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This thesis analyzes the effects of maps, sensor fusion and trust models on au-
tonomous vehicle satellite positioning. The aim is to analyze the localization im-
provements that commonly used sensors, technologies and techniques provide to
autonomous vehicle positioning. This thesis includes both survey of localization
techniques used by other research and their localization accuracy results as well as
experimentation where the effects of different technologies and techniques on lateral
position accuracy are reviewed. The requirements for safe autonomous driving are
strict and while the performance of the average global navigation satellite system
(GNSS) receiver alone may not prove to be adequate enough for accurate position-
ing, it may still provide valuable position data to an autonomous vehicle. For the
vehicle, this position data may provide valuable information about the absolute po-
sition on the globe, it may improve localization accuracy through sensor fusion and
it may act as an independent data source for sensor trust evaluation.
Through empirical experimentation, the effects of sensor fusion and trust functions
with an inertial measurement unit (IMU) on GNSS lateral position accuracy are
measured and analyzed. The experimentation includes the measurements from both
consumer-grade devices mounted on a traditional automobile and high-end devices
of a truck that is capable of autonomous driving in a monitored environment. The
maps and LIDAR measurements used in the experiments are prone to errors and
are taken into account in the analysis of the data.
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1 Introduction

It is said that autonomous vehicles are the next big step in technological advance-

ment. The benefits of autonomous driving range from safer travel to reduced traffic

congestion [1]. 90% of all traffic accidents happen because of human error [2]. The

amount of road accidents could be greatly reduced if human error could be removed

from traffic by using autonomous vehicles.

Unfortunately, autonomous driving has various technological challenges that it

has to overcome in order to reach the safety and reliability requirements for public

use. These challenges are in the fields of sensing, computing, security, localization

and decision making [3]. Autonomous vehicles need to process a lot of data really

fast in real time and there is very little room for error. The autonomous vehicle

needs to know where it is, where it is going, and what is around it at all times using

the information provided by its sensors or it risks the safety of its passengers and

its environment. Safety is the most important part of autonomous driving, which

is why focus on the trust and accuracy of its key systems and sensors should have

high priority.

High positional accuracy with high reliability is necessary for safe autonomous

driving. There is little room for error because in the worst case scenario, errors may

lead to human fatalities. In fact, autonomous vehicles have already caused a fatal

accident. In 2018, an autonomous vehicle tested by Uber made a fatal collision with

a pedestrian [4]. If autonomous vehicles are to be trusted with human lives, they
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should be able to know when to trust the data given by their sensors and when to

recognize faulty sensor data.

This thesis will focus on the global navigation satellite systems (GNSS) in au-

tonomous vehicles, the localization of autonomous vehicles and the reliability of

sensors in autonomous driving. Requirements for autonomous driving are strict and

while a GNSS receiver can perform well enough in optimal scenarios, it still has

many challenges to overcome. By using many different techniques and technolo-

gies the positioning results from GNSS can be improved. One of such techniques

is sensor fusion which combines the measurements of multiple sensors to produce

a more reliable and accurate measurement result. Because of sensor fusion, this

thesis will also overview other sensors and their relationship to autonomous vehicle

positioning. The goal of this work is to provide insight into the the accuracy and

reliability of GNSS in autonomous driving and the experiment with methods that

can be used to improve them. This work will address the some of the challenges of

GNSS positioning in terms of its accuracy and reliability evaluation as well as its

use for localization in autonomous driving.

Satellite navigation systems have the reputation of being too inaccurate for lo-

calization and are often only used for navigation in autonomous vehicles. However,

there is much research that proves otherwise. GNSS receivers can be quite use-

ful even for accurate localization. To gain positional accuracies below the meter

level GNSS receiver often has to be complemented with other sensors, unless it is a

particularly high-end receiver. [1]

The accuracy and reliability of GNSS and inertial measurement unit (IMU) sen-

sors in this thesis are measured empirically and the results are compared to the

results of other similar research. The empirical tests in this thesis are divided into

two sections. The first section is an experiment on the performance consumer-grade

GNSS and an inertial measurement unit of a smartphone mounted on an ordinary
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automobile. The second section is an experiment on the performance of light de-

tection and ranging system (LIDAR), GNSS and IMU of an autonomously driving

truck in its testing phase.

A well performing GNSS can help in many aspects of autonomous driving and

other sensors are not really of capable of replacing GNSS in those aspects. Satel-

lite positioning is one of the only ways to get the absolute position on the globe

consistently and accurately [1]. There are many advantages of global positioning

that relative positioning cannot provide. Navigation for example is one thing that

is nearly impossible to do without a proper map and a satellite navigation system.

It is also difficult to detect errors in those maps without accurate global positioning

that does not rely on known positions of objects in that map [5]. In addition to all

of these advantages, even a consumer grade GNSS can be used to improve the lo-

calization accuracy of autonomous vehicles through techniques such as sensor fusion

[6] or map-matching [7].

This thesis is organized as follows: The second chapter looks at the properties

of autonomous vehicles, autonomous vehicle localization and the role of positioning

sensors in them, especially the role of GNSS sensor. The third chapter seeks to

address the goals and requirements of GNSS positioning in autonomous driving.

The fourth chapter reviews the research methodology of the experiments. The fifth

chapter shows the results of the experiments done for this thesis. The sixth chapter

compares the results obtained from the experiments in this thesis to those of other

research. The seventh chapter presents the contributions of this thesis.



2 Localization of autonomous

vehicles

2.1 Autonomous vehicles and autonomous driving

Autonomous driving is when the system of a vehicle controls some or all functions

of the maneuvering and navigation of the vehicle. As detailed by liu et al. [3],

autonomous driving is not one technology but rather an integration of many tech-

nologies. Autonomous driving requires that the car knows where it is in relation

to its environment and what it should do next to reach its destination safely. To

accomplish this task, autonomous vehicles use various different sensors, algorithms

and maps. Autonomous driving can be divided into different levels based on how

much control, and therefore responsibility the driving system has over the vehicle

[8].

The society of automotive engineers (SAE) has defined 6 levels of autonomous

driving. The levels range from assisted driving to fully autonomous driving. Level

1 (Driver assistance) describes a vehicle that assists the driver in basic functions of

the car such as breaking and includes currently common technologies such as cruise

control and anti-lock braking system (ABS). Level 2 (Partial driving automation)

includes advanced driver assistance systems where the car can be in control of both

acceleration and steering, however a human has to constantly monitor the driving
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and be ready to intervene at all times. At level 3 (Conditional driving automation)

the car is capable of decision making and is aware of its environment, but like in level

2, the driver has to remain alert and be able to take over the autonomous driving

system in the case of errors in the system. At level 4 (High driving automation)

the vehicle rarely requires human assistance, but can be overridden by a human if

necessary. At level 5 the vehicle (Full driving automation) does not require any

human attention or assistance for autonomous driving and therefore also requires

the highest reliability, accuracy and security for safe travel. At level 0 the system

has no control over the vehicle but may still give information to the driver. The

levels of autonomy are summarized in table 2.1. [8]

The higher the level of autonomy, the more precise and secure data the au-

tonomous driving system requires [8]. Although accurate GNSS positioning is also

useful for lower levels of automation, the focus of this thesis’ experiments are on

autonomous systems of level 3 and up where constant human assistance is not nec-

essary for maneuvering and monitoring of the driving environment.

2.1.1 Autonomous vehicle sensors and their role in localiza-

tion

Autonomous vehicles need sensors to drive safely. Sensors provide important in-

formation of the vehicle’s condition and the environment that the vehicle uses for

driving and decision making. Every type of sensor has its own strengths and limita-

tions. The most commonly used sensors in autonomous vehicles are radar, LIDAR,

camera, inertial measurement systems and satellite navigation systems. Sensors

used in autonomous vehicles have gotten both better and cheaper over time and will

continue to do so. [3] [9]

Sensors used in autonomous vehicles can be split into two separate groups: pro-

prioceptive sensors that measure the internal state of the vehicle and exteroceptive
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Table 2.1: SAE levels of autonomy

Level Definition

Human driver monitors environment

Level 0 Driver completely in control of the vehicle.

Level 1 Individual tasks may be performed by the vehicle.

Level 2 The vehicle may perform several of the tasks of driving, the driver

performs the rest.

Automated driving system monitors the driving environment

Level 3 The vehicle performs all driving tasks, the driver is expected to

take over if requested.

Level 4 The vehicle performs all driving tasks, the driver is allowed to take

control of the vehicle.

Level 5 The vehicle performs all driving tasks in all conditions.

sensors that measure the properties of the environment of the vehicle. IMU, wheel

odometry and GNSS are examples of proprioceptive sensors. Exteroceptive sensors

include sensors such as LIDAR, ultrasonics, camera and radar. [2]

The automotive radar’s role is to detect and range objects in the environment,

based on a point representation. Radar works by bouncing radio waves off of objects

and measuring the distance to the object by calculating the time it takes for the

waves to arrive back to the sensor as well as measuring the speed of the object via the

Doppler effect. Traditionally automotive’s radar is used for blind spot detection and

pre-crash systems but as radar technology improves, so do its uses in autonomous

driving. Radar sensors are great at performing in poor conditions where the weather

or time of day may affect other sensors. Radar sensors are mostly limited by their

resolution, their capability to measure height and their imaging performance at low

speeds. [9] [10]
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The light detection and ranging system’s (LiDAR) role in autonomous vehicles

is perception and localization. A LIDAR can be used to perceive the shape, pose,

velocity of objects as well as geometry of the environment. The LIDAR measures the

distance to objects in the environment by shooting precise lasers at reflective surfaces

and processing the reflections of those lasers. The LIDAR’s biggest advantages are

its high accuracy, resolution and speed. Since LIDAR uses light, it is limited by

weather conditions (fog, rain etc.) and poor surface textures of objects as well as the

texture of the road. [11] [5] Another weakness of the LIDAR is that dynamic objects

in the environment can make localization difficult if they obstruct the key elements

in maps used with the LIDAR [12]. The accuracy of modern spinning/mechanical

LIDARs are in the centimeter range and their detection range is from 1 meter to

100 meters [2].

Inertial measurement units (IMUs) in autonomous vehicles are used to measure

the acceleration and orientation of the vehicle using accelometers and gyroscopes.

Sometimes a magnetometer is included with an IMU to measure the sensor’s ori-

entation in relation to the magnetic field of the Earth. IMUs weakness are the

difficulty of its calibration and its accuracy over long time periods. The strengths of

the IMU are its measurement speed and availability in difficult environments such

as in tunnels and poor weather conditions. IMU is commonly used for a dead reck-

oning, a positioning technique where measurements of the IMU are used to calculate

a vehicle’s position when satellite navigation becomes unavailable and only the pre-

vious location of the vehicle is known. The inertial measurement unit’s biases and

the effect of sideslip make it hard to use it for dead reckoning positioning over long

periods of time. [12] [13]

Cameras are often used for object recognition, object tracking and vehicle lo-

calization. They can be used to detect objects such as lane markings, traffic lights

and pedestrians. Cameras are great at generating lots of data of the environment



2.1 AUTONOMOUS VEHICLES AND AUTONOMOUS DRIVING 8

quickly, especially if multiple cameras are used. The camera is limited by the effects

of weather, effects of lighting and computing requirements of image processing. Ad-

ditionally, the image recognition algorithms used in autonomous vehicles play a big

role in the effectiveness of the camera as a sensor because misclassification in images

can lead to large errors. [3] [9] [14]

The role of GNSS in autonomous driving is to provide global positional data to

the vehicle. The primary strength of GNSS is its ability to provide absolute position

on the globe for the vehicle. The biggest limitation of GNSS is the general accuracy

of the positioning. In addition to that weakness, the accuracy is even more limited in

environments where physical obstructions make satellite positioning more difficult.

Some techniques to greatly improve the satellite positioning accuracy exist. [1]

2.1.2 Autonomous vehicle sensor fusion

The outputs of a vehicle’s sensors can be combined with sensor fusion in order

to increase their accuracy and reliability. Since some of the sensors’ output data

overlaps with each other, the reliability of that data improves because it is less likely

that multiple independent sensors will have the same error for the same spot. For

example, if location data given by GNSS matches with the location data extrapolated

with an inertial measurement unit, the vehicle can be more certain of its location

than it could be if it only had to rely on GNSS or IMU alone. The limitations of

some sensors can be offset with the strengths of others by using sensor fusion. It

has been shown that the more sensors are included in sensor fusion, the better the

performance and reliability of the system becomes. [2] [6] [9]

There are many types of sensor fusion methods, but they can be boiled down

to classical sensor fusion algorithms and deep learning sensor fusion algorithms.

Classical sensor fusion algorithms use inaccuracies and uncertainties to fuse the

measurement data of the sensors. A good example of a classical sensor fusion al-
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gorithm would be the error-state Kalman filter used by, for example, Wan et al.

[15] to improve autonomous vehicle localization. Deep learning fusion algorithms

use neural networks to fuse sensor data. For example, deep learning sensor fusion

can be used to fuse data from LIDAR point-clouds and camera images for object

detection and recognition. [2]

It should be noted that while classical sensor fusion methods that are used for

localization such as Kalman filters are able to detect measurements that do not

sufficiently match the current pose of the vehicle, they are not able to detect biased

drifts in measurements that are common with GNSS and IMU. Extended Kalman

filter (EKF) is a popular sensor fusion method used with GNSS and IMU that is less

subject to biases, but is more subject to estimation errors. Particle filters can also

be used for sensor fusion and are also less subject to biases, but are considered too

computationally heavy for use in autonomous vehicle applications. However, many

improvements to current sensor fusion methods that are used with GNSS sensors

are still under research. [7] [16]

Extended Kalman filters are non-linear versions of Kalman filters. Kalman filters

estimate the optimal state of a system from noisy or erroneous observations of linear

systems. Extended Kalman filters use Taylor series expansions to linearize non-

linear systems. However, Kalman filters and extended Kalman filters require proper

initialization values for optimal performance. These initialization values are the

state vector and the covariance matrix. A good estimation of these values will

improve the performance of the filter. The state vector is the estimation of the

initial properties of the system. In autonomous vehicles this would be the initial

position, velocity and orientation of the vehicle. The covariance matrix represents

the confidence the system has in its variables. In autonomous vehicles these would

be the different noise and bias values of the used sensors. [17] [18]
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2.2 Autonomous vehicle positioning

The precise knowledge of position and orientation is paramount for autonomous

vehicle path planning, perception, control and safety. For localization the car needs

information about its local environment from its sensors. This information is often

combined with a data set such as a map. Knowledge about the car dimensions and

sensor locations is also necessary to estimate car pose. [19]

By using a suitable map, cameras or range measuring sensors such as LIDARs can

be used for localization by measuring distances from the vehicle to known landmarks

in the environment and estimating vehicle pose in relation to those landmarks. The

map used for this kind of localization can be either generated during the driving

or provided to the vehicle by systems other than the vehicle. Sensor fusion with

proprioceptive sensor such as a GNSS or IMU can then be used to improve this

estimation and reduce errors in localization. [6]

Unfortunately, localization is always prone to errors but autonomous vehicle

applications can estimate their probable maximum error horizontally and vertically.

These maximum errors can be used as buffers known as protection levels. To ensure

that a vehicle knows that it is within its lane, near decimeter-level accuracy is a

requirement. In such scenarios the protection level has to stay within this decimeter-

level limit, so that the vehicle knows that its localization error is definitely below

this level. The decimeter limit here is known as the alert limit. If the protection

level of the vehicle’s system goes above this alert limit, then it becomes probable

that the system encounters a localization error that risks unsafe maneuvering of the

vehicle. Alert limits for an autonomous vehicle are defined by the required precision

for safe operation in its operation environment. [19] [20]

Protection levels and alert limits also apply to orientational errors of the vehicle’s

pose. If the orientational protection level of the system exceeds the orientational

alert limit, the system risks a localization error that is too big for safe autonomous
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driving [1]. For safe autonomous driving, the error in the pose estimation of the

vehicle should stay below the degree level [19]. Protection levels and alert limits are

visualized on Figure 2.1.

Figure 2.1: Definition of protection levels

There are many algorithms that improve upon the positional data given by the

vehicle’s sensors and reduce the maximum error of the data. Particle filtering,

map-matching, resampling and particle cloning are a few examples [20]. Connected

vehicle applications that use vehicle-to-everything (v2x) or Vehicle-to-vehicle (v2v)

communication technologies for localization are also proven to be able to improve

the positional accuracy of the localization of the vehicle [21].

Machine learning and deep learning algorithms can also be used to improve
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the localization accuracy of autonomous vehicles. For instance, Akail et al. [22]

showed how machine learning can be used to detect LIDAR localization failures by

evaluating the reliability of its measurements.

2.2.1 Role of maps in autonomous vehicles

Maps tell key information about the environment for autonomous vehicles. Maps

can be used to localize the car position both globally (Vehicle absolute position on

earth) and locally (Vehicle position relative to road elements in environment) [23].

There are two types of maps: priori maps and SLAM (Simultaneous localization

and mapping) maps. Priori maps are maps that are generated from prior records of

the environment. SLAM maps are virtual maps that are generated by the vehicle

at the same time as it is localizing itself. [24]

Priori map accuracy varies a lot and for autonomous driving a "lane-level accu-

rate" priori map is often enough for partially automated driving outside of cities.

However, research in [23] suggests that a high-definition map (HD map) is necessary

for safe highly automated driving in urban environments. HD maps contain not only

information about lane positions of the road, but also about complex environmen-

tal details such as bicycle lanes, sidewalks, road markings and traffic signs. Only

up-to-date HD maps that are accurate to a few centimeters are good enough to be

used for safe highly automated driving in any environment [23]. High-quality HD

maps are often stored in the cloud due to data storage limits of vehicles [25]. Priori

maps have an absolute and a relative accuracy. The former defines how accurate

the map is on a global level and the latter defines how accurate the map elements

are relative to each other [26].

Most commonly used priori maps that are used for autonomous driving can

be split into 2 types: Planar maps and point-cloud maps. Planar maps are maps

that use the layers or planes of Geographic Information System (GIS) to represent
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points of interest and geometric elements on the map. Point-cloud maps are 3

dimensional maps where the information of the environment is stored as a cluster

of points with specific locations in 3 dimensions. Point-cloud maps take up a lot

of storage and are often computationally intensive to use. One weakness of priori

maps is that large changes to the road environment can make the map obsolete.

One solution to this is to use probabilistic maps which are used to compare GNSS

positioning to map-based localization to spot errors in outdated maps and errors

introduced by dynamic elements. One example of a probabilistic map is the Gaussian

mixture map demonstrated by Wolcott et al [5]. In addition to reducing effects

of dynamic elements, the Gaussian mixture map also reduces the computing and

storage requirements of a point-cloud based map [12].

For global positioning autonomous vehicles use a GNSS receiver together with a

global map. Matching GNSS position with roads on a map is called Map-matching.

However, the level where map-matching is done only for road level is only useful for

navigation and is not enough for localization. Lane-level map matching has benefits

for accurate autonomous vehicle localization, but it requires an accurate lane-level

map structure of the vehicle’s environment as well as precise GNSS positioning. This

is especially true in urban environments where there is less room for error due to

smaller roads. [20]

For relative positioning during driving without a priori map, autonomous cars use

their exteroceptive sensors to create a local virtual map for themselves. This virtual

map is a SLAM map where the vehicle simultaneously estimates its position in

relation to its environment as well as the position of key features in the environment

[27]. Commonly a LIDAR, radar, and/or a camera with image recognition is used for

this purpose. Local virtual maps are necessary for decision making and maneuvering.

Most modern SLAM applications of autonomous vehicles do not use GNSS at all

due to its apparent lack of availability and precision. Instead mainly LIDAR and
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camera are used. However, there are some proposals of using modified version of

SLAM with GNSS where even a low-cost GNSS receiver improves the localization

accuracy when used together with LIDAR. [6] [24] [28] [29]

Using maps introduce its own errors to car localization due to their inaccuracies.

Depending on the map, the key information of the roads in a map may be off their

true location by tens of centimeters or even many meters. By using just code-phased

GNSS, it is possible to make horizontally sub 50-cm accuracy digital maps of urban

environments [29]. However, for the more accurate and detailed HD maps (High-

definition maps) data from multiple high-quality sensors together with high-end

GNSS receiver is required. HD maps and point-cloud maps are considered accurate

enough for map-matching localization with high resolution sensors such as LIDAR.

A HD map generated with high-quality IMU, GNSS and LIDAR sensor fusion can

reach absolute localization accuracies in the centimeter level. [30]

However, even maps with inaccuracies above one meter can be useful for au-

tonomous vehicle localization and navigation. A study in 2018 [31] used an inac-

curate topological map that has inaccuracies of multiple meters in a rural environ-

ment in combination with LIDAR SLAM to predict the future vehicle position to be

within the road boarders >99% of the time despite the road not having markings or

a predictable geometry of curbs. Inaccurate maps can also be useful when using col-

laborative v2v. Maps with inaccuracies up to a few meters can be useful for precise

exchange of vehicle position, velocity and intent in collaborative v2v autonomous

driving [29]. The relative and absolute accuracies of different kinds of maps used in

autonomous driving are listed on Table 2.2.

OpenStreetMap is a large collection of geospatial data that is mostly created

with data collected by ordinary citizens. Its quality is largely dependent on the

GPS capabilities of those citizens. Because of this, there are large deviations in

its data accuracy. One study in 2015 measured that 95% of open street map data
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Table 2.2: Accuracy of maps

Map Absolute accuracy Relative accuracy

OpenStreetMap [32] - 2018 4 meters -

Digiroad [33] 3 meters -

Tomtom HD map [34] - 2016 < 1 meters 0.1 meters

Sanborn HD map [35] - 2021 < 0.1 meters -

Lidar + GNSS + IMU generated HD map

[30] - 2020

< 0.1 meters -

Gaussian mixture map [5] - 2017 < 0.3 meters -

LIDAR + GPS + IMU SLAM [36] - 2020 - < 5 cm

points lie within 4.2 meters of their true location but in the worst case errors may

reach almost 6 meters. [32]

Digiroad is a national open data database of the Finnish road network. Digiroad

provides a large scale road map of Finland. Road geometry of many of Finland’s

public roads is provided with a maximum absolute error of 3 meters. However, some

sections of the map provide absolute accuracy in the decimeter range. Additionally,

locations of other road elements such as traffic lights and road signs are provided in

the map. [33]

Tomtom HD maps provide a decimeter level relative accuracy and a sub-meter

level absolute accuracy of 3D map attributes such as lane geometry. Their map

is claimed to be accurate enough for automotive localization accuracy of 50 cm

longitudinal and 20 cm lateral [34].

2.3 Global navigation satellite system

A system that uses satellite constellations for absolute global positioning is called

a satellite navigation system. Satellite navigation works by calculating latitude,
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longitude and altitude of a system by using the precise time information contained

in the signals that are transmitted by satellites in orbit and the known satellite

positions by using a process called trilateration. This process requires the signals of

at least three satellites, but often more satellites are used to improve the accuracy

of positioning. [1]

A GNSS (global navigation satellite system) uses multiple different satellite con-

stellations simultaneously to achieve high precision positioning. Currently there are

4 primary fully operational GNSS satellite constellations: GPS, GLONASS, BeiDou

and Galieo. Additionally, QZSS and IRNSS constellations can be used for improved

accuracy. GPS (Global Positioning System) is the United States’ satellite-based po-

sitioning system. At the moment, there are 31 GPS satellites in orbit and 5 of them

are part of the GPS III block [37]. The GPS III block is the newest GPS satellite

block which aims to provide sub-meter level positional accuracy for civilian use by

2030 [37]. GLONASS is the Russian Federation’s satellite-based positioning system.

GLONASS has 24 satellites in orbit. GLONASS aims to improve the accuracy of

the positioning system by launching GLONASS-K2 satellites to orbit in 2022 [38].

BeiDou is the chinese satellite positioning system. The current BeiDou-3 system

has 30 satellites in orbit [39]. Galileo is the European Union’s satellite positioning

system. Galileo has 24 satellites in orbit and is claimed to provide sub-meter level

accuracy for general use [40]. Each satellite constellation broadcasts encrypted codes

that increase their positioning accuracy for military use. [1]

There are 2 generations of GNSS: GNSS-1 and GNSS-2. The second generation

GNSS (GNSS-2) provides better accuracy and lessens the problems with signal re-

flections when compared to the first generation GNSS. Also modern L5 band satellite

frequencies offer ten times the bandwidth of legacy L1 frequencies reducing errors

in multi-path environments and increasing speed of signal acquisition. These legacy

L1 frequencies should not be confused with L1C frequencies which is the newest civil
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GPS signal designed to improve signal reception in challenging environments such

as cities [41]. GNSS receiver’s performance is affected by the used frequency band

[42].

In good conditions a modern GNSS can provide decimeter-level accuracy with

95% availability. The accuracy and availability of positioning are dependent on noise,

signal interference, biases in clocks, biases in satellite orbits, hardware, physical

obstructions, atmospheric conditions and even the movement of the earth’s crust

and tidal forces. Fortunately, some of these errors are greatly reduced with modern

technologies, techniques, coordinate systems and services. For example, the biases in

clocks that result from GNSS receiver having a deviation in system time in relation

to the time in the clocks of the satellites can be reduced by gaining correction

information updates about satellite time more frequently. Unfortunately, most of

these errors still affect the positioning accuracy of GNSS to this day and cannot be

completely eliminated. [1] [42]

Physical obstructions may reduce satellite visibility for the GNSS receiver which

affects position fix availability and forces the receiver to use satellites that have

worse satellite geometry. The closer the used satellites are to each other, the worse

the satellite geometry. Physical obstructions may also lead to multipath error. Mul-

tipath is when satellite signals reflect off of physical obstacles before reaching the

receiver. This leads to problems where the extra distance and delay caused by

the signal reflection reduce the positioning accuracy. Many techniques to reduce

the effect of multipath exist, but multipath still continues to be a problem in well

obstructed environments. [43]

GNSS may also be used to calculate the velocity of the vehicle up to a 5 cm/s

accuracy with basic receivers, improved to 1 cm/s accuracy by higher cost GNSS

devices. Heading can also be measured using multiple GNSS sensors using the

ambiguity resolution function. By using ambiguity resolution function, two GNSS
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antennas can reach an accuracy in heading that can be as accurate as 0.1 degrees

horizontally and 0.4 degrees vertically. [1]

A GNSS system also has quality indicators that estimate the reliability of its

positioning estimate. For example, the geometry of the used satellites can affect the

precision of positioning. The satellite geometry refers to how the used satellites are

positioned in relation to each other. The effects of satellite constellation geometry

on positioning are referred to as "dilution of precision". Dilution of precision can

be calculated for geometric dilution, horizontal dilution, vertical dilution, position

dilution and time dilution. [44]

Machine learning has also been used to improve the positional data given by

GNSS receivers in many different contexts. Hsu [45] showed that machine learning

can be used to detect multipath error in received satellite positioning signals where

there was no direct line of sight to satellites from the receiver. Since traditional

multipath error detection and mitigation techniques do not work in contexts where

there is no line of sight to the used satellites, the machine learning proved to be

valuable improvement to positioning in physically obstructed environments.

2.3.1 Precise forms of GNSS positioning

In order to reduce GNSS error given by noise, biases and other significantly accuracy-

reducing effects, some error correction and fault detection methods have to be used

for decimeter level accuracy. By using techniques that measure the amount of carrier

cycles between the satellite and the receiver, a centimeter-level accuracy is possi-

ble. Receivers that use this technique for positioning are called carrier-phase based

differential global navigation satellite systems (CDGNSS). [42] [46]

Using satellite-based augmentation systems (SBAS) is a technique that can im-

prove positioning of a GNSS system. In SBAS, monitoring stations relay correction

information about orbits and clocks to SBAS satellites which broadcast the infor-
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mation from orbit to GNSS receivers. Most commonly used satellite-based augmen-

tation systems are WAAS (United states), EGNOS (Europe) and MSAS (Japan).

[1]

Code-based differential global navigation satellite systems use the correction in-

formation given by various services such as SBAS or a nearby reference station. The

positioning accuracy of code-based GNSS navigation depends on the source of the

correction information, though typically it is 1 to 2 meters. [1]

Precise point positioning (PPP) is a technique that corrects the errors of the

GNSS system by using orbit and clock corrections that are estimated from global

reference receivers. However, navigation systems may require many minutes for PPP

convergence and are normally limited to decimeter level accuracy for automotive

positioning. [42]

Real time kinematics (RTK) is a form of CDGNSS that improves positional

accuracy by differencing signals of accurately known reference station and signals

given by satellites. RTK is very limited since it requires a reference station to

be within a few dozen kilometers. Network RTK or N-RTK uses multiple reference

stations improving positioning in dynamic environments where the receiver is moving

quickly. [1] [42]

Modern GNSS may also use a hybrid RT-PPP method that combines both PPP

and RTK. RT-PPP works as long as a GNSS base station is within a couple of

hundred kilometers. RT-PPP can provide positioning accuracy of 10 cm with a

convergence time of less than half a minute. [1] [42]



3 Reliability, requirements and goals

of GNSS systems for autonomous

driving

3.1 Requirements for autonomous driving

According to Matthei et al. [47], a SAE-level 5 autonomous vehicle has at least 8 re-

quirements that it must be able to handle in order to function properly: Operating,

Mission accomplishment, Map data, Localization, Environmental perception, Coop-

eration, Safety and Self-perception. Operating means that the vehicle must be able

to follow instructions given by a human such as go to a destination or stop immedi-

ately. Mission accomplishment means that the vehicle must be able to accomplish

a mission such as a navigation task. Map data means that the car must have a map

for route planning. Localization means that the car must be able to know its pose.

Environmental perception means that the car must be able perceive the obstacles

and actors in its environment. Cooperation means that vehicle car has to be able to

react to the intentions of actors in the environment as well as communicate its own

intentions to other actors. Safety means that the vehicle must not be of any danger

to its environment. Self-perception means that the vehicle needs to be aware of its

current state such as the capabilities of its components such as brakes or the engine
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and its current velocity.

GNSS is important for satisfying to many of these functional requirements and

can be used together with other sensors to improve other functional requirements.

GNSS is the only sensor that relatively easily provides absolute global positioning

and as such it is paramount for navigational tasks. For localization, environmental

perception, safety and self-perception GNSS can be useful when used together with

other sensors and an accurate map. [47]

3.1.1 Localization requirements for safety

One common safety requirement of fully autonomous vehicle localization is one lo-

calization failure per one billion miles [42] or 10 localization failures per one billion

hours [19]. There is much research that outlines the positional requirements for

this level of safety. Research [19] about localization requirements for autonomous

vehicles outlines an alert limit of 0.57 m laterally, 1.4 m longitudinally, 1.3m verti-

cally and 1.5 degrees orientation for localization of passenger vehicles on highways.

On local streets these alert limits need to be even tighter at 0.29 m longitudinally

and laterally with 0.5 degree orientation alert limit for target level of safety at 10

localization failures per billion hours. This requires that the vehicles system knows

lateral and longitudinal position with 0.1 meter accuracy, vertical position 0.43 m

accuracy and orientation 0.17 degree accuracy 95% of the time. Stephenson [1] out-

lined the vehicle positioning requirements for autonomous vehicle active control to

a position requirement of 0.05 meter lateral and longitudinal positional accuracy

with an update rate of 500 Hz. Stephenson argued that high-quality GNSS can be

enough for the required accuracy in the right circumstances if used together with a

good inertial measurement unit with high update frequency. The positional error of

the vehicle can be reduced further by using more sensors in conjunction with GNSS

and IMU.
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Reid et al. [19] defined the orientational alert limit on highways as 1.5 degrees in

each direction to guarantee a 0.5 degree orientational accuracy 95% of the time. On

local streets, the alert limit would have to be 0.5 degrees to guarantee a 0.17 degree

orientational accuracy 95% of the time. An autonomous vehicle whose attitude error

would exceed alert limits ten times or less in a billion hours of driving, would satisfy

the orientational localization requirements for autonomous driving.

Used maps affect localization accuracy so the used maps should also be as accu-

rate as possible for minimal positioning errors. Total localization of vehicle position

can be calculated with e2p + e2m = e2t ), where ep is the positioning inaccuracy of the

vehicle’s sensors and em is the inaccuracy of the map used for localization. et is the

total localization error. While a map with errors in centimeter level accurate would

minimize the effect map inaccuracy has on localization errors, more inaccurate maps

have also been proven useful for accurate localization. [42]

3.2 Evaluating positional data accuracy, reliability

and availability

Accuracy is the deviation from true value. To know the accuracy of a positional

estimate, one must also know the true position, or at least know the true position

with more precision than the estimate. This is referred to as the ground truth. Most

commonly accuracy is described with how large the deviation from true value is on

average with standard deviations or root mean square error (RMSE) [1].

In the Cambridge University dictionary, reliability is defined as "how accurate

or able to be trusted someone or something is considered to be" [48]. The reliability

of sensors is a big part of how autonomous vehicles make decisions. A vehicle has

to be able to know when it can or cannot rely on a sensor in order to make failure

diagnoses and switch to backup mode. This requires that the vehicle can detect



3.2 EVALUATING POSITIONAL DATA ACCURACY, RELIABILITY AND
AVAILABILITY 23

inaccurate or misleading data given by a sensor for one reason or another. [49]

Reliability of sensors is dependent on internal and external factors. Most sensors

can provide some error/inaccuracy information of their data themselves using qual-

ity indicators, but sometimes it is necessary to compare the outputs of one sensor

with other sensors in order to see if the data is faulty in some way [50]. For an

autonomous vehicle’s GNSS this means that the vehicle must be able to know when

the positioning information is too inaccurate to be reliable and it should instead

rely more on other types of positioning information. Reliability in GNSS systems

is also sometimes referred as continuity which is defined as the probability that the

GNSS will not provide a measurement of position over a certain time period. This

also includes situations where an integrity monitor of the receiver discards good

positional measurements as if they were inaccurate. [1]

Availability is the quality of being able to be used or obtained [51]. If data from

a sensor is too inaccurate to be used or nonexistent, it cannot help an autonomous

vehicle in its decision making process. GNSS is commonly known to have poor

availability in obstructed places such as tunnels due to weak signal strength. Au-

tonomous vehicles have to be able to rely on other sensors for positioning when one

becomes unavailable, with dead reckoning for example. [6] Accuracy of 0.15m with

availability of 95% means that 95% of the time, the error is less than 15 centimeters.

3.2.1 Trust and reliability evaluation

There are several methods of evaluating sensor reliability. One such method is to

create a reliability evaluation function such as in [50] that takes into account the

various factors that affect the "mistrust", "distrust", and "trust" of the sensor.

These factors are then used to calculate the "trustworthiness" of the sensor using

a model based on Dempster-Shafer theory. Some of the factors that affect the

sensors trustworthiness are the operational factors, environmental factors, technical
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limitations of the sensor and security related factors.

There are many things that would affect the reliability of GNSS in the trust

evaluation model proposed by Halla-aho et al. [50]. Many of those factors should

be taken into account when calculating the reliability of the positional data. In

terms of environmental factors, the ionospheric effects, the weather and multi-path

errors caused by environmental objects would have to be taken into account. In

terms of operational factors for GNSS positioning, the following should be evalu-

ated: the continuity of positional data, supporting positional measurements of other

sensors and the GNSS antenna wear. Security related factors would be the detection

of GNSS spoofing and jamming. The technical limitations of the sensor would be

dependent on the sensors capability to use advanced GNSS positional technologies

such as differential GNSS. Once these factors are taken into account, the malfunc-

tions and disturbances in the positional data of the sensor can be estimated and

therefore used for safer decision-making in autonomous driving.

Trust evaluation of sensor data should be done before sensor fusion since it can

affect the decision-making process of the vehicle [50]. The reliability of sensor data

can also be used in sensor fusion, giving more reliable measurements more weight

in the data fusion process. For example in map areas with few key environmental

elements for LIDAR object recognition, GNSS measurements should be given more

weight in localization sensor fusion such as with the experiments done by Miguel et

al. [28].

3.3 Cybersecurity of autonomous vehicles

Cybersecurity should be a great concern in autonomous driving since if the integrity

of the data and the system cannot be ensured, neither can safety of the vehicle.

Threats to autonomous aspects of modern vehicles already exist. V2v and v2x

systems can be hacked, GNSS can be vulnerable to jamming, spoofing and injection,
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and sensors are vulnerable to manipulation and interference. As the vehicles’ systems

gain more control of the movement of the vehicle, the more dangerous the attacks

against those systems become. [52]

It is critical that the vehicle can detect attacks against its systems and is capable

of informing the driver in case the autonomous driving is compromised. For example,

the auto-landing systems of civilian aircraft monitor the vital parts of transmissions

and if any significant deviation in transmission is detected, the auto-landing systems

are disabled and the pilot is notified to take control. Safety measures such as these

could benefit autonomous driving. [53]

Like all computers, the computer of the autonomous vehicle is susceptible to

not only bugs in software/hardware but also to malware installed in components

by malicious actors. Basic information security should not be overlooked anywhere,

but especially not in places where human lives are at stake. Network connections

should be protected by a firewall and received data, such as map data, should be

authenticated and encrypted. [54]

Many modern cars use the controller area network (CAN) standard for in-car

communication. CAN is a dated protocol and its vulnerabilities are well proven if an

adversary gets an access to the network. It has been demonstrated that brakes can

be disabled, doors locked or engine turned off all while the driver’s input has been

completely shut off [53]. Since CAN is very vulnerable to security threats, it should

be well protected against all incoming connections. CAN bus message encryption is

one way to make the system more secure [3].

There are some privacy concerns regarding autonomous vehicles data collection.

Autonomous vehicles may use connected networks and share geographical location

data with v2v and v2x communication networks. It is not exactly clear what sort

of data may need to be collected and shared in the name of safety of autonomous

driving. Additionally, passive attacks that do not modify or add data to vehicles
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systems are hard to detect and may become a privacy problem for autonomous

vehicles that store a large amount of personal data of their users. [52]

3.3.1 Cybersecurity of sensors

It has been demonstrated that modern GNSS receivers are vulnerable to various

different attacks. Even sophisticated GNSS receivers can be spoofed with advanced

attacks despite many defence strategies. There is also concern about unintentional

signal interference and jamming of GNSS signals. Manipulating GNSS may affect

the decision making of autonomous vehicles badly enough to make them do unsafe or

even dangerous maneuvers. Many different countermeasures against GPS spoofing

have been proposed such as encryption-based carrier phase measurements and using

signal processing to find misleading signals. [1] [54] [55]

Petit and Shladover [54] defined various potential attacks on the sensors of au-

tonomous vehicles. The LIDAR of a vehicle can be jammed. The camera is vulner-

able to blinding by IR lasers and errors in machine vision such as fake images or

mislabeling actors. Sensors such as radar can be jammed or even made to believe the

existence of a "ghost vehicle" that is just noise created by a digital radio frequency

memory repeater. Maps can be "poisoned" with erronous data, leading to poten-

tially large problems in navigation and localization [56]. Even inertial measurement

units that are relatively isolated systems can be vulnerable to remote attacks via

strong magnetic fields [3].

Systems can be equipped to detect many of these attacks on vehicle sensors,

but some of these attacks on sensors are best mitigated by compensating erroneous

sensor data with data from other sensors since it is much more difficult to attack

multiple independent data sources simultaneously; Even multiple units of a same

kind such as multiple cameras are more resistant to errors and attacks. In cooper-

ative autonomous driving, the information provided by other actors can be treated
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as another data source but should be less trusted due to the fact that the source of

data is outside the vehicle [54]. If there is suspicion of a potential attack on a sensor

of an autonomous vehicle, its measurements should be trusted much less than the

measurements of other sensors [50].

Physical access to vehicles gives malicious actors even possibilities to sabotage

autonomous vehicle systems that are resistant to remote attacks. Even if direct

mechanical tampering is not included, there still is the possibility of malware being

installed, sensors being manipulated or tracking devices attached to the vehicle. [54]



4 Research methodology

4.1 Data collection process

There were two sets of empirical experiments done for this thesis that evaluated and

improved the positioning accuracy of a vehicle. The first one was an experiment done

with a consumer-grade GNSS sensor mounted on the door of an automobile that

was driven multiple times on multiple occasions over a particularly well measured

road segment where the absolute position of the road was on the decimeter level.

The second experiment was done with a truck that was equipped with a GNSS, an

IMU and a LIDAR. While the truck was was capable of autonomous driving, it was

driven by a human during the experiment. In both experiments a digital priori map

was used for road geometry.

In the first experiment the automobile was driven accurately over the road lane

boundary in such a way that the GNSS device was just above the lane’s edge. The

accuracy of the road lane width in the digital map was confirmed to be on the

centimeter level by measurements done on site with standard measuring tape. In

the first experiment the error of the driver over the boundary was constantly an

order of magnitude below the error of the measuring sensors. The first experiment

contained drives at different speeds at different times of day as well as in different

weather conditions. Inertial measurement sensors of a smartphone were also used

during some of the drives. Inertial measurements included data from an accelometer,
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a gyroscope and in the case of the first experiment, a magnetometer. The vehicle

used for the first experiments was a stock Volvo automobile. The data for the first

experiment was collected in December 2021 and January 2022.

For the second experiment a LIDAR sensor was used alongside a GNSS device

and inertial measurement unit. The truck was driven normally along the center of

a lane on a highway and the distance to the nearest road curb was measured using

the LIDAR. The data for the second experiment was collected in February 2022.

Figure 4.1: The vehicle used for the first experiment

Figure 4.2: The GNSS used for the first experiment

The testing environment for the first experiment was a road called Tuulissuontie

in Turku, Finland. The road has very few buildings nearby, but it does have a small

forest and a hill nearby which may cause some multipath errors. The length of the
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road segment used in the experiments was approximately 1 and a half kilometers

long with gentle curves and slopes. The lane width of the road segment was 350

cm. The total distance traveled during the recorded drives was approximately 30

kilometers with standalone GNSS sensor and approximately 5 kilometers was driven

with both GNSS and IMU sensors.

Figure 4.3: The truck and its LIDAR sensors used for the second experiment

The testing environment for the second experiment was the route from Rajamäki

to Hyvinkää in Finland. The width of the road from curb to curb was between

7 and 9 meters, depending on the location. The route provided both a highway

environment and an urban environment. The total distance travelled during the

second experiment was approximately 15 kilometers. GNSS, IMU and LIDAR were
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used for the whole length of the drive.

4.1.1 Processing the gathered data

The empirical experiments primarily focused on the lateral accuracy of vehicle po-

sitioning. For the first experiment, by using the painted lane boundary as ground

truth vehicle trajectory, the lateral error of system positioning could be calculated.

For the second experiment, a LIDAR was used to measure distance to the road curb

and the distance of GNSS positioning to the curb in the map were combined to

estimate lateral error of the positioning. In points of high curvature, the longitudi-

nal error of positioning also played a role in the calculated lateral positioning error.

Maps used for experiments provided lane widths, road geometry and road locations

necessary for empirical testing. Two different priori maps were used for measure-

ments. First one had road absolute position error below one meter and the second

one had road absolute position error above one meter. In addition to horizontal and

vertical position data, data of the GNSS receiver’s velocity and angle was collected.

Various quality indicators present in the receiver’s collected data were also used

for algorithms and analysis. All GNSS data used in the experiments were parsed

from the recorded NMEA 0183 messages provided by the devices. NMEA 0183 is

a standard protocol commonly used by satellite navigation devices to log position,

altitude and speed information of the receiver [57].

First the accuracy of raw GNSS measurements in both experiments was evalu-

ated using both maps. The Digiroad map provided a more accurate map and the

OpenStreetMap map provided a more inaccurate map. Road geometry of the map

data in both instances comprised of geographic information system (GIS) polyline

geometry. In polyline geometry, nodes are connected form a line that represents a

road in a map. Both maps used the WGS84 coordinate system which is an ellipsoid

representation of the earth where the center of the ellipsioid is within a few cen-
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timeters of earth’s center of mass [1]. The GNSS of the experiment also used the

WGS84 coordinate system for latitude, longitude and altitude fix. Lateral error of

the localization was calculated by measuring the distance of the position fix to the

right lane boundary of the road.

Next the accuracy of measurements with sensor fusion of the IMU and the GNSS

of both experiments were tested by using extended Kalman filter. The initial state

vector and the covariance matrix of the extended Kalman filter were approximated

using the initial measurements of the sensors as well as trial-and-error to achieve

the best results. The tuned covariance matrix parameters were magnetometer bias,

magnetometer noise, accelometer bias, accelometer noise, gyroscope bias, gyroscope

noise, GNSS position noise and GNSS motion noise. The angle of motion of GNSS

for the filter was calculated from the difference of two consecutive positions and the

velocity of motion which was provided by the GNSS velocity measurements.

After that, a trust algorithm was used to evaluate the trustworthiness of sensor

readings based on sensor data continuity, quality indicators of sensors, disagree-

ments of sensors’ measurements and previous trustworthiness values. The extended

Kalman filter was fed sensor data with different covariance values based on the

"trustworthiness" of the sensor data. Sensor data with high trust value was consid-

ered more robust and sensor data with low trust value was considered less accurate

and in the worst case, the data was discarded. In an ideal world, the trust algorithm

would always be able to tell if the sensor data was reliable enough to be accurate and

use only the accurate data for localization. However, in the real world, that is not

possible and sometimes even unreliable measurements are accurate by pure chance.

Additionally, if all data deemed inaccurate was discarded, the vehicle could be left

without any localization data for long periods of time and this would decrease the

availability of positioning. In this experiment, the calculated sensor measurement

trustworthiness is a value that gives different weights to kalman filter sensor reading



4.1 DATA COLLECTION PROCESS 33

covariance values.

The unreliable sensor measurements were more likely to be inaccurate so they

had higher high noise values. Reliable sensor measurements were given lower noise

values in the Kalman filter. The used algorithm for trust calculation was simple to-

tal value from 0-100 based on the average value of each calculated trust parameter.

There were 4 trust parameters for GNSS measurements and 3 trust parameters for

IMU measurements. First trust parameter for GNSS is the continuity trust mea-

surement. This was calculated by evaluating the velocity of GNSS and the distance

between two consecutive GNSS measurement positions. If the distance between the

two points is greater or lower than the distance that would be traversed with the

measured velocity, the continuity trust parameter would get a low value. The sec-

ond trust parameter of the GNSS is the environmental trust measurement. The

environmental trust is affected by the satellite geometry, amount of used satellites,

used satellite constellations, type of fix, SNR of used satellites and weather. A trust

parameter which affects both IMU and GNSS is the effect of previous trust values.

A measurement that is deemed unreliable is more likely to be followed by another

unreliable measurement than a reliable one. Another trust parameter which affects

the trust values of both GNSS and IMU measurements is independent supporting

measurement trust. If the vehicle heading change of two consecutive GNSS measure-

ments matches the yaw rate of the gyroscope and if the accelometer measurements

match the change in GNSS measured velocity of the vehicle, the sensor measurement

of both sensors are deemed more reliable. Last trust parameter is the supporting

measurement trust of the IMU’s rotation based on the change in orientation mea-

sured by the magnetometer and the change in orientation measured by gyroscope.

These trust parameters are summarized in table 4.1.

Results of the effects of positioning improvement techniques are detailed in sixth

chapter.
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Trust parameter Affected sensors description

Continuity GNSS Evaluate how much the position diverts from measured

velocity.

Environment GNSS Evaluate how much poor satellite conditions affect po-

sition accuracy.

Previous trust GNSS / IMU Measurements with poor trust values are more likely to

be followed by unreliable measurements.

Supporting independent measurements GNSS / IMU Independent measurements that agree with each other

are more likely to be accurate.

Supporting measurements IMU Rotation rate in both gyroscope and magnetometer in-

dicate reliable measurement of vehicle rotation.

Table 4.1: Trust evaluation parameters

4.1.2 Capabilities and limitations of the experiments

There are some limitations to the accuracy of the results of the experiments. In the

first experiment, the accuracy of the driving on the road lane can only be guaranteed

to be within two decimeters of the ground truth. In the second experiment, the

accuracy of the LIDAR was highly dependent on the method of detecting the road

curbs and during intersections, it became difficult to estimate the lateral error of

the vehicle. In both experiments the inaccuracies of the digital map could have also

distorted the accuracy of the results. Additionally, selected Kalman filter covariance

values may not be the optimal and better results are possible with more optimal

covariance values.

The trust algorithm used in the experiments only evaluated the reliability of IMU

and GNSS sensors and assumes that the used map and LIDAR data is accurate.

However, the errors introduced by momentary inaccuracies in both the map and

the LIDAR could introduce significant errors in the measurements. An autonomous

vehicle should be able to detect if the used map was inaccurate and maybe even

evaluate the reliability of the used map. There also was snow on the road during

the second experiment. The snow that piled on the edge of the road helped detecting



4.2 USED RESOURCES 35

road curbs, but it also may have increased the inaccuracy of the LIDAR distance

measurement to the curb.

In addition to these limitations, the experiments were limited by the amount

of measurements and data. While the results provide a certain level of positioning

accuracy for the used systems and techniques used seem to improve the lateral

accuracy of the positioning, the amount of data is not enough to guarantee that

those levels of positioning accuracy could be consistently achieved by the system or

that the techniques used would generally improve the positioning of the system.

4.2 Used resources

For the first experiments an NL-8004U GNSS receiver was used for satellite posi-

tioning measurements. The GNSS receiver was able to use GPS, Glonass, Galileo

and QZSS satellite constellations for satellite positioning. SBAS (EGNOS system)

integrity information was used as well as differential GNSS whenever a differential

GNSS fix was possible. The update rate for the receiver was 5 Hz. The GNSS re-

ceiver was capable of receiving L1C (GPS), E1 (GALILEO) and L10F (GLONASS)

frequencies from the satellite constellations. Receiver used on NAV5 "automotive"

dynamic model during the experiments which is a setting on the used GNSS device

that improves the position measurement while moving. The IMU used for the first

experiments was an ICM-20690 model chip of a Huawei P20 EML-L29 smartphone.

The smartphone was attached to the approximate center of the vehicle with tape.

The gyroscope, accelometer and magnetometer data from the phone was gathered

with a GNSS/IMU logger application.

For the second experiment a u-blox GNSS receiver, a Murata SCHA600 (gyro-

scope and accelometer) and Ouster OS-1 LIDAR were used. Accuracy of the LIDAR

is advertised to be on the centimeter level [58]. The gyroscope is reported to have

an root mean square (RMS) noise below 0.007 °/s and the accelometer is reported
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to have RMS noise below 0.0029 m/s2 [59]. The GNSS ran on 1 Hz, IMU ran on

100 Hz and the LIDAR ran on 10 Hz.

Matlab was used for the analysis of the collected data. In addition to the code

written specifically for the experiments various Matlab toolboxes were used to assist

in data analysis. Sensor fusion and tracking toolbox, Satellite communications tool-

box, Navigation toolbox, Mapping toolbox, Statistics and machine learning toolbox

and Automated driving toolbox were used.

The QGIS mapping software was used to parse the Digiroad map data into an

esri shapefile format that was compatible with Matlab as well as to calculate the

altitude values of the road used for experiments. U-center v.8.23 software was used

for the configuration of the GNSS receiver and the recording of satellite positioning

data for the first experiments.

4.2.1 Used maps

The Finnish free access road database Digiroad was used for the locations and sizes

of roads in the environment. The coordinate system of the geometric elements was

transformed into WGS84 format with QGIS. Digiroad provides maximum absolute

position error values for its road locations. It also provides the widths of the lanes,

the altitude of the road and the width of the road. The Digiroad map is based on

the layered GIS mapping model. [60] [61]

The OpenStreetMap open data map was used to compare the effects of map

accuracy on the localization of the system. Global position errors of road geometry

in OpenStreetMap can reach multiple meters [32]. OpenStreetMap road positions

and geometry are measured by using aerial imagery and satellite navigation receiver

tracklogs. [62]



5 Results of experiments

5.1 Resulting localization accuracy and results of

improvements of the first experiment

The raw positioning data of the first empirical experiments resulted in GNSS lateral

localization accuracy of 1.30 meters root mean square error (RMSE) and 95% of

measured values had lateral error less than 2.37 meters. Positioning fixes where the

velocity was below the median speed (10 m/s) were laterally 36% more accurate than

positioning fixes where the velocity was over 10 m/s. Positioning accuracy improved

by 9% if the amount of satellites used for the position fix (13 satellites) was above

the median. Positioning accuracy improved by 5% if the mean signal-to-noise ratio

(30.07 dB-Hz) of used satellites was below the median. Figures 5.1, 5.2, 5.3 and 5.4

provide information about the lateral error of the GNSS positioning of the vehicle

during the drives of the first experiment.

By using sensor fusion with extended Kalman filter, the lateral error in the

position fix was reduced by 23%. In the drives where sensor fusion was used, the

RMSE lateral accuracy was reduced from 2.06 m to 1.84 m.

By using trust based sensor fusion weighting, the average lateral error in the

position fix was reduced by 5%. The greatest localization improvements were seen

in positions where the vehicle was turning in a curve, so the heading change rate of

GNSS positioning and IMU were different enough to warrant lower trust value for
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GNSS. With trust based sensor fusion weighting the RMSE error was reduced to

1.79 meters from 2.06 meters. In certain moments, the trust function worsened the

positioning result either by misevaluating reliable measurement as unreliable or by

Figure 5.1: The lateral error of GNSS of the first experiments

Figure 5.2: The lateral error of GNSS dived into sections of the first experiments



5.1 RESULTING LOCALIZATION ACCURACY AND RESULTS OF
IMPROVEMENTS OF THE FIRST EXPERIMENT 39

chance where unreliable measurement turned out to be accurate. Figures 5.5 and

5.6 provide information about the lateral error of the GNSS when sensor fusion with

and without trust function was used.

By using the more likely to be inaccurate map data of OpenStreetMap instead

Figure 5.3: The absolute lateral error of GNSS for each drive of the first experiments.

Each drive is separated by a line.

Figure 5.4: Drives of the first experiments as lines on a map.
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Figure 5.5: The lateral error of GNSS of the first experiments with and without

IMU EKF sensor fusion.

Figure 5.6: The lateral error of GNSS of the first experiments with and without

IMU sensor fusion when using trust based EKF covariance weighing.
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of the more accurate Digiroad, the inaccuracies of lateral positioning increased by

62% in the first experiments. At their worst, the lateral errors in positioning could

reach above 5 meters by using OpenStreetMap.

5.1.1 Implications of results in regards to autonomous driv-

ing

The alert limit in the environment of the first empirical experiment should be 0.29

m laterally with 0.5 degree orientation accuracy as per chapter three. For safe

autonomous driving, this alert limit should only be exceeded once in a billion miles.

Raw GNSS measurements achieved this level of lateral positioning accuracy with

14% availability.

However, for lane-level localization, error below one and a half meters is enough.

This level of lateral accuracy was achieved with raw GNSS measurements with 72.4%

availability in the first experiment. The maximum lateral error measured was 3.65

m which does satisfy the requirement for basic navigation, but is not enough for

lane-level autonomous driving [1]. During the drives in which sensor fusion was

used, the lane level fix availability of the system increased from 40.5% to 50.03%

by using extended Kalman filter sensor fusion with IMU. Using trust based sensor

fusion weighting did not improve the lane level availability of the positioning.

While the results of consumer grade GNSS and IMU positioning alone does not

prove to be accurate enough for high level autonomous vehicle applications, They

do provide some level of usefulness in autonomous vehicles where the localization re-

lies less on those sensors. Lane level determination is useful for level 2 autonomous

vehicle architectures and independent sensor output proves useful to improve au-

tonomous system robustness especially during moments where other sensors are

compromised [42]. Reliability evaluation of sensor measurements may prove impor-

tant in autonomous vehicle decision making in addition to the localization accuracy
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improvement it seems to provide.

5.2 Resulting localization accuracy and results of

improvements of the second experiment

If errors given by inaccurate LIDAR road curb detection and large map inaccuracies

are not ignored, the Raw GNSS positioning provided a lateral positioning accuracy

of 1.39 meters. 95% of those values were below 1.42 meters. By combining the

GNSS with IMU by using EKF sensor fusion, the RMSE was reduced to 1.28 meters

and 95% of lateral error values were below 1.19 meters.

If the inaccuracies in measurements caused by LIDAR road curb detection caused

by intersections, bus stops, road widening and other roadside objects are ignored

as well as measurements in those positions where the digital map’s road was clearly

over a meter off the ground truth road position, the RMSE of raw GNSS was reduced

to 0.82 meters. In this scenario, the EKF sensor fusion reduced lateral error RMSE

to 0.67 meters. Figures 5.7, 5.8 and 5.9 provide information about the lateral error

of the GNSS positioning of the vehicle during the drives of the second experiment.

Figure 5.10 shows positions where the road geometry provided by the map does not

follow the center of the road properly which caused some of the smaller errors in

some parts of the experiment.

The used LIDAR sensor could also be used to measure the width of the road to a

certain extent. The LIDAR agreed with the road width described on the map with

an error of 0.5 m 67.8% of the time and with an error of 1.5 m 94.8% of the time.

Intersections and bus stops were the causes of largest differences in the measured

road width and the road width provided by the map. The measurement of the road

width could be used as an additional trust parameter of either LIDAR accuracy or

the map accuracy. Figure 5.11 shows the difference between LIDAR measured road
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width and the road width provided by the Digiroad map. Figure 5.12 shows LIDAR

images, red spots on the point cloud show measured road curb spots. Images A and

B on the figure 5.11 show measurements where road curbs are easily detected and

the measured road width matches the road width of the map. Images C and D on

the figure 5.12 show measurements where road curb detection is difficult and the

measured road width is poor in quality.

Figure 5.7: The lateral error of GNSS of the second experiment with and without

IMU sensor fusion including the erroneous measurements. The black line represents

evaluated ground truth.

Figure 5.8: The lateral error of GNSS of the second experiment with and without

IMU sensor fusion without the erroneous measurements.
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Figure 5.9: The sources of largest erroneous measurements in the second experiment.
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Figure 5.10: Road positions on the map that do not follow the center of the road.
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Figure 5.11: LIDAR measurement of road width compared to road width provided

by the map.
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Figure 5.12: LIDAR point cloud measurements with red spots as measured road

curbs.
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5.2.1 Implications of results in regards to autonomous driv-

ing

For autonomous driving, the alert limit in the environment of the second empirical

experiment should be 0.57m laterally with 1.5 degree orientation accuracy as per

chapter three. Raw GNSS measurements were within this alert limit with 53%

availability if the largest causes of errors on the map and LIDAR curb detection

were ignored. Sensor fusion with IMU increased the level of 0.57 meter positioning

availability to 68%. For lane level localization, the GNSS sensor could provide 1.5

meter accuracy with 96.4% availability and when combined with IMU sensor, this

availability increased to 99.1%. Figure 5.13 visualises the lateral error of GNSS with

and without sensor fusion in relation to the accuracy required for safe autonomous

driving.

Figure 5.13: The absolute lateral error of GNSS of the second experiment with and

without IMU sensor fusion without the erroneous measurements. The blue line is

0.57 meters lateral error.



6 Comparisons of results to results

of other research

6.1 Localization accuracy results of other research

There exists much empirical research about the accuracy of various different GNSS

receivers and their reliability in autonomous driving. The results in different studies

vary greatly and are dependent on many factors such as the used equipment, the

used algorithms/technologies and the location of testing.

In 2019, Humphreys et al. [46] achieved a 17 cm level 3D accuracy with 95%

probability in urban environments for 2 hours using GNSS with real time kinematics

(RTK) in an urban setting. The GNSS used GPS and Galileo satellite constellations.

This level of accuracy is attributed to well performing real time kinematic GNSS

positioning that was specifically tailored for deep urban environments. In their

experiments, a GNSS solution was available over 87% of the time.

In 2018, Reid et al. [63] reported about GNSS performance on a drive of 30,000

km on North American highways. The research used one production-grade GNSS

and one survey-grade GNSS. The survey-grade GNSS achieved 1.05 m horizontal

accuracy with 95% probability. The production-grade system achieved 5.30 m hor-

izontal accuracy with 95% probability. Vertical accuracy was 9.42 meters with 95%

probability for the production-grade GNSS and 1.34 meters with 95% probability for
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the survey-grade GNSS. The survey-grade GNSS was capable of lane determination

level accuracy (< 1.5 m) 98.1% of the time and had RTK fix for positioning nearly

50% of the time. The production grade GNSS used L1 frequencies and the survey

grade GNSS used both L1 and L2 frequencies for position fix.

Joubert et al. [42] reports that Swift Navigation data collection campaign in 2019

collected data from a 1,300 km drive with Code-based differential GNSS capable

navigation system. The GNSS achieved 0.35 m accuracy with 95% probability over

the 12 hours that the drive lasted. The GNSS used L1 + L2 frequencies and GPS +

Galileo satellite constellations. The experiments were mostly done in highway areas.

In 2020, Nie et al. [64] achieved a 0.32 m horizontal and 0.17 m vertical accuracy

with a low-cost dual-frequency GNSS device in an automotive experiment by using

dual frequency PPP. Their method combined dual-frequency measurements with

single-frequency ionosphere corrected code measurements to improve positioning

accuracy and the time it takes to achieve accurate position fix. Their device used

both L1 and L2 frequencies.

Prochniewicz et al. [65] achieved horizontal accuracy of 0.20 m with 95% avail-

ability with RTK over a day. The GNSS was not specified to be in motion. The

experiment evaluated the accuracy and reliability of the positional data by using

quality indicators such as the amount of visible satellites, satellite geometry, noise

and the applied method of ambiguity estimation.

All of these experiments used a GNSS device in a automotive environment prov-

ing that it is possible to reach decimeter levels of GNSS positioning accuracy with

autonomous vehicles. The best accuracies were achieved with RTK corrections.

However, the 0.1 meters or less lateral/longitudinal accuracy with 95% probability

specified in chapter three is not achieved in these experiments with a stand alone

satellite navigation device.

Wan et al. [15] achieved 0.1 m RMSE accuracy with sensor fused GNSS RTK,
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LIDAR and IMU. The data was gathered with a 60 km drive in an urban environment

with real traffic. Their method also used a pre-built single Gaussian distribution

model LIDAR map of the area. The used map is a form of a 3 dimensional point

cloud map. The sensor fusion used an error-state Kalman filter with strap-down

inertial navigation system (SINS) prediction model to fuse the data of the sensors.

In 2016, Cornick et al. [66] achieved 4 cm RMSE localization accuracy using

a localizing ground penetrating radar (LGPR) aided by GPS and IMU. The local-

ization tests were done in an optimal environment for the sensors and a RTK GPS

with IMU was used for the ground truth. For map creation, the car was first driven

in a loop around the driving area with an LGPR that recorded the subsurface en-

vironment of the road. This map was then used with the LGPR to localize the

vehicle.

In 2014, Wolcott et al. [67] achieved a root mean square deviation localization

accuracy of 0.14 m laterally and 0.19 m longitudinally. This was achieved by using a

single camera for localization in a high-quality LIDAR generated map. GPS was also

used for corrective positional updates and initial position. The localization accuracy

of the system was significantly worse in an area with infrequent lane markings.

Miguel et al. [28] used an adaptive Monte Carlo localization with LIDAR, GNSS

and IMU along with an environmental map for a localization experiment. The stan-

dard deviation of the localization error was 0.18 m. Their method could handle maps

that had parts where there was less key elements in the environment by switching be-

tween GNSS and LIDAR priorities depending on the amount of nearby key features

in the map.

Li et al. [68] used 3d-point cloud matching with NDT (Normal Distributions

Transform) for localization with LIDAR, IMU and GNSS. GNSS was used to mea-

sure the initial position of system. It was also used for destabilization detection.

The experiment used an accurate map that was manually corrupted with noise and
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missing data to simulate inaccuracies of real 3d maps. The results for localization

errors were a standard deviation of 0.1 m both laterally and longitudinally.

Wolcott et al. [5] achieved a 0.07 m RMSE horizontal localization accuracy for

a 525 km drive by using LIDAR and IMU. The system used in the experiment was

more resistant to errors caused by poor weather and other dynamic changes in the

environment. The map used for localization was a Gaussian mixture map that was

created with a high-quality LIDAR, IMU and GPS.

Ort et al. [31] studied the accuracy of the trajectories that an autonomous vehicle

would take when using a less accurate topological map such as OpenStreetMap.

The vehicle used Lidar, GPS and IMU sensors and 99.3% of the vehicle’s predicted

driving trajectories were within road boundaries (3 m). The driving trajectories were

predicted up to 35 meters ahead. Additionally, the largest deviations in accuracy

were typically far ahead in the road. The results had a 0.75 m RMSE deviation

from the road center.

Altoaimy and Mahgoub [69] researched v2v localization with vehicular ad hoc

networks (VANETs) and GPS systems by using fuzzy logic and WCL (weighted

centroid localization). when localizing the vehicles, their distances to each other,

their heading and SNR was taken into account during the information exchange

between vehicles. The research tested 20 to 200 vehicles and localization accuracy

was better the more vehicles were in the network. A localization accuracy of 0.85

meters was achieved with 20 vehicles and an accuracy of 0.25 meters was achieved

with 200 vehicles.

Conde et al. [70] studied vehicle-to-infrastructure (v2i) communication based lo-

calization with GNSS and WAVE communication devices in 2015. By using relative

positioning techniques with double differencing, they achieved a localization accu-

racy of 0.698 meters RMSE in their experiments. However, the orientation error was

over 7 degrees in heading and over 40 degrees in roll on average. The orientations
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were estimated by placing two GNSS receivers longitudinally on the cover of the

vehicle so that the distance between them was maximised. Then the differences in

the position data of the receivers was used to estimate orientation of the vehicle.

In 2019 Atia et al. [7] achieved 0.2667 m RMSE horizontal positioning error with

map-aided adaptive extended Kalman filter fusion of GNSS and IMU with maximum

horizontal positioning error of 0.8456 m. The sensor fusion technique used in the

paper used map matching and error and bias mitigating adaptive filtering to achieve

accurate positioning.

Some of these experiments show that by using sensor fusion with high quality

devices with high quality maps, a 0.1 or less meter lateral/longitudinal accuracy

with 95% probability specified in chapter three is possible. There are many different

approaches to the autonomous vehicle localization problem but no method so far

has proved to be the objectively optimal solution in terms of accuracy, availability

and reliability. The results of the experiments of other research are summarized in

table 6.1.

6.2 Comparisons to our measurements

Reid et al. [63] achieved a lateral accuracy of 0.73 m with survey-grade RTK GNSS

and a lateral accuracy of 3.88 m with standard automotive GNSS. The automo-

tive GNSS achieved a "which lane" accuracy (< 1.5 m) with 56.7% availability.

The RTK GNSS achieved "which lane" accuracy (< 1.5 m) with 98.1% availability.

When compared to our non-processed measurements of the first experiments, our

standalone GNSS performed better than the classical automotive GNSS, however it

was well outperformed by the RTK GNSS. The same is true for the second exper-

iment. However, with sensor fusion the second experiment outperformed the RTK

GNSS in terms of lane determination (99% availability).

When looking at the improvements extended Kalman fitler (EKF) sensor fusion
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Table 6.1: Summary of results of other research

Experiment Used sensors horizontal accuracy

[46] - 2019 RTK GNSS 0.17 m 95% availability

[63] - 2018 GNSS/RTK GNSS 1.05 m 95% availability

[63] - 2018 GNSS 5.3 m 95% availability

[42] - 2020 CDGNSS 0.35 m 95% availability

[64] - 2020 PPP GNSS 0.32 m

[65] - 2016 RTK GNSS 0.20 m 95% availability

[15] - 2018 RTK GNSS 0.1 m RMSE

[28] - 2020 RTK GNSS/Lidar/IMU 0.18 m standard deviation

[66] - 2016 LGPR/GPS/IMU 0.04 m RMSE

[67] - 2014 Lidar/Camera/GPS 0.24 m RMSE

[69] - 2014 v2v/GPS 0.25 m average

[71] - 2015 IMU/Camera/GPS 0.73m mean

[70] - 2015 v2i/GNSS 0.698 RMSE

[68] - 2020 GNSS/LIDAR/IMU 0.1 m standard deviation

[5] - 2017 LIDAR/IMU 0.07 m RMSE

[7] - 2019 GNSS/IMU 0.2667 m RMSE

with an IMU unit provided to our measurements of the first experiment, we could see

a significant improvement in localization accuracy. Comparing our relative increase

in accuracy with the filter to the relative increase in accuracy done with map-aided

adaptive EKF by Atia et al. [7] we can see that their method resulted in greater

relative increase in accuracy with sensor fusion. The positioning accuracy results

from the first or the second experiment did not outperform those of Atia et al.



7 Conclusions

7.1 Contributions of this thesis

This thesis has evaluated various techniques and algorithms used to improve GNSS

based positioning of autonomous vehicles. The properties of GNSS sensors and

other sensors used in autonomous vehicles were surveyed. The localization accu-

racy requirements for safe autonomous driving were also surveyed. GNSS sensor

can provide valuable global positioning measurements for autonomous vehicles as

an independent sensor and is well complemented by the independent measurements

of an IMU sensor. This research has provided insight on various methods used to

improve GNSS positioning in autonomous driving and tested those methods with

empirical experiments. The experiments showed that sensor fusion with IMU in-

creased the vehicle localization accuracy and when used in combination with a trust

based algorithm, the average localization accuracy was even further increased when

compared to standalone GNSS sensor based localization.

The results of the experiments were compared to the localization requirements

of safe autonomous driving. Due to small data sample size, no objective positioning

improvement could be proved. Based on the experiments, the current performance

of low-grade GNSS and IMU cannot guarantee a constant lane-level accuracy for au-

tonomous vehicles. However, GNSS combined with a high-grade IMU can drastically

improve lane determination accuracy availability for autonomous driving systems.
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The limiting factors of the experiments in this thesis were the small data sample

size, unoptimised EKF parameters, limited map accuracy and unreliable road curb

determination with LIDAR.

The techniques and results of autonomous vehicle localization (particularly by

utilizing GNSS and sensor fusion) of other research were also surveyed. Autonomus

vehicle localization results of the other research were compared to the localization

results of the experiments of this thesis. High-quality sensors and maps used in other

research provide high accuracy measurements and they can even reach the accuracy

levels required for safe autonomous driving. However, both the experiments of this

thesis and the experiments of other research showed that various techniques and al-

gorithms can be used to reduce errors in sensor based positioning. These techniques

may not only improve the positioning accuracy of autonomous vehicles but may also

make relatively inaccurate measurements valuable for accurate autonomous vehicle

localization.

7.1.1 Future work

I recommend further research on the benefits of reliability evaluation of sensor mea-

surements and its uses in autonomous vehicle positioning and decision making. Us-

ing trust functions as weights in an extended Kalman filter might improve the po-

sitioning accuracy of autonomous vehicles that use extended Kalman filter sensor

fusion and due to possible localization and decision making improvements, more

experimentation with trust models in autonomous vehicles is recommended. Addi-

tionally, further research on localization inaccuracies caused by road objects that

are hard to represent on a map is recommended.
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