m and covariance matrix Σu. After that, the products Aiyt−i can be

applied for every time step t. Due to the inherently recursive nature of the VAR-process,

this can only be implemented as a loop over the time domain.

2.2 Copula Approaches

VAR processes model linear dependencies and generate normal distributions if their pa-

rameterizations are stable and Gaussian error terms (ut) are used for simulation. However,

linear dependencies and normal marginals are not necessarily good approximations to the

data at hand. Copula models are models of dependence and thus enable an explicit shaping

of possibly non-linear, asymmetric dependencies. Their theoretic appeal lies in part in their

unambiguous nature. Under the mild assumption of the existence of continuous marginal

distribution functions there exists one unique copula. Thus the copula is the expression of

pure dependence.

Concretely, the copula is a multivariate distribution function with uniform univariate

marginals between 0 and 1. The copula can be linked to the multivariate distribution func-

tion with Sklar’s theorem (1959):
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H(x1, . . . , xk) = C (F1(x1), . . . , Fk(xk)) (2.11)

where H – multivariate distribution function

k – number of dimensions

C – copula: maps [0, 1]k → [0, 1]

Fi – marginal distribution function of the ith variable

Furthermore, the multivariate density function h(x1, . . . , xk) can be formulated with the

copula density c(F (x1), . . . , F (xk)) and the univariate densities f1(x1), . . . , fk(xk):

h(x1, . . . , xk) =
∂kH(x1, . . . , xk)

∂x1 · · · ∂xk
(2.12)

= c(F (x1), . . . , F (xk)) · f1(x1) · · · fk(xk) (2.13)

As given in Sklar’s theorem (equation (2.11)) the inputs to the copula are the non-

exceedance probabilities of xi (c.f. Fi(xi)). Hence, the copula has no connection to the

marginal distributions of the data, which enables a separate treatment of dependencies and

marginals. This also makes the joint modelling of variables with different marginals possi-

ble, which stands in contrast to multivariate parametric distributions as the marginals of the

latter all share the same distribution family.

In practice, the effectiveness of copula modelling relies on the availability of suitable para-

metric copula families or enough data for non-parametric approximations. While there exist

a multitude of copula families exhibiting a lot of desirable properties in the bivariate case

(asymmetry, tail-dependence, variable strength of correlation), finding equally able copula

families for higher-dimensional data is a topic of current research (D. Schirmacher and E.

Schirmacher, 2008; Hao and Singh, 2016).

Vines

As long as flexible higher-dimensional parametric copulas are missing, the abundance of

bivariate copulas can still be exploited to construct higher-dimensional copulas. A method

proposed by Joe (1994) models a multivariate dependence structure by building pair-wise

relationships with bivariate copulas. These pairs are first assembled from the original vari-

ables in such a way that every variable is associated with every other variable directly or

indirectly with k − 1 pair relationships (with k being the number of variables). Seeing the

variables as nodes and the bivariate copulas as edges, this network is a tree in graph theory

terminology. A tree is a connected graph with k nodes and k−1 edges. A connected graph is

a network in which every node can be reached from every other node, i.e. there exists a path

between each pair of nodes. In order to account for higher order dependencies, additional

pairings are made from so-called virtual-observations derived from conditional distribu-

tions based on previously fitted bivariate copulas. The pairings have to be constructed in

such a way that the variables involved from previous trees differ in exactly two elements
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(proximity condition). These pairings again result in trees. Each tree has one fewer node as

the one before because a tree has k − 1 edges and going from one tree to the next results in

edges from the previous tree becoming nodes in the next, resulting in k − 1 trees.

A structure that fits the previous criteria (collection of k − 1 trees, nodes in one tree be-

come edges in the next and the proximity condition), is called a regular vine (R-Vine). More

specific structures can be defined around the definition of the degree of a node, which is

the number of edges attached to it. A canonical vine (C-Vine) is a an R-Vine which contains

one central node with the maximum degree possible in each tree. A drawable vine (D-Vine)

is an R-Vine in which the maximum degree in the first tree is 2, resulting in a string-like

structure. The appearance of these nested trees (c.f. figure 2.1) motivated the name “vine”

(Cooke, 1997).

Figure 2.1: Vine structure of a vine fitted to a 5-dimensional meteorological dataset. T1 is

the first vine tree which shows which variable is related to which other variable

via bivariate copulas. τ are Kendall rank coefficients which are used to decide

on the tree structure. T2, . . . , T4 are trees constructed from conditioned ranks of

data inserted in the previous trees. T2 is a drawable vine (D-Vine), whereas T3 is

a drawable as well as a canonical vine (C-Vine) with 12|0 as a central node. T1 is

an example for regular vine structure (R-vine) that is neither a D- or a C-Vine.

Vine constructions are possible because multivariate probability densities can be decom-

posed into products of pair-wise relationships. In order to achieve this, the conditional

probability rule has to be extended to the product rule:

P (A,B) = P (A)P (B|A) (2.14)

P (A,B,C) = P (A,B)P (C|A,B) = P (A)P (B|A)P (C|A,B) (2.15)

This means that the joint probability of event A and B is given by the probability of
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event A (regardless of B) times the probability of event B given that A appeared. Equa-

tion (2.14) can be applied recursively to achieve the joint probability of 3 and more events

(equation (2.15)).

In the following, a 3-dimensional probability density function is decomposed using two

bivariate copulas. Ultimately, a third bivariate copula will appear and complete the pair-

construction method for three variables. This mathematical excursion helps to understand

not only how vines arise, but more importantly, where simplifications are made. Using the

product rule equation (2.15), the density can be written as:

f(x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2) (2.16)

The decomposition will result in lengthy equations, so in order to improve readability,

parameters of the probability density functions (pdf s) and cumulative distribution functions

(cdf s) will be omitted in the following text, as they are apparent from the subscripts (e.g.

f3|12 ≡ f3|12(x3|x1, x2) and F1 ≡ F (x1)).

For the term f2|1 rearranging equation (2.14) and using equation (2.12) for the bivariate

unconditional density f12 yields:

f2|1 =
f12
f1

=
c12(F1, F2)f1f2

f1
= c12(F1, F2) f2 (2.17)

Equation (2.17) will be used in the following in this general form:

fj|i = cij(Fi, Fj) fj (2.18)

The term f3|12 can be decomposed in two ways ((I) and (II)), depending on which of the

variables x1 or x2 is used to condition on first:

(I) : f3|12 = c13|2(F1|2, F3|2,x2) f3|2 (2.19)

(II) : f3|12 = c23|1(F2|1, F3|1,x1) f3|1 (2.20)

where Fi|j – conditioned (“virtual”) rank given by Ci|j(xi|xj)

It has to be stressed that, in general, the copulas c13|2 and c23|1 depend on the values

of their conditioning variable x2 and x1, respectively. This dependency is consciously ne-

glected in practical applications and referred to as the simplifying assumption. It is assumed

that the influence of the conditioning variable (e.g. x2) is removed by forming the condi-

tioned ranks (e.g. F1|2 and F3|2).

The bivariate conditional densities in equation (2.19) and equation (2.20) (f3|2 and f3|1)

can be replaced using equation (2.18) again:
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(I) : f3|2 = c23(F2, F3) f3 (2.21)

(II) : f3|1 = c13(F1, F3) f3 (2.22)

At this point equation (2.16) can be expressed with only using bivariate copulas and uni-

variate densities:

(I) : f =f1

c12(F1, F2) f2

c13|2(F1|2, F3|2, x2) c23(F2, F3) f3 (2.23)

(II) : f =f1

c12(F1, F2) f2

c23|1(F2|1, F3|1, x1) c13(F1, F3) f3 (2.24)

Both (I) and (II) connect x1 and x2 via c12. However, (I) models the dependence between

pair (x1, x2) and x3 by the direct bivariate copula density c23 and the indirect copula density

c13|2, where (II) uses c13 and c23|1 respectively. At this point, it becomes convenient to visu-

alize these dependency structures. Figure 2.2 shows a graph for each vine structure (I) and

(II).

1 2 3
c12 c23

c13|2

1 2 3
c12

c23

c23|1

Figure 2.2: 3d-vines (I) and (II) using two trees each.

For 4 variables, more options to decompose the full copula density into bivariate copula

densities appear. Starting again with the product rule equation (2.15), the 4-dimensional

density is:

f = f1 f2|1 f3|12 f4|123 (2.25)

As in equations (2.19) and (2.19) one of the conditioning variables of f4|123, can be chosen

to decompose further:
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(I) : f4|123 = c14|23(F1|23, F4|23, x2, x3) f4|23 (2.26)

(II) : f4|123 = c24|13(F2|13, F4|13, x1, x3) f4|13 (2.27)

(III) : f4|123 = c34|12(F3|12, F4|12, x1, x2) f4|12 (2.28)

Because the last term of each of (I) – (III) can be decomposed in two ways (as in equa-

tions (2.19) and (2.20)), the number of possible vine structures increases by a factor of 3.

If decomposing in ascending order of variable index, one ends up with the so called D-

Vine structure (also see figure 2.3):

(I) : f =f1

c12(F1, F2) f2

c13|2(F1|2, F3|2, x2) c23(F2, F3) f3

c14|23(F1|23, F4|23, x2, x3) c24|3(F2|3, F4|3, x3) c34(F3, F4) f4 (2.29)

1 2 3 4
c12 c23 c34

c13|2 c24|3

c14|23

Figure 2.3: 4d-vine (I) – a D-Vine composed of three trees.

Another special structure is obtained when decomposing in the following way:
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(II) : f =f1

c12(F1, F2) f2

c23|1(F2|1, F3|1, x1) c13(F1, F3) f3

c24|13(F2|13, F4|13, x1, x3) c34|1(F3|1, F4|1, x1) c14(F1, F4) f4 (2.30)

1 3

2

4

c 12

c13

c
14

T1

12 13 14
c23|1 c34|1

T2

23|1 34|1
c24|13

T3

Figure 2.4: 4d-vine (II) – a C-Vine with the three trees T1, T2 and T3. The notable difference

to the D-Vine structure is the existence of a central node in tree T1.

The tree figures of the 4d-vines reveal another, subtle property. While the two decomposi-

tions of 3d-vines in figure 2.2 can be made equivalent by relabelling the variables, a similar

operation can not be done in four dimensions. In 5 and more dimensions, regular vines that

are neither drawable nor canonical appear (see T1 in figure 2.1 for an example).

While the decomposition in general is mathematically valid, the practice of applying the

simplifying assumption results in vines that are merely estimations of the full multivariate

distribution.

Estimation

Fitting a vine copula to a data set is a non-trivial task. First, the vine structure represents

only an approximation to the true dependence structure and many structures might lead to

good fits. The number of possible R-vine structures grows extremely fast with the number

of dimensions (Nk = 1
2k!2

(k−3)(k−2)/2 for k dimensions (Morales-Nápoles, 2010)). For ev-

ery possible vine structure, which consists of k − 1 trees, k(k − 1)/2 bivariate copulas have

to be fitted. Dißmann et al. (2013) proposed an algorithm that aims to find a good R-vine

structure by pairing variables in such a way that the sum of absolute values of correlations

is maximized for each tree, starting with the largest one. For C- and D-Vines, the number of

possible structures is much lower. Also, when fitting such a more specific vine, this limiting

path is usually chosen where there is a known hierarchy in the dependence structure and

thus, not all theoretically possible structures are necessary to consider. D-Vines are appropri-

ate for time series who’s temporal order suggests a likewise order of dependencies. C-Vine
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structures are centered around one root node in each tree. This central node corresponds to

a variable on which all others are directly dependent.

I concentrate on C-Vine estimation in the following, because this vine family is the one

used in the WG Weather Generator based on Phase Randomization and Vine Copulas

(WeatherCop) in section 4.2. While the number of C-Vine structures is low compared to

R-vines given the same number of dimensions, it is still large. So finding the best structure

under the Nk = k!/2 possible ones (Aas et al., 2009), can be intractable even for moder-

ate number of dimensions k. This motivated the sequential algorithm proposed by Czado,

Schepsmeier, and Min (2012), which further utilizes the heuristic that most dependence is

captured by the bivariate copulas in the first few trees. Dißmann et al. (2013) uses a related

line of reasoning for his sequential algorithm for selection of R-vines. Namely, the model fit

depends mostly on the copulas used for the first tree.

The details are given in algorithm 1. For each tree, a root node has to be found that,

when used as such, the sum of absolute Kendall taus1 for the (conditioned) ranks that are

used for fitting the bivariate copulas is maximal. Conditioned ranks used in a tree depend

on the copulas fitted on ranks in the earlier tree. As described in the previous paragraph,

it is argued that most dependence lies in the first trees. By deciding on the structure and

copulas of the first tree first, this method ensures the biggest gains early, without changing

these decisions later on. Therefore, this algorithm can be categorized as greedy and cannot

guarantee finding the global optimum, which might involve weaker dependencies in earlier

trees in favour of much stronger dependencies in later ones.

To the modeller it seems that all copulas have the same number of data points available

for fitting and the same number of copula parameters to estimate. All bivariate copulas in a

simplified vine are modelled as being a function of a pair of ranks and the parameter vector

θ – and not the values of the ranks they are indirectly conditioned in earlier trees. This

means that the simplifying assumption obscures the fact that, ideally, a lot of data is needed

to robustly fit the deeply conditional bivariate copulas in the higher trees.

Simulation

While specific methods exist to sample from particular copula families, the most general

method is based on sequences of bivariate conditional distributions. This technique is called

conditional method or Rosenblatt’s method and is an inverted formulation of the Rosenblatt

transformation. The Rosenblatt transformation transforms a k-dimensional distribution into

k independent variables (Rosenblatt, 1952). Equivalent to sampling from multivariate dis-

tributions, for sampling from the copula C one starts with a vector of values drawn from

uniform distributions between 0 and 1: p1, . . . pk. By applying:

1This is the Kendall rank correlation coefficient, which is based on the number of pairs with concordant sort

order of both variables. Values range from -1 (inverse ranking) to 1 (equal ranking).
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Algorithm 1: Sequential selection of C-Vine and pair-copulas; adapted from

Czado, Schepsmeier, and Min (2012) and Joe (2015, Algorithm 30, p. 304)

Data: Input data ranks u1, . . . ,uk.

Optionally: index of root node of first tree i

1 Compute empirical Kendall’s tau τ̂ij for all pairs of variables.

// First tree

2 Let tree level l← 1

3 If the root node i is not given, find it by maximizing
∑k

j=1 |τ̂ij |.
4 Let tree 1 T1 ← {[i, j] | j ∈ N ∧ j ≤ k ∧ j ̸= i}.
5 forall edges e = (i, j) ∈ T1 do

6 Select parametric bivariate copulas for the edge e and estimate the

corresponding copula parameters θ̂ij ; choosing copulas by maximum

likelihood.

7 for m← 1 to k do

8 Save conditioned ranks Ci|j(umi|umj ; θ̂ij) and Cj|i(umj |umi; θ̂ij).

// Next trees

9 for l← 2 to k − 1 do

10 Compute empirical conditional Kendall taus τ̂pq;S from the conditioned ranks

Cp|S(uip|ui,S ; θ̂p∪S) and Cq|S(uiq|ui,S ; θ̂q∪S) over all edges [pq|S] from tree Tl−1.

S is the set of conditioning variables from earlier trees.

11 Find the root node {p} by maximizing
∑ |τ̂pq;S | where {p} ∪ S and {q} ∪ S are

sets in the tree l − 1.

12 Let tree l Tl ← {[p, q|S]| {q} ∪ S ∈ Tl−1} (with k − l edges).

13 Select parametric bivariate copulas for the edges e ∈ Tl and estimate the copula

parameters θ̂{pq}∪S .

14 forall edges [pq|S] ∈ Tl do

15 Save conditioned ranks Cp|q;S(uip|ui,q∪S ; θ̂{pq}∪S) and

Cq|p;S(uiq|ui,p∪S ; θ̂{pq}∪S).



18 Methods: Generation of Synthetic Multivariate Time Series

u1 = p1

u2 = C−1
2|1 (p2|u1)

u3 = C−1
3|12(p3|u1, u2)

...

uk = C−1
k|1:(k−1)

(

pk−1|u1:(k−1)

)

(2.31)

where C−1
2|1 – inverse of the conditional distribution C2|1

one obtains the vector (u1, . . . , uk) which follows the multivariate distribution of C. u1
and u2 can be obtained easily, but calculation of subsequent values of uk require recursive

evaluations of bivariate inverse conditional copulas. The order of the evaluations and the

concrete copulas are determined by the vine structure.

The C-Vine sampling algorithm 2 reminds one of a pairwise decomposed equation (2.31).

In fact, given a multivariate copula, one can sample from that in the same way (the neces-

sary bivariate copulas can be derived from the full multivariate distribution). However, by

setting the vine structure, one has lost the flexibility of choosing the order of variables to

sample. The order of which bivariate copulas to sample from is fixed in the vine representa-

tion.

Algorithm 2: Sampling from a C-Vine; Joe (2015, Algorithm 15, p. 291)

Data: Generate p1, . . . , pd to be independent U(1, 0) random variables.

1 Let u1 ← p1
2 Let u2 ← C−1

2|1 (p2|p1)
3 for j = 3, . . . , d: do

4 let q ← pj
5 for l = j − 1, j − 2, . . . , 1 do

6 let q ← C−1
j|l;1:(l−1)(q|pl)

7 let uj ← q

8 return (u1, . . . , ud)

Bivariate Archimedean Copulas

I present this class here only in its bivariate form, as higher-dimensional Archimedean copu-

las are not as flexible as vine constructions and bivariate Archimedean are useful as building

blocks for pair-wise constructions. Higher-dimensional Archimedeans exist, but use one or

two parameters to tune the strength of dependence between all variables, which is not flex-

ible enough for multivariate meteorological data sets.
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The Archimedean class of copulas has many members due to its simple construction

method via a so-called generator function. This generator function ψ must enable formulat-

ing the sum of the function of the ranks as the function of the copula:

ψ (C(u1, u2)) = ψ(u1) + ψ(u2) (2.32)

where ψ – generator function mapping from [0, 1]→ [0,∞]

One then solves for C(u1, u2) with the help of the pseudo-inverse ψ[−1]:

ψ[−1](t) =

{

ψ−1(t) if 0 ≤ t ≤ ψ(0)
0 if ψ(0) ≤ t ≤ ∞

(2.33)

with which the Archimedean can be constructed as such:

C(u1, u2) = ψ[−1] (ψ(u1) + ψ(u2)) (2.34)

In order for C(u1, u2) to be a copula, ψ has to be a continuous strictly decreasing convex

function with ψ(1) = 0.

An example for such a copula is the Gumbel copula:

ψ(t) = (− ln(t))θ (2.35)

C(u1, u2) = exp
(

−((− ln(u1))
θ + (− ln(u2))

θ)1/θ
)

(2.36)

2.3 Resampling Methods

Resampling methods within the field of generation of multivariate time series offer simple

ways to produce random samples from an observed data set. Samples from this source

data are drawn in a serially dependent fashion in order to reproduce temporal dependen-

cies. Inter-variate dependence is maintained by resampling time steps instead of individual

variables.

Lall and Sharma (1996) introduced a resampling method based on a K-Nearest Neighbors

(KNN) scheme. Candidates for individual time steps are identified by a weighted distance

measure applied to the values of m previously selected time steps. The candidate is not

chosen with equal probability, but based on a discrete kernel density estimation (KDE) of

the k nearest neighbors.
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Estimation

Compared to parametric methods, resampling schemes require no or fewer parameters to be

estimated and are therefore classified as being non-parametric. The KNN scheme requires

the number of considered neighbors (which refers to the “K” in KNN). Lall and Sharma

(1996) suggest to set this number to the square root of the number of time steps in the source

data.

If climate scenarios are considered, some method to produce biased time series is required.

This necessitates the fitting of parameters to the source data. In section 5.2.2, such a method

is described.

Simulation

The aim of the KNN method is to randomly choose time steps from the source data without

destroying the temporal and inter-variate dependence. One begins by randomly choosing a

chunk of p subsequent time steps from the multivariate source time series. Then, the squared

euclidean distance between this and all other chunks in the data is computed:

ds =

p
∑

i=1

k
∑

j=1

(yt−i,j − xs−i,j)
2 ∀s ∈ {p+ 1, . . . , T} (2.37)

where ds – squared euclidean distance between chunk in the source data be-

fore time step s and resampled data at time step t

s – time index in the source data

p – number of previous time-steps considered

k – number of variables

t – time index in the resampled data

yt−i,j – resampled value of variable j at time step t

xs−i,j – source data value of variable j at time step s− i
T – number of time steps in the source data set

The elements of the set of all ds are put in ascending order. From that ordered set, one of

the first q elements2 is randomly chosen (say, time step τ ). The candidates are not chosen

with equal weight, but in order to maintain the distribution of F (xt|xt−1, . . . xt−p), candi-

dates with a smaller distance ds are given a higher chance of being selected. Following Lall

and Sharma (1996), these probabilities are determined as follows:

P (s(l)) =
1/l

∑q
i=1

1/i
(2.38)

Where l is the position of s in the ordered list of candidate time steps, so ds(l) is the l-th

most similar chunk to the chunk preceding time step s.

2Note that this would be the “k” of KNN, but k is used throughout this chapter as the number of variables.
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The current time step in the resampled series is then fixed as

yt = xτ (2.39)

The algorithm then proceeds with the next time step t+ 1.

In essence, the vector yt is chosen based on the similarity of the preceding days to chunks

of data in the observations. Because of this, the auto-covariance matrix Γ(h) = Cov(yt,yt−h)

should largely stay the same, subject to the choices of p and q. Further, due to the fact that

for each time step, all variables from the source data are sampled, the covariance matrix is

close to the one of the source data Cov(yt,yt) = Cov(xt,xt). The reason it is not identical is

due to the fact that the time steps from the source data do not appear with equal frequency

as in the source data. Section 5.4.1 explores this aspect.

Notice, that despite differences in notation, all “generated” values y appear in x, i.e. ar-

guably, y should not be referred to as “generated” but rather as “resampled” values.

The euclidean distance does not distinguish different scales which is problematic when

generating different meteorological variables at once. This issue has been approached by

using a weighted euclidean distance (e.g. Rajagopalan and Lall, 1999) or using a different

distance metric like the Mahalanobis distance (Yates, 2003; T. a. Buishand and Wójcik, 2003)

which is scale-invariant as it uses distances along the principle components of the data.

Assumptions

As equation (2.37) is a distance measure that combines more than one variable, it is necessary

to deal with the different scale of the involved variables. In other words, each dimension has

to be given equal weight. Lall and Sharma (1996) address this by introducing a weight for

each variables’ squared difference. Another way to treat the assumption of equal distances

in all dimension is to convert all variables to the same distribution, which has the desirable

effect of putting all variables on the same scale.

The most notable assumption, however, consists in the treatment of the source data as its

own abstraction. A consequence is not only that the generated extrema do not exceed the

ones in the source data, but that only the combinations of values (the vectors yt) present in

the source data can be produced. This topic is further explored in chapter 5.

2.4 Phase Randomization

Phase randomization was introduced by J. Theiler et al. (1992) as a method to generate “sur-

rogate data” for testing the null hypothesis that a given time series was generated by a linear

process. This works because phase randomization is able to generate time series according

to any linear autocorrelation function. Since phase randomization can be used to generate

time series that share the autocorrelation function of a measured time series, it can provide
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a Monte-Carlo estimate of the population the measured time series might have been drawn

from. By comparing a test statistic that is related to non-linear properties with the empiri-

cal distribution of statistics from the sample of “surrogate data”, a decision on whether to

accept or reject the null hypothesis can be reached.

Apart from its intended use for null hypothesis testing, phase randomization can be used

as a technique to generate random time series (or fields in two or more dimensions) with

a given covariance structure. Its appeal lies in the fact that it is a non-parametric approach

and that it allows for maintaining linear dependencies with all possible time lags.

In the following, the steps to separate a signal into an amplitude and a phase spectrum

will be sketched. These steps are necessary as, at its core, phase randomization consists of

keeping the amplitude spectrum and randomizing the phase spectrum of a time series.

The main tool for phase randomization is the Fourier Transform (FT). With the FT, any

continuous function f(t) in the time domain can be expressed as an infinite series of har-

monics in the frequency domain:

F (u) =

∞
∫

−∞

f(t)e−2πiutdt (2.40)

where F (u) – contribution of frequency u

t – time

It is possible to transform F (u) back to the time domain by integrating F (u) over the

frequency dimension:

f(t) =

∞
∫

−∞

F (u)e2πiutdu (2.41)

If these transformations exist for F (u) and f(t), F (u) and f(t) are said to be transform

pairs.

F (u) is a complex-valued function with real input (f : R → C) and its results contain

information on the amplitude and phase angle of the signal at frequency u. It can be refor-

mulated with the help of Eulers’ formula:

eix = cos(x) + i sin(x) (2.42)

Leading to:

F (u) = r(u) (cos(θ(u)) + i sin(θ(u))) = r(u)eiθ(u) (2.43)

where θ(u) – phase angle for frequency u

r(u) – amplitude of frequency u given by the complex radius of F (u)
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With the complex radius r being the absolute value of F (u), equation (2.43) can be refor-

mulated as:

F (u) = |F (u)| eiθ(u) (2.44)

In which |F (u)| is said to be the amplitude spectrum and θ(u) the phase spectrum.

A convenient consequence of the integral formulation in equation (2.40) is that the auto-

correlation function can be expressed in the frequency domain. This stems from the fact that

the autocorrelation is a convolution of a function with its own complex conjugate:

Corr(f, f)(τ) =

∞
∫

−∞

f(t)f∗(t+ τ)dt = (f ∗ f∗)(τ) (2.45)

where f∗– complex conjugate of f

τ – time shift

∗ – convolution

And it can be shown that for f and g being continuous functions in the time domain with

F and G being their FTs, f ∗ g∗ and FG∗ form a transform pair. This is called the Correlation

Theorem (see e.g. Olson (2017, p. 131)3). With it the autocorrelation in the time domain

consists of a simple multiplication in the frequency domain.

Corr(f, f)(τ) =

∞
∫

−∞

F (u)F ∗(u)e2πiτudu (2.46)

where F ∗(u) – complex conjugate of F (u)

The complex conjugate of F (u) can be expressed in terms of equation (2.44):

F ∗(u) = |F (u)| e−iθ(u) (2.47)

Looking at the product F (u)F ∗(u) from the right-hand side of equation (2.46) and com-

bining equation equation (2.47) again with equation (2.44) one immediately sees that the

phase spectrum θ(u) cancels out:

F (u)F ∗(u) = |F (u)|2 e
iθ(u)

eiθ(u)
= |F (u)|2 (2.48)

|F (u)|2 is also called the spectral density S(u):

3The proof consists of forming the FT of f ∗ g∗, resulting in an expression with two integrals (one from the FT

and one from the convolution). After reordering the order of integration, it can be seen that the result of the

integration that contains τ does not depend on it. One can then reformulate the expression as a product of

F and G.
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S(u) = |F (u)|2 (2.49)

The spectral density S(u) is of importance, because it is part of the Wiener-Kinchin-

Theorem (Wiener, 1930), which connects it to the autocorrelation function in the time do-

main:

Γ(τ) =

∞
∫

−∞

S(u)e2πiτudu (2.50)

where Γ(τ) – autocorrelation at time shift τ

In summary, the autocorrelation function depends on the spectral density which is ob-

tained from the amplitude spectrum alone. Hence, the autocorrelation function is indepen-

dent from the phase spectrum; it is “phase-blind”.

In the context of multivariate time series it is necessary not only to reproduce the auto-

correlation function, but also the crosscorrelation function. The crosscorrelation function

between function f and g is also a convolution:

CrossCorr(f, g)(τ) =

∞
∫

−∞

f(t)g(t+ τ)dt = (f ∗ g∗)(τ) (2.51)

But in contrast to equation (2.46), there are two different phase spectra involved, so they

do not cancel out, which means that the cross-correlation still depends on the phases:

CrossCorr(f, g)(τ) =

∞
∫

−∞

|F (u)| eiθf (u) |G(u)| e−iθg(u)e2πiτudu (2.52)

where θf (u) – phase spectrum of f

θg(u) – phase spectrum of g

However, in the context of phase randomization, in which the phase spectrum is changed,

it is possible to keep the cross-correlation intact by using the same random phases for both

variables. This method was first described by Prichard and Theiler (1994).

In practice, one uses the discrete FT, which results in a replacement of the integral in

equation (2.40) with a sum over all time steps. More concrete, a time series yt can then be

expressed in terms of cosine waves with distinct amplitudes and phase shifts:

yt =
a0
2

+

T
∑

j=1

Aj cos

(

j
πt

T
+ ϕj

)

(2.53)

where a0 – amplitude of the zero-frequency harmonic

T – length of the time series

Aj – amplitude of the jth harmonic

ϕj – phase angle of jth harmonic
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Assumptions

The autocorrelation is assumed to be stationary (only dependent on the distance) and circu-

lar (distance wraps around).

Phase randomization only retains the linear correlation structure of the original data. This

information is contained in the amplitude spectrum while the phase spectrum holds infor-

mation about everything else. For example, temporal asymmetries manifest in subtle re-

lationships of phases of waves of similar frequencies. By randomizing the phases, these

aspects of the data are lost.

Also, in meteorological data, some frequencies relate to natural phenomena with a known

phase, such as yearly and daily cycles. If no other efforts are made to filter out these frequen-

cies before phase randomization (and introduce them later again), shifts in these phases

cause unrealistic generated time series.

As randomizing the phases moves the marginal distribution closer to the normal distri-

bution, it is advisable to use suitable transformations before and after applying it.

Contrary to other generation methods, correlations and the mean (represented by the

“zero-frequency” amplitude) are not just reproduced asymptotically, but exactly.

Estimation

The amplitude spectrum can be obtained by applying the FT. The phases are the angles of

the real and complex component of Aj .

Simulation

The approach for simulation follows naturally from the Wiener-Kinchin Theorem in con-

junction with the assumptions (section 2.4):

1. The source time series is transformed via the Fast Fourier Transform (FFT) into the

frequency domain:

F (u) =

∞
∫

−∞

f(t)e2πitdt (2.54)

2. The amplitude spectrum |F (u)| is calculated from the FFT parameters.

3. Phases are drawn from a uniform distribution: θ̂ ∼ U(0, 2π)

4. A new time series is obtained by inverse FT using the amplitude spectrum and the

randomly generated phases:

F̂ (u) = |F (u)| eiθ̂ (2.55)

f̂(u) =

∞
∫

−∞

F̂ (u)e−2πiudu (2.56)
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(Compare with equation (2.44) and equation (2.41))



3 VG: A Vector-Autoregressive Weather

Generator

The Vector-Autoregressive Weather Generator (VG) was intended to be used to generate

input time-series for climate impact analysis on lakes. This history motivated a simple de-

sign that is unlike most Weather Generators (WGs) in that it does not have an explicit rain

occurrence model.

Schlabing et al. (2014) introduced an earlier version of VG. We used it as a tool to generate

scenario data in a Monte Carlo study for climate impact assessment on Lake Constance, a

large lake ecosystem. Eder (2013) also used an earlier version of VG for estimating the cli-

mate sensitivity of a large lake with a 3-dimensional hydrodynamic model. Kobler, Wüest,

and Schmid (2018) used the weather generator for estimating the impact of pumped-storage

operation on thermal structure and water quality under climatic change. Fenocchi et al.

(2018) used it for estimating climate impacts on the mixing regime of Lake Maggiore. The

latest publication presenting work based on VG is Gal, Gilboa, et al. (2020), in which we

used VG to generate very specific climate scenarios for a small ensemble of 1-dimensional

lake models simulating thermal conditions of a sub-tropical lake. The cases in which I was

involved directly – Schlabing et al. (2014), Gal, Gilboa, et al. (2020), and Eder (2013) – are

further described in chapter 6.

The most important difference to the published version of VG is that the version described

here generates precipitation. Questions of water balance were not important in Schlabing

et al. (2014) and thus precipitation was not generated. This enabled the initial omission of a

rain occurrence model and the adoption of a single Vector-Autoregressive (VAR)-process as

its core. Moving on-wards, as precipitation was intended to be added to broaden VGs scope

of application, I realized that I could keep this simple structure if I could find a way to deal

with zero-valued precipitation. Section 3.6 describes the idea and implementation.

Another difference of the version of VG that I describe to the ones used in previous studies

is the use of phase randomization to generate residuals for use during simulation. This gives

the VAR process a longer memory and reduces the number of fitted parameters.

The existence of a single VAR model makes the problem of propagating the change in

one variable to others tractable using methods from Linear Algebra. Hence, there is no

need for external information on the changes in precipitation statistics following tempera-

ture changes. If and how well this approach works will be analyzed in section 3.9.

The structure of this chapter is as follows. A motivation section shows the transition

from pure methods to a WG while briefly explaining why other WGs fall short in meeting

the stated aims. After a section providing an overview of VG, the sections following are

descriptions of specific methods. The chapter ends with a summary.
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3.1 Motivation

While it is possible to generate multivariate time-series with the methods described in chap-

ter 2, these methods alone are arguably not sufficient enough to perform the task of a WG.

The following points are reasons for adapting the methods from chapter 2:

• Assumptions necessary to apply the method to the given data might not be met (e.g.

marginal distributions, distribution of residuals).

• Generating scenarios requires a change in the otherwise desired match of key statis-

tics.

• Demands from lake modellers to generate “balanced ‘what-if’-style scenarios”, mean-

ing that a change in one guiding variable is accompanied by equivalent changes in the

other variables.

• Introducing periodic dependence throughout the year without relying on seasonally

switching models. This would increase the number of fitted parameters and produce

sudden regime shifts, which are undesirable in particular if the timing in impact mod-

els is to be studied (section 6.2.1 summarizes such an example).

WGs that rely on rain occurrence modelling as a first step are hard to adapt to the style

of scenarios with a guiding variable that is not precipitation. This includes the widely used

Richardson and Racsko approaches. Essentially, if precipitation is modelled as controlling

the rest of the simulated variables, the direction of dependence is difficult to reverse directly.

As an example, it is easier to change the transition probability of dry- to wet state and ob-

serve a change in temperature than the other way around in these models. Further, if relying

on only one variable in scenario studies, it is arguably better to use air temperature than pre-

cipitation, as the confidence in its increase in climate projections is higher (Pachauri et al.,

2014, p. 59 f). The same reason excludes approaches based on non-homogeneous hidden

Markov models, where a hidden state variable controls precipitation and other variables.

Resampling methods can be adapted to generate such scenarios, but their output becomes

more limited when introducing such a scenario bias (see chapter 5).

3.2 Overview over the Weather Generator VG

Figure 3.1 gives an overview of the structure of VG. The scheme reveals the trans-Gaussian

nature of the WG. As meteorological variables seldom follow normal distributions, they

are converted to standard-normal, so that the corresponding assumption (see chapter 2) of

the VAR process is not violated. The transformation makes a re-transformation after VAR

generation necessary, for which the distributions, that were used for the transformation, are

leveraged again.

All parameters except the autoregressive order p in VG are smoothly changing over the

year. This includes the distribution parameters, the VAR-parameters and the parameters

involved in estimating dryness probability.
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The steps VG executes are as follows:

1. Annually changing parametric distributions or kernel density estimation (KDE) are

fitted on all variables.

2. Using the fitted distributions, all marginals are transformed to standard-normal.

3. Dryness probability during dry spells is estimated with information from non-

precipitation variables. That probability is transformed to its equivalent quantile in

standard-normal.

4. A VAR-process is fitted on the transformed data.

5. A time series is generated by phase-randomizing the observed residuals (see sec-

tion 2.4 for a description of phase randomization) and the recursive equation of the

VAR process (equation (2.2)) is applied. Alternatively the residuals can be generated

by drawing random vectors from a multivariate normal distribution fitted on residu-

als. If a scenario is to be run, the process is disturbed by non-zero values in the vector

m before applying equation (2.2).

6. The generated time series is back-transformed using the fitted distributions from

step 1.

7. Hourly information is added.

3.2.1 Observational Data

Wherever simulation results are presented in the present chapter, they are based on a data

set of hourly measurements for the reference period of 1980 – 2000 from the Konstanz sta-

tion in southern Germany by German Meteorological Service (DWD). Table 3.1 gives an

overview.

Table 3.1: Variables and their distribution families used for transformation to standard-

normal.

Variable Symbol Distribution

Air temperature θ Normal

Precipitation R Kumaraswamy with KDE for upper tail

Short-wave radiation Qsw KDE

Incident long-wave radiation Qlw(in.) Normal

Relative humidity ϕ Truncated Normal

Eastward wind speed u KDE

Northward wind speed v KDE
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Measurement
data
X

Transformation
Fdoy(X)

Rain infilling

Fitting the VAR-process
Ai, COV (ϵt)

Simulate time series
yt =
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i=1 (Aiyt−i) +

ut + m

Scenario
perturbation

m, mt

Re-transformation
X̂ = F−1

doy(Y )

Adding hourly
information

KDE/
parametric

distributions
Fdoy

Synthetic
time series

X̂

Figure 3.1: Structure of the WG VG. Boxes with grey background refer to computations in

the stationary, standard-normal transformed domain.
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3.3 Transformation by Quantile-Mapping

Not only do meteorological variables seldom follow normal distributions, their statistical

moments change throughout the year. VG employs a VAR process which assumes and gen-

erates time series following multivariate normal distributions. This requires suitable trans-

formations before fitting a VAR-process and re-transformations after VAR-based simulation.

Quantile-mapping (also called quantile-quantile transformation) exchanges values of one

distribution with that of another distribution by matching the non-exceedance probability

of these two distributions. Mathematically, this can be expressed as

Z = F−1
Z (FX(X)) (3.1)

where Z – transformed variable

F−1
Z – inverse cumulative distribution function (cdf ) of the transformed

variable

FX – cdf of the untransformed variable X

X – untransformed variable

If the target distribution is the normal distribution, this transformation is called the

normal-score transformation

Z = Φ−1 (FX(X)) (3.2)

where Φ−1– inverse cdf of the standard-normal distribution

While it is possible to estimate FX(X) with the empirical relative ranks of X , using the

empirical distribution for re-transformation would limit the output of the WG. To avoid this,

the empirical distribution ofX is abstracted by fitting a parametric or kernel-based distribu-

tion FX to X . Z then approximately resembles a normal marginal distribution depending

on how well FX has been fitted.

In order to remove annual cycles in the marginals, I did not assume FX to be stationary,

but a function of the doy. Two general approaches to achieve doy-specific cdf s (Fdoy,X ) are

taken in this work: describing the annual cycle of distribution parameters with the help of

the Fourier transform (section 3.3.1) and approximating Fdoy,X with a doy-specific numer-

ically integrated KDE (section 3.3.2). Both methods aim to provide smooth changes of the

distribution throughout the year while limiting the number of needed parameters.

3.3.1 Annual parametric Distributions

In a first step, a vector of distribution parameters θdoy is obtained by fitting a distribution

to the data of each doy separately. In order to have a reasonable number of observations

for each fitting procedure and to achieve smoothly changing parameters, the data of the

near doy-neighborhood is included. Note that doy-neighborhood does not generally imply

neighborhood in the time series. For these distributional aspects it is assumed that values
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on, say 1st of January have a very similar distribution as those from the 24th of December.

As an example, for the Constance data-set (see section 6.2), which contains 21 years of data,

I chose this neighborhood to consist of 30 doys. This means, that the estimation of each

parameter set originated from a fit to 21 * 30 = 630 data points.

The result of this operation are 365 distribution parameter sets θdoy for each variable. Due

to the fact that there is an intrinsic periodicity in meteorological variables and the inclusion

of doy-neighboring values, each doy-series shows annual patterns. I captured these patterns

with the help of a Fast Fourier Transform (FFT) based approximation and thus effectively

reduced the number of actual used parameters. Equation (3.3) gives the resulting estimation

for each parameter.

pj,doy =
aj,0
2

+

N
∑

n=1

[

aj,n cos

(

n
2πdoy

365.25

)

+ bj,n sin

(

n
2πdoy

365.25

)]

(3.3)

where j ∈ {N|j ≤ m} – with m as the number of distribution parameters

pj,doy – jth distribution parameter for a given doy

N – number of harmonics used to approximate Pj,doy

aj,n, bj,n – nth Fourier coefficients, amplitudes of nth harmonic

N in equation (3.3) controls the number of effective parameters for distribution fitting and

the smoothness of the series pj,doy. Throughout this chapter, N is set to 4.

The estimated distribution for each variable is then

F̂doy(X) = FX (X, p1,doy, . . . , pL,doy) = FX(X, θdoy) (3.4)

where L – number of distribution parameters

θdoy – fitted parameter set for a given doy

3.3.2 Annual Kernel Density Estimation

Not all measured variables exhibit a marginal that is easily fit with parametric distribu-

tion families. An alternative are KDEs which do not require the assumption of an under-

lying parametric distribution. As KDE is a density estimation technique, arriving at non-

exceedance probabilities needed for quantile mapping requires a numerical integration.

I used the following formulation of KDE, which involves the doy as a second dimension

in order to have a smooth transition of the distribution estimate over the year:

f̂doy(x) =

i∈{|doyx−doyxi |<15}
∑

Kx

(

x−xi

hdoy

)

Kdoy

(

doyx−doyxi
15

)

hdoy#
{

|doyx − doyxi
| < 15

} (3.5)

where f̂doy – kernel density at x for the doy

Kx – kernel for the x dimension

Kdoy – kernel for the doy dimension

hdoy – doy-specific kernel bandwidth
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As can be inferred from equation (3.5), the kernel bandwidth is fixed to 15 days in the tem-

poral dimension. The bandwidth in the data dimension hdoy is obtained by maximizing the

likelihood using the leave-one-out method (Duin, 1976). This bandwidth is found by using

only the data in the window defined by |doyx − doyxi
| < 15 and therefore doy-dependent.

3.3.3 Mixed Distribution for Precipitation

For finding a good fit for precipitation, I used a Kumaraswamy distribution (Kumaraswamy,

1980) for the bulk and log-Normal kernels for the upper part of the distribution. The Ku-

maraswamy distribution is a variant of the Beta distribution without any transcendental

function (like the Gamma function in the case of the Beta distribution). It shares with the

Beta distribution the existence of a lower and an upper bound and two parameters to tune

its shape. Log-Normal kernels have the advantage of being able to mimic right-skewed

distributions. In contrast to Normal kernels, they also imply a higher probability of gener-

ating values greater than historical ones, which is of importance in the context of scenario

generation. The quantile which defines the transition from parametric distribution to KDE

is determined by maximum likelihood and changes throughout the year. As a whole this

method of modelling the distribution of precipitation is flexible, yet involves more free pa-

rameters than using a non-mixed distribution.

3.4 Annually Changing Dependence

Periodic changes in the dependency structure can be captured by fitting VAR-parameters

for each doy using a moving window. The resulting time series of parameters are then again

smoothed with the help of harmonics obtained by Fourier transformation.

This is implemented by masking values as non-existent and using a slightly modified

VAR-Estimator for data with gaps (c.f. equation (2.9) on page 9). Columns in Y and rows

in Z that contain at least one masked entry are deleted. This reduces the size of available

data which has to be reflected in the estimator of the error covariance matrix Σ̂u (see equa-

tion (2.10) on page 9).

Σ̂u =
T

l

1

T − pk − 1

(

Y Y ′ − Y Z ′(ZZ ′)
−1
ZY ′

)

(3.6)

where l – number of masked time steps

3.5 Phase-Randomized Residuals

Simulating time series with a VAR-process requires synthetic residuals. Usually these are

drawn from a multivariate normal distribution fitted on the residuals obtained from the

observations after estimating the VAR parameters. The residuals can be found by applying

a rearranged version of equation (2.2) for all time-steps:
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ut = yt −
p
∑

i=1

(Aiyt−i)−m (3.7)

= yt − ŷt (3.8)

where yt – vector of observed values

ŷt – vector of predicted values

I opted for a different approach by phase-randomizing the residuals (see section 2.4 for

phase randomization). I used the same change of phases for each variable’s residuals in

order to maintain not only the autocorrelation of the residuals but also the cross-correlation.

This is important because the covariance matrix of the residuals usually has non-zero val-

ues on the off-diagonal elements. Over the traditional method of using serially independent

gaussian residuals, this has the advantage of potentially reproducing longer-term auto- and

cross-correlations that are not removed by VAR. VAR-processes fitted with parameter par-

simony in mind usually do not account for long-term memory – the VAR processes in this

study all have an autoregressive order of p ≤ 3 days.

The autocorrelation coefficients of the residuals are generally low, but are amplified by

generating a VAR time series. Figure 3.2 shows the empirical distribution of autocorrela-

tion coefficients of the residuals, phase-randomized residuals and serially independently

drawn gaussian vectors (which is the method for VAR-simulation described in section 2.1).

It is apparent that the distributions shown are not very different for most variables. Where

differences exist, however, phase randomization is able to maintain the correlation of the

observed values.

Despite the small differences in the distribution of the autocorrelation coefficients of the

residuals, the weakly correlated residuals make a difference after applying the VAR-process

equation (2.2) on them. Figure 3.3 shows empirical cdf s of simulated time series in the

standard-normal domain. Using phase-randomized residuals raises the distribution of sim-

ulated autocorrelations very close to the autocorrelations of the transformed observations.

With phase randomization being able to maintain all linear correlations in a multivariate

time series and without introducing additional free parameters, it might seems advisable

to not use autoregressive models at all. This can be a good idea if no further changes to

statistical properties of the time series are to be made. As will be shown in section 3.8, VAR

processes offer a way to generate “balanced scenarios”, that cannot be produced by phase

randomization alone.

Phase randomization also keeps the mean constant from realization to realization. This

can be an advantage when only one realization is generated, but when an ensemble of many

realizations is generated, such a behaviour is undesirable, as the mean is a naturally chang-

ing statistic. In order to achieve an abstraction of means in VG ensembles, a constant is

drawn from a normal distribution with zero mean and standard deviation of 0.25 and added

to the primary variable before calculating the dependent changes to the other variables as

described in the later section section 3.8. This ensures that the variation in mean spread to

the rest of the generated variables, keeping the realizations “balanced”.



3.5 Phase-Randomized Residuals 35

Figure 3.2: cdf s of autocorrelation coefficients of residuals with lags up to 365 days. Where

the blue line (residuals) cannot be seen, it coincides with the orange one (phase-

randomized residuals). The green line refers to serially independently drawn

Gaussian vectors as described in section 2.1.

Figure 3.3: cdf s of autocorrelation coefficients with lags up to 365 days in the standard-

normal domain. The blue line refers to observations, orange to simulation us-

ing phase randomized residuals and green to simulation using serially indepen-

dently drawn Gaussian vectors as described section 2.1. The x-axis was fixed to

[-0.1, 0.1] to highlight differences in the middle of the distribution.
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3.6 Implicit Generation of Precipitation by Estimating Dryness

Probability

The aim in this study of using any arbitrary variable as a guiding variable necessitates that

precipitation is not given a special role preceding the auto-regressive time-series generation.

This stands in contrast to established WGs, which are, beginning with the C. W. C. Richard-

son (1981) and continuing with the Racsko, Szeidl, and M. Semenov (1991) model, usually

implemented in a doubly-parameterized fashion: one set of parameters apply to wet and

one set of parameters to dry spells. It is generally agreed that the presence of rain has an

influence on many non-precipitation variables (Daniel S. Wilks and R. L. Wilby, 1999). Vice

versa, this effect is exploited in VG in order to estimate a probability of dryness during dry

spells. p0, the relative frequency of no rain occurring, would be a very crude estimate of

this probability, given the possible values of non-rain variables. For a day with a high solar

radiation, low humidity and a wind from the north-east, p0 would be, as an average dryness

probability, too low, as these conditions indicate a very “dry” situation1. Likewise, days

that have a more wet appearance in their non-rain variables, should be assigned a lower

dryness probability than p0. These intuitive arguments motivate the approach described

in the following, which consists of deriving a degree of dryness from the values of non-

precipitation variables. The such estimated probability of dryness is scaled to the interval

[0, p0], transformed to standard-normal and inserted in the gaps between rain events in the

transformed precipitation time series. At this point, there exists one multivariate time series

with approximate standard-normal margins, suitable to be modelled by a VAR process. This

has the advantageous side-effect of a reduced number of free parameters, as only one VAR

process, regardless of rain state, can be fitted.

I investigated two methods for estimating dryness probability. The first uses a simple

multiple linear regression-based approach, while the second involves an euclidean distance

measure between current dry state to typical wet state values.

3.6.1 Estimating Dryness Probability by Multiple Linear Regression

For the regression-based approach, all non-precipitation variables’ marginals are trans-

formed to stationary standard-normal, resulting in the matrix X (the details of the trans-

formation are described in section 3.3). Precipitation values exceeding a threshold (i.e. y+2

with time-steps t+ ≡ {t ∈ N|t ≤ T ∧ yt ≥ c} and t− ≡ {t ∈ N|t ≤ T ∧ t /∈ t+}) are mapped

to their quantiles of the standard-normal distribution, taking the probability of dryness into

account (see panel I and II in figure 3.4), resulting in y+. Then, the vector of parameters b of

the regression is obtained by minimizing ϵ in the following equation:

y+ = X+b+ ϵ (3.9)

1This is specific for at least southern Germany.
2In the following the “+”-superscript will refer to rainy and the “−” superscript to dry conditions.
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Estimated values of “dry precipitation” ŷ− are then extrapolated using the values of non-

precipitation values during dry conditions:

ŷ− = X−b (3.10)

The relative ranks of ŷ− within the full time-series y can be interpreted as the dryness

probability.

As ŷ− is not guaranteed to match the lower part of the standard-normal cdf (depicted in

grey in panel II in figure 3.4), it is quantile-transformed to that part of the target distribution.

As the relation between precipitation and the non-precipitation variables changes

throughout the year, b is evaluated dependent on the doy with a rolling window of width of

30 doys. The resulting series of bdoy is smoothed by replacing it with the sum of its 2 longest

harmonics.

3.6.2 Estimating Dryness Probability by Euclidean Distance

This method also starts with the matrix X , consisting of variables with standard-normal

marginals, obtained by transforming a measured time series using the methods described

in section 3.3. In the case of rain, the target distribution is truncated with the dryness prob-

ability as lower truncation point. The mean vector of non-rain variables x+ during rain

events is used as a reference point for wet conditions:

x+
i =

1

nt+

t∈t+
∑

xi,t (3.11)

where xi,t – value of non-rain-variable i at time step t in

the standard-normal domain

t+ ∈ {N|t ≤ T ∧Rt ≥ c} – rainy time steps, i.e. time steps where precipi-

tation is at least as high as a threshold c

Rt – rain amount on time step t

nt+ – number of rainy time steps in the record

For every dry time step t− the squared euclidean distance of the non-rain variables to that

reference point x+ is calculated:

dt− =
k
∑

i=1

(xi,t− − x+
i )

2
(3.12)

where x+
i – mean of variable i during wet conditions (see

equation (3.11))

t− ∈ {N|t ≤ T ∧Rt < c} – dry time steps

k – number of non-rain variables

As all xi were transformed to standard-normal, there is no need to weigh the terms

xi,t − x+
i as they are on the same scale. This distance is then used to derive the probability of
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Figure 3.4: Schematic for precipitation infilling via multiple linear regression of standard-

normal transformed variables. Precipitation values in I are matched with its up-

per standard normal quantile in II, resulting in the y-values of the black dots in IV.

The x-values of the dots in IV are standard-normal transformed non-precipitation

values from V. A multiple linear regression provides then the parameters to ex-

trapolate into the left leg of standard-normal precipitation in II using standard-

normal-transformed values of non-precipitation variables from V.
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dryness. This probability has a corresponding value within the lower part of the truncated

normal distribution fitted to the precipitation amounts.

Combining the lower truncated distribution of rain amounts and the upper truncated

distribution of dry distances, an infilled time series without gaps and with a continuous

standard-normal marginal distribution is achieved as follows:

yt =

{

Φ−1 (p0 + p1FR(Rt)) if t ∈ t+

Φ−1 (p0(1− Fd(dt))) if t ∈ t−
(3.13)

where yt – standard-normal transformed rain without gaps at time-step t

Φ−1 – inverse cdf of the standard-normal distribution

p0 – relative frequency of dry time steps

p1 – relative frequency of rainy time steps

FR – cdf of rain amount

Fd – cdf of dry distances (approximated by relative ranks)

The distribution of the dry distances (Fd) is approximated by relative ranks. Equa-

tion (3.13) yields low values for yt if the distance dt is high, so weather that is unlike wet

conditions has a high dryness probability.

In order to account for annual periodicity in the relation between precipitation and the

other variables throughout the year, the reference point x+ is evaluated per doy with a rolling

data window of the width of 30 doys. To further smooth this series of parameters, it is

replaced by the sum of its 2 longest harmonics.

Remarks on Dryness Probability Estimation Differences

While both methods use non-precipitation variables to estimate a dryness probability, there

are notable differences. The regression introduces new parameters which have to be fitted,

which somewhat weakens the claim to have fewer parameters by not having a model pa-

rameter set for each of wet and dry state. Further, equation (3.10) represents a “best guess”

value, as it is drops the residual ϵ of the regression in the estimation. The distance method

needs just the wet-state mean vector x+ as parameters and separates no residual, hence is

likely to contain more noise.

3.6.3 Separation of Distributions Based on Precipitation State

While exploiting the fact that precipitation occurrence has an effect on non-precipitation

variables, it stands to test whether VG is able to produce separated distributions of non-

precipitation variables, despite the fact that it does not have different model parameters for

wet and dry state. For the following short analysis, I generated a 100-year time series with

each dryness probability estimation method.

Figure 3.5 reveals that precipitation state indeed has an impact on non-precipitation vari-

ables as all variables show markedly distinct conditional histograms for both observed and
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simulated values. Both methods show good agreement in the frequencies regarding dry

states, but slightly less good fit for the wet state. Notable differences between simulated

and observed data occur in the upper tail of long-wave radiation during wet spells, where

both methods yield an overestimation. The wet-conditional distributions of the wind-speed

components are shifted towards higher values in the simulations.

When interpreting the difference in quality of fit regarding dry and wet state, it is illumi-

nating to pay regard to the population size of both parts of the data sets. In absolute numbers

the deviation is similar, but normalizing to relative frequencies amplifies the differences in

the smaller wet data set compared to the dry one. This result is not surprising, given that

neither during the fitting of marginals nor during fitting the VAR-process, a higher weight

is given to wet state. Thus the overall fit is optimized and the smaller subset of the data

exhibits higher relative errors.

3.6.4 General Precipitation Fit and Dispersion Behaviour

Figures 3.6 and 3.7 shows exceedance probabilities for intensity, dry- and wet spell lengths

of the source data and an ensemble of 500 realizations. The median of the exceedance proba-

bility of the realizations for intensity regarding the distance as well as the regression method

follows the observed intensities very precisely. The very similar shape of medians and

ranges indicates that the marginal of precipitation does not depend on the dryness proba-

bility estimation method. The frequency of longer dry spells is underestimated more for the

regression method, while the distance method’s median follows the observed values more

closely. In the frequency of dry spells, the two methods produce very similar, good results.

Even the VAR process using i.i.d. Gaussian vectors show satisfactory results. Differences

appear most visibly in the intensity using the regression method. The VAR process even has

a better representation of medium-length dry spells compared to VG for the regression- and

to a lesser extent the distance method.

Inter-annual variability in terms of monthly precipitation sums is shown in figure 3.8

based on the same ensemble with both dryness probability estimation methods. The re-

gression method gives a better representations of large monthly sums in the months July to

September than the distance method. Other than that, the observed monthly sums give the

impression of being well abstracted by VG. The use of log-Normal kernels also show that

values are allowed to be much higher than the observations.

For evaluating the scaling behaviour, it is important to make a distinction between the

measurement and transformed domain as shown in figure 3.9 where the standard devia-

tion is plotted over the aggregation length of precipitation sums. In the standard-normal

domain, the inability of the VAR-process that uses i.i.d. Gaussian vectors to produce vari-

ability on longer time series is shown by having a markedly lower standard deviation than

the observations. The variability on longer time scales is, however, maintained by using

phase-randomized residuals as shown by blue and green line (for regression- and distance-

method, respectively). The back-transformation has an influence on the scaling behaviour

as well, as all methods now suffer from having a too high variability.
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(a) Regression method

(b) Distance method

Figure 3.5: Histograms with normalized frequencies of non-precipitation variables condi-

tional on precipitation occurrence.
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(a) Regression method with VAR generation using phase randomized residuals.

(b) Regression method with VAR generation using i.i.d. Gaussian vectors.

Figure 3.6: Precipitation exceedance probabilities for intensity, dry- and wet spell length us-

ing the regression method for dryness probability estimation. Thick lines shows

medians. The shaded areas show the range of the ensemble. The black line shows

observed values.
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(a) Distance method with VAR generation using phase randomized residuals.

(b) Distance method with VAR generation using i.i.d. Gaussian vectors.

Figure 3.7: Precipitation exceedance probabilities for intensity, dry- and wet spell length us-

ing the distance method for dryness probability estimation. Thick lines shows

medians. The shaded areas show the range of the ensemble. The black line shows

observed values.

Figure 3.8: Violin plots of monthly precipitation sums. The black horizontal bars are ob-

served values. Blue corresponds the regression, green to the distance simulation

method.
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Figure 3.9: Standard-deviation of precipitation sums over aggregation lengths. X-axis starts

at 7 days. Left panel: transformed. Right panel: measurement domain. Black line

represents observations, blue regression and green distance method respectively.

Red line is the median of the ensemble run with a VAR-process that uses i.i.d.

Gaussian vectors.
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3.6.5 General fit

Figure 3.10 shows the distributional fit of the ensemble for all variables. With the median of

the ensemble being mostly on the x=y-line and all observed values within the range of the

ensemble, the fit is generally good, but some tails show discrepancies. Upper quantiles of

long-wave radiation are simulated lower than observed and lower quantile relative humidi-

ties are higher in the simulations. Other differences in the marginals between simulated and

observed data based on the qq-plots seem minor.

Figure 3.10: QQ-Plot of ensemble simulation versus observations. Blue region represents

the range of the ensemble simulated with the regression method and blue for

distance method. Thick lines are the median of the ensemble.

The representation of means is shown in figure 3.11. There exists a small overestimation in
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precipitation as well as the wind speed components, however the differences to the observed

means are small. The choice of dryness probability method has a negligible effect on most

variables, with an exception of precipitation itself. With the distance method, the spread

in means is higher. The spread is influenced by the dependence between temperature and

the infilled precipitation time series, as the ensemble mean perturbations are only added to

temperature before simulating a realization (see section 3.5).

Figure 3.11: Violin plots of daily means of the ensemble simulation. Black circles show ob-

served means over the whole time span, whereas horizontal bars show the me-

dian value of the ensemble. Colors represent the dryness probability method

used: blue for regression and green for distance.

3.7 Adding Hourly Information

In order to arrive at hourly values, I implemented the following resampling scheme:

1. The hourly input data is aggregated to daily data.

2. Using linear interpolation, the aggregated daily input data is filled up to hourly time

steps.

3. A pool of hourly 2-day chunks is formed by taking the difference between the hourly

and the hourly interpolated data.

4. The simulated daily time series is interpolated to hourly values. This is the same

method as in step 2.

5. Randomly selected chunks from the pool are added to the hourly interpolated simu-

lated time series. The candidates from the pool are restricted by doy-distance in order

to not deteriorate the annually changing (cross-) correlations.
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For variables that follow a bounded distribution, chunks are not added, but applied as

percentage differences, so that physically meaningless values such as negative radiation is

avoided.

Figure 3.12 shows annually changing diurnal patterns of observed and generated data

with the example of air temperature and relative humidity. As expected from a data-based

method, the patterns are closely reproduced.

(a) Air temperature (b) Relative humidity

Figure 3.12: Annual cycles of diurnal patterns. Shown are hourly means.

This step is not to be confused with disaggregation which would generate higher-

resolution data that aggregates to a given lower-resolution time series. Here, hourly in-

formation is added to daily simulated values, but it is not guaranteed that averaging over

the hourly values yields the daily values.

3.8 Generation of Balanced Scenarios

With “balanced scenarios”, I mean such simulations where a change in a guiding variable

(typically temperature) is accompanied by changes in the other simulated variables accord-

ing to the statistical dependencies between the guiding and the other simulated variables.

As will be seen in the context of VG, these relationships are modelled as linear ones in the

standard-normal transformed space.

The VAR-process is arguably simple, which allows for modifications that enable the gen-

eration of scenarios with changed statistics. The aim in the following subsections is not

to show a path to downscale general circulation model (GCM) or regional climate model

(RCM) output, but to describe how to generate time series that share some statistics with

measured data while altering statistics that are defined by the impact modeller.

While the quantile-quantile transformation described in section 3.3 helps to deal with the

problem of differing marginal distributions and the dependencies separately, it makes the

generation of scenarios slightly less trivial. To change the mean of a variable within the
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generated time series by a given value, it has to be known what the respective change in the

standard-normal domain is. Further, in order to generate balanced scenarios, a perturbation

is added to one variable during generation, so that this perturbation spreads to dependent

variables via the parameters Ai to subsequent time steps in equation (2.2). Because of this

spreading effect, achieving a predefined change in mean necessitates that the parameter

matrices Ai are taken into account. For changing the means of the dependent variables, an

explicit perturbation is also added to them individually. Together, these perturbations are

meant to achieve statistically sound scenarios in which variables behave according to their

linear dependence structure.

3.8.1 Simulation with Changed Mean

There are three necessary steps for generating balanced scenarios with a specified change in

one guiding variable xprim:

1. Transformation of the change in the guiding variable to standard normal:

∆xprim → ∆yprim

2. Determining the appropriate change in dependent variables ∆yi

3. Obtaining the perturbation vector: ∆y→m

Transformation of the Change in the Guiding Variable

If the guiding variable is fitted with a normal distribution (such as temperature in sec-

tion 3.9) the first step simplifies to dividing the change in the measurement domain by

the variables’ fitted standard-deviation. As the standard-deviation changes throughout the

year, this transformed change also changes with the doy:

∆yprim,doy =
∆xprim

σprim,doy
(3.14)

where prim – index of the primary/guiding variable

∆yprim,doy – doy-specific change of the primary variable in the standard

normal domain

∆xprim – selected change of the primary variable in the measurement

domain

σprim,doy – fitted standard-deviation of the primary variable at doy

For the less common case in this work that the guiding variable is fitted with a non-normal

distribution (see section 6.3 for an example), I implemented an approximating method.

∆yprim is then calculated as the matching normal quantile of the change in the measurement

domain relative to the fitted median:
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∆yprim,doy = Φ−1
(

Fprim, doy(F
−1
prim,doy(0.5) + ∆xprim)

)

(3.15)

where Fprim,doy – doy-specific fitted cdf of the primary variable.

F−1
prim,doy(0.5) – doy-specific fitted median of the distribution of the pri-

mary variable.

Determining the Change in Dependent Variables

Next, in order to propagate the change in the primary variable to all other variables, I opted

for a simple linear approach:

∆yi = ∆yprim

σyprimyi

σ2yprim

(3.16)

where i ∈ {N|i ≤ k ∧ i ̸= prim} – index of non-precipitation variable

k – number of variables

σyprimyi – covariance between transformed primary

variable and variable i

σ2yprim – variance of the transformed primary variable

This term is the same as the slope of a univariate linear regression.

Obtaining the Perturbation Vector

The vector ∆y cannot be simply added to the recursive formulation of the VAR-process,

because the parameters Ai amplify its influence to the next p time steps (see equation (2.2)).

There is however, an identity connecting the term m to the mean of a stable VAR-

process (Lütkepohl, 2006, p. 16):

µ =

(

Ik −
p
∑

i=1

Ai

)−1

m (3.17)

where µ – (k × 1) vector of process means

Ik – (k × k) identity matrix

p – autoregressive order of the VAR-process

Ai – parameters of the VAR-process

This equation can be intuitively derived using the stability constraint (equation (2.5) on

page 8), which states that the expected value µ is constant for every time step t (µ = E(yt)).

More specifically:
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E(yt−1) = E(yt)

µ = E

(

p
∑

i=1

Aiyt−i +m+ ut

)

= E

(

p
∑

i=1

Aiyt−i

)

+ E(m) + E(ut)

(3.18)

Because E(m) = m, E(ut) = 0k (see equation (2.3) on page 7) and E(AX) = AE(X):

µ =

p
∑

i=1

AiE(yt−i) +m

µ =

p
∑

i=1

Aiµ+m

(

Ik −
p
∑

i=1

Ai

)

µ = m

µ =

(

Ik −
p
∑

i=1

Ai

)−1

m

(3.19)

This derivation is obviously only valid if the inverse (Ik −
∑p

i=1Ai)
−1

exists, which it does

if the VAR processes is stable (compare equation (2.4) on page 7).

Re-arranging equation (3.17) suggests the following estimator m̂ for m:

m̂ =

(

Ik −
p
∑

i=1

Ai

)

∆y (3.20)

where ∆y – (k × 1) vector of sample means

This estimator is useful for finding an m̂ that produces a time series with the desired

means ∆y.

Equations (3.14), (3.16) and (3.20), together connect a supplied change in a primary vari-

able in the measurement domain to the whole set of simulated variables in the transformed

domain.

3.8.2 Simulation with Time-Varying Mean

m was previously assumed to be a constant (k × 1)-vector. However it can also be applied

as time-varying mt with M := (m0, . . . ,mT ) ((k × T ) matrix). Applying a time-dependent

mean enables the following scenarios:
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• applying a deterministic trend

• inducing variability on a larger-than-daily scale by stochastic variation of mt

• following a temperature signal from a RCM

3.9 Ability to Extrapolate

While it is convenient and necessary for freely defined scenarios to not rely on external vari-

ables, it is advisable to evaluate the methodology on how well it is able to project changes.

In other words, can the change in one variable really be projected to the rest of the simulated

variables? In order to do such a test, I fitted VG on the years 1984–1987 of the data set men-

tioned in section 3.2.1 and validated against the period 1992–1995 using the mean change

in air temperature (1.304 ◦C) between these periods as the sole predictor for the rest of the

simulated variables. For the simulated variables see table 3.1.

Figure 3.13 conveys the changes in means and the variability within a 500-member ensem-

ble. Table A.2 in the appendix also lists changes in means. There are only small differences

between simulated and observed means in the calibration period for most variables. The

mean precipitation is, however, severely overestimated. This should be seen in context to

the better fit when using the whole 21 years for fitting in figure 3.11. It seems to be an imple-

mentation issue regarding smaller numbers of years in the code that fits seasonally chang-

ing distribution parameters and performs KDE for values above a threshold that is found

by maximum likelihood estimation (see section 3.3.3). Looking at the changes in observed

means, the increase of 14.8% in temperature is accompanied by slight increases in precipita-

tion (2.5%), incoming long-wave radiation (3.4%), relative humidity (2.0%) and short-wave

radiation (1.5%), but the wind-speed components change drastically (northward: 11.6%,

eastward -66.2%). Regarding the simulated means, most notable is the difference in pro-

jected precipitation depending on the dryness probability estimation method. With the re-

gression method, the temperature increase is accompanied with a decrease in mean pre-

cipitation, while with the distance method precipitation increases. For the other variables

the two dryness estimation methods do not make a difference in mean projection. Relative

humidity (ϕ) and northward wind component (v) stand out insofar as the direction of their

change in mean is misprojected. The change in mean short-wave radiation (Qsw.) is over-

estimated with the true mean in the validation period being enclosed by both ensembles.

The change in mean incident long-wave radiation (Qlw(in.)) is underestimated, with the true

mean still being inside of the range of the ensemble.

Despite the discrepancies in projected non-guidance-variable changes, the change in tem-

perature is very precisely the one requested (observed change: 1.304 ◦C, simulated change:

1.306 ◦C for the regression and 1.306 ◦C for the distance method). This validates equa-

tions (3.14) and (3.20).

Arguably more important than changes in mean are changes in distributions as they con-

vey more information than aggregate statistics. Before presenting the results for the distri-

butional shifts, it is enlightening to regard how the distributions of the generated data agree
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Figure 3.13: Violin plots of daily means in the extrapolation test. Densities shown are means

of 500 realizations. Black circles correspond to observed values. Blue corre-

sponds the regression, green to the distance simulation method.

with the observed data in the calibration period (see figure 3.14). Despite the differences in

mean, the generated distributions agree well with those from the observed data set, with

an exception of precipitation. The qq-plot for precipitation implies that the positive bias in

the calibration period is due to an overestimation in the middle of the distribution, while

the largest quantiles match those of the observations. It has to be mentioned again, that this

unsatisfactory fit occurs only in this short calibration period. When using the whole 21-year

data set, the quantiles show a much closer fit (see figure 3.10). In general, misrepresenta-

tions in the distributions occur more often in the extreme values. Affected extreme value

misfit exist in: lower temperatures, lower relative humidity, high values in the wind speed

components. Despite these deficiencies, the 1–99 % range envelopes all observed quantiles.

As figure 3.15 highlights, the shifts in distributions between calibration and validation

periods are relatively weak. The black line matches quantiles between observed calibra-

tion and validation period and is shifted slightly to the right for temperature and long-

wave radiation. This implies a shift of all quantiles towards higher values from calibration

to validation period in these variables. Relative humidity shows a change in the upper

quantiles that is not projected by the validation ensemble and falls outside of its bounds3.

Precipitation shows a complex change regarding its quantiles. Such a quantile-dependent

change is not projectable with the methods described in section 3.8, which change all quan-

tiles equally. The distributions of the wind speed components exhibit quantile-dependent

changes as well, which are equally misrepresented in the validation ensemble.

3The observed time series suggests even an inhomogeneity like a change in instrumentation (not shown).
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Figure 3.14: QQ-Plots for calibration period within extrapolation test. Blue and green

lines show simulated against observed values in the validation period. Solid

coloured lines show the median and dashed coloured lines the 1–99 % range of

500 realizations.
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Figure 3.15: QQ-Plots for extrapolation test. The black line shows observed quantiles of the

calibration against validation period. If this line falls on the x=y diagonal, the

distributions of calibration and validation period are the same. If it is situated

to the right of the x=y diagonal, it implies an increase from calibration to val-

idation (e.g. for temperature θ). Blue and green lines show simulated against

observed values in the validation period. Solid coloured lines show the median

and dashed coloured lines the 1-99 % range of 500 realizations.
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3.10 Summary and Discussion

This chapter presented the WG VG, starting with a general overview and then highlight-

ing important detailed aspects. VG is a trans-Gaussian WG employing quantile-quantile

transformations to convert the marginals of its input to standard-normal. While the use of

an autoregressive model such as VAR is far from novel, the design choice underlying the

generation of precipitation and the use of phase randomizing residuals to achieve better

dispersion behaviour is.

VG can be seen as a framework for weather generation, as variables can be included as

long as suitable distribution families for transformation to standard-normal can be found.

For the underlying VAR-process, none of the variables are given a special treatment, which

is achieved by the infilling of precipitation in a pre-processing step.

To achieve this, gaps in precipitation were filled with latent, sub-p0 episodes, derived

from the values of the other generated variables. The infilled data can be interpreted as dry-

ness probabilities, transformed to the part of the standard-normal distribution below the

p0 value. With this information, the VAR-process recreates precipitation intensities, wet-

and dry spell lengths reasonably well. Distributions of non-precipitation variables condi-

tional on precipitation state show satisfactory agreement to the conditional distributions of

observed data, despite the fact that VG does not have different parameters depending on

rain state. With the observed data from the Konstanz measurement station, the method that

used euclidean distance to “wet” means of non-precipitation variables outperformed the

method based on multiple linear regression slightly in the aspect of dry spell length. Using

the distance approach in the extrapolation test resulted in the right direction of change in

precipitation. However, with the small differences between the results of the two dryness

probability estimation methods, it seems hard to propose one definitely, especially, as the

present chapter only used data from one station. In addition, it is questionable whether

the dryness probability estimation method should influence the propagation of temperature

change to precipitation change, as the dependence regarding the dry part of the transformed

distribution is of a different nature than the wet part.

I have shown how to generate “balanced scenarios” in which a change in one guiding vari-

able is propagated to the rest of the simulated variables in the context of VAR processes with

qq-transformed marginals. The method assumes a linear relationship between the guiding

variable and the other variables. I showed that the parameters of the VAR process must be

taken into account to achieve the desired change in means. Filling up the precipitation gaps

with dryness probability in the standard-normal domain was a preparatory step for it to join

the proposed scenario generation method.

By using phase randomization as a source of randomness for a VAR processes, I was able

to combine advantages of both methods. This made the VAR process honour longer-term

linear correlations and offers a possibility to generate scenarios using phase randomization.

Apart from phase randomization inducing longer-term correlations into the VAR process,

VG does not include explicit measures to avoid overdispersion. There exist different propos-

als on addressing overdispersion in the literature such as a link to a monthly WG (Khazaei et
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al., 2013) or the use of wavelets (Steinschneider and C. Brown, 2013). Overdispersion in VAR

is observable in the transformed domain, but turns to underdispersion in the measurement

domain, suggesting that the marginal distribution plays a bigger role than the underlying

process. Despite the non-perfect fit of the precipitation marginal, I could show that phase

randomizing VAR residuals leads to a much improved dispersion behaviour in the trans-

formed domain. The use of phase randomization to address dispersion behaviour in WGs

is not new, but I am unaware of a work using it on residuals. Chen, Brissette, and Leconte

(2010) used phase randomization to adjust monthly and yearly precipitation in an iterative

post-processing step.

Projecting changes from one variable to another by exploiting linear relationships is frag-

ile as seen in section 3.9. Evaluating the projection is made harder as observation-based

extrapolation testing is limited by data availability. Further discussion about extrapolation

using statistical means is given in section 4.6.2.



4 WeatherCop: A Combined

Phase-Randomization Vine-Copula

Weather Generator

The motivation for developing a copula-based Weather Generator (WG) came from the need

to have a WG capable of what Vector-Autoregressive Weather Generator (VG) offers, but

replace the Vector-Autoregressive (VAR)-model at its basis with a model that handles de-

pendencies better. VAR-models can only represent linear dependencies whereas copulas are

models of dependence, meaning that regarding the kind of dependence present in observed

data, a suitable copula family can be chosen and fitted accordingly. Additionally, Weather

Generator based on Phase Randomization and Vine Copulas (WeatherCop) has a broader

area of application because it is a multi-site WG.

In order to keep the number of free parameters low, a vine copula is only used for time-

invariant inter-variate dependence. Using a copula for inter-variate relationships enables a

statistically better propagation of a change in a guiding variable to the other variables; hence

more realistic scenarios. Temporal and inter-site linear dependence is maintained here by

the use of phase randomization.

4.1 Overview of WeatherCop

Both VG and WeatherCop use the same methods and code to transform (section 3.3), infill

rain (section 3.6), retransform variables and add hourly information (section 3.7). Figure 4.1

gives an overview over the parts of WeatherCop that are different from VG.

The steps WeatherCop executes are as follows:

1. The de-seasonalized and individually standard-normally distributed observations are

transformed to relative ranks. This results in a data structure that has the dimensions:

number of measurement stations, number of variables, number of time steps.

2. A canonical vine (C-Vine) copula is fitted to the observed ranks. This involves auto-

matic selection and fitting of one-parametric bivariate copula families based on likeli-

hood1. Appendix C lists the copulas available for this step.

1As only one-parametric copula families are compared, using an information criterion would not change the

selection result.
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3. The obtained vine is used to decorrelate the observed ranks using the inverted C-Vine

sampling algorithm (see section 4.4).

4. The decorrelate is transformed via the inverse cumulative distribution function (cdf )

of the standard-normal distribution.

5. The phases of the transformed decorrelate are randomized.

The same random phases are used for all variables at all locations, thus not only main-

taining temporal, but also inter-site dependencies.

Optionally, a constant is drawn for each station from a normal distribution with zero

mean and 0.25 standard-deviation and added to the central variable.

6. The phase-randomized variates are transformed to ranks using the univariate

standard-normal cdf .

7. Finally the so obtained phase-randomized ranks are re-correlated using the C-Vine

sampling algorithm 2.

In step 2 above, only inter-variate dependencies are considered, resulting in a drastic de-

crease in dimensionality. This means that it is assumed that the dependencies between vari-

ables are independent from location. Concretely, the ranks for copula fitting are reorganized

by concatenating the whole data matrix along the time dimension:
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(4.1)

where D – number of variables

L – number of stations

T – number of time steps

Xi,j – (xi,j,1, . . . , xi,j,T ), vector of data ranks for station i and variable j

Becomes:

U =







X1,1 · · · Xi,1 · · · XL,1
...

. . .
...

. . .
...

X1,D · · · Xi,D · · · XL,D






= (u1, . . . , uD)

T (4.2)
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1: Trans-
formed

ranked data
U ≡

(u1, . . . , ud)

2: Fit Vine Copula
Cvine

3: Decorrelate
Observations
P = C−1

vine(U)

4: Gaussian-
ize Marginals

Pnorm = Φ−1(P )

5: Phase Randomize
P̂norm

6: Rank-transform
P̂ = Φ(P̂norm)

7: Sample from Vine
Û = Cvine(P̂ )

Transform
to Mea-

surement
Dimension

5b: Scenario
Perturbation

Figure 4.1: Structure of the WG WeatherCop. Not shown are the steps for transforming the

marginals, which are the same as in the WG VG. The steps here replace the boxes

“Fitting the VAR-Process” and “Simulate Time Series” in figure 3.1.
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Thus the number of dimensions for the vine copula to consider is reduced from DL to D.

The C-Vine used in WeatherCop is of the simplified kind (see section 2.2), so the bivariate

copulas are only dependent on the (virtual) ranks from the preceding tree and not on the

values of the conditioning variables.

Another detail in step 2 concerns dealing with the inhomogeneous dependency struc-

ture between precipitation and other variables, induced by dryness probability estimation

(see section 3.6). Because of the estimation, ranks concerning dry conditions arise from a

different process than those regarding wet conditions, which results in distinctly dissimilar

patterns in copula density (see figure 4.2). With the aim of not influencing the fit of naturally

occurring wet rank pairs, I amended the Log-Likelihood function to not consider the con-

crete position of rank pairs that relate to dry conditions. This change to the Log-Likelihood

function is only made for bivariate relations that involve precipitation as one of the vari-

ables. The change is achieved by using dryness frequency instead of the probability density

for such pairs (see equation (4.3)):

l(U, V, θ) =

t∈t+
∑

log {cθ (Ut, Vt)}+
t∈t−
∑

log
{

Cu|v,θ(p0, 1)
}

(4.3)

where t+ – time steps with precipitation

t− – time steps without precipitation

The bivariate copula fit compromises between the density pattern for wet conditions and

the proportion of precipitation occurrence.

Figure 4.2: Empirical copula densities arising from estimation of dryness probability. Only

the density to the right side of the vertical p0 line, which are unrelated to the

infilling method, are used during likelihood estimation.

The transformation to standard-normal prior to phase randomization in step 5 provides

two advantages over a raw phase randomization of the decorrelate: (1) phase randomization
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could generate values outside of the range of relative ranks ([0, 1]) and (2) phase random-

ization produces time series with marginals that are closer to the Gaussian than the original

signal2. The approach I used here differs from the one described in J. Theiler et al. (1992) in

that the cdf (and its inverse) is used for transformation. J. Theiler et al. (1992) uses a gaussian

sample for quantile-matching to obtain a normally distributed transformed time series and

the empirical cdf of the original time series for back-transformation. The advantage of my

approach over J. Theiler et al. (1992)’s is that different values than the ones from the source

data set can appear in the generated time series.

Within step 5, there exists the option to add a constant to the central variable. The rea-

soning is that phase randomization does not change the mean of the source data but some

variation might be desired. While having a constant mean is an advantage for some situa-

tions, it offers no abstraction of a naturally variable statistic. Adding it only to the central

variable and before step 7, in which re-correlation via Vine Copula is done, ensures that the

correlation structure fitted by the Vine is kept, resulting in dependent changes to the mean

of the non-central variables.

After phase randomization, a scenario perturbation can be added to the variable that rep-

resents the central vine node (step 5b). This variable is usually the temperature. Every

change done to the variable that represents the central node propagates through the condi-

tional copula cdf of the first tree to all other variables.

4.2 Scenario Generation and the Choice of Vine Family

As formulated out in section 2.2, vine structures can be categorized as canonical (C), draw-

able (D) or regular (R). R-vines that are neither C- or drawable vines (D-Vines) have no cen-

tral node as in C-Vines nor an “origin” node like D-Vines. These nodes represent starting

points on which all other conditional distributions in the sampling process are dependent

on. Those R-vines that lack a C- or D-Vine structure are more decentralized. The sampling

in such R-vines is initialized independently along sub-branches around their local central

nodes.

Because of the requirement to generate scenarios that are guided through one variable,

only C- and D-Vines are applicable here3. Because of their simplicity, I chose C- over D-

Vines. Despite their suitability in modelling time series, D-Vines do not add an additional

value in the context of WeatherCop, because here all temporal dependencies are dealt with

by the use of phase randomization. This is a compromise between model sophistication and

simplicity as, by this choice, temporal dependencies are assumed to be linear.

By employing a C-Vine structure with the central node representing the variable that

guides the other variables in scenario generation, only direct dependencies between this

and the other variables are considered. Second-order effects are thus out of the scope of this

kind of scenario generation.

2This is also the reason why phase randomization is problematic when working with untransformed data.

Especially if their marginals are bounded (such as precipitation, relative humidity or sunshine duration).
3R-vines that are neither C- or D-Vines could be used to generate scenarios guided by several variables at once.
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4.3 Annually Changing Dependence

Inter-variate dependence of meteorological variables is not generally stationary, but exhibits

cyclical patterns in strength and even sign over the year. Dependence in vine copulas is

influenced not only by the bi-variate copulas on each edge of the vine, but also by the graph.

In WeatherCop, the configuration of the first vine tree is fixed in order to have one defined

central variable. A change in graph structure to follow the seasons would impose abrupt

changes in dependence. In order to avoid these sudden changes, I opted for a static vine

graph, but changing bi-variate copula parameters throughout the year, should those yield a

higher likelihood than stationary ones. Changing copula parameters are obtained by fitting

a bi-variate copula for each day of the year, using also data from neighboring doys with the

help of a moving data window. This series of 365 copula parameter values (per vine edge)

is smoothed by using its 4 longest harmonics obtained by Fast Fourier Transform (FFT).

4.4 Decorrelation by C-vine Copula

Algorithm 2 shows how to generate samples from a d-dimensional C-Vine given a vec-

tor P = (p1, . . . , pd) containing random numbers drawn from U(0, 1). Algorithm 3 is

the inverse formulation, returning the vector P calculated from a given observed vector

U = (u1, . . . , ud). In other words, using P obtained from algorithm 3 as input to algorithm 2,

one recovers U .

Algorithm 3: Inverse C-Vine sampling algorithm.

Data: u1, . . . , ud observed ranks

1 Let p1 ← u1
2 Let p2 ← C2|1(u2|u1)
3 for j = 3, . . . , d: do

4 let q ← uj
5 for l = 1, . . . , j − 1 do

6 let q ← Cj|l;1:(l−1)(q|pl)
7 let pj ← q

8 return (p1, . . . , pd)

Under the assumption that the correlated observations U follow the copula represented

by the fitted vine, by definition, the univariate time series P are independent.

4.5 A Few Implementation Specifics

Some choices made during coding warrant a description here, because they helped in

achieving a reasonably fast execution speed and reduced error-prone typing of lengthy

equations despite a high level of abstraction. I coded WeatherCop using the interpreted
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programming language Python. In order to optimize run-time, I implemented parts of the

code in Cython, a superset of Python which compiles to C (Behnel et al., 2011). While this

approach is common in the scientific Python software community, I adopted a less common

method for bivariate copulas. I employed sympy, a computer algebra system with code-

generation capabilities (Meurer et al., 2017). The Archimedean type of copulas is mathemat-

ically fully determined by its generator function (see line 8 on page 18). From the generator

function, the copula cdf can be constructed, from which in turn expressions for the copula

density and the conditional cdf s can be derived. With a few exceptions, implementation

of a copula family of the Archimedean type in WeatherCop consists only in explicit coding

of the generator function. In the case of non-Archimedean copulas with closed-form copula

cdf s, the cdf is supplied before continuing with deriving the necessary expressions. All other

needed mathematical expressions are constructed symbolically during a one-time setup step

with sympy4. What follows is automatic Cython code generation with tools from sympy for

each mathematical expression.

Not every algebraic task can be done automatically or even manually. Problematic steps

during equation manipulation are inversions, which are required operations for obtaining

the copula cdf from the generator function and for sampling from conditional cdf s. For

generator functions the inverses can be found in the literature (see Joe (2015, Chapter 4)),

but closed equations for inverse conditional cdf s are often non-existent. However, for the

latter, expressions for first and second derivatives are constructed programmatically with

sympy in WeatherCop which help in inverting the conditional cdf s numerically.

In order to have a higher number of available bivariate copulas, I employed sympy again

for rotating copulas in 90 degree steps. These rotations can be achieved by the following

substitutions:

C90(u, v) = v − C(1− u, v)

C180(u, v) = u+ v − 1 + C(1− u, 1− v)

C270(u, v) = u− C(u, 1− v)

(4.4)

These substitutions are also constructed symbolically with sympy and compiled to C via

Cython.

4.6 Simulation Example

The aim in this example is to evaluate the ability of the weather generator to generate data

in the likeness of its input data and to see how extrapolation via a change in temperature

performs. In contrast to the simulation done for evaluating possible climate impacts on Lake

Constance in section 6.2, this example is not indirectly validated using an impact model.

4The copula expressions in appendix C were automatically generated this way.
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I fitted WeatherCop on freely available data from 14 measurement stations in southern

Germany operated by the German Meteorological Service (DWD) (see figure 4.3). The data-

set spans from 1996 to 2017 and contains the variables air temperature, sunshine duration,

precipitation and relative humidity. The period was chosen in order to maximize data avail-

ability and to have a reasonably large time frame for extrapolation testing. In the following,

I present the performance of WeatherCop in two modes: (1) representation of stationary

conditions, by fitting on the full data set (section 4.6.1) and (2) ability to extrapolate from

colder to warmer conditions by split-sampling (section 4.6.2). I generated 500 realizations

for each experiment. In order to have variation of means, despite using phase randomiza-

tion, a disturbance constant is drawn for each realization from a normal distribution with

zero mean and 0.25 standard deviation (see also section 4.1). With few exceptions, through-

out the example, only the outcomes following the regression method for estimating dryness

probability (described in section 3.6 on page 36) are shown, as the choice of this method has

negligible influence on the outcome in WeatherCop.

Figure 4.3: Location of measurement stations in southern Germany.

Table 4.1 lists the distribution families I used for transforming meteorological observa-

tions to ranks. Precipitation was modelled with a Kumaraswamy distribution to match val-

ues below a fitted quantile and kernel density estimation (KDE) with a log-Normal kernel

above. The Kumaraswamy distribution (Kumaraswamy, 1980) is closely related to the beta

distribution, but does not require the evaluation of a transcendental function (as the Gamma

function, when using the beta distribution), resulting in faster code. The aim was to have a
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parametric abstraction for the lower part and a flexible method for higher values. By using

a log-Normal kernel, it is possible to generate values above the historical maximum, which

might be especially appropriate in climate scenarios and large ensemble sizes. In Schlabing

et al. (2014) a truncated Normal distribution was fitted to relative humidity from Constance,

but unfortunately, this distribution is not a suitable model for other sites. Thus, I opted

for KDE with Gaussian kernels as distribution approximation for relative humidity in this

example.

Table 4.1: Variables and their distribution families used for transformation to ranks.

Variable Symbol Distribution

Air temperature θ Normal

Precipitation R Kumaraswamy with KDE for upper tail

Sunshine duration sun Kumaraswamy with KDE for upper tail

Relative humidity ϕ KDE

4.6.1 Performance Under Stationary Conditions

The vine structure with the bivariate copulas chosen automatically by maximum likelihood

are shown in figure 4.4. Kendall τs for seasonally changing copulas are shown as aver-

aged over the year. As these copulas each have a doy-varying parameter, correlations can

be higher or lower during different times of the year. Opposed to the motivation behind C-

Vine graph selection (see section 2.2), the highest correlations do not occur in the first tree.

This can happen if the central node in the first tree (T0) is not chosen by maximizing the sum

of absolute correlations involved, but pre-defined externally, as is the case here with tem-

perature. The highest correlations actually appear in the second tree (T1) with precipitation

in the central node. This tree handles the dependence between the pairs sunshine duration

– precipitation and relative humidity – precipitation with the influence of temperature re-

moved. Removing the influence of temperature with a statistical method from this triplet

of variables can only go so far, as the underlying physical processes defining their relation-

ships (e.g. cloud formation) depends on much more than the value of that variable, hence

the still high correlations in the second tree.

Notable is also that there is no difference in selected copulas with regard to the dryness

probability estimation method, due to the likelihood-estimation described in section 4.1.

Figure 4.5a shows the fit of marginal distributions in terms of qq-plots using the Konstanz

station as an example. While temperature, sunshine duration and relative humidity are rep-

resented well, there is an overestimation of precipitation for middle to high quantiles. This

overestimation does not appear systematically at all stations as exemplified by the Weinbiet

station (see figure 4.5b). The distributions vary from realization to realization according to

the perturbation induced to temperatures. Most variation exists in the tails of extremes of

unbounded variables5. The methods for dryness probability estimation produce no different

marginals.

5Relative humidity is in a strict sense bounded, but its theoretic lower bound is never reached in observations.
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Figure 4.4: Vine trees for the full data period with the regression method for dryness proba-

bility estimation. The correlation coefficients are Kendall’s τs. “[S]easonal” cop-

ulas have doy-specific parameters.

(a) Konstanz (b) Weinbiet

Figure 4.5: QQ-Plots for the stationary example. Shaded area is the full range of all ensemble

realizations. Solid black line the median of all realizations. Colors code two

different dryness probability estimation approaches: blue is for regression and

green for distance method.
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Figure 4.6 shows the reproduction of inter-site (spatial) correlation coefficients for the

same meteorological variable at each station. The near-perfect fit in the transformed do-

main for temperature (see figure 4.6a) is not surprising as this arises purely from phase

randomization, which keeps correlations constant by design and the vine sampling algo-

rithm does not change the first variable. Back-transforming the marginals, which includes

also recovering the annual cycle of the data, results in a degradation of the correlation coef-

ficients (see figure 4.6b). This is most notable in lower correlation for sunshine duration and

relative humidity and higher correlation in precipitation. There are virtually no differences

for different methods of dryness probability estimation (not shown).

(a) Transformed domain (b) Measurement domain

Figure 4.6: Inter-site correlation coefficients. These are related to phase randomization.

Lines in the right panel show ranges of simulated correlation coefficients.

The vine copula is able to reproduce the various observed inter-variate rank correlations

to a large extent (see figure 4.7), but correlations in the measurement domain show large

variations between realizations (see figure 4.8). It should be stressed however, that the ab-

solute deviations from the observed correlation coefficients are small with a mean of 0.031.

In general, the correlation coefficients of variable pairs that are represented in earlier trees

are better reproduced than ones that are dealt with late in the algorithm. This can be seen

from the tight grouping of lines near the x=y-line for the pair air temperature – precipitation

in figure 4.7. Due to the order of these variables, only one bivariate copula is involved in

generating this pair. In contrast, the pair sunshine hours – relative humidity, appears in the

last tree and shows worse fit in terms of correlation coefficients. The generation of these

variables happens last, in dependence to all variables generated before. As more fitted bi-

variate copulas are involved and the vine is a simplified one (see section 2.2), inaccuracies

can add up. Affected by the simplifying assumption in the present 4-dimensional case are

3 bivariate copulas – the ones in tree 1 (T1) and tree 2 (T2) handling the variable pairs sun-
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shine hours – precipitation, precipitation – relative humidity and sunshine hours – relative

humidity.

Figure 4.7: Intra-site correlation coefficients in rank-space. These are related to the vine cop-

ula. Lines show ranges of simulated correlation coefficients. Vertical bars near

the middle of the lines show medians.

Figure 4.9 shows the fit of precipitation intensity and spell length distribution for two

exemplary stations. While WeatherCop seems to provide a good abstraction of intensity,

the quality of spell lengths fit differs from station to station. The lengths of dry spells for

Konstanz are underestimated (see figure 4.9a). A different example poses Weißenburg-

Emetzheim (see figure 4.9b) for which both dry- and wet-spell distributions show good

agreement with observed values regarding the regression method. Both methods show a

underestimation rather than overestimation of long dry spells while no such consistent mis-
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Figure 4.8: Intra-site correlation coefficients in the measurement domain. These are related

to the vine copula and the marginal distributions. Lines show ranges of sim-

ulated correlation coefficients. Vertical bars near the middle of the lines show

medians.
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match exists for wet spells (not shown).

(a) Konstanz

(b) Weißenburg-Emetzheim

Figure 4.9: Precipitation exceedance probabilities for intensity, dry- and wet spell length.

The thick blue lines shows the median of the ensemble, while the shaded area

shows its bounds. Black line shows observed values.

4.6.2 Ability to Extrapolate

As WeatherCop is intended for climate scenario generation, it is pertinent to assess its ability

extrapolate. Being fitted on a cold period and run with station-specific temperature differ-

ence to a warm period as mean change in temperature, it would be ideal if WeatherCop

matches to not only the temperature increase, but also the change in non-temperature vari-

ables. This expectation relies on the copula to capture the underlying dependency structure

of the data during the calibration period, and on the hope that this structure still exists in the

time that connects calibration and validation period. This kind of split-sampling validation

approach emulates the situation of projecting climate change in freely-defined scenarios, al-

beit with a smaller amount of data. I chose the first 5 years of the full data set (1996–2001)

as calibration- and the last 5 years (2013–2017) as validation set.

Using only the calibration period for fitting, the chosen bivariate copula families change in

4 out of 6 cases for each of the dryness probability methods when compared to fitting on the
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full-data period (compare figures 4.4 and 4.10). The stable pairs are sunshine duration – air

temperature and precipitation – sunshine duration. The strengths of the dependence, mea-

sured in Kendall’s τs change only little. This indicates that the relationships between the

variables are not completely stable when comparing the 5-year calibration period to the full

22 years of available data.

Figure 4.10: Vine trees fitted on the data from the calibration period. The correlation coeffi-

cients are Kendall’s τs.

The calibration shows in general good agreement with the calibration-period source data

with regard to the marginals. Still, upper-tail values of precipitation are overestimated for 5

out of the 14 stations, where rest of the station have a good representation in their upper-tail

precipitation values (not shown). Figure 4.5 shows two examples of marginal fit in terms of

qq-plot. Figure 4.11a (Freiburg) is an example for good and figure 4.11b (Weinbiet) an ex-

ample for less good fit. There are no noteworthy differences between the results depending

on dryness probability estimation method.

The changes from calibration to validation period are not drastic. Figure 4.12 shows the

change in the form of qq-plots for the two exemplary stations Freiburg and Weinbiet. The

only severe change in distribution is relative humidity for the Freiburg station. Less pro-

nounced but still significant is the shift towards higher values in upper quantiles of precip-

itation for both stations. Upper tail precipitation values at Weinbiet were overestimated in

the calibration, causing them now to be closer to the validation period values.

Figure 4.13 shows the changes in daily means and the variability of the ensemble for the

stations Freiburg, Konstanz, Weinbiet and averaged over all 14 stations. Means are also

listed in tables B.1 and B.2 in the appendix. Means for temperature very closely meet both

the observed and the targeted means in the validation period. Observed means during the

calibration period for the other variables are not as precisely met, but still lie within the

range of the ensemble.
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(a) Freiburg (b) Weinbiet

Figure 4.11: QQ-Plots for calibration period.

(a) Freiburg (b) Weinbiet

Figure 4.12: QQ-Plots for extrapolation test. Black lines show quantiles of the validation

over the calibration period, indicating how the distribution changed from the

former to the latter.
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An outlier in terms of observed change is relative humidity at Freiburg. As figure 4.12a

already showed a shift in distribution, the change in mean is thus as drastic as well and lies

outside of the range of the ensemble in the validation period.

The change in observed sunshine duration highlights an interesting problem. The increase

in temperature is accompanied by an increase in sunshine duration for Konstanz, but a de-

crease in Weinbiet. Generally, temperature and sunshine duration are positively correlated

in the combined data set (see figure 4.7) which manifests as an increase in sunshine dura-

tion for the simulated values. A reason that site-specific changes are not projected efficiently

might also be due to the fact that the vine copula is fitted globally and not site-specific (see

section 4.1). Averaging the projected changes over all stations yields satisfactory results for

precipitation and to a lesser extent, sunshine duration. The precipitation decrease is slightly

underestimated, whereas the increase in sunshine duration is overestimated. The observed

increase in relative humidity is misprojected as a decrease.

The example of Freiburg in figure 4.13a is interesting in that it shows that spatial variabil-

ity plays a role in the temporal trends. In Freiburg, the air temperature decreased from the

calibration to the validation period, contrary to the overall trend.
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(a) Freiburg

(b) Konstanz

(c) Weinbiet

(d) Mean over all stations

Figure 4.13: Violin plots of changes in mean. Densities shown are means of 500 realizations.

Black circles correspond to observed values. Blue corresponds the regression,

green to the distance simulation method.
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4.7 Summary and Discussion

This chapter introduced WeatherCop, a multi-site, daily weather generator based on vine

copulas and phase randomization. Its design was guided by the same aims as VG, provid-

ing the variables and features needed for climate impact assessment on lakes. The most

meaningful difference to VG is arguably not the fact that it generates weather for multiple

stations at once, but that the dependencies between weather variables are modeled with

copulas instead of linear models.

Phase randomization in a multi-site WG is able to reproduce correlations across space

and time without the need for any additional parameters. Its limitation of only being able

to produce “unchanged” scenarios were overcome with the help of vine copulas. Joining

phase randomization and vine copula sampling was achieved by decorrelating observa-

tions through an inverse formulation of the C-Vine copula sampling algorithm, phase ran-

domizing the decorrelated observations and using them as random numbers in the forward

formulation of the C-Vine sampling algorithm.

Both VG and WeatherCop are WGs that use a transformation of marginals. This enables

the use of methods that dictate specific input distributions, but has the disadvantage of an

indirect and often less good fit in the measurement than in the transformed domain. In

the case of WeatherCop, inter-variate dependence is modelled in rank-space and not in the

measurement domain of the observed values. Hence the overall fit does not only depend

on the vine, but also on the transformation. This dilemma of fitting on transformed data is

very evident in the case of correlations being reproduced well in the transformed domain

with the help of phase randomization and deteriorating through back-transformation to the

measurement domain.

In VG, the choice of dryness probability estimation method plays an important role for

projecting change. This is different and deliberately the opposite in WeatherCop, where the

maximum likelihood estimation of bivariate copula parameters was adjusted to “ignore”

the infilled, dry part of the data. In most plots in this chapter, I did not show graphs for

results for the different dryness probability estimation methods as they are largely indistin-

guishable.

The result of dependence-structure conflicting change of some variables in the observed

data set during the extrapolation test highlights a problem that can arise when projecting

changes via the assumption of constant dependency structures: a statistical model cannot

predict that variables might behave contrary to their statistical relationships. Or when the

central assumption of stationarity of the statistical relationships is violated, as the fact that

half of the bivariate copulas change when using a subset of the full data set, indicates. The

fact that WeatherCop employs copulas, which are models of dependence, cannot help in this

regard. A better fit might be achieved, however, by fitting copulas per site and not globally

as done here. A more thorough test for WeatherCop would be to repeat the exploration test

with a data set that does not violate said assumption, if such a data set could be found.
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“Anyone who studies present and ancient affairs will easily see how in all cities and all

peoples there still exist, and have always existed, the same desires and passions. Thus, it

is an easy matter for him who carefully examines past events to foresee future events in

a republic and to apply the remedies employed by the ancients, or, if old remedies cannot

be found, to devise new ones based upon the similarity of the events. But since these

matters are neglected or not understood by those who read, or, if understood, remain

unknown to those who govern, the result is that the same problems always exist in every

era.”

Niccolò Machiavelli, Discourses on Livy, 1517

“The past does not repeat itself, but it rhymes.”

Attributed to Mark Twain

This chapter describes some specific features of the K-Nearest Neighbors (KNN) resam-

pling method and compares its output to the parametric methods from chapters 3 and 4. It

is a is a direct validation that compares observed and generated data of the same variables.

Some examples for indirect validation using various lake models are discussed in chapter 6.

The structure of this chapter is as follows. First, a motivation for the comparison of

resampling and the parametric Weather Generators (WGs) is given in section 5.1. Then,

changes to the resampling method introduced in section 2.3 are described in section 5.2.

These changes are necessary for generating time series that match the annual cycle of obser-

vations and in order to generate scenario output. Output characteristics of the resampler,

Vector-Autoregressive (VAR), Vector-Autoregressive Weather Generator (VG) and Weather

Generator based on Phase Randomization and Vine Copulas (WeatherCop) are presented in

section 5.4.

5.1 Motivation

Resampling approaches offer a seemingly convincing set of advantages. They produce “syn-

thetic” data with statistical properties (auto-, spatial and cross-correlations, higher-order

statistics) close to the observed data, can generate climate scenario output and are easy to

implement. However, a rather obvious restriction is often overlooked. Namely, they do

not contain any abstraction from the data – inherently, they assume that the observed data

(or key aspects of it) is the abstraction. Hence, the past is all that could have happened and
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might happen. The remainder of this chapter describes consequences of the KNN selection

process.

The comparison is, however, not meant to underline possible advantages of parametric

over non-parametric methods. The measures used in this chapter reveal deficiencies of the

parametric methods as well. In the case of the VAR-process the deficiencies can be attributed

in part to the fact that it generates multivariate Gaussian distributions, which might not be

a good approximation to the underlying data.

5.2 Bringing the Resampler Closer to the Weather Generator VG

In order to achieve a comparison that relates to the nature of the different methods and not

to aspects of implementation, I modified the classical KNN-resampler slightly. The KNN

resampling method is described in section 2.3. I opted for using the classical euclidean

distance of the transformed variables for forming the candidate sets. The transformation of

the marginals to standard-normal brings every variable to the same scale and also eases the

comparison to VG and WeatherCop, because the same transformation method is used there

(see section 3.3).

5.2.1 Annually Changing Dependencies

In order to recreate the annual cycle in inter-variable dependencies, I constrained the set

of candidate time-steps. This is achieved by only selecting time steps a certain maximum

doy-distance apart from the resampled time step. Note that annually changing marginals

are captured by the transformations described in section 3.3.

5.2.2 Generation of Scenarios

In order to generate scenarios, the resampling process can be biased towards the desired

statistical properties. To be able to compare KNN with the WGs presented in this work I

generated time series with a higher mean by biasing the selection method.

Simulation with Changed Mean

Consider equation (2.37) which defined the squared euclidean distance used as a dissimi-

larity measure to limit each resample step in order to maintain the autocorrelation of the

source data set. This distance measure is modified here so that the selection of time series

results in a changed mean temperature in the resampled time series:
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ds =

p
∑

i=1

k
∑

j=1

(yt−i,j − xs−i,j − dj)2 ∀s ∈ {p+ 1, . . . , T} (5.1)

where ds – squared euclidean distance between current chunk and chunk at

time step s – biased by dj
p – number of previous time-steps considered

k – number of variables

t – time index in the resampled data

yt−i,j – previously resampled values

xs−i,j – values from the source data

dj – constant to increase the mean of variable with the index j of the

resampled time series

T – number of time steps in the source data set

The only change is the addition of the vector d. In principle, biases to all variables can

be included, but I restricted myself to just adding a change in temperature and leaving all

other elements as zero. Relating djθ (with jθ being the column index of temperature in x) to

the change in mean temperature ∆θ is not trivial. To find a useful approximation of djθ as

a function of ∆θ for a fixed p and number of considered candidates, I generated time series

with varying djθ . I fitted a function of the following form to the empirical changes in mean

temperature obtained that way:

∆θ(djθ) = a

(

1− exp

(

−
dbjθ
c

))

+m (5.2)

where a, b, c,m– constants

After finding suitable values for the constants a, b, c by numerical optimization, I used the

inverse of equation equation (5.2) to obtain djθ :

djθ =

(

−c ln
∣

∣

∣

∣

1− ∆θ −m
a

∣

∣

∣

∣

)−b

(5.3)

Figure 5.1 shows the fit of equation equation (5.2) to empirical data generated with vary-

ing djθ (the fitted values are: a = 0.98, b = 1.94, c = 0.48 and m = 0.11). The generated data

makes it clear that the achievable increase in mean temperature is limited. Equation (5.2)

reflects that as its limit evaluates to

lim
djθ→∞

a

(

1− exp

(

−
dbjθ
c

))

+m = a+m (5.4)
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Figure 5.1: Calibration of the bias d for attaining a specific temperature increase. Line shows

the function ∆θ(d). Circled crosses are values used for calibration of a, b and c.

The scale in the measurement dimension on the right side of the plot is a rough

estimation. The imprecision on the right scale is due to the fact that σ is changing

with the doy.

5.3 Centrality Bias Within KNN Resampling

Section 5.4 shows that it is not strictly true that KNN resampling maintains the distribution

of the source data in that the resulting distributions are narrower in their marginals. Be-

fore presenting these empirical results, the current section outlines the mechanism in non-

mathematical terms that leads to narrower distributions.

Figure 5.2 shows a simplified schematic of why the resampling scheme results in narrower

distributions. The simplifications amount to the following: (1) only one variable is consid-

ered, (2) only one previous time step is considered for identifying nearest neighbors and (3)

the candidates are not weighted. The underlying assumption is that the source data has a

significant autocorrelation1. Thus, the candidate distributions are biased towards the values

of previously resampled time steps. Continually sampling in this way results in overlap-

ping candidate distributions for central values, leading towards a resampled distribution

with a lower variance. The extremes are limited to those in the data set, so that for extreme

previous values, the candidate distribution is biased towards more central values.

This happens because the KNN resampling method approximates the conditional distri-

bution F (xt|xt−1, . . . , xt−p) by identifying the nearest neighbors in the source data set and

without building an abstraction of the source data values. Hence there is no extrapolation

beyond the range of the observed values and a stronger effect of regression towards the

mean.

1If there is no significant autocorrelation, the argument does not apply. But in this case the resampling scheme

has no advantage over resampling serially independent values.
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Figure 5.2: Schematic of a centrality bias in KNN resampling. Left panel shows the source

distribution (frequencies correspond to a normal distribution). Middle panel

shows the distribution of resampling candidates according to three different

starting values (black crosses). Right panel shows the resampled distribution,

arising from adding the circles from the middle panel.

In the following, I present an experiment of the effect of increasing autocorrelation in the

source data set with the help of synthetic time series. For this, I generated synthetic source

data sets with a first order univariate autoregressive model:

xt = ρxt−1 + ϵt (5.5)

where xt– value at time step t

ρ – lag-1 autocorrelation

ϵt– noise term at time step t. Drawn from a normal distribution with

mean µ = 0 and standard deviation σ =
√

1− ρ2 in order to set

σx = 1.

The experiment is setup in such a way that it is comparable to the analysis with measured

data in section 5.4. The autocorrelations of the synthetic source data sets vary from 0.50 to

0.99. 40 source data sets of a length of 7671 (corresponding to a 21-year daily time series

as in section 3.2.1) where generated. Asymptotically these time series have a mean of 0

and standard deviation of 1, empirically, however, not. In order to ensure standard normal

marginals, I transformed the time series x by subtracting their sample mean and divided by

their sample standard deviation. For each of these source data sets, I generated a resampled

time series with a length of 365608 days (corresponding to a 1000-year daily time series)

using q=87 neighbors (the square root of the number of time steps in the source data set, as

advised in Rajagopalan and Lall (1999)).

The autocorrelation of the source data has a slight effect on the standard deviation of

the resampled data (see figure 5.3). Considering more previous time steps in the resampling

method (p) further reduces the standard deviation. In order to show that the effect is relevant

measured time series, lag-1 autocorrelations of the variables in the observed time series are

also shown. Temperature (θ) has the highest lag-1 autocorrelation in the observed time series
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and is expected to show the largest decrease in standard deviation when resampled.

Figure 5.3: Standard deviation of resampled data declines with increasing autocorrelation

of the source data. Vertical dashed lines show the lag-1 autocorrelation of the

variables within observed data set.

The changing standard deviation alludes to having a more narrow distribution, which

is shown in figure 5.4. Increasing source autocorrelation does lead to tighter distributions,

with the most visible change in the tails. The middle and right panel in figure 5.4 underline

again that the narrowing is systematically increasing with increasing source autocorrelation.

Univariate statistics of the resampler will be revisited in section 5.4.2, where a measured time

series is used instead of synthetic ones here.

Figure 5.4: Changed distributions of resampled data due to higher autocorrelation in the

source data. This uses only the data from the resampled time series with con-

sidering p=3 previous time steps. Colors range from blue to red with blue map-

ping to low and red to high autocorrelation. Left panel: ordered resampled data

against ordered source data (qq-plot). Middle panel: deviations of y−x from first

panel over resampled quantiles. Right panel: mean absolute deviations from sec-

ond panel over source autocorrelation.

A reduction of standard deviation is in line with results from T. A. Buishand and
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Brandsma (2001), where precipitation and temperature at multiple sites were resampled.

The fact that they resampled in the measurement domain hints that the bias towards smaller

standard deviation is independent from the method used to deal with different dimensions

of the variables, as they used weights for distance normalization whereas I used transfor-

mation to standard-normal marginals.

5.4 Output Characteristics of KNN-Resampling and Parametric

Methods

The following comparison encompasses three types of analysis: resampled indices, univari-

ate statistics and multivariate aspects. The output characteristics are presented in that order,

as the selection of specific time steps is the reason for different univariate statistics and the

multivariate analysis builds upon the results from the univariate case. The index-based

analysis is done only for the resampling method, as it is not possible to be conducted for the

parametric methods. Following the univariate statistics, a few multivariate extensions are

discussed. The last subsection recapitulates some of the previous analyses for time series

generated with a positive temperature bias.

The data used throughout this chapter is the single-station Konstanz data set described in

section 3.2.1. It contains 7 variables (precipitation, temperature, incident long-wave radia-

tion, short-wave radiation, relative humidity and east- and northward wind speed compo-

nent). The comparisons are based on generated time series of lengths of 1000 years or the

original 21 years of the source data, depending on whether the comparison is feasible with

a longer time series or not. The number of considered neighbors was set to the square root

of time steps in the source data (q=87), as suggested by Rajagopalan and Lall (1999).

Other than the setup described in the previous paragraph, configuration of VG is the same

as for the example in chapter 3, as the same data set is used here. WeatherCop is fitted on

the same data from just the Konstanz weather station. Both WGs use the regression method

for estimating dryness probability in the present chapter.

5.4.1 Index-Based Analysis

“Those who fail to learn from history are bound to repeat it.”

Attributed to George Santayana and Winston Churchill

The resampling method reuses concrete time steps from the source data set, thus it is

possible to analyze the frequency of these time indices occurring in the resampled data set

without strictly taking the values at these time steps into account.

Forgotten and Over- and Undersampled Indices

Equation (2.37) formulates a distance between resampled and source data chunks. The dis-

tances form the basis of the algorithm in section 2.3, in which only a proximity-based subset
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of chunks is considered for selection. Because at each iteration step, only q nearest neigh-

bors are considered, the question arises whether a subset of time steps is misrepresented in

the resampled data set. Additionally, there might be time steps in the source data set that

are unreachable and can only be sampled in the first p randomly selected time steps and are

neglected in all later time steps.

Figure 5.5 shows the relative frequency of time steps in a large resampled time series

(1000 years). Time steps from the source data do not have an equal probability of appearing

in the resampled time series. A small proportion of the source time steps appear exceedingly

often while other time steps have a low probability of being resampled. In the following,

time steps above the horizontal, dashed line in figure 5.5, which represents the expected

relative frequency of each time step under the assumption that every time step has the same

probability of appearance, will be referred to as “oversampled” and time steps under the

line as “undersampled”. The resampled time series consists to 68.72 % of oversampled time

steps.

Figure 5.5: Over- and undersampled time steps. Relative resampling frequencies based on

a 1000 year resampled time series ordered by number of repetitions. The gray,

dashed line shows the expected relative frequency of repetitions based on the

assumption that every value has an equal chance of occurring.

Out of the 7671 time steps from the source data, 6 (i.e. 0.08 %) do not appear in the

resampled time series. It is unlikely that such a low number of “forgotten” indices has an

effect on the overall resampled distribution.

Resampled Sequences and Repeated Traces

The distance measure as defined in equation (2.37) together with the additional selection

bias towards the time step with the lowest distance (see equation (2.38)) favors selection of

time series in the order they appear in the source data. A histogram of these sequences is
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shown in table 5.1. 88.8% of the time steps appear in a different order than in the source

data, followed by 9.1% of two- and 1.7% three-step sequences.

Table 5.1: Lengths of sequences in the resampled data that appear identically in the source

data set.

Sequence length absolute frequency relative frequency

1 284900 0.887509

2 29335 0.0913832

3 5419 0.016881

4 1066 0.00332076

5 239 0.000744523

6 43 0.000133952

7 9 2.80364e−05

Resampling historical traces has also been studied by T. A. Buishand and Brandsma (2001)

and found to be dependent on the number of considered neighbors q during the selection

process. They derive a simple equation for the expected length of historical traces and an

approximation to the expected longest resampled historical trace given the number of con-

sidered neighbors and the length of the resampled time series. Their derivation is based on

the probability given to selecting the historical successor of a time step, which is the one

given the highest probability in equation (2.38).

Beyond repeating sequences of the source data, there are also traces in a different order

which are repeated throughout the resampled data. These are more common than repeated

historical sequences. The resampled time series consists to 59.8 % of 2-tuples. This propor-

tion declines for longer traces (3-tuples: 8.9 %, 4-tuples: 0.9 %, 5-tuples: 0.1 %). The longest

reappearing episode has a length of 6 days.

Other Distributional Aspects

From the issue about unequally likely selected time steps raised in section 5.4.1, the question

arises whether this selection bias targets special values. In other words, are certain kinds of

values more likely to be selected and which kind of values are oversampled?

Looking at the empirical marginal distribution, it becomes obvious that the resampler

overly selects data from the middle of the source distribution. This can be seen in figure 5.6,

where oversampled time steps exhibit a more narrow and slightly left-shifted temperature

distribution.

The effect is not as pronounced but still visible when comparing the empirical cdf s of the

complete resampled and source data set without paying regard to over- or undersampled

data. Figure 5.7 shows the expected narrowing of the resampled cdf relative to the source

data. The narrowing holds for all other variables as well, but there is no consistent bias for

low or high values.
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Figure 5.6: Distributions of over- and undersampled values. Histogram and empirical cu-

mulative distribution function (cdf ) of over- and undersampled values.

5.4.2 Univariate Statistics

“Only the fool believes that the highest mountain in the world will be the size of the

tallest one he has ever seen.”

Attributed to the Roman poet and philosopher Titus Lucretius Carus

(ca. 99 BC – 55 BC)

An obvious comparison between the source and generated data is via simple univariate

statistics. A graphical comparison of various univariate statistics is shown in figure 5.8 while

the concrete numbers are presented in table D.1 in the appendix.

The mean of the resampled data set shows differences to the source data. However, re-

garding all variables, there is no consistent sign of the bias. The mean of the VAR-generated

time series is close to zero2. VG and WeatherCop exaggerate the means slightly.

The standard deviation is smaller in the resampled data for all variables and almost equal

in the time series generated with the parametric methods. The interquartile range (i.e. the

distance between the lower and upper quartile) is, as the standard deviation, another mea-

sure for the spread of the data. In contrast to the range, it is smaller in the resampled time

series, compared to the source data. The interquartile ranges of the time series generated

with parametric methods are closer to the source data, yet still lower for all variables other

than the wind speed components.

As the resampling method directly accesses the source data, minimum, maximum and

range are maintained exactly. These statistics are, however, exceeded in the time series gen-

erated with parametric methods. Despite maintaining approximately the same marginal

2This appears to be an implementation issue, not a limitation of the method.
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Figure 5.7: Narrowing effect of over- and undersampling on output marginal distributions.

The sorted values of the source are plotted against the sorted resampled data.
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distributions as the source data set, a larger sample would naturally contain values outside

of the range of the source data. In other words, a 1000-year time series can be seen as having

a lower variability if it has the same range as a 21-year time series.

The source data shows non-zero values of skewness, indicating an imperfect transfor-

mation to standard-normal marginals. The skewness of the resampled time series are also

non-zero and exceed the values of the source data set. The VAR- and VG-generated time

series show low absolute values of skewness, which is expected as the asymptotic value

for skewness of these processes is zero. The WeatherCop-generated time series has non-

zero values of skewness, however they are differing in sign and value to the observed time

series.

The kurtosis values show a few interesting patterns. First, the source data is not exactly

normally distributed in terms of this statistic, as it is significantly non-zero3 (based on a two-

sided test on 5% significance level) for all variables except the wind speed components. The

negative kurtosis values (with the exception of the wind speed components) indicate less

mass in the tails compared to a normal distribution. Kurtosis values in the resampled time

series are significantly non-zero and a bit higher than the observed values. The kurtosis

of the VAR- and VG-generated time series is very close to zero, hence more values fall in

the tails of the distribution compared to the observed time series. Only the wind speed

components have more values in the tails of the distribution compared to the VAR- and VG-

generated series. The WeatherCop-generated time series contain variables with non-zero

kurtosis values, but like with the skewness they do not match with those of the observed

time series.

The difference in performance of the VAR-process for the first statistical moments to that

regarding higher-order moments is in line with the fact that it asymptotically produces mul-

tivariate normal distributions, which have normal marginals. The mean and standard de-

viations can be fitted to data, whereas skewness and kurtosis are fixed (to 0 and 1 respec-

tively). Of the shown methods, the resampler shows the best skill in reproducing the two

higher-order moments.

5.4.3 Multivariate Analysis

Comparing multivariate aspects between the 5 data sets is a little less intuitive than with the

univariate statistics. The analysis in the current subsection is based on convex hulls, data

depth and entropy, all of which warrant a small explanation.

Multivariate Output Ranges in Terms of Hypervolumes

While narrowing of the univariate distributions of the resampled variables is easily shown,

the detection and analysis of a changed multivariate distribution, however, requires more

3I computed kurtosis according to Fisher’s definition which is the fourth normed statistical empirical moment

minus three, so that the kurtosis of the normal distribution is 0.
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Figure 5.8: Univariate statistics of observational (obs) and generated data. KNN refers to the

resampling method, VAR to VAR-modelling with serially independent Gaussian

residuals and VG to VAR with phase-randomized residuals. WCop refers to the

copula-based method. All generated time series have a length of 1000 years.
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imagination. Even recognizing whether a point is outside of the range of the original data in

the multivariate sense is not trivial, but possible by leveraging the convex hull of the data set.

The convex hull can be seen as an extension of the univariate range in a multivariate sense.

One useful definition of it is the following: given the dataset X : x1, . . . , xn (where each

xi is a point in k-dimensional space), the convex hull is the set of all points that are linear

combinations of the form α1x1+ · · ·+αnxn where all αi ≥ 0 and α1+ · · ·+αn = 1. From this

definition it follows that all data points that include an extremum in one of their dimensions

are part of the boundary of the convex hull. Setting αj = 1 for j = argmax (x1,k, . . . , xn,k)

(and all other αi’s to zero), one obtains the point xj which contains the univariate maximum

value in the dimension k. The minimum values can be obtained with the argmin function

respectively. Additionally, the set of points on the convex hull contains a lot more than the

2k univariate extremum points (in the data set used here, the convex hull is spun by 919

points).

Table 5.2 gives three points on the boundary as examples. The last column is an exam-

ple that underlines that boundary points can appear to be located within the data “cloud”,

judging from its univariate ranks.

Table 5.2: Some examples for points on the convex hull. Shown here are some data points

that form the convex hull of the source data set. Daily mean values in the measure-

ment dimension and relative ranks with respect to their standard-normal values.

Unit 21.03.1980 12.01.1987 11.12.2000

Precipitation m 0.000 0.000 0.000
relative rank - 0.907 0.202 0.241

Temperature ◦C 2.667 -16.062 10.550
relative rank - 0.202 0.000 0.995

Short-wave radiation W/m2 102.742 70.750 62.896
relative rank - 0.402 0.981 0.982

Incident long-wave radiation W/m2 266.531 178.508 312.398
relative rank - 0.271 0.000 0.951

Relative humidity - 0.926 0.810 0.663
relative rank - 0.964 0.228 0.006

Eastward wind speed m/s -0.402 0.756 1.305
relative rank - 0.152 0.566 0.678

Northward wind speed m/s -0.317 -0.524 0.718
relative rank - 0.271 0.200 0.703

If a point lies outside of the convex hull of a data set, it is more extreme as the points in

the given data set in the sense that the combination of the values involved is more extreme

than observed (α1 + · · ·+ αn ≥ 1).

Where points on the convex hull can be seen as multivariate extreme values, the multi-

dimensional volume (“hypervolume”) of the convex hull is in part akin to the univariate

range. It is not a trivial extension from the range, as dependence is a factor when interpret-



90 Comparison with a Resampling Method

ing the hypervolume of the convex hull. Data sets with a high linear dependence will have

narrower shapes than ones with low linear dependence.

The volume of the resampled data set is 2234.0σ7, which is a little less than for the ob-

served data (2234.3σ7), indicating that not all boundary points from the source data set are

resampled. The parametric methods generate data that spans a much higher volumes, with

18106.6σ7 for VAR-based generation, 14458.0σ7 for VAR with phase randomized residuals

and 31396.5σ7 for WeatherCop.

78.9% of the VAR-generated points fall within the hull of the observed data set and 78.8%

and 75.5% of the points generated by VG and WeatherCop, respectively. Naturally, all of the

points acquired by resampling fall within the hull of the source data set.

As the convex hull of a data set can be seen as a description of its most extreme values

in a multivariate sense, the comparison between long time series generated with parametric

methods to a short observed time series, mostly shows that more extreme values can be

produced in contrast to the nonparametric method. Additional insight can be gained by

comparing volumes of inner layers, obtained by repeatedly identifying the points of the

convex hull, removing them and finding the next hull. This process is called convex hull

peeling (Eddy, 1982). I generated time series for each model with the original length of 21

years, as the difference in length complicate the interpretation of the peeled volumes. For

each data set I peeled until all points were gone or the number of points are not sufficient

to form a hull in the 7 dimensions. Figure 5.9 shows the layer volumes over the proportion

of remaining points in the data set. The parametric models lie a little above the line of the

observed data set, while the resampling approach is consistently below it. The logarithmic

y-scale on the right panel reveals that the inner layers of the parametric models slightly

overestimate inner layer hull volumes.

Figure 5.9: Convex hull peeling. Inner layers would be on the left of and outer layer (the

convex hull) on the right the x-axis. To not complicate the comparison between

observed and simulated values, the length of the simulated series is as long as

the observed data set (21 years).

Using the remaining proportion of the peeled data, the different models can be compared

in a similar manner as with the interquartile range in the univariate case. An equivalent
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measure is to remove 50% of the data by peeling and compute the volume of the remain-

ing points. The concrete values for this approach are: 68.4σ7 for the observations, 27.4σ7

for KNN, 82.8σ7 for VAR, 101.1σ7 for VG and 85.2σ7 for WeatherCop, continuing the pat-

tern, that the parametric methods overestimate spread, while the non-parametric method

underestimates it.4

It is to be expected that the multivariate range of a data set changes as time progresses. In

order to investigate this change and to contrast it with the resampling method and the VAR,

I repeatedly split the 21-year data set into calibration and validation set. I used 4-year con-

tinuous time periods as validation sets and the rest of the data set (17 years) for calibration

and evaluated all such possible full-year periods. The generated time series are as long as

the validation period. As comparison, the overlap between the convex hull of the validation

set with respect to resampled and VAR-generated time series, as well as the calibration set is

shown in figure 5.10. In all considered cases, the convex hull of the calibration set does not

fully include the validation set, despite the fact that the validation period is shorter than the

calibration period (4 versus 17 years). Following the previous discussion on the limitations

of the resampling method, it is not surprising to see the resampled time series showing the

lowest amount of points within the convex hull of the validation period. This happens be-

cause it only uses values from the calibration set with a bias towards those from the middle

of the calibration set distribution. The VAR-generated time series shows a higher percentage

of overlap than the resampling method for all of the 17 run configurations.

Figure 5.11 shows the hypervolumes of convex hulls for the observed, VAR-generated and

resampled data set in the split-sampling experiment. The VAR-process generates data that

is consistently more spread out than the validation sets. The volume of the resampled time

series is larger than the validation set in only 3 out of the 17 cases, with an underestimation

being more likely than an overestimation. The multivariate range of the VAR-generated

data is consistently larger than that of the resampled time series and the validation period.

This is an indication that the multivariate Gaussian distribution represents an imperfect

approximation to the observed data, as it is spread out too far. The fact that the VAR method

showed a higher percentage of overlap in figure 5.10 is most likely due to its highly spread

out output.

Data depth

I showed in section 5.4.1 that the KNN resampling method overly selects values from the

middle of the marginal distributions. It requires different tools to determine whether this

tendency towards the distribution’s center, that the resampling method shows in the uni-

variate case, extends to the multivariate case. The approach I take here is using data depth,

which is a measure of how central a value or vector is with respect to a data set (Tukey, 1975).

A conceptually easy way to express data depth is the so called halfspace depth. Through a

point for which the halfspace depth is to be estimated, one finds the hyperplane that sepa-

rates the dataset in the most unequal way possible. One then counts the proportion of points

4As peeling is not guaranteed to provide exact numbers for a given reduction in data size, these values were

obtained by linear interpolation.



92 Comparison with a Resampling Method

Figure 5.10: Overlap of validation and convex hull of generated data in a split-sampling ex-

periment. The position on the y-axis gives the percentage of points that fall in

the convex hull of the validation set (e.g. ≈ 72 % of the time steps from the

VAR-generated time series fall within the convex hull of the validation period

from 1981–1984). The crosses show the overlap between validation and calibra-

tion data of the source and are thus an indicator of how much the convex hull

changes between those periods.

Figure 5.11: Hypervolume of convex hulls in a split-sampling experiment. Position on the

x-axis marks the start of the 4-year validation period, while the rest of the years

were used as calibration.
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on each side of the plane and assigns the smaller count to the data depth of the given point.

For example, through a point on the convex boundary of the dataset, a plane can be found

that has all data points on one side. The depth of such a boundary point is 0. For a very

central point (and a rotationally symmetric data set), only planes that half the data set might

be found. The depth of that point is then n/2 (with n being the number of points in the data

set).

The data depth can also be used to infer how deep one data set is within a reference data

set. For this endeavour, planes at the points of the to-be-checked data set are sought that

separate the reference data set in the most unequal way.

The data depth is an empirical measure and thus devoid of any assumption of an un-

derlying theoretical distribution. The use of planes in estimating halfspace depth, however,

makes it unsuitable to identify boundaries of concave shapes.

The mean depth of the source data is 174.1, while the mean depth of a 1000-year resampled

data set (with respect to the source data) is 266.3, indicating that the resampling method

favours data that is more central in a multivariate sense.

The mean depth of a 1000-year VAR-generated data set with respect to the source data is

147.8, which is lower than the mean data depth of the source data itself (174.1). VG generates

data with a similar but slightly lower depth than pure VAR-processes with a mean of 145.4.

WeatherCop is very similar in terms of data depth as well (mean depth with respect to the

source data: 147.4). The comparison using simple statistics in section 5.4.2 illustrated that

the parametric models generate values outside of the univariate ranges of the source data.

Hence, in the multivariate perspective, part of the generated points lie outside of the convex

hull of the source data and are assigned a depth value of 0, causing the mean depth to

decline.

Plotting the depth values as cdf s shows that the parametric models are very similar to

each other and all generate slightly less deep values than the source data. The cdf of the

KNN resampling output shows again that the selected points are deep within the source

data set.

The higher centrality of the resampled data follows from the very different distribution of

data depths of the over- and undersampled values (see figure 5.13). The mean depth of the

oversampled time steps is 337.3 and of the undersampled time series 110.3. 740 points from

the set of oversampled time series are points that form the convex hull of the source data, as

opposed to 6378 of the undersampled time steps.

Entropy

The fact that resampling reuses the values from the source data – and that possibly more

than once – imposes a peculiar orderliness on the generated time series, which potentially

affects its information entropy. The entropy of a multivariate data set is (Shannon, 1948):
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Figure 5.12: Cdf s of data depths of observed and simulated data. The depth values of the

simulated series are all with respect to the observed data. Dashed line shows

the non-exceedance probabilities of the observed data depths. The parametric

model’s lines (VAR, VG and WeatherCop) overlap on the left side of the dashed

line.

Figure 5.13: Histogram and empirical cdf s of data depths of over- and undersampled time

steps. Dashed line shows the cdf of the source data.



5.4 Output Characteristics of KNN-Resampling and Parametric Methods 95

H = −
L
∑

i=1

. . .
L
∑

l=1

pi...l log2 (pi...l) (5.6)

where L – Number of bins per dimension

i . . . l – index for bins in the respective variable dimension

pi...l – probability (here: relative frequency) of a point falling in the bin

with index i . . . l

In order to calculate the entropy of a data set, one can use relative frequencies as estimates

for pi...l. The entropy is at minimum if all data is located within one bin and at maximum

when it is spread out evenly over all bins. Hence, the entropy can be interpreted as a multi-

variate measure of uncertainty inherent in the distribution (Singh, 1997). The entropy in the

above formulation is a measure of information content in a multivariate sense, but this inter-

pretation is misleading in the present context, as the multidimensionality of the resampled

time series is only superficial (the values of the different variables are directly determined

by the resampled index). Nonetheless, determining how different the level of order appears

in the output of the models at hand is the aim of this section.

Figure 5.14 shows how the entropy of the source data set and the generated time series is

changing with the length of the time series. The bin edges are held constant for the three dif-

ferent data sets in order to compare them on the same scale. The resampling method shows

the smallest entropy, followed by the observed data and then the parametric models. All en-

tropy lines show large changes at the beginning and smaller changes the longer the data set

is. However, the change of entropy of the source data does not approach zero towards the

end, hinting that entropy is not a stationary aspect of the data. The entropy of the resampling

method approaches an upper limit that is lower than the entropy of the full source data. By

comparison with the entropy of a random sample of the source data (without maintaining

the autocorrelation), the reduction of entropy within the KNN framework becomes even

more apparent. The time series generated with parametric models approach the entropy

of the multivariate Gaussian distribution5. WeatherCop maintains order the longest of the

parametric models before reaching the Gaussian entropy. The fact that the KNN-resampler

does not select values from the source distribution at random results in an order that is too

high. Asymptotically, the VAR process generates time series with a multivariate Gaussian

distribution, which is underlined by the proximity of the entropy to the Gaussian sample.

In comparison with the data it was fitted on, this contains too much entropy.

5.4.4 Consequences of Increased Bias

A bias in the form described in section 5.2.2 constrains the selection process to data close to

the target mean. This necessarily reduces the variability of the output. Figure 5.15 shows

the decline of unique time steps with increasing bias. Based on a 1000-year resampled time

series, with an increase of 4 ◦C, 64.0 % of the source data is ignored. The inverted “S”-shape

of the curve indicates that the change from a relatively high variability to a low variability

5H = K
2
(1 + ln(2π)) + 1

2
ln(|Σ|), where K is the number of variables and Σ the covariance matrix.
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Figure 5.14: Entropy with increasing length of generated time series. The Gaussian and

source sample where each generated by serially independent drawings. The

Gaussian sample was generated with the mean vector and covariance matrix of

the VAR-process.

regime happens rapidly as the temperature change exceeds 2 ◦C. As the number of unique

time steps tends towards one6, the method ceases to be stochastic. As the bias increases, the

proportion of over- to undersampled time series increases as well, as more of the same time

indices are selected repeatedly (see figure 5.16). Figure 5.17 shows cdf s of data depths for

different changes in mean temperature. The data depth decreases with increased bias as less

values from the middle of the multivariate distribution are made available during neighbor

selection. As a last example, the decrease in variability under increased temperature bias

can be seen in figure 5.18, where the volume for the resampled data sets vanish while the

VG maintains a stable high spread.

6The minimum number of time steps in this experiment is actually 1381, because different time steps with

maximum temperature values are available throughout the year and the composition of the neighborhood

is doy-dependent (see section 5.2.1).
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Figure 5.15: Declining variability with increasing temperature bias. Number of unique in-

dices over change in mean in the measurement domain. The full Constance data

set was used, which contains 7671 days (21 years). The lengths of the resampled

time series are 1000 years.

Figure 5.16: Over- and undersampling under increasing temperature bias. Relative resam-

pling frequencies of resampled time series under bias, ordered by number of

repetitions. The gray, dashed line shows the expected relative frequency of rep-

etitions based on the assumption that every value has an equal chance of occur-

ring.
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Figure 5.17: Data depth distributions in the form of cdf s for different changes in means. The

increasing bias favours selection of low-depth values.

Figure 5.18: Volume of convex hull under increased temperature bias.
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5.5 Generating Values Outside the Historical Range

The foundational paper on nearest-neighbor bootstrapping in hydrology by Lall and

Sharma (1996) already suggested a scheme based on resampling residuals in an additive

fashion, which is able to generate values outside the historical range. Sharif and Burn (2006)

add Gaussian noise terms with variance dependent on the distribution of the candidate

set. This method requires additional precautions to not generate values outside of physical

ranges (e.g. negative precipitation). The latter issue is handled in the work of Leander2009

by using a multiplicative instead of an additive scheme or by King, McLeod, and Simonovic

(2015) who opt for using log-normally distributed perturbations which are strictly positive.

Lee (2017) adds random perturbations to “intentionally biased bootstrap” precipitation data

to match sample variances while downscaling general circulation model (GCM) generated

climate warming scenarios. Another adaptation of KNN resampling for generating time

series following a climate change scenario is described in Lee and Singh (2019). The au-

thors propose a combination of KNN resampling and genetic algorithms. In the context of

multi-site resampling, selected feature vectors are subjected to a “crossover”, whereby pre-

cipitation occurrences at some stations are exchanged with those of a similar feature vector

from the source data producing a new spatial pattern. An additional “mutation” is allowed,

where elements of the feature vector are replaced by an arbitrary feature vector from the

source data set. In the context of a precipitation generator for climate scenarios, Agilan

and Umamahesh (2019) proposes a perturbation of extreme precipitation in the form of a

qq-transformation to a generalized pareto distribution after each KNN-based selection step.

Without having tested these approaches, they are likely to increase the entropy towards

that of measured data, increase the volume of the convex hull and might help in break-

ing out of repeated traces. On the other hand the dependency structure (in terms of inter-

variable correlation, auto- and cross-correlation) is weakened, because the perturbations are

added to each variable or location (in the case of Lee and Singh (2019)) independently. The

“crossover” and “mutation” steps of Lee and Singh (2019) likely break spatial dependence

and while they generate different configurations than the past, their values do not leave the

historical range.

5.6 Summary and Discussion

Drawing a random sample from source data with the additional aim to maintain its autocor-

relation comes at a price. The reduction of output possibilities within the KNN resampling

framework necessarily restricts the variability of the “generated” time series. A trivial sign

of this restricted variability is the fact, that the values remain within the univariate range of

the source data set. The slightly reduced standard deviation is a first hint that the variability

is somewhat reduced. The reduction of the standard deviation is very small, but shows that

the resampled marginal distributions do not remain as they are in the source data. I showed

that the reduction in standard deviation is dependent on the autocorrelation of the source

data.
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The KNN-resampling method tends to overly select values from the middle of the uni-

variate distributions as well as the multivariate distribution.

Implementing resampling of multiple variables at once is easy but it introduces subtle de-

ficiencies. This is because despite having multiple output variables, the resampled resource

(the time-step) is one-dimensional, but the available hypervolume for observational data to

be filled grows exponentially with the number of dimensions. The basic assumption that the

source data is the population thus becomes quickly unfeasible with the inclusion of more re-

sampled variables. A similar argument can be made when applying a resampling scheme

for multiple sites at once.

In terms of the multivariate range and entropy of output, observed statistics tend to lie

between the resampling method and the parametric models. The resampling method’s out-

put is too ordered. The VAR-process generates multivariate Gaussian distributions, which

is a crude approximation to the given data even after transforming the marginals back to

the measurement domain. These multivariate characteristics can be easily overlooked when

the focus is set on statistics of individual variables or their marginal distribution.

Biasing the selection process in KNN resampling exacerbates issues with variability in

terms of staying within a subset of historical values. This results in reduced variability in

terms of oversampled indices and also in a multivariate sense measured in terms of smaller

convex hull.

Staying within a subset of historical data is problematic especially when conducting

Monte-Carlo-style ensemble modelling, where the aim is to generate a multitude of plau-

sible outcomes. The presented parametric approaches overshoot in terms of variability but

are capable of generating values outside of historic ranges and value combinations while

maintaining plausibility by relying on dependencies present in the source data set.



6 Application in Modelling the Climate

Impact on Lakes

“The purpose of computing is insight, not numbers.”

Richard Hamming, 1962

Lakes are affected by climate change as their processes are driven in part by meteorologi-

cal conditions. Upper-layer water temperatures of lakes are increasing in Europe (Woolway,

Weyhenmeyer, et al., 2019) and world-wide (O’Reilly et al., 2015). Many are projected to

mix less frequently (Woolway and Merchant, 2019). At the same time, they are important

fresh-water resources, which makes it prudent to estimate possible impacts of the ongoing

climate change on them.

This chapter presents applications of the Vector-Autoregressive Weather Generator (VG).

While the Weather Generator based on Phase Randomization and Vine Copulas (Weather-

Cop) offers the same interface to generate scenarios, it has not been used in lake-oriented

studies yet.

6.1 Direct versus Indirect Validation

The applications described in the following subsections serve an important purpose: indi-

rect validation. In contrast to direct validation which compares Weather Generator (WG)

input to WG output, indirect validation tests whether the aspects of the observations that

are relevant for the application are present in the synthetic data even if deficiencies were

identified during direct validation (Dubrovský, Buchtele, and Žalud, 2004). Compared are

not observed and generated meteorological data, but impact model output, driven by ob-

served meteorological and synthetic data.

This approach is more cumbersome than direct validation, as the run of another model is

needed – furthermore the indirect validation has to be repeated as often as a different impact

model is used. This added cost provides the benefit of a more rigorous test of applicability.

There exists no complete description of an observed data set in terms of aggregate statistics,

hence the limitation of direct validation.

6.2 Lake Constance

Lake Constance is located just north of the central European Alps and borders Germany,

Switzerland and Austria. Its size (48 km3), depth (> 250 m) and good trophic state (olig-
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otrophic with phosphoric concentration around 10 µg L−1) make it a valuable drinking wa-

ter resource for 5 million people in Germany and Switzerland.

6.2.1 One-dimensional Lake Modelling

This application was published in Schlabing et al. (2014) and is described here only briefly.

The collaboration with lake modellers that lead to this publication determined major aspects

of VG’s design, such as the choice of variables (with an initial exclusion of precipitation), the

method for scenario generation and the overall avoidance of abrupt changes in parameter

values (achieved by wide use of smoothing annual parameters with Fast Fourier Transform

(FFT) tools). I deemed the latter feature necessary for evaluating the influence of scenario

changes to dates of stratification and plankton blooms.

One-dimensional lake models simulate the water body in terms of homogeneous, verti-

cally stacked layers. In the case of the DYnamic REservoir Simulation Model (DYRESM),

these layers have a Lagrangian structure. The run time of one-dimensional lake models

is short enough to enable the calculation of ensembles, which brings with it the benefit of

having a range of plausible outcomes that can be interpreted as an estimate of uncertainty.

Model Setup

VG was fitted on air temperature, short-wave radiation, incident long-wave radiation, rela-

tive humidity, eastward and northward wind speed component from the years 1980 to 2000

measured by the German Meteorological Service (DWD) at the Konstance measurement sta-

tion. The 500 realizations per scenario were used as boundary conditions for the lake model

system DYRESM-Computational Aquatic Ecosystem DYnamics Model (CAEDYM). Tribu-

tary discharge and precipitation time series were kept constant throughout the realizations

and scenarios.

Scenarios

Table 6.1 gives an overview of the four “what-if”-scenarios we defined.

The stale scenario serves two purposes: (1) it is an indirect validation which aims to deter-

mine whether the properties of the observed meteorological time series that are relevant for

the studied impacted variables are reproduced well and (2) it provides context for the other

three scenarios.

The three scenarios that contain a change to statistics (hot, spicy and hot & spicy) are bal-

anced scenarios, which means that the temperature change is accompanied by changes in

the other variables according to the linear dependence structure in the source data set (see

section 3.8). This stands in contrast to other studies in lake research where a change is ap-

plied only to temperature (Trolle et al., 2011; Kupisch et al., 2012; Schwefel et al., 2016).



6.2 Lake Constance 103

Table 6.1: Climate scenarios generated by VG for Lake Constance study. Adapted from

Schlabing et al. (2014).
increase in mean air temperature

– 4 ◦C

(C-scenarios) (F-scenarios)

cl
im

at
e

v
ar

ia
b

il
it

y unchanged TC – stale TF – hot

(T-scenarios) “current temperatures” “future climate”

increased VC – spicy VF – hot & spicy

(V-scenarios) “current temperatures “future climate

with higher variability” with higher variability”

Scenarios spicy and hot & spicy contain a kind of variability enhancement that was de-

signed to have an influence on the lake. Instead of a time-invariant multiplicative change,

which would succeed in increasing the variance of the data but not overcome the water’s

thermal buffering effect, episodes of alternating cold and warm temperature were added.

These are applied in a saw-tooth-like fashion, with episode lengths drawn from an exponen-

tial distribution with a mean of 7 days and magnitudes drawn from a normal distribution

with zero mean and standard deviation of 5 ◦C.

These scenarios were not meant to be predictive, but rather serve as a “stress-test” to

see how a large system like Lake Constance would react to big changes in meteorological

forcing. The hot scenario is however still within the range of IPCC (2007) projections (RCP8.5

has a 5 to 95% range of 2.6 ◦C to 4.8 ◦C for the period 2081 – 2100 relative to 1986 – 2005).

Results

Figure 6.1 shows results of the stale scenario in terms of input and lake model output while

also showing a reference lake model run driven by the observed meteorological time series.

The reference run has a similar appearance as the stale realizations in all panels, giving con-

fidence in the idea that VG forms a reasonable stochastic abstraction of the observed time

series.

In order to study an important ecological aspect, we decided to evaluate the impact of

these climatological changes on the timings of spring phytoplankton blooms. Concretely,

three output parameters were defined and evaluated:

doyspring, i.e. start of spring: first doy since 1st of January at which the sum of daily mean air

temperature surpassed 300 ◦C.

doystart, i.e. beginning of stratification: first doy with a water temperature difference between 0

and 20m depth of 1 ◦C.

doychla, i.e. start of phytoplankton bloom: first doy at which mean total chlorophyll concentra-

tion in the upper 20 m is larger than 3 µgL−1.



104 Application in Modelling the Climate Impact on Lakes

Figure 6.2 shows how these cardinal dates are related in the scenario output. The F-

scenarios shift all cardinal dates to earlier times in the year. While the median doyspring is

April 29 and 27 for TC and VC respectively, it is at April 13 and 9 for TF and VF. The standard

deviation of the cardinal dates is increased in the V-scenarios but the strength of that change

decreases from doyspring to doystart and again from doystart to doychla. Nonetheless, adding

variability motivates more earlier than late stratification, clearly visible in figure 6.2. The

timing of phytoplankton blooms is less sensitive to the variability change in the V-scenarios.

6.2.2 Three-dimensional Lake Modelling

This application is a short summary of some aspect of the thesis of Eder (2013), which are

relevant in the current context. Her simulations complement the ones done in Schlabing et

al. (2014) in that three-dimensional modelling offers a more detailed look, e.g. into mixing

regimes. Furthermore, the simulations here consisted of 19 years, allowing the author to

make statements about possible medium-term developments and mixing frequencies. De-

spite being supplied by single-site weather data, the 3D lake model was able to reproduce

the variables deemed important for the study.

Model Setup

Eder (2013) used VG output as input for the three-dimensional lake model Estuary, Lake

and Coastal Ocean Model (ELCOM) which was coupled to the ecological model CAEDYM

in order to simulate phytoplankton populations. The data to fit VG on was the same as for

the 1D-study in section 6.2.1.

Scenarios

Eder (2013) leveraged multiple features of VG in order to gain insight into Lake Constance’s

sensitivity towards climatic changes. Several sets of scenarios were thus defined:

stale: undisturbed statistics. Serves as a reference to the other scenarios.

hot4: temperature mean is increased by 4◦C.

hot5: temperature mean is increased by 5◦C.

spicy: includes enhanced hot and cold episodes.

hot & spicy: Combines hot and spicy.

seasonality: hot and warm winters and summers respectively.

Especially the changes in seasonality consist of very specific and intentional changes made

by the modeler, which I made possible in VG by implementing the possibility to supply a

“climate signal”. This time series given in the measurement domain of the primary variable
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(here: air temperature) is converted to changes in the theoretic mean vector of the Vector-

Autoregressive (VAR) process as described in section 3.8.1. It is especially apt for supplying

a smooth change in seasonality, because the VAR process adds its variability to it instead of

reproducing the signal exactly1. It is also different from changing the FFT parameters of the

marginal distribution, because that would be a univariate change in contrast to the method

proposed, which propagates changes in the primary variable to the other variables.

Results

Eder (2013) found that the air temperature increase warmed the epilimnion faster than the

hypolimnion, resulting in stronger stratification stability and because of that less mixing.

Less mixing meant that the half-life of residence time of water in the deepest parts of the lake

increased by more than a year. Nonetheless, even with 5◦C of warming and subsequently

less mixing, the simulated lake underwent full circulation every 3-4 years. Warmer water is

able to hold less oxygen, which was reflected in the simulations in all depths.

An increase in variability had more subtle effects. Eder (2013) emphasizes the importance

of cold episodes in the spicy scenarios as they tend to destabilize the stratification and thus

allow mixing. A particularly cold winter with complete mixing enhances the stability of

the stratification in the coming year, as temperature differences between deep and upper

layers are then higher. Warm episodes are only effective at increasing the temperature in the

uppermost layers, stabilize stratification and increase surface heat emissions.

Changing the seasonal cycle of air temperature revealed that the lake system is most sen-

sitive to increases in December and January, leading to higher changes in water temperature

than in the months of May – July when the water column is stratified.

1Taking a mean along the realization-dimension of an ensemble generated with a “climate signal” would ap-

proach said signal.
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Figure 6.1: Indirect validation. Upper panel: daily mean air temperature. Middle panel:

mean water temperature of the upper 20m. Lower panel: mean Chlorophyll

concentration of the upper 20m. Black line represents the measured air temper-

ature in the uppermost panel and DYRESM-CAEDYM model results based on

observed meteorological input. Gray lines correspond to stale scenario realiza-

tions. As published in Schlabing et al. (2014).
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Figure 6.2: Relationship between measures of cardinal dates for chlorophyll concentrations

and air and water temperature. As published in Schlabing et al. (2014).
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6.3 Lake Kinneret

This section summarizes the publication Gal, Gilboa, et al. (2020). Lake Kinneret and its

unique setting has been studied and modelled extensively. Jason P. Antenucci and Jörg

Imberger (2003) analyzed the seasonal appearance of internal waves in reaction to wind

forcing. Gal, Jorg Imberger, et al. (2003) first modelled the lake with DYRESM. Using the 3D

model ELCOM, Gómez-Giraldo, Jörg Imberger, and Jason P Antenucci (2006) studied the

spatial patterns of internal waves.

Located in the Jordan Rift valley in northern Israel at approximately 209m below sea level,

Lake Kinneret is subject to very different meteorological conditions than Lake Constance.

The lake is less deep with a maximum depth of 43m and smaller with a volume of about 4

km3. Not only is it situated in a different climate zone than Lake Constance, its proximity to

the Mediterranean Sea (≈ 45 km) with the Galilee Mountains in between, provide a distinc-

tive summer diurnal pattern that is a driver for hydrodynamic processes and evaporation

in the lake (Shilo et al., 2015). At early afternoon in the summer months, the Mediterranean

Sea Breeze (MSB) reaches the lake and brings moist and slightly colder air. Wind speeds

increase noticeably from approximately 3 to 8 m s−1.

During very hot days, the marine inversion layer decreases under the height of the Galilee

Mountains, which blocks the MSB from reaching the lake. This is not only accompanied by

high local air temperatures, but also by low humidity and wind speeds. In other words, the

blocking of the MSB, causes a very different diurnal pattern.

Analysis of observed temperature shows that Israel is subject to climate change regarding

mean annual and summer extreme temperatures (Ziv, Saaroni, and Alpert, 2011). The sum-

mer heat waves have an impact on Lake Kinneret’s ecology. An exceptional heat wave in

the summer 2010 was accompanied by a clear water-phase that is unusual for that time of

the year (Gal, personal communication).

6.3.1 Adaptations to VG

It was necessary to adapt VG to the meteorological conditions at Lake Kinneret. Air temper-

atures there exhibit a skew towards higher values, rendering the otherwise used symmetric

Gaussian distribution unsuitable. Instead, I used the Gumbel distribution to better represent

high values, which are directly related to the heat waves.

The heat waves caused by the blocking of the MSB by a low inversion layer represent a

non-stationary behavior. I implemented these heat waves by introducing episodes of low

relative humidity of 25% during the months of June to September. Per summer, 3 of those

heat waves with a length of 7 to 14 days are generated by drawing the lengths from a uni-

form distribution. These uni-variate disturbances are propagated to the other variables in

the same way as temperature changes are implemented in section 3.8 on page 47.

With air temperature and relative humidity both driving the other generated variables, an

additional way of generating realizations with two “primary” variables had to be devised.
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I implemented an additive approach in which the influence of each of the primary variables

is calculated and added to the result. So each change can be interpreted as a distinct driver

for the whole set of generated variables.

6.3.2 Model Setup

Data used for VG came from the Kinneret Limnological Lab (KLL) and was collected at an

on-lake site. A period of 11 years from 1997 to 2007 was used for calibration. Simulated me-

teorological variables were air temperature, relative humidity, global short-wave radiation,

wind speed and -direction.

In this example, multiple lake models were used in order to estimate model uncertainty.

The lake models used were General Lake Model (GLM), General Ocean Turbulence Model

(GOTM) and DYRESM-CAEDYM. GLM is similar in process description to DYRESM and

uses Lagrangian layers that adapt to changes in vertical gradients. GOTM is an ocean model,

but this application uses a version adapted to lakes.

6.3.3 Scenarios

In order to investigate the impact of summer heat waves in a warming environment in a

fully crossed design, 4 scenarios were implemented:

Stale: undisturbed statistics. Serves as a reference to the other scenarios.

Gradual: includes a linear positive trend in air temperature of 0.65 ◦C per decade, resulting

in a total increase of 2 ◦C.

Spicy: includes additional summer heat waves modelled after the ones described in Ziv,

Saaroni, and Alpert (2011).

Spicy–Gradual: combines Gradual and Spicy.

Each scenario consists of 1000 realizations, which are 30 years long and have hourly out-

put.

In this experiment, the same Gaussian vectors2 and random numbers for generating the

heat waves where used for the ith realization of each scenario. This was implemented so

that individual realizations can be consulted for discerning the effect of scenario-changes.

6.3.4 Results

The output analyzed in this study was mainly water temperature in the upper 10m and

stratification lengths. The upper layer of the lake is the biologically active one and higher

water temperatures would accelerate metabolic rates such as respiration and decomposition

2The term ut in equation (2.2) on page 7.
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Table 6.2: Climate scenarios generated by VG for Lake Kinneret study
gradient in mean air temperature

– 0.65 ◦C / 10a

(C-scenarios) (F-scenarios)

h
ea

t
w

av
es

unchanged TC – Stale TF – Gradual

(T-scenarios) “current temperatures” “developing climate”

enhanced VC – Spicy VF – Spicy-Gradual

(V-scenarios) “current temperatures “developing climate

with enhanced heat waves” with enhanced heat waves”

rates (J. H. Brown et al., 2004; Yvon-Durocher et al., 2012). While cardinal dates of plankton

blooms could be affected by increasing air temperatures at Lake Kinneret as well, we were

more interested in direct consequences of extremes.

The Stale scenario does not only provide a reference for the other scenarios, it also serves

as an indirect validation of the model chain consisting of the weather generator and the

model ensemble. Figure 6.3 reveals that the distribution of simulated summer water tem-

peratures of individual models in the upper layers of the lake are in the range but more

narrow than the distribution of historical values. Taken together, the ensemble does provide

a wide enough distribution in comparison to historical values. The historical (1969-2008)

length of stratification is approximately 286 days, which is comparable to the values in fig-

ure 6.4.

Figure 6.3: Violin plots of upper 10m water temperatures in August for the last 5 years of

simulations for Stale (A), Gradual (B), Spicy (C) and Spicy-Gradual (C). As pub-

lished in (Gal, Gilboa, et al., 2020).
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Each dimension of the scenario table 6.2 results in distinct consequences. The temperature

gradient has a long-lasting effect on the lake that can be seen in warmer upper-layer water

temperatures (see panel B in figure 6.3) and longer periods of stratification (see panel B

in figure 6.4). Stratification length is, however, unaffected by scenario-inputs for the GOTM

model. The distributions of upper water summer temperatures are shifted upwards without

changing their shape (panel B in figure 6.3).

Figure 6.4: Mean stratification lengths in days per year for Stale (A), Gradual (B), Spicy (C)

and Spicy-Gradual (D). Stratification in this study means that the temperature dif-

ference between the mean of the upper 10m and the mean of 30-40m depth is

above 2 ◦C. As published in (Gal, Gilboa, et al., 2020).

Figure 6.4 also shows that heat waves have a negligible effect on stratification lengths.

However when they occur, they do warm the upper layer of the lake during summer (see

lower panels in figure 6.3). In relation to the Gradual scenario, Spicy results in nearly no

change in mean of the upper layer summer temperatures, but it skews their distribution

towards higher values. The year 2010, which featured an exceptional heat wave, is displayed

separately in figure 6.3. Years with events at least as extreme as the ones in 2010 are most

probable under the Spicy and Spicy-Gradual scenario and much less so for Gradual.

Figure 6.5 shows depth profiles of water temperatures for one representative realization.

Heat waves are easily visible by increasing temperatures in the uppermost layers. With

a heat wave ending, the onset of the diurnal cycle with strong wind speeds in the after-

noon causes a mixing of the warm water down to the thermocline. While the epilimnion

warms up towards the end of the summer under the Gradual scenario, such warming is

only temporary in Spicy. However, combining Gradual and Spicy, the heat waves cause a



112 Application in Modelling the Climate Impact on Lakes

summer-lasting warming of the whole epilimnion much earlier than Gradual alone.

Figure 6.5: Representative water temperature profiles of GLM simulations for Stale (A),

Gradual (B), Spicy (C) and Spicy-Gradual (D). As published in (Gal, Gilboa, et al.,

2020).

Increased water temperatures at Lake Kinneret can cause shifts in zooplankton composi-

tion (Ninio et al., 2020), while lake warming in general is linked to proliferation of cyanobac-

teria and associated harmful algal blooms (Paerl and Paul, 2012).

6.4 Summary and Discussion

The lakes studied proved to be susceptible to warmer and to more variable weather. The

details, however, depend on the lake and on what variability in weather entails. Warmer

weather resulted most directly in increased water temperatures at the surface. How this

heat spreads to deeper levels is up to the stratification, which in turn depends on the longer

evolution of meteorologic conditions, and wind forcing to initiate mixing.

A combination of warming and increased variability can have more than the additive

effects of their parts. At Lake Kinneret, the gradual change accompanied by heat waves

triggered an earlier summer-lasting warming of the complete epilimnion.

VG is the first WG that was used in a peer-reviewed publication concerning lake mod-

elling. It has proven its worth with regard to estimating possible climate impacts on such

eco-hydraulical systems as a tool to produce what-if scenarios defined by the lake-modeller.

The results presented in this chapter have to be interpreted as projections based on past

linear correlation structures. As shown in the extrapolation test in section 3.9, changes in
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air temperature might not be accompanied by the changes in other variables as expected by

their statistical relation. Still, the method of balanced scenarios is arguably more statistically

and meteorologically plausible than scenarios with isolated, univariate changes.

Lake Constance and Kinneret are very different in size and are located in different climate

zones with distinct meteorological conditions. VG can be configured to account for different

climates, lakes and lake models. Having designed VG myself made it possible to adapt

this tool in a targeted way. The close collaboration with lake modelers made it possible to

identify such needs.



7 Outlook

Apart from addressing the weak points of the proposed WGs (overestimation of variability,

use of simplified vines, daily generation), a few other, tangential research trajectories are

sketched in the following.

7.1 Non-Gaussian Temporal Dependence

In the aim of having few free parameters, WeatherCop models temporal dependence by

phase randomization, which preserves linear dependence. This could be overcome by em-

ploying phase annealing, which optimizes phase values by simulated annealing in order

to minimize an objective function that characterizes deviations from possibly non-gaussian

properties (Hörning, 2016). It is flexible as the objective function can be formulated freely,

but the additional optimization step, that becomes part of the simulation process, adds com-

putational cost.

The phase randomization technique relies on the fact that the autocorrelation function

is only related to the power spectrum and not the phases. Hence, “surrogate” time series

with the same autocorrelation as a source time series can be generated by randomizing the

phases. Other, higher-order statistics do depend on the phases such as the so-called bispec-

trum (Collis, White, and Hammond, 1998). The bispectrum arises when conducting spectral

analysis of cubed signals and, as the power spectrum is a decomposition of the power of

a signal, the bispectrum decomposes the skewness. A possible next step would be to find

ways to randomize phases without changing the bispectrum and other higher-order spec-

tra too much, thus maintaining more statistics during phase randomization. If this can be

done without an on-line optimization step, it would be faster than phase annealing, how-

ever lacking its flexibility. If the mathematical tools could be found, this kind of exploration

could extend to “auto-bispectra”, which has the potential to keep temporal asymmetry (the

skewness of the difference of a signal with itself lagged) that is usually present in discharge

time series.

7.2 Coupling Multi-Site and Wind Field Generation for 3D Lake

Modelling

The horizontal wind speed distribution has an influence on flow patterns and mixing in

lakes. It is a feature requested repeatedly by limnologists who are employing 3D lake mod-

els. A path towards wind fields may be a gridded version of WeatherCop that interpolates
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amplitude spectra of the decorrelated variables spatially. Physical conservation laws that

govern flow and validation using output of regional atmospheric models pose challenges,

though. Simplifications can possibly be found by determining necessary properties of the

wind fields for 3D lake modelling.

7.3 Variability Changes Through Amplitude Spectrum

Adjustment

An aim in designing the enhanced variability scenario in section 3.8.2 was to obtain vari-

ability changes not just in the marginal distributions, but on a time scale of about a week.

Increasing the amplitude of a range of frequencies close to the weekly might achieve the

same thing and would be achievable in a precise manner with the help of the Fourier Trans-

form.

7.4 Extending the Model-Chain to Rainfall-Runoff-Models

Rivers also play an important role in lake ecology. The model-chain of WG and hydrody-

namic model could be extended by a rainfall-runoff model. Modelling the watershed in

together with lakes is nothing new (Cremona et al., 2017), but a multi-site WG feeding both

the river- and the lake model would be. Such a WG should be able to be consistent across

longer temporal and spatial scales.
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A Tables for VG Extrapolation Test

Table A.2 shows the changed means between calibration and validation period for all simu-

lated variables. The uppermost section shows these changes strictly for the observed data.

The second section in table A.2 shows a comparison between the means of observed and

simulated values during the calibration period.



xi

Table A.1: Means in calibration and validation periods including observed and simulated

data (cal.: calibration, val.: validation). Based on the regression method for dry-

ness estimation.

cal. observed val. observed val.-cal. val.-cal. [%]
θ [◦C] 8.783 10.087 1.304 14.848
R [mm] 2.430 2.491 0.061 2.493
Qsw [W/m2] 125.580 127.501 1.921 1.530
Qlw(inc.) [W/m2] 304.558 314.776 10.217 3.355
ϕ [-] 0.781 0.797 0.016 2.017
u [m/s] 0.594 0.663 0.069 11.573
v [m/s] 0.209 0.071 -0.139 -66.203

cal. observed cal. simulated cal.-cal. cal.-cal. [%]
θ [◦C] 8.783 8.805 0.022 0.255
R [mm] 2.430 2.800 0.369 15.195
Qsw [W/m2] 125.580 127.247 1.667 1.328
Qlw(inc.) [W/m2] 304.558 304.671 0.112 0.037
ϕ [-] 0.781 0.780 -0.001 -0.154
u [m/s] 0.594 0.604 0.010 1.648
v [m/s] 0.209 0.220 0.010 4.909

cal. simulated val. simulated val.-cal. val.-cal. [%]
θ [◦C] 8.805 10.111 1.306 14.831
R [mm] 2.800 2.565 -0.235 -8.386
Qsw [W/m2] 127.247 131.795 4.547 3.573
Qlw(inc.) [W/m2] 304.671 310.572 5.901 1.937
ϕ [-] 0.780 0.772 -0.008 -1.017
u [m/s] 0.604 0.615 0.011 1.795
v [m/s] 0.220 0.276 0.056 25.584

cal. observed val. simulated val.-cal. val.-cal. [%]
θ [◦C] 8.783 10.111 1.328 15.123
R [mm] 2.430 2.565 0.135 5.535
Qsw [W/m2] 125.580 131.795 6.214 4.949
Qlw(inc.) [W/m2] 304.558 310.572 6.014 1.975
ϕ [-] 0.781 0.772 -0.009 -1.169
u [m/s] 0.594 0.615 0.021 3.472
v [m/s] 0.209 0.276 0.066 31.749
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Table A.2: Means in calibration and validation periods including observed and simulated

data (cal.: calibration, val.: validation). Based on the distance method for dryness

estimation.

cal. observed val. observed val.-cal. val.-cal. [%]
θ [◦C] 8.783 10.087 1.304 14.848
R [mm] 2.430 2.491 0.061 2.493
Qsw [W/m2] 125.580 127.501 1.921 1.530
Qlw(inc.) [W/m2] 304.558 314.776 10.217 3.355
ϕ [-] 0.781 0.797 0.016 2.017
u [m/s] 0.594 0.663 0.069 11.573
v [m/s] 0.209 0.071 -0.139 -66.203

cal. observed cal. simulated cal.-cal. cal.-cal. [%]
θ [◦C] 8.783 8.806 0.023 0.260
R [mm] 2.430 2.872 0.441 18.163
Qsw [W/m2] 125.580 127.199 1.619 1.289
Qlw(inc.) [W/m2] 304.558 304.672 0.114 0.037
ϕ [-] 0.781 0.780 -0.001 -0.152
u [m/s] 0.594 0.603 0.009 1.457
v [m/s] 0.209 0.218 0.009 4.243

cal. simulated val. simulated val.-cal. val.-cal. [%]
θ [◦C] 8.806 10.112 1.306 14.830
R [mm] 2.872 3.023 0.151 5.260
Qsw [W/m2] 127.199 131.741 4.542 3.571
Qlw(inc.) [W/m2] 304.672 310.574 5.902 1.937
ϕ [-] 0.780 0.772 -0.008 -1.015
u [m/s] 0.603 0.614 0.011 1.810
v [m/s] 0.218 0.275 0.056 25.810

cal. observed val. simulated val.-cal. val.-cal. [%]
θ [◦C] 8.783 10.112 1.329 15.129
R [mm] 2.430 3.023 0.592 24.379
Qsw [W/m2] 125.580 131.741 6.161 4.906
Qlw(inc.) [W/m2] 304.558 310.574 6.015 1.975
ϕ [-] 0.781 0.772 -0.009 -1.166
u [m/s] 0.594 0.614 0.020 3.294
v [m/s] 0.209 0.275 0.065 31.148



B Tables for WeatherCop Extrapolation Test

Tables B.1 and B.2 show results from the extrapolation test in section 4.6.2 depending on

dryness probability estimation method.

Table B.1: Means in calibration and validation periods including observed and simulated

data (cal.: calibration, val.: validation). Based on the regression method for dry-

ness estimation.

cal. observed val. observed val.-cal. val.-cal. [%]
theta [◦C] 8.509 9.302 0.793 9.317
R [mm] 0.110 0.105 -0.006 -5.087
sun [min] 11.228 11.437 0.209 1.858
rh [-] 0.786 0.789 0.003 0.383

cal. simulated val. simulated val.-cal. val.-cal. [%]
theta [◦C] 8.523 9.316 0.793 9.302
R [mm] 0.111 0.107 -0.003 -2.949
sun [min] 11.094 11.762 0.667 6.016
rh [-] 0.790 0.781 -0.009 -1.150

cal. observed val. simulated val.-cal. val.-cal. [%]
theta [◦C] 8.509 9.316 0.807 9.480
R [mm] 0.110 0.107 -0.003 -2.597
sun [min] 11.228 11.762 0.533 4.749
rh [-] 0.786 0.781 -0.006 -0.719
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Table B.2: Means in calibration and validation periods including observed and simulated

data (cal.: calibration, val.: validation). Based on the distance method for dryness

estimation.

cal. observed val. observed val.-cal. val.-cal. [%]
theta [◦C] 8.509 9.302 0.793 9.317
R [mm] 0.110 0.105 -0.006 -5.087
sun [min] 11.228 11.437 0.209 1.858
rh [-] 0.786 0.789 0.003 0.383

cal. simulated val. simulated val.-cal. val.-cal. [%]
theta [◦C] 8.523 9.316 0.793 9.302
R [mm] 0.111 0.107 -0.003 -2.949
sun [min] 11.094 11.762 0.667 6.016
rh [-] 0.790 0.781 -0.009 -1.150

cal. observed val. simulated val.-cal. val.-cal. [%]
theta [◦C] 8.509 9.316 0.807 9.480
R [mm] 0.110 0.107 -0.003 -2.597
sun [min] 11.228 11.762 0.533 4.749
rh [-] 0.786 0.781 -0.006 -0.719



C Bivariate Copulas

Table C.1: Bivariate copula cumulative distribution functions (cdf s) used as candidates in

Vine construction. Subscripts (e.g. 90) refer to rotated versions obtained using

the substitutions from section 4.5. Not all rotated copulas passed automated tests

(problematic were often the inverse conditional cdf s) and were thus discarded.

Name Copula cdf

Ali-Mikail-Haq − uv
θ(u−1)(v−1)−1

Ali-Mikail-Haq180
uv(θu+θv−θ−1)

θuv−1

Ali-Mikail-Haq270
uv(θ(v−1)+1)
θu(v−1)+1

Ali-Mikail-Haq90
uv(θ(u−1)+1)
θv(u−1)+1

Clayton
(

−1 + v−θ + u−θ
)

−
1

θ

Clayton180 u+ v − 1 +
(

−1 + (1− v)−θ
+ (1− u)−θ

)

−
1

θ

Clayton270 v −
(

−1 + (1− u)−θ
+ v−θ

)

−
1

θ

Gaussian Φ(Φ−1(u),Φ−1(v), ρ)

Gumbel e−((− log (u))θ+(− log (v))θ)
1

θ

Gumbel180 u+ v − 1 + e−((− log (1−u))θ+(− log (1−v))θ)
1

θ

Gumbel270 v − e−((− log (v))θ+(− log (1−u))θ)
1

θ

Gumbel90 u− e−((− log (u))θ+(− log (1−v))θ)
1

θ

Gumbel-Barnett uve−θ log (u) log (v)

Independence uv

Joe 1−
(

− (1− u)θ (1− v)θ + (1− u)θ + (1− v)θ
)

1

θ

Nelsen10 2
1

θ

(

2− 2v−θ − 2u−θ + 4u−θv−θ
)

−
1

θ

Nelsen10180 2
1

θ

(

2− 2 (1− v)−θ − 2 (1− u)−θ
+ 4 (1− u)−θ

(1− v)−θ
)

−
1

θ

+ u+ v − 1

Nelsen10270 −2 1

θ

(

2− 2 (1− u)−θ − 2v−θ + 4v−θ (1− u)−θ
)

−
1

θ

+ v

Nelsen1090 −2 1

θ

(

2− 2 (1− v)−θ − 2u−θ + 4u−θ (1− v)−θ
)

−
1

θ

+ u
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Nelsen12 1
(

( 1−u

u )
θ
+( 1−v

v )
θ
) 1

θ +1

Nelsen12180 u+ v − 1 + 1
(

(− u

u−1 )
θ
+(− v

v−1 )
θ
) 1

θ +1

Nelsen12270 v − 1
(

(− u

u−1 )
θ
+(− v−1

v )
θ
) 1

θ +1

Nelsen1290 u− 1
(

(−u−1

u )
θ
+(− v

v−1 )
θ
) 1

θ +1

Nelsen13 e1−((1−log (u))θ+(1−log (v))θ−1)
1

θ

Nelsen13180 u+ v + e1−((1−log (1−u))θ+(1−log (1−v))θ−1)
1

θ − 1

Nelsen13270 v − e1−((1−log (v))θ+(1−log (1−u))θ−1)
1

θ

Nelsen1390 u− e1−((1−log (u))θ+(1−log (1−v))θ−1)
1

θ

Nelsen14







1
(

(

−1+u
−

1

θ

)θ

+
(

−1+v
−

1

θ

)θ
) 1

θ

+1







θ

Nelsen14180 u+ v +







1
(

(

−1+(1−u)−
1

θ

)θ

+
(

−1+(1−v)−
1

θ

)θ
) 1

θ

+1







θ

− 1

Nelsen14270 v −







1
(

(

−1+v
−

1

θ

)θ

+
(

−1+(1−u)−
1

θ

)θ
) 1

θ

+1







θ

Nelsen1490 u−







1
(

(

−1+u
−

1

θ

)θ

+
(

−1+(1−v)−
1

θ

)θ
) 1

θ

+1







θ

Plackett
(θ−1)(u+v)−

√
−4θuv(θ−1)+((θ−1)(u+v)+1)2+1

2(θ−1)



D Resampler Output Statistics

Table D.1: Some basic statistics to compare source and generated data in a univariate sense.

The marginals of the source data where transformed to standard-normal an the

resampled and VAR-generated time series are not back-transformed into the mea-

surement dimensions. All generated time series (K-Nearest Neighbors (KNN),

VAR, VG, WeatherCop) have a length of 1000 years. VAR refers to results from a

VAR-process with gaussian noise, whereas VG uses phase-randomized residuals.

Statistic Variable Source KNN VAR VG WCop

mean Temperature 0.002 -0.077 -0.000 0.002 0.002
Precipitation 0.034 0.067 -0.003 0.066 0.069
Short-wave radiation 0.025 -0.031 0.001 0.049 0.015
Incident long-wave radiation 0.000 -0.016 -0.001 -0.000 0.018
Relative humidity -0.004 0.129 -0.000 -0.003 0.020
Eastward wind speed 0.008 0.017 -0.003 0.011 0.016
Northward wind speed 0.003 0.052 -0.007 -0.000 0.008

std. deviation Temperature 0.960 0.817 0.958 0.947 0.960
Precipitation 1.033 0.878 1.032 1.040 1.028
Short-wave radiation 0.964 0.861 0.967 0.965 0.957
Incident long-wave radiation 0.980 0.830 0.980 0.987 0.985
Relative humidity 0.988 0.842 0.985 0.969 0.950
Eastward wind speed 0.959 0.801 0.961 0.961 0.958
Northward wind speed 0.965 0.827 0.968 0.967 0.967

skewness Temperature -0.129 -0.063 -0.002 -0.045 -0.005
Precipitation 0.001 0.073 0.002 -0.016 0.004
Short-wave radiation -0.012 0.032 -0.002 0.010 0.034
Incident long-wave radiation -0.163 -0.155 -0.008 -0.039 -0.021
Relative humidity 0.003 -0.021 -0.000 -0.009 -0.064
Eastward wind speed 0.050 0.188 0.001 -0.007 -0.041
Northward wind speed 0.023 0.141 0.004 -0.002 0.016

kurtosis Temperature -0.202 -0.206 0.020 0.023 0.022

Precipitation -0.130 -0.049 0.063 0.002 0.012
Short-wave radiation -0.385 -0.307 0.018 -0.008 0.074

Incident long-wave radiation -0.348 -0.228 -0.002 0.020 -0.001
Relative humidity -0.169 -0.131 0.027 0.006 0.063

Eastward wind speed 0.018 0.152 -0.009 0.011 -0.001
Northward wind speed 0.061 0.180 -0.011 0.007 -0.048

range Temperature 6.991 6.991 9.065 8.980 9.817
Precipitation 7.651 7.651 9.965 9.722 9.040
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Short-wave radiation 6.265 6.265 8.919 9.908 9.657
Incident long-wave radiation 6.192 6.192 9.222 9.062 9.296
Relative humidity 7.256 7.256 9.677 9.126 8.955
Eastward wind speed 6.102 6.102 8.943 8.584 9.091
Northward wind speed 6.110 6.110 9.454 8.780 9.441

interq. range Temperature 1.343 1.129 1.288 1.278 1.294
Precipitation 1.449 1.242 1.385 1.401 1.386
Short-wave radiation 1.379 1.201 1.301 1.304 1.282
Incident long-wave radiation 1.379 1.161 1.322 1.329 1.330
Relative humidity 1.360 1.160 1.326 1.307 1.274
Eastward wind speed 1.289 1.084 1.298 1.299 1.294
Northward wind speed 1.239 1.056 1.310 1.303 1.315

minimum Temperature -3.965 -3.965 -4.566 -4.705 -4.162
Precipitation -3.823 -3.823 -4.929 -4.863 -4.457
Short-wave radiation -2.861 -2.861 -4.597 -5.080 -4.846
Incident long-wave radiation -3.310 -3.310 -4.433 -4.563 -4.636
Relative humidity -4.133 -4.133 -4.918 -4.815 -4.728
Eastward wind speed -3.055 -3.055 -4.404 -4.413 -4.724
Northward wind speed -3.030 -3.030 -4.228 -4.366 -4.609

lower quartile Temperature -0.646 -0.629 -0.644 -0.634 -0.645
Precipitation -0.675 -0.519 -0.695 -0.633 -0.624
Short-wave radiation -0.661 -0.629 -0.649 -0.603 -0.629
Incident long-wave radiation -0.677 -0.582 -0.661 -0.662 -0.644
Relative humidity -0.678 -0.445 -0.663 -0.655 -0.610
Eastward wind speed -0.625 -0.531 -0.651 -0.638 -0.627
Northward wind speed -0.590 -0.466 -0.662 -0.652 -0.651

median Temperature 0.021 -0.075 0.001 0.006 0.004
Precipitation 0.014 0.018 -0.005 0.070 0.066
Short-wave radiation 0.028 -0.036 0.002 0.047 0.012
Incident long-wave radiation 0.038 0.008 -0.002 0.006 0.021
Relative humidity -0.024 0.123 -0.000 -0.002 0.029
Eastward wind speed -0.038 -0.047 -0.003 0.013 0.024
Northward wind speed -0.031 -0.002 -0.009 0.002 0.006

upper quartile Temperature 0.697 0.500 0.644 0.644 0.649
Precipitation 0.775 0.723 0.690 0.768 0.762
Short-wave radiation 0.719 0.572 0.652 0.701 0.652
Incident long-wave radiation 0.702 0.579 0.661 0.667 0.686
Relative humidity 0.682 0.716 0.663 0.652 0.663
Eastward wind speed 0.664 0.553 0.647 0.661 0.667
Northward wind speed 0.649 0.589 0.648 0.651 0.664

maximum Temperature 3.026 3.026 4.499 4.275 5.656
Precipitation 3.828 3.828 5.036 4.858 4.583
Short-wave radiation 3.404 3.404 4.322 4.828 4.811
Incident long-wave radiation 2.882 2.882 4.789 4.500 4.660
Relative humidity 3.123 3.123 4.759 4.311 4.227
Eastward wind speed 3.047 3.047 4.538 4.171 4.367
Northward wind speed 3.080 3.080 5.227 4.414 4.832
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