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Abstract 

A growing number of studies in recent years have deployed various machine learning methods 

for financial time series analysis. The ability of machine learning methods to deal with complex 

and nonlinear data sets, as well as the increasing amount of available data and computational ca-

pacity, has pushed research further in this direction. While machine learning methods are nowa-

days widely used for forecasting financial time series, the results have been mixed. The rapid 

increase in machine learning research has also meant that new and more advanced models are 

being developed all the time. In many areas where machine learning methods are employed, de-

signs based on the Transformer deep learning model often represent the state-of-the-art. How-

ever, the applications of the Transformer model for financial tasks are still in their infancy as 

only a few studies have been published on the matter. 

This study aims to investigate the feasibility of a Transformer-based deep learning model for 

stock return prediction. The feasibility is tested by predicting the daily directional movements of 

four different US stock indices on an out-of-sample period from the start of 2012 until the end 

of 2021. Only historical price data is utilized to predict the directional returns with two sets of 

explanatory variables. The model performance is tested against benchmarks and evaluated using 

various performance criteria such as prediction accuracy. Moreover, a trading strategy is carried 

out to reveal possible profitable attributes of the Transformer-based model.  

The reported classification accuracy over the whole empirical sample for the better Transformer 

model is 52.52% while LSTM, another deep learning model used as a benchmark, achieves an 

accuracy of 53.87%. However, the Transformer model manages to defeat all the benchmark 

models in every other performance metric. When the performances are tested using the trading 

strategy, the best Transformer model is able to generate an annualized return of 15.7% before 

transaction costs. The best performing benchmark, a simple buy-and-hold strategy, yields a re-

turn of 14.2%. The two tested Transformer models also have the highest Sharpe ratios out of the 

tested models at 1.063 and 1.061. Nevertheless, after transaction costs are taken into account, 

none of the tested models beat a simple buy-and-hold strategy in terms of profitability. 

Although the Transformer model was not able to perform superiorly throughout the sample pe-

riod, it nevertheless exhibited increased predictive performance over shorter periods. For exam-

ple, the model seemed to exploit periods of higher volatility as seen during the start of the 

COVID-19 pandemic. Overall, although the predictive performance of the Transformer model 

in this study might leave more to be desired, the model undoubtedly has predictive properties 

which should encourage further research to be executed. 
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Tiivistelmä 

Viime vuosina lisääntynyt määrä tutkimuksia on soveltanut koneoppimismenetelmiä rahoituk-

sen aikasarja-analyyseissä. Koneoppimismenetelmien kyky käsitellä monimutkaisia ja epäline-

aarisia data-aineistoja, sekä lisääntynyt datan määrä ja laskentakapasiteetti ovat entisestään 

vauhdittaneet tutkimusta tällä alueella. Vaikka koneoppimismenetelmiä käytetään nykyisin laa-

jalti rahoituksen aikasarjojen ennustamiseen, ovat niiden tuottamat tulokset olleet vaihtelevia. 

Koneoppimistutkimuksen nopea kasvu on myös tarkoittanut, että uusia ja kehittyneempiä mal-

leja kehitetään kaiken aikaa. Monilla aloilla, joissa koneoppimista käytetään, alan johtavat mal-

lit pohjautuvat usein Transformer-syväoppimismalliin. Transformer-pohjaisten mallien sovelta-

minen rahoituksen tehtäviin on kuitenkin vielä varhaisessa vaiheessa, sillä alalla on julkaistu 

vain muutamia tutkimuksia aiheesta. 

Tämä tutkielma pyrkii selvittämään Transformer-pohjaisen mallin soveltuvuutta osaketuottojen 

ennustamiseen. Soveltuvuutta testataan ennustamalla neljän eri yhdysvaltalaisen osakeindeksin 

päivittäisiä suunnanmuutoksia vuoden 2012 alusta vuoden 2021 loppuun. Tuottojen suunnan en-

nustamisessa hyödynnetään vain historiallista hintadataa kahdella joukolla muuttujia. Mallin 

suorituskykyä testataan ja verrataan muihin käytettyihin malleihin monin eri suorituskykymitta-

rein, kuten esimerkiksi ennustustarkkuuden avulla. Lisäksi toteutetaan kaupankäyntistrategia, 

jotta nähtäisiin mallin tuottamien ennusteiden mahdollinen taloudellinen hyöty. 

Raportoitu ennustetarkkuus koko tutkimusotoksen ajalta oli paremmalla Transformer-mallilla 

52,52%, kun sen sijaan vertailumallina käytetty LSTM-syväoppimismalli saavutti 53,87%:n en-

nustetarkkuuden. Kyseinen Transformer-malli onnistui kuitenkin suoriutumaan paremmin kuin 

vertailumallit kaikkien muiden suoritusmittareiden osalla. Kun mallien suoriutumista vertaillaan 

kaupankäyntistrategialla, paras Transformer-malli saavuttaa 15,7%:n vuosittaisen tuoton ennen 

kaupankäyntikustannuksia. Paras vertailukohta, yksinkertainen osta-ja-pidä-strategia tuottaa 

14,2%:n tuoton. Kahdella testatulla Transformer-mallilla on myös korkeimmat Sharpen luvut: 

1,063 ja 1,061. Kuitenkin, kun kaupankäyntikulut huomioidaan, yksikään testatuista malleista ei 

suoriudu osta-ja-pidä-strategiaa paremmin tuottojen osalta. 

Vaikka Transformer-malli ei pystynyt suoriutumaan selvästi parhaiten läpi koko tutkimusotok-

sen, se esitti kasvanutta suorituskykyä lyhempinä aikoina. Malli näytti pystyvän esimerkiksi 

hyödyntämään korkean volatiliteetin ajanjaksoja, kuten COVID-19-pandemian alkuaikaa. Kai-

ken kaikkiaan, vaikka Transformer-mallin ennustuskyky tässä tutkielmassa saattaa jättää toivo-

misen varaa, Transformer-malli on epäilemättä kykeneväinen ennustustehtävissä, minkä tulisi 

edistää lisätutkimusten tekemistä aiheesta. 

 

Avainsanat: koneoppiminen, syväoppiminen, osakemarkkinat, omaisuustuotto, ennustaminen 
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1 INTRODUCTION

1.1 Background and motivation

Academic research in finance has for long been interested in finding useful inform-
ation from a plethora of variables, e.g., fundamental and technical, that could
help to explain variations in asset returns. The discoveries of such informative
variables improve the understanding of underlying mechanisms and relations of
the dependent variable. Another goal for academia and industry alike is to utilize
these models to forecast the future values of an asset for financial gain. In the
past, explanatory modeling has been the primary objective in multiple scientific
disciplines and a focus on the predictive approach has often been regarded as un-
scientific. In the 2000s, predictive modeling has nevertheless gained increasing
popularity and it has been shown to, e.g., help uncover complex relationships that
newer larger datasets might hold. (Shmueli 2010.) The forecasting of values of
financial securities is one of the most challenging issues due to the chaotic and in-
herently noisy nature of financial time series (Tay & Cao 2001). Although only a
narrow degree of predictability can be expected, it can translate into considerable
gains with the right tools.

The predictability of financial markets has been of interest to academics for
over a century. Already in 1900, Louis Bachelier stated in his thesis that for a
speculator of stock price movements the expectation should be zero and therefore
the movements cannot be predicted (Courtault et al. 2000). Many early studies
have supported the view that stock prices are not forecastable, i.e., they follow a
random walk (Cowles 1933; Kendall & Hill 1953). Later, Fama (1970) introduced
the efficient market hypothesis based on previous research on the topic. Accord-
ing to the theory, it should be impossible for an investor to generate abnormal
returns in the long run. Thus, it should be useless to forecast any asset returns
as they behave randomly. There have since been numerous claims for and against
the hypothesis and it still remains as one of the most fundamental theories in fin-
ance. Financial time series analysis methods are usually utilized in tests of market
efficiency and predictability.

The theoretical foundations of financial time series analysis are based on the
concepts of linearity and stationarity. A process is said to be weakly stationary if
its mean and covariance do not vary with time (Tsay 2010). The linear regression
model is perhaps the most used in financial time series analysis, but it requires
multiple assumptions to be met for it to provide correct and fitting results. These
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assumptions are often too restrictive and it has been widely documented that
financial time series can exhibit, e.g., nonlinear dependencies, and leptokurticity
(Andreou et al. 2001). These characteristics have made the classical linear models
less useful since they are unable to model the true relationships between variables.
While many traditional nonlinear models, such as regime-switching models, have
been developed to combat the complex characteristics of financial time series,
machine learning methods have also been shown to work well with financial data.

Machine learning methods are by design meant to address complex, nonlinear,
and noisy data which are all characteristics of financial time series (Grudnitski
& Osburn 1993). Overall, machine learning methods have been implemented in
financial prediction tasks since the 1980s, but their true potential has only been
shown in the last decade. This is a result of the growing computational capabilities,
which have allowed more complex models to be developed and fitted for financial
time series tasks. According to a survey by Henrique et al. (2019), the most
common machine learning methods used lately in financial research are support
vector machines and artificial neural networks.

Artificial neural networks are a group of nonlinear models inspired by the
nervous system and brains. They can, in theory, approximate any function ar-
bitrarily well given a complex enough network. (Qi & Maddala 1999.) This result
is also known as the universal approximation theorem. Neural networks act as
a basis for a category of machine learning known as deep learning. The word
deep comes from the usage of multi-level neural networks. While neural networks
have perhaps had more success than some more traditional methods, there is a
trade-off between interpretability and flexibility. Neural networks are usually al-
most impossible to interpret and hence they are generally referred to as black-box
models (Géron 2019). Classical linear models, on the other hand, have great in-
terpretability but lack the flexibility of neural networks.

Financial time series also show temporal dependencies that simple neural net-
works aren’t able to model as they have no memory or sense of order. The order of
the input is often important in many applications including financial time series.
To overcome this hurdle, recurrent neural networks (RNN) were developed for
natural language processing (NLP) purposes to memorize previous steps in a se-
quence. RNNs use hidden states that allow the model to calculate a weighted
representation of previous inputs. Thus, the simple recurrent neural networks can
be seen as an upgrade of a more simple neural network by using additional in-
ternal loops that act as a memory. However, the standard RNN model is only
able to memorize a few previous steps of the input sequence. The estimation of
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these models is also rather slow because the optimization of the network must be
iterated through looped time steps. (Chollet 2017.)

Hochreiter & Schmidhuber (1997) developed a long short-term memory
(LSTM) model to address the issues of standard RNN models. LSTM uses self-
looped gates to better preserve the information of previous inputs. The model
learns to decide how much of the old information it wants to preserve and forget
using different gates. Although the LSTM model can capture longer dependencies
than RNN, it still has difficulties capturing very long-range dependencies. It also
uses the same optimization as the standard RNN, which makes the model slow to
be estimated and optimized. Despite these shortcomings, according to a survey by
Ozbayoglu et al. (2020), the LSTM model has been the most studied deep learning
model in financial applications and most of the studies have been conducted in the
past five years. The LSTM and its variants can perhaps be considered the current
state-of-the-art method in financial prediction tasks.

The latest improvement in sequence modeling, the Transformer model, was
developed by Vaswani et al. (2017) for natural language processing tasks. Unlike
RNNs that treat the input as a sequence, Transformer treats the input as a set.
This allows for the calculation of gradients to be parallelized which makes the
estimation of such a network considerably faster. In some financial prediction
tasks, the speed of the networks’ fitting and prediction processes can play an
important part in its success. Another difference between RNNs and Transformers
is the capturing of long-term dependencies. While RNNs can either forget or retain
information from earlier points in a sequential manner, Transformer networks can
attend to all previous inputs and weight them simultaneously using a mechanism
called attention. (Géron 2019.)

Since the release of the original article, Transformer-based architectures have
become the state-of-the-art method in many fields such as machine translation
and speech recognition, and it has even challenged convolutional neural networks
in image recognition (Dosovitskiy et al. 2020). Different forms of the Transformer
architecture have also been developed to tackle time series problems (Wu et al.
2020; Zhou et al. 2021). Despite their success in various fields, Transformer-
based models have yet to be recognized by the financial research community as
the Transformer has been applied in financial context only on a few occasions.

Ding et al. (2020) were possibly the first to provide an implementation of
a Transformer-based model to a stock return prediction task and showed great
promise as it was able to achieve higher performance than an LSTM model for
example. Yoo et al. (2021), on the other hand, predicted six different stock indices
using their version of the Transformer, and also find their model superior to other
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methods. Moreover, Zhang et al. (2022) show their version of the Transformer to
defeat most of the benchmark models in four different datasets. In addition, stock
price volatilities have also been studied on a few occasions with Transformer-based
models (Lim et al. 2021; Ramos-Pérez et al. 2021). Given the novelty value and
the supportive results, further research into this area should be conducted.

1.2 Objectives and structure

As this area of research is still extremely new and lacks comprehensive research, the
goal of this thesis is to build a Transformer-based deep learning model and evaluate
its predictive performance on financial time series. The results of an empirical
analysis will be discussed and analyzed in detail. The model performance is also
compared to benchmark methods from the existing literature. The predictions
are made with and without technical indicators for each model. Additionally, a
simple trading strategy will be implemented to showcase the economic significance
and profitability of the models. Another goal is to be able to explain some of the
reasons behind the predictions of the deep learning model.

Hence the research questions of the thesis are:

• Is the Transformer-based deep learning model a viable tool for financial time
series prediction?

• Does the model achieve higher performance compared to the benchmark models?

• Do the model predictions contribute to any considerable financial gains over
other methods?

• Does the inclusion of technical indicators help the model performance?

• Can the black box decisions of the model be interpreted to some degree?

The empirical analysis in the study is conducted using four different stock
indices for forecasting: the S&P 500, Nasdaq Composite, Dow Jones Industrial
Average, and Russell 2000. These indices are one the most used in financial pre-
diction and some of them could perhaps be considered benchmark data sets when
testing different models. The goal of the empirical study is to forecast one-step
ahead directional return, i.e., positive or negative, of each index given earlier real-
izations of chosen variables. The chosen explanatory variables for each index are
the opening price, highest price, lowest price, adjusted close price, and trading
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volume. In addition, another extended model including a set of technical variables
is used to see if the addition of variables can generate even better performance,
as the Transformer architecture should benefit from the addition of auxiliary vari-
ables. The out-of-sample forecast period is a 10-year window from the start of
2012 to the end of 2021. In this research, the daily frequencies of the variables are
used.

Along with the proposed model, other models are also used as a benchmark
in performance evaluation. The benchmark models used in this empirical ana-
lysis are a logistic regression classifier and an LSTM model. Both models are
also using the five main variables as well as the extended model with additional
technical indicators. Since the predicted variable is the directional return, the pre-
diction is essentially a binary classification. The models are thus compared using
several performance metrics suited for classification, such as accuracy. Addition-
ally, a trading strategy is implemented to find out whether the predictions can
be translated into profitable signals. It is also attempted to reveal some possible
explainability behind the decisions of the deep learning model.

The rest of this thesis is organized as follows. Section 2 focuses on the theoret-
ical framework of the study. First, it covers concepts such as return predictability
and financial time series analysis. Then it introduces the necessary machine learn-
ing structures and the development of neural network models for prediction tasks.
The rest of the chapter is devoted to the analysis of previous research on financial
time series in a machine learning context. Next in Section 3, the research methods
are introduced. These include, e.g., the description and the preprocessing of the
data, the proposed variant of the original Transformer model used in this research
as well as the metrics that are used to evaluate the performance of the models.
Section 4 includes the analysis and interpretation of the results. Finally, Section
5 concludes and considers possible future research implementations.

The deep learning models are developed using Python 3.7.13 within Google
Colaboratory, which provides the user with an external GPU for free that alleviates
the computational burden. The deep learning models, LSTM and Transformer,
are developed within the Keras library that runs on Tensorflow 2.8.0 (Chollet et al.
2015; Abadi et al. 2016). The logistic regression is conducted using the scikit-learn
library (Pedregosa et al. 2011). The scikit-learn library is also used to compute
the performance metrics that are used to evaluate the models. The technical
indicators are constructed with a pandas-ta library (Johnson 2021). Most of the
visualizations and some of the data processing are done within Microsoft Excel
and the rest in Python. A simplified and shortened version of the code used in
this thesis is displayed in Appendix V.
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2 THEORETICAL FRAMEWORK

2.1 Financial economics

2.1.1 Stock market predictability

The predictability of financial markets has always been tightly linked to the concept
of efficient markets. While the market efficiency and predictability had been stud-
ied before, Fama (1970) formalized the theory of efficient markets by redefining
and expanding the previous framework. The efficient market hypothesis (EMH)
states that financial markets, where the prices fully reflect all available inform-
ation at any point in time, are considered efficient. Consequently, the security
prices also adjust to any new information instantly. The idea behind the efficient
market hypothesis is closely related to the random walk hypothesis, which claims
that the future price change of an asset is random and therefore unpredictable
(Shiller 2000).

According to Fama (1970), the empirical research on the informational effi-
ciency of the markets can be classified into three different levels of available in-
formation: weak, semi-strong and strong form tests. Most studies on the matter
are focused on weak, and semi-strong form efficiency. For the weak form efficiency
to be true, it requires the price of an asset to reflect all relevant information of
the asset's trade history, e.g., historical prices, short interest, and trading volume
(Bodie et al. 2003). Semi-strong form efficiency of the markets also includes other
publicly available information, e.g., stock splits or announcement of earnings to be
reflected in the price. Therefore, not even the use of fundamental analysis should
help to generate abnormal returns. Strong form efficiency asserts that all public
and private information is included in the current price. Hence, even people with
inside information cannot systematically generate higher risk-adjusted returns. It
also follows that if the markets are efficient, a market participant cannot system-
atically generate risk-adjusted excess returns on the market using the available
information. (Knüpfer & Puttonen 2018.)

The EMH is one of the most debated theories in finance and it has had a
lot of advocates and critics. Despite numerous attempts on both sides, no clear
consensus has been reached. One notable problem is that the test of EMH is
always a joint hypothesis between efficiency and an asset pricing model capturing
investors’ risk preferences. If any evidence against efficient markets can be found,
it can always be argued that the asset pricing model is not correctly specified.
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(Fama 1991.) Although the efficiency of the markets is not testable per se, the
predictability of the markets can indeed be tested. These tests can also be formed
based on the same three informational efficiencies depending on the explanatory
variables used.

The academic literature has identified hundreds of possible explanatory vari-
ables that can potentially explain the price variations of financial assets. However,
as Welch & Goyal (2008) find in their study, many of these variables that were
found to be a good fit in the literature were only tested with in-sample data in
their respective studies. When these variables were introduced to new out-of-
sample data, the variables lost their statistical significance and thus lacked any
generality. In fact, in the latter part of their research period, no model had su-
perior performance out-of-sample against the benchmark of the prevailing mean,
and most models were inferior even in-sample. Rapach & Zhou (2013) later point
out that more recent studies that use more advanced strategies, e.g., diffusion
indices and regime shifts, have shown statistical and economic significance even
in out-of-sample. These variables however were mostly using semi-strong efficient
information.

Some challenging arguments against efficiency and predictability have been
demonstrated by various pricing irregularities that only utilize weak form inform-
ation, e.g., momentum, mean reversion, and calendar anomalies (De Bondt &
Thaler 1985; Haugen & Jorion 1996; Jegadeesh & Titman 1993). These anomalies
are usually interpreted and explained using theories of behavioral finance such as
bandwagon and overreaction effects. Although, Fama (1998) argues that these
irregularities are consistent with EMH since the overreactions and underreactions
seem to be as common and are thus the result of chance. Malkiel (2003) also
reviews some earlier studies on these anomalies and argues that the markets are a
lot less predictable and more efficient than many studies have claimed. He notes
that while momentum can be statistically significant, its economical significance
is questionable and earlier studies have not beaten a buy-and-hold strategy when
transaction costs are taken into account. Similar arguments are also shown against
mean reversion and January anomalies. He also argues that the problem with pre-
dictable patterns is that they are not dependable through time which makes them
hard to be exploited. Some of these anomalies, and other found predictors alike,
have also more or less disappeared soon after they have been published (Gu 2003;
McLean & Pontiff 2016).

One possible way to improve the weak form predictability of the markets is to
utilize a set of tools known as technical indicators. Technical analysis methods
use certain rules to anticipate future movements based on historical price data.



15

Relative strength index (RSI) and moving average (MA) are examples of these
methods. While these methods are largely used in the industry, they have faced
a lot of criticism from scholars and some have even called it ’voodoo finance’ (Lo
et al. 2000). Despite the status of technical analysis amongst some academics, a
lot of studies have focused on technical trading strategies.

Park & Irwin (2007) review 95 studies that use technical strategies and record
positive results in 56 of these. However, they point out several deficiencies, e.g.,
data snooping, that these studies are subject to and thus the results are inconclus-
ive. Hsu et al. (2010) study 16,380 trading rules for three different US indices and
six emerging market indices. Before the US indices had exchange-traded funds
(ETF) following them, 269 rules were statistically significant in their mean return.
For the post-ETF period in the three US indices, no trading rules proved to be
significant. After ETFs were introduced to the studied emerging markets, in two
out of the six markets significant rules were still detected. On the contrary, Neely
et al. (2014) find that technical indicators match or even exceed the predictive
power of macroeconomic variables in the US markets. Authors point out that
the technical indicators exhibit greater predictive power, especially near peaks of
business cycles.

Another less studied approach to overall return predictability is to forecast the
sign of the movement instead of the exact magnitude. Leitch & Tanner (1991) are
one of the first to point out that accurately forecasting the direction of an asset
return is in fact related to profitability, unlike any conventional point estimation
method. Leung et al. (2000), on the other hand, are one of the first to empiric-
ally examine the predictability of directional asset returns using probability-based
classification approaches such as logit models and neural networks. Their findings
support the previous literature that models based on classification, instead of level
estimation, outperform both in terms of maximizing the returns from trading, as
well as in prediction accuracy of the return sign. They also argue that the idea
of minimizing the forecast error in point estimation models does not necessarily
contribute to economic significance, and classification-based trading rules might
improve capital gains. This is also rational from an individual investor’s point of
view since an investment decision is also a binary decision in real life – either an
investment decision, buy or sell, is made or not.

Furthermore, Christoffersen & Diebold (2006) prove theoretically that asset
returns can display conditional sign dependence even if the returns have no con-
ditional mean dependence. This is possible if the directional return correlates
with the conditional volatility dependence. Mathematically, an asset return Rt+1

exhibits conditional mean dependence if E[Rt+1|Ωt] alters with the information
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set Ωt. In other words, the return has a time-varying mean. Conditional dir-
ectional dependence or conditional sign dependence on the other hand is true if
E[1[0,∞) (Rt+1) |Ωt] varies with Ωt. Lastly, conditional volatility dependence can
be formulated as σ2

t+1|t = Var(Rt+1|Ωt). Assuming the returns of an asset are
distributed as

Rt+1|Ωt ∼ N(µ, σ2
t+1|t),

the probability for an upside movement is

E
[
1[0,∞) (Rt+1) |Ωt

]
= 1− P[Rt+1 < 0|Ωt] = Φ

(
µ

σt+1|t

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribu-
tion. While this distribution is symmetric and concentrated around the constant
conditional mean, the return sign is forecastable if the probability is time-varying
and above 0.5 if the conditional mean µ is positive. Thus, there is a reverse rela-
tionship between the sign and volatility of the return: when volatility increases,
the probability of a positive return gets smaller and vice versa. Nevertheless, if
the expected return is zero, then the sign of the return would be unforecastable,
as well as if the volatility of the asset return is constant. These results are also
true for non-Gaussian distributions, and therefore the direction of asset returns is
forecastable as long as the volatility is dynamic, i.e., time-varying, and the mean
return is non-zero. Christoffersen et al. (2007) also point out that even if the mean
return is zero, possible variation in higher moments might introduce directional
predictability if the distribution is asymmetric.

The predictability of the directional return should be most prominent in
monthly and weekly frequencies and less so in daily or annual frequencies (Christof-
fersen & Diebold 2006). Nevertheless, some previous studies have found directional
predictability in daily asset returns. For example, Bekiros & Georgoutsos (2007)
study the daily predictability of the Nasdaq and Nikkei indices and report a dir-
ectional accuracy of 54.3% in the Nasdaq index. However, the accuracies were
significantly below 50% for the Nikkei index. Skabar (2013), on the other hand,
reports overall daily accuracies of 52.5% when comparing multiple models over
a 20-year forecasting period. Furthermore, Zhong & Enke (2019) utilize hybrid
machine learning algorithms using 60 different explanatory variables and report
daily directional accuracies in quite a high range of 54.9%–57.5%.

Pesaran & Timmermann (1995) examine the predictability of US stock returns
from 1954 until 1992 and find that the predictability of the stock market is fairly
small during periods of low volatility. In comparison, the predictability of stock
returns increased during higher periods of volatility, and they note that the pre-
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dictability might be more distinct during regime switches in the market. Similarly,
Krauss et al. (2017) show that during the global financial crisis of 2008–2009, the
tested models are able to generate Sharpe ratios as high as 4.46 after transaction
costs following a specific trading strategy. They point out that especially long-
short strategies should be able to exploit this phenomenon. Fischer & Krauss
(2018) consider two possible explanations for the strong performance during finan-
cial crises based on previous literature. Firstly, they argue that it is fair to assume
that investors just get disoriented during market turmoil which creates arbitrage
opportunities. Secondly, limits to arbitrage are extraordinarily high so possible
arbitrage opportunities created by the first reason can’t possibly be exploited, or
short-selling might even be banned overall.

2.1.2 Financial time series analysis

Financial time series analysis often focuses on valuing assets over time from both
theoretical and empirical aspects. The most fundamental theories in financial time
series analysis are based on the assumptions of linearity and stationarity of the
data generating process. As many of the financial time series exhibit nonlinear and
otherwise complex behaviour, more advanced models could also be used. While
more advanced statistical models have been developed, another alternative is to
use machine learning methods instead.

In time series analysis, a time series of a dependent variable y can be expressed
as {yt}t∈T , where T is the number of observations. In financial forecasting, the
future values of the dependent variable are usually estimated using a series of past
observations of one or multiple explanatory variables, {xit}t∈T . A general formula
for forecasting the future values of a given dependent variable yt can be represented
as

yt+τ = F (X;θ|Ωt) + εt+τ , t = 1, ..., T, (1)

where F (·) represents any arbitrary linear or nonlinear function used to model the
time series, X is a set of explanatory variables at given time intervals, θ is the
corresponding parameter vector, τ represents the forecast horizon, ε is the random
disturbance and Ωt is the information set at time t. Quite often the interest is only
in one-step ahead predictions where τ = 1. If for example X only includes T + 1

lagged values of the dependent variable itself, the prediction function illustrated
in Equation 1 can be expressed as

yt+1 = F (yt, yt−1, ..., yt−T ;θ) + εt+1. (2)
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As acknowledged earlier, the stationarity of the time series is often a necessary
condition for traditional models. Stationary time series processes can be divided
into two groups: weak and strong stationarity. However, the strong assumptions
are difficult to test empirically and therefore financial literature is usually inter-
ested only in weak stationarity (Tsay 2010). Therefore, here stationarity always
implies weak stationarity. A time series process Yt is then said to be stationary if
it has the following characteristics:

E[Yt] = µ for all t

Cov(Yt, Yt−s) = γs for all s, t,

where γs denotes the autocovariance function of the process with lag s. A time
series process is therefore stationary if its first and second moments are finite and
time-invariant. In other words, if the expected return µ is constant through time
and the covariance function is not dependent on s and t, but on their relative
distance t − s, the process is weakly stationary. Also if s = t, the covariance is
the variance of the process Var(Yt). The downside of these assumptions is that
financial time series often exhibit time-varying means and thus they are not always
stationary. Nonstationary time series can nevertheless usually be transformed to
stationary forms through transformation, such as taking a first difference of the
values. (Tsay & Chen 2019.)

On top of stationarity, classical time series models often assume a linear re-
lationship between the dependent and independent variables. Probably the most
common form of the model function F (·) is the linear regression model

F (X;θ|Ωt) = β0 + x′
tβ,

where xt is a vector of explanatory variables, β is the corresponding parameter
vector and β0 is a constant. One very simple and popular approach that utilizes
this linear form is the family of autoregressive moving average (ARMA) models. In
fact, applying the linear model as the function F (·) in Equation 2 yields an autore-
gressive AR(p) model, where p = T + 1 as it includes T + 1 previous observations
of its time series.

The assumptions of these traditional models are nevertheless rather restrictive
and they might not be able to uncover the possibly complex relationships between
variables. To tackle these issues, some more sophisticated traditional models have
been developed, such as the threshold autoregressive model (TAR) which intro-
duces nonlinear regime switches. The model uses two or more AR models and
utilizes one model at a given time step depending on which regime the data comes
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from. As the model introduces the idea of separate regimes it allows for some
variability in the mean of the time series. (Tsay 2010.)

After all, most of these traditional models are developed to estimate continuous
dependent variables that have always been the dominant area of research. Yet,
the focus of this thesis is to forecast a qualitative response variable y. In the case
of a directional return of an asset, we can use the following notation to introduce
the binary response variable to be estimated as

yt =

1, if Rt > 0,

0, if Rt ≤ 0,

where R is the simple return of an asset. In these types of applications, the use of
linear models is not encouraged. Instead, when the dependent variable has discrete
values, qualitative response models should be used since ultimately the task is to
estimate the conditional probability of a binary outcome (Horowitz & Savin 2001).
It is also shown by Leung et al. (2000) that probability-based models are superior
to linear models in this regard.

These qualitative response variables also possess different characteristics than
the commonly used continuous variables. A binary-valued dependent variable
conditional on prior information can be shown to have a Bernoulli distribution

yt+1|Ωt ∼ Ber(pt+1),

where pt is the conditional probability and thus

pt+1 = E(yt+1|Ωt) = P(yt+1 = 1|Ωt).

The conditional probability, pt, can be modeled using a linear model πt which is
linked to the conditional probability via pt = G(πt), where G(·) is a link function.
The linear function πt is usually of the form

πt = ω + x′θ,

where ω is the constant term, x is a set of explanatory variables and θ includes the
corresponding parameters. This type of generalized linear model allows for linear
representations of the data to be implemented in a probabilistic environment. The
simplest probability model, the linear probability model, uses an identity link
function, and thus the probability can be expressed as G(πt) = πt. This model has
theoretical disadvantages because the modeled function πt has no constraints to
be in the probability range of [0,1]. While it can be corrected by fixing the values
to F = 1 if F (πt) > 1 and F = 0 if F (πt < 0), it introduces unrealistic kinks
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at the truncation points. Thus, this model is often not recommended to be used.
(Amemiya 1981.)

Probit and logit models are examples of traditional generalized linear models
that are used in financial time series analysis. In these cases, the link function
G(·) is the cumulative distribution function of the standard normal distribution
or the logistic distribution, respectively. Both of these models are identical at
π = 0 and thus yield similar results in binary classification tasks. There are slight
differences in the models, as the coefficients of the logit model are approximately
1.6 times larger than the ones in probit. (Agresti 2015.) This does not matter
in pure directional prediction tasks where the coefficients’ interpretations aren’t
the main focus. In terms of their provided probabilities, a static probit model for
instance can be expressed as

pt = Φ(πt) =

∫ πt

−∞

1√
2π

exp

(
−1

2
x2
)
dx.

Alternatively, we can express the logit model in terms of probabilities, when
Φ(·) is replaced with the logistic function as follows

pt = Λ(πt) =
1

1 + exp(−πt)
=

exp(πt)

1 + exp(πt)
. (3)

Financial time series analysis has mostly utilized binary response models to
predict recessions or similar occasional events. Nonetheless, a few studies focus-
ing on stock market returns have been conducted with promising results (Nyberg
2011; Chevapatrakul 2013; Nyberg & Pönkä 2016). Even so, the use of traditional
statistical models for directional return prediction has not received wider popular-
ity. Part of the reason might be the more complex interpretation of the model
coefficients for causal inference.

Nonetheless, the predictive modeling research has seen a rise of multiple differ-
ent machine learning methods tackling the question of directional predictability in
financial time series. Previous research work that utilizes machine learning meth-
ods for stock return prediction is analyzed in Section 2.3. These methods include,
e.g., support vector machines, k-nearest neighbors, decision trees, random forests,
and neural networks. While numerous machine learning techniques have been ac-
cepted as proper alternatives to traditional statistical models, the evidence of their
performance has been mixed.

For instance, Makridakis et al. (2018b) compare the out-of-sample accuracy of
statistical models such as ARIMA models against different machine learning mod-
els like k-nearest neighbors and LSTMs. The data in the article is from Makrida-
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kis’s M-3 competition of which 25% is finance-related data. The Makridakis com-
petitions are famous time series forecasting contests of which the first was held
in 1982 (Makridakis et al. 1982). Makridakis et al. (2018b) observe traditional
statistical models to be superior in all forecasting horizons and accuracy measures
in the M-3 competition. The authors also encourage future machine learning re-
search to incorporate more traditional statistical models as benchmarks in order to
show more realistic results of the capabilities of these methods. Opposingly, some
researchers like Siami-Namini et al. (2018) have shown LSTMs to have preferable
results against ARIMA models.

Next Makridakis competition, the M-4, also saw similar trends as most of
the top models continued to have traditional statistical qualities. All six models
submitted to the competition that were purely based on machine learning methods
performed poorly. The best model however was based partly on recurrent neural
networks. (Makridakis et al. 2018a.) The most recent M-5 competition was split
between accuracy and uncertainty forecasting. In both competitions, four out of
the top five methods utilized a machine learning method called LightGBM. The
other top method in the accuracy challenge placed third and it used a combination
of 43 deep learning models combining LSTM layers. Similarly, in the fourth place
in the uncertainty challenge was an LSTM-based neural network. (Makridakis
et al. 2021a; Makridakis et al. 2021b.)

2.2 Neural network models

2.2.1 Feed-forward networks

Neural networks are gaining interest in multiple scientific areas, including financial
academic research. Neural networks are a great tool to model complex and nonlin-
ear dependencies between variables. This makes them very suitable for financial
modeling tasks since financial data is complex, dynamic, and often nonlinear in its
nature. In addition, neural networks allow for an analysis of financial time series
without the restrictions of traditional statistical methods. (Nagel 2021.)

The perceptron, introduced by Frank Rosenblatt in 1958, was the first algorith-
mically represented neural network, and still today it is the cornerstone of most
modern neural networks. The following presentation of a perceptron loosely fol-
lows the description of Haykin (1999). A basic perceptron is composed of three
main elements: synapses or connecting links, adders, and activation functions.
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Synapses represent the connections between two different neurons, or nodes, each
of which has its own synaptic weight, or connection strength. The term adder
symbolizes the linear combination between the inputs and their synaptic weights.
Activation functions are used to limit the output amplitude and they are also the
only nonlinear part of a neural network. Mathematically, we can formulate the
basic perceptron as

y = ϕ

(
n∑
i=1

wixi + b

)
= ϕ(w′x + b) ,

where ϕ(·) is usually a nonlinear activation function, w is the weight vector i.e.
the synaptic weights, x is the input vector, y is the output vector and b is the
bias. The part inside the activation function, ϕ(z), is known as the activation or
activation potential z. The corresponding computational graph of a perceptron is
shown in Figure 1. The perceptron can also be represented in form of the general
forecast function in Equation 1, where the function F (·) is replaced with ϕ(·),
and the parameter vector θ includes the estimated parameter weights w and the
weight of the bias term b. The bias is used in neural networks to apply an affine
transformation to the linear combination that is similar to a constant in linear
functions, which hopefully allows the model to have a better performance.

Originally, the perceptron was used with an activation function called the Heav-
iside step function, ϕ(z) = 1(0,∞)(z), that tried to imitate the human brain by
simply either firing or not firing a specific neuron. Nowadays, many more ad-
vanced activation functions are common in practice. The choice of an activation
function is dependent on the problem and the model you are solving it with.

Figure 1: Computational graph of a single-layer perceptron
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Some of the most common activation functions, ϕ(z), are the following:

σ(z) =
1

1 + e−z
(sigmoid)

softmax(zi) =
ezi∑
j e

zj
(softmax)

tanh(z) =
ez − e−z

ez + e−z
(hyperbolic tangent)

ReLU(z) = max(0, z) (rectified linear unit).

(4)

The three first activation functions in Equation 4 are all from the same expo-
nential family. The logistic sigmoid function is one of the most commonly used
activation functions. When replacing the ϕ(·) with a sigmoid σ(·), it is equivalent
to the logistic regression formulated in Equation 3. Consequently, logistic regres-
sion can also be thought of as a machine learning approach, which is how it is used
in this thesis. Because the output range of values provided by the sigmoid is [0,1],
it is often used as an activation function in the output layer of binary classification
tasks, i.e., P(y = 1|x). If it is used as an activation function in the inner layers
of a network, the function might saturate when its inputs are highly positive or
negative, and thus the function becomes insensitive to minor changes (Goodfellow
et al. 2016). The generalization of the sigmoid is the softmax function. It can be
used to solve multi-class classification tasks, i.e., P(y = i|x). The resulting vector
gives out the probabilities to each class i in the task.

The hyperbolic tangent is another very commonly used activation function.
The hyperbolic tangent is just a scaled and shifted form of the sigmoid function
as tanh(z) = 2σ(2z) − 1. The hyperbolic tangent usually works better than the
sigmoid and does not saturate as easily inside a network. It also behaves quite
linearly near the origin, which makes the model estimation easier. Rectified linear
unit (ReLU) in the fourth formula is the most common type of activation function
nowadays. ReLUs are piecewise linear functions and therefore very easy to optimize
by using differentials. Piecewise linearity means that it is partly linear. In the case
of ReLU, the function is linear when the input is positive and zero otherwise. This
makes the optimization through gradient-based methods a lot easier. However, if
the activation z goes to zero at any point, the model cannot use those observations
in the estimation anymore. Many modifications to the original ReLU have been
implemented to allow the model to keep optimizing the values even when the input
is negative. (Goodfellow et al. 2016.)

While the perceptron is the basis for most neural networks, a single-layer per-
ceptron is not very useful as it can only act as a linear binary classifier. However,
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by using a stack of perceptrons a lot more complex structures can be achieved.
In addition to input and output layers, a multilayer perceptron (MLP) has one
or more hidden layers in between. MLP is also known as a feed-forward neural
network (FNN). MLP with one hidden layer can be expressed mathematically as

h = ϕ
(
Wxx + bh

)
y = Whh + by,

where Wx ∈ Rn×T is the weight matrix used to map the inputs to the hidden
layer via a linear transformation, Wh ∈ Ro×n is the weight matrix used to map
the hidden layer to the output layer, b is the bias vector and ϕ(·) is an arbitrary
activation function. The n and o respectively denote the number of nodes in the
hidden and output layer, and T is the length of the input vector. Also, models,
where every neuron of one layer is connected with every neuron of another are
called fully-connected layers, or dense layers.

The weight matrices in MLPs are often initialized randomly with values within
the range (0,1). More efficiently, the weight parameters of the network can be, for
example, sampled from the uniform distribution U(−1/T 1/2, 1/T 1/2) capping the
maximum total size of weights to 1. (Marsland 2015.) Another commonly applied
parameter initialization strategy is to use the normalized initialization, also known
as Glorot initialization, developed by Glorot & Bengio (2010).

Artificial neural networks, such as MLPs, are usually fitted and optimized by
minimizing a loss function J(θ) via a method called gradient descent. The loss
function used in binary classification tasks is the binary cross-entropy loss

J(θ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)),

where ŷi is the predicted output, yi is the actual output, and N is the number
of predictions. The minimization of the cross-entropy loss, or equivalently, the
negative of the log-likelihood, can also be interpreted as a maximum likelihood
estimation (Goodfellow et al. 2016). The most popular way to calculate the gradi-
ent g of the loss function, also notated as ∇J(θ), is to use the backpropagation
technique. Backpropagation is the use of repeated chain rules of partial derivat-
ives. The goal is to differentiate the loss function with respect to the weights of
the model so that the parameter weights could be optimized. (Graves 2012.)

Firstly, for every node j in a layer h, the output is defined here as

ohj = ϕ
(
zhj
)

= ϕ

(
n∑
i=1

whijo
h−1
i

)
,
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where oh−1i are the outputs from the previous layer, whij is the synaptic weight from
i to j, zhj is the activation potential and ϕ is an arbitrary activation function.

Backpropagation uses the chain rule as follows

g =
∂J

∂whij
=

∂J

∂ohj

∂ohj
∂zhj

∂zhj
∂whij

, (5)

where g is the gradient and J is the chosen loss function. Redefining parts of the
formula as

δhj =
∂J

∂ohj

∂ohj
∂zhj

oh−1i =
∂zhj
∂whij

will allow the Equation 5 to be expressed as

∂J

∂whij
= δhj o

h−1
i .

All the values of δhj can then be recursively iterated for each layer H by

δhj = ϕ′
(
zhj
) ∑
k∈H+1

whjkδ
h+1
k ,

where ϕ′(·) is the derivative of the activation function. Thus, the weighting formula
update can be calculated from values of δ and multiplied by the output of the
previous layers oh−1. The obtained loss gradients of the weights are then stored
into a gradient vector g. It is then used to update the parameter weights of the
network layers as follows

θ = θ − ηg,

where η is an adjustable learning rate. There are numerous different methods to
improve the optimization process of these neural networks. For example, the learn-
ing rates can be constant, decaying or cyclical, and even have certain restarts that
improve the optimization. Similarly, different adaptive learning rate optimization
algorithms, such as RMSprop or Adam, are often employed in model training, i.e.,
model estimation. (Goodfellow et al. 2016.)

2.2.2 Recurrent neural networks

Recurrent neural networks (RNN) are neural networks that use internal feedback
loops to retain information from previous inputs. This kind of parameter sharing,
using earlier outputs as the next inputs, is the core reason for RNN’s ability to
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generalize across time. (Goodfellow et al. 2016.) This idea can also be seen from
the mathematical formulation of the network:

ht = ϕ
(
Wxxt + Whht−1 + bh

)
yt = Wyht + by,

where Wx is the weight matrix applied to the input, Wh is the weight matrix used
to map values from the previous hidden layer to the next one and Wy is the weight
matrix that maps the values of the current hidden layer to the output layer. The
unfolded recurrent structure of the RNN network can be seen in Figure 2.

Figure 2: Unfolded computational graph of RNN

The parameters in an RNN network are shared across time and thus inputs
at each time t influence the model parameters. This makes the optimization very
expensive as the gradients of the model have to be calculated through the sequence
using a method called backpropagation through time (BPTT). (Goodfellow et al.
2016.) This makes the model unsuitable for some tasks that require fast conver-
gence in optimization. Another downside of the standard RNN is also related to
the long backpropagation sequences. When BPTT is used, the gradients eventually
tend to vanish or blow up as the sequence gets longer. Vanishing gradients can lead
to parameters not being updated and thus the estimation of the model finishes,
leading to non-optimal results. Exploding gradients on the contrary might lead
to oscillating weights that can make the model unable to learn anything useful.
(Hochreiter et al. 2001.) Thus, standard RNNs are only suitable for tasks with a
limited number of past inputs where the gradient is controllable.

To overcome the problem of vanishing and exploding gradients of standard
RNNs, Hochreiter & Schmidhuber (1997) proposed the long short-term memory
(LSTM) model as the solution. The gradients are kept more stable by introducing
paths through time that retain or forget information in a certain way. This pathway
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allows the accumulation of information over longer durations. The single hidden
layer function from simple RNN, where previous hidden values are looped forwards,
is now reconstructed to a significantly more complex structure utilizing different
gates. (Goodfellow et al. 2016.) The whole LSTM architecture can be expressed
as the following composite function

ft = σ
(
Ufxt + Wfht−1 + bf

)
it = σ

(
Uixt + Wiht−1 + bi

)
ot = σ(Uoxt + Woht−1 + bo)

gt = tanh(Ugxt + Wght−1 + bg)

ct = ft � ct−1 + it � gt

yt = ht = ot � tanh(ct) ,

(6)

where � represents the Hadamard product, the f , i, o, g, c, and h respectively
denote the forget gate, the input gate, the output gate, the classic RNN gate, the
cell state, and the hidden state. Also, U, W, and b, respectively denote the input
weight matrices, recurrent weight matrices, and bias vectors of different gates of
the model. The LSTM cell and the flow of information through the cell can be
seen visually in Figure 3.

The different components in Equation 6 can be seen to have different activation
functions and roles in the network. The most important of these is the cell state
ct, or alternatively the internal state unit, that acts as the accumulated long-term
memory where the previous cell state is updated with new information at each
time step. The input gate layer, it, and the classic RNN gate, also known just
as the tanh layer, gt, are responsible for adding new information from the current
input to the accumulated memory. The amount of past information to forget at
a given time is controlled by the forget gate, ft, which outputs a value between 0
and 1. Finally, the output or hidden state of each time step is the accumulated
information held in ct multiplied by the output gate layer.

Although LSTM enables longer memory capacity for the network, it still has a
few disadvantages. While the gates allow the network to skip unnecessary inform-
ation and thus the small multiplication terms in the gradient calculation, it still
has the same sequential structure. This means that it has to use the same BPTT
algorithm that is computationally expensive. Also, for example, Khandelwal et al.
(2018) show that in an NLP setting, the LSTM is capable of using the context of
approximately the last 200 inputs but clearly distinguishes about 50 of the most
recent inputs.
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Figure 3: Long short-term memory (LSTM) cell

Gers et al. (2000) also improve the model by adding peephole connections,
V ict−1, where V i are the peephole matrices for different gates i. These connec-
tions can be added to one or more of the forget, input, and output gates. These
connections let different gates use the information of the cell state when the model
is fitted. Another well-known variant of the gated RNNs is the gated recurrent unit
(GRU) by Cho et al. (2014), which is simpler yet almost as efficient as the standard
LSTM model. Many other variations of LSTM models have been proposed and
they have also been applied as hybrid methods with an attention technique. The
attention mechanism is also the core idea behind the Transformer network.

2.2.3 The Transformer network

The latest substantial advancement in sequence processing, and especially in nat-
ural language processing (NLP), has been the development of the Transformer
architecture and its variants. The Transformer architecture was introduced by
Vaswani et al. (2017) in a groundbreaking paper called "Attention Is All You
Need" which has since generated a whole new family of deep learning models. As
the paper’s title suggests, a concept called attention is utilized to overcome many
of the shortcomings of RNNs. The goal of the technique is to only pay attention
to relevant parts of the input. The idea behind attention can be shown to arise
from our biology. For example, given an image, we automatically attend our focus
on a certain part of the image we feel is important. (Zhang et al. 2021.)

The attention technique proposed by Bahdanau et al. (2014) allows a model
to attend to all observations of the input sequence simultaneously. This is a clear
difference from RNNs that only have access to the values through the last hidden
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state. The attention calculates a learnable weighted representation of the input
in order to highlight the most important observations in it by giving more weight
to them. This is done using queries, keys, and values that are compared to each
other. The concept of queries, keys, and values is used in search engines for
example. Generally, for a given query it has a matching key in a database, and
a value corresponding to the key is returned. Here, the concept is similar, but
instead of a single match, the query matches against all the keys to a certain
degree based on their dot product. The dot product score is therefore a similarity
metric between the queries and the keys. The similarity scores are then used to
weigh the corresponding values to produce a new attention-weighted representation
of the input sequence. (Chollet 2021.)

Earlier attention networks were usually combined with recurrent or convolu-
tional networks and the Transformer model was the first to solely use the attention
mechanism in its architecture. Since RNN models go through the input sequen-
tially, the last hidden state has to capture all the relevant information of the input
and therefore acts as a memory bottleneck even when attention is used with it.
However, when there are no models it is combined with, the ability to attend
to all observations of the input sequence makes it possible to utilize information
from arbitrarily long sequences. Attention can instantly access all states in the
input sequence, which helps with vanishing gradients. It might also allow for some
interpretability because the attention similarities, i.e., attention scores, can be
visualized. The attention mechanism is also bidirectional by its design, i.e., it can
go through the sequence from start to end and from end to start. (Vasilev 2019.)

Although the Transformer was originally developed for NLP purposes, it has
been applied in many other areas as well (Parmar et al. 2018; Dong et al. 2018;
Huang et al. 2018). However, Transformer-based models have been applied only in
a few financial applications and there is no unified representation of a Transformer
for financial time series tasks. Therefore, the original Transformer model developed
for NLP-related tasks is presented here. The proposed model of this thesis with
its modifications for financial time series data is presented in Section 3.2.

The original Transformer model of Vaswani et al. (2017) is shown in Figure 4.
These types of encoder-decoder architectures are very common in language tasks
where the source and target sequences can be of different lengths and languages.
The encoder layer is on the left, and the decoder layer is on the right. The encoder
provides an encoded representation of the source sequence and uses it together
with the decoder to predict the next target output. (Chollet 2021.) Most of the
sub-layers are similar in both the encoder and decoder. The encoder contains two
main sub-layers, a multi-head self-attention layer and a simple position-wise fully
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Figure 4: The Transformer architecture (Vaswani et al. 2017)

connected FFN, with some skip connections and normalizations. The decoder is
mostly similar, except a masked self-attention is first applied to avoid any look-
ahead bias by masking future values. The multi-head attention in the decoder
also uses values from both encoder and decoder. As the encoder and decoder are
mostly comparable, only the encoder block is presented here in detail.

The fundamental part of the Transformer model is the multi-head self-attention
sub-layer. The operations within the layer are visualized in Figure 5. The Trans-
former utilizes dot-product attention with an additional scaling term,

√
dk. The

formula for this scaled dot-product attention, also visualized on the right side of
Figure 5, can be written as

attention(Q,K, V ) = softmax

(
QK′√
dk

)
V,

where dk is the hidden dimension of the keys, and Q ∈ RT×dk , K ∈ RT×dk and V ∈
RT×dv are the matrices for queries, keys and values, respectively. The dimension of
the values, dv, can differ from the dimension of queries and keys. The softmax is
used to turn each row of the similarity matrix QK′ ∈ RT×T into probabilities. As
the variance of dot products in the similarity matrix increases as a function of dk,
the values are scaled by the square root of dk to ensure a non-vanishing gradient
(Vaswani et al. 2017). The values that are used to weigh the value vector are



31

known as attention scores which can be visualized in a T × T matrix to showcase
each connection between the values of the input sequence with length T .

Figure 5: Multi-head self-attention layer visualized

The self-attention in the multi-head attention means that the queries, keys,
and values are calculated using the input X ∈ RT×dmodel itself, hence the term
self-attention. Three different weight matrices are used for three different linear
transformations of the input sequence. (Zhang et al. 2021.) The three produced
matrices are:

Q = XWQ

K = XWK

V = XWV ,

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and WV ∈ Rdmodel×dv . All of these
weights are learned and optimized in the estimation process of the model in order
to produce the best attention weighting possible.

The multi-head self-attention itself is an expansion from the single self-attention
calculation. The idea is to use multiple attention score mappings, i.e., multiple
attention heads, to learn different kinds of relationships from the input sequence.
Mathematically, the multi-head attention can be expressed as

MultiHead(Q,K, V ) = concat(head1, ..., headh)W
O,

where

headi = attention(Q,K, V ).

Given the number of attention heads, h, the outputs of the attention heads,
headi ∈ RT×dv , are first concatenated after which they are multiplied by WO ∈
Rhdv×dmodel to achieve the original shape of the input.
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In addition to the multi-head attention, the Transformer architecture includes
residual connections with a layer normalization that helps to maintain gradient
flow through the model. Layer normalization means that the normalization of the
values is calculated across the explanatory variables, i.e., the feature dimension of
the model. The method is advantageous in many models as it allows for a fast
calculation independently at each time step. (Géron 2019.) This procedure can
simply be formulated as LayerNorm(x + SubLayer(x)), where the SubLayer(x) is
the output of the given sub-layer. The usage of residual skip connections between
layers helps to maintain the positional information throughout the network. (Roth-
man 2021.) Introducing these skip connections to deep networks can also make
the loss surface much smoother and therefore improve the estimation of the model
(Li et al. 2018).

The other sub-layer in the Transformer encoder is the position-wise feed-
forward layer. This means that a fully connected feed-forward network is applied
identically and separately to each position (Vaswani et al. 2017). This is achieved
using a ReLU activation function between two linear transformations as follows

FFN(x) = ReLU(xW1)W2,

where W1 ∈ Rdmodel×4dmodel and W2 ∈ R4dmodel×dmodel .
The downside of the model so far is that it does not utilize the order of the input

in any way since there are no recurrent or convolutional layers. The attention treats
the input as a set and is permutation invariant as such (Chollet 2021). Since the
order of inputs is often an important factor, the positional information of the inputs
has to be encoded. Vaswani et al. (2017) experimented using different methods to
encode the positional information and found a fixed sinusoidal positioning to be
the preferred method for their purpose. They utilize different frequencies of the
sine and cosine functions as follows

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel),

where pos is the position in the input sequence and i is the model dimension. The
positional encodings are then added to the inputs, X̄ = X+PE(X). A visualization
of some positional encoding values can be seen in Figure 6. The sequence length
is chosen to be 200 and the dimension of the model is 50.

One obvious downside of most deep learning models is their lack of inter-
pretability. While some model-agnostic methods for neural networks have been
developed, e.g., LIME and SHAP, they are not very suitable for time series prob-
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Figure 6: Fixed sinusoidal positional encodings over model dimensions

lems as they do not account for the order of time (Lim et al. 2021). Even though
the goal of the thesis is to showcase the possible predictive capabilities of the
Transformer model, any found explainability might contribute to the model’s use
in a broader context. Unlike standard RNN architectures like LSTMs or GRUs,
Transformers might hold insights into the importance of different timesteps. The
theoretical aspects are explored here, while the visualizations using the empirical
data are shown as part of the results.

The Transformer is based on the attention technique which uses the outcomes of
two different linear transformations of the input. However, the usage of attention as
a realistic explanation is debated and the following should be approached with some
scepticism (Jain & Wallace 2019; Wiegreffe & Pinter 2019). When the input X is
multiplied with the linear matrices WQ and WK to produce Q and K, the model
loses the cross-sectional information of the independent predictors. Technically, the
input vector could also be transposed so that X ∈ Rdmodel×T , where the variable
importance is retained instead of temporal information. In the more common
setting, where X ∈ RT×dmodel , the temporal information is still retained as each row
still represents the individual time steps. Thus, we can interpret the importance of
previous observations and their relationships with each other for a given prediction.
When the Transformer has multiple heads, a comprehensive interpretation is not as
straightforward, as different heads tend to learn different patterns. Therefore, e.g.,
simple averaging of the attention scores may lose important information. (Chefer
et al. 2021.) For simplicity, only one head will be assumed in the following.

The temporal relationships can be represented by visualizing the attention
scores, α ∈ RT×T , which can be attained from the probability-weighted scaled
dot-product

α = softmax

(
QK′√
dk

)
. (7)
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As the softmax is applied row-wise, each row of length T has a total value of 1. If
any day k can be interpreted as being more important, its attention values tend to
be larger vertically in the same kth column when it is compared to each ith day.
Since there are no limitations to the value on the vertical column, the summed
attention scores of that kth day can exceed 1. The downside of the attention
score is that it is local, in the sense that it only provides information regarding
the current prediction for t + τ using T previous time steps as the explanatory
variables. Though if certain time lags exhibit attentive persistence throughout the
series, one could average the score of each individual value, a(i, j), over the length
of the estimated time series N as

ᾱ(i, j) = N−1
N∑
t=1

α(t, i, j). (8)

Another possibility regarding the attention scores is to use them to identify
regime shifts, as experimented by Lim et al. (2021). Even though the authors
apply the concept for volatility time series, it might be possible to exploit their
idea to simple asset returns as well. In order to calculate the metric, one row has
to be fixed. In the empirical analysis i = 1 will be used and thus its notation is
excluded from the following. Now, the average attention scores for each jth lag
at first row can be written as ᾱ(j) = [ᾱ(1), ..., ᾱ(T )]T . These averages of the jth
lags will be compared against the jth lags of each individual predicted time step,
α(t, j) = [α(t, 1), ..., α(t, T )]T , and possible significant deviations from the average
can be construed as regime shifts. The deviations are calculated as a distance
metric for each predicted time step t as follows

dist(t) = κ(ᾱ(j),α(t, j)), (9)

where κ signifies the Hellinger distance expressed as

κ(p, q) =

√√√√1−
T∑
i=1

√
piqi.

The value of dist(t) can now be visualized against a price or a return series to see
whether the metric captures any significant regime changes. The results from the
Equations 7, 8 and 9 will be represented in Section 4.4.
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2.3 Previous research

The empirical analysis in this thesis focuses on machine learning methods that
are employed in financial time series analysis. Therefore in this section, previous
research in this area is examined and analysed. Machine learning methods have
been deployed in financial applications since the 1980s (White 1988). Back then,
computers were of course far from their current computational capabilities, which
limited the early usage and development of models. Since then, multiple different
machine learning methods have been applied to asset prediction tasks. These meth-
ods include, e.g., support vector machines (SVM), k-nearest neighbours (kNN),
tree-based classifiers (TBC), neural networks (NN) and random forests (RF).

A comprehensive study on machine learning methods for financial prediction
was constructed by Ballings et al. (2015) who evaluated multiple models on a large
dataset consisting of 5767 public companies from Europe. The models used in the
study were AdaBoost, Kernel Factory, neural network, logistic regression, support
vector machine, k-NN and a random forest. They use a 2-fold cross-validation five
times and as such, there is no clear out-of-sample data available. The random
forest was a clear winner, achieving an AUC score of 0.904 while the second-best
model, SVM, only attained a score of 0.840. The third is the Kernel Factory
followed by AdaBoost. The logistic regression was the weakest with an AUC score
of 0.661.

Another study consisting of various machine learning models was executed by
Nevasalmi (2020) who studies the predictability of the S&P 500 index from the 12th
of February 1990 until the 5th of October 2018 by using a multinomial response
variable. The multinomial variable in question has three different categories in
which the bounds are the upper and lower quartile of S&P 500 index returns in
the in-sample. The applied methods include the k-nearest neighbour, gradient
boosting machine (GBM), random forest, neural network and a support vector
machine. The out-of-sample accuracies of the models were close, as the worst
model, k-nearest neighbour, reached a 54.57 % accuracy, and the best model,
GBM, achieved an accuracy of 55.97 %. A trading strategy with a starting value
of 100 was also implemented in the analysis and all the methods defeated a simple
buy-and-hold strategy even when accounting for transaction costs. As with the
accuracies, GBM proved to be the winning model by a clear margin as it reached
a final wealth of 351.54, while the second-best model, neural network, reached a
wealth of 244.51.
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Krauss et al. (2017) analyze the performance of neural networks, gradient-
boosted trees, random forests and an equally-weighted ensemble model of the
previous methods in predicting the daily directional returns of the S&P 500 index
constituents between 1992 and 2015. The authors apply the models to predict
stocks that outperform the cross-sectional median of the returns instead of the
more common threshold of zero. The reported accuracies were all in the range of
54% and 55%. The ensemble model was the best method producing an annualized
return of 72.96 % after transaction costs, while the neural network was the worst
with 26.85 % return. All methods easily beat the market return of 9.25 %. They
find, however, that most of the advantage was gained before 2001 after which
the returns started to diminish. The authors suspect that the increase of ML
techniques and the simultaneous surge in computing power are the cause of these
findings.

Later, Fischer & Krauss (2018) broaden the scope of the earlier study by includ-
ing an LSTM model and a logistic regression in the study. They report the LSTM
model to have the best accuracy at 54.3% while the logistic regression reaches an
accuracy of 52.2%. They find that the LSTM model is able to achieve an annu-
alized return of 82.29 % after transaction costs, topping all previous methods. In
contrast, the logistic regression is only able to produce an annualized return of
7.11 % which is even below the market return. The authors note that after the
financial crisis of 2008, the cumulative profits generated by the LSTM stay fairly
constant suggesting there is no economic significance in the latter period.

Nelson et al. (2017) study the intraday performance of the LSTM model by
using 15-minute data from five stocks on the Brazilian stock exchange. They
use a total of 175 different technical indicators and five predictors formed from
price data. The LSTM model is compared to the baseline models of multi-layer
perceptron, random forest and a pseudo-random approach. The LSTM has the
highest median accuracy in all five stocks by a rather clear margin. They note
that the standard deviation of the accuracy, however, is quite high.

Jiang et al. (2018) are one of the first to implement an attention-based recurrent
neural network in financial time series. They estimate the models on the currency
and stock markets of China, India and USA and further split their study period
into two parts. First is the crisis period from 2007 to 2009, and then a non-
crisis period from 2010 to 2017. The proposed attention-based model achieves
significantly higher AUC scores than the competing models. For example, on the
stock market data sets, its AUC score is in the range 0.547–0.566. A normal bi-
directional LSTM model, on the other hand, is only able to achieve an AUC score
in the range 0.512–0.538. Similar results were true for currency markets, where the
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attention-based model attain an AUC in range 0.553–0.772, while the second-best
model, cross-domain attention network, reached a AUC score of 0.520–0.628.

Ding et al. (2020) are probably the first ones to apply a Transformer model in
financial time series prediction. They compare the performance of a convolutional
neural network, LSTM, attention LSTM, original encoder-only Transformer and
their own Transformer variant using daily Nasdaq data and 15-minute data from
China A-shares. They also introduce modified thresholds to make the data more
balanced. Their variant of the Transformer is able to produce a 57.3 % accuracy,
while the original Transformer achieves an accuracy of 56.01 %. The LSTM model,
on the other hand, was able to attain an accuracy of only 53.81%, and similar
results in terms of the model performances were also presented in the Chinese
data set. The out-of-sample period in the Nasdaq data was only one year long,
and thus the result cannot be considered very robust.

A second article regarding Transformers in stock return prediction is published
by Yoo et al. (2021). They also apply their own variant of the Transformer, called
Data-Axis Transformer, to forecast six different data sets of various lengths in-
cluding Nasdaq 100 and Nikkei 225 indices. They compare their model against
benchmark models such as LSTM and attention LSTM. Their proposed model is
able to achieve superior performance in each of the six time series. For example,
the reported accuracy of the model for Nasdaq is 54.06 % whereas LSTM and
attention LSTM for example reached accuracies of 52.63 % and 52.60 %, respect-
ively. One implementation can be found in Zhang et al. (2022) who deploy a
Transformer-based hybrid model that uses both textual and numerical informa-
tion in the estimation. They also report their results using only historical price
data. Authors find that on four different modified datasets the model predictions
achieve accuracies in the range 58.61 %–59.99 %, which beats all non-Transformer
models, even if the other models also employ text data.
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3 DATA AND METHODOLOGY

3.1 Data and preprocessing

The goal of the empirical analysis in this thesis is to predict one-step ahead dir-
ectional returns of different assets. The empirical analysis is conducted using four
different US stock indices. The indices used in the study are the S&P 500, NAS-
DAQ Composite (Nasdaq), Dow Jones Industrial Average (DJIA), and Russell
2000 indices (Russell). The first three indices have been chosen to represent the
most efficient and well-known market indices in the world. Russell 2000 is a small-
cap stock market index and thus its predictability might slightly differ from other
indices in this study. The data set of the study includes daily observations of the
selected variables: opening price (open), highest price (high), lowest price (low),
adjusted close price (close) and volume. Instead of the more traditional approach
of using only the adjusted close prices, the other weak-form efficient variables are
also selected, as the Transformer should benefit considerably from additional vari-
ables. The aforementioned variables will also be used to calculate 12 different
technical indicators.

The full research window is the period from 1st of January 2007 to 31st of
December 2021. This includes the 10-year prediction period as well as five years
of data to generate the technical indicators and to fit the models. The empirical
analysis, including the predictions and trading strategies, is performed with daily
observations. In total, 3777 daily observations are used in the analysis, of which
2517 are also used as out-of-sample data. Asset returns have been shown to pose a
real challenge in prediction tasks since they have a very low signal-to-noise ratio.
This is even more true in the case of daily returns. Neural networks also have
tendencies to overfit easily when the noise is high relative to the signal (Abu-
Mostafa et al. 2012). Yet, daily returns are still utilized as some predictability
has been found in the previous literature. Furthermore, as the Transformer can
simultaneously attend to all observations, in theory, possible predictable dynamics
should be found.

The dependent variable in this study is the directional sign of the asset return.
Thus the objective is to forecast the conditional probability that the return is
positive or negative, given lagged observations of the explanatory variables. This
type of classification task can be indicated with a binary indicator: 1 if the asset
return is positive and 0 if the return is negative. The simple daily returns of assets
are calculated from the adjusted close prices for each day. Excess returns are not
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used, as the risk-free rate for daily observations is practically zero for most of the
period and averages 0.0004% in the out-of-sample period.

Two different variations with a different number of explanatory variables will
be examined in this study. The first variation, hereinafter the main model (M),
includes the variables high, low, open, close and volume. The second one, herein-
after the extended model (E), will include all the variables in the first case, but
also a variety of additional technical indicators presented in Table 1 along with
their mathematical formulations. The lengths, k, of the technical variables are the
default values used for the indicators in the pandas-ta library (Johnson 2021). In
addition to the default values, also the 50-day moving average (MA50) is used.
The chosen variables were influenced by previous studies on the matter (Neely
et al. 2014; Qiu & Song 2016; Bao et al. 2017). Having multiple variables might
introduce highly correlated predictors to the model. Neural networks can deal with
multicollinearity and as the task is focused on forecasting instead of interpretation,
the multicollinearity shouldn’t cause the forecasts to be any worse for the logistic
regression either (Hyndman & Athanasopolous 2018).

Table 1: The selected technical indicators

Here Ct denotes the adjusted closing price, Lt the lowest price and Ht the highest price of an
asset at time t. The σk is the standard deviation over the last k days and m is the number of
standard deviations. The RS is the average gain divided by the average loss over k periods.
The TP = (Ht + Lt + Ct)/3 is the typical price at time t and MD = k−1

∑k
i=1 |TPi −MAi|

which is the mean deviation from the moving average. PS is the average sum of standard
deviation on positive days over k periods and NS is the average sum of standard deviation on
negative days.

Abbreviation Technical indicator Formula

MAk Moving Average of k days k−1
∑k

i=1 Ct−i+1

MOMk Momentum Ct − Ct−k

STO%Kk Stochastic %K (Ct − Lk)/(Hk − Lk)× 100

STO%Dk Stochastic %D k−1
∑k

i=1 %Ki

RSIk Relative Strength Index 100− 100/(1 +RS)

MACDk,n Moving Average Convergence Divergence EMAk − EMAn

CCIk Commodity Channel Index (TPt −MAt)/(0.015MDt)

PPOk,n Percent Price Oscillator (MACDk,n)/EMAn

UBk Upper Bollinger Band MAk(TP ) +m× σk(TP )

LBk Lower Bollinger Band MAk(TP )−m× σk(TP )

RV Ik Relative Volatility Index PS/(PS +NS)× 100
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Figure 7: The rolling window approach

The empirical analysis is carried out using a rolling window approach shown
in Figure 7. The forecasts are made for a 10-year out-of-sample period from the
1st of January 2012 until the 31st of December 2021. The out-of-sample period
is divided into ten non-overlapping prediction windows, each one year long. At
the start of each 1-year period, the model is refitted and optimized. The rolling
estimation method ensures that the model is more attentive towards more recent
information, as previous data is excluded as the estimation window changes. The
split for the in and out-of-sample period is 80–20 and thus for each predicted out-
of-sample year, the model is estimated and further optimized using the previous
four years of data.

The in-sample period can be further divided into two separate parts called
training and validation data. The training data is used to fit the deep learning
model and its parameters based on the gradient of the loss function. The validation
data is then used to further optimize and fine-tune the model in order to make it
generalize well on new unseen data. The out-of-sample data, also known as test
data, is left for model evaluation. (Goodfellow et al. 2016.) The evaluation metrics
for the out-of-sample data are discussed in Section 3.3. Of the in-sample data, the
training sample covers the first three years, while the validation is the fourth and
final year.

The estimation also requires the lagged observations of the explanatory vari-
ables. In this analysis, the selected lag window, also known as sequence length, is
chosen to be 252 observations. Thus, the earliest observations used are the lagged
values of the variables one year prior to the start of the training period, i.e., 1st of
January 2007. The lag window of 252 observations is chosen as it covers approxim-
ately one year of observations and should be sufficient for the model to learn any
possible seasonal effects within a year. The data is then rolled forward one day
after each day's prediction. This also means that, for example, the training data
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for the main model with five variables has the input dimensions of approximately
756x252x5, slightly changing through the years. The validation and test samples
have input dimensions of approximately 252x252x5.

Neural networks usually require the input variables to be preprocessed in order
to speed up and improve the optimization of the network. The variable prepro-
cessing loosely follows the way of Fischer & Krauss (2018). Firstly, the simple
daily return is defined as

Rit =
Pi,t
Pi,t−1

− 1,

where Pi is the adjusted close price of the asset i on a given day. This return
is also used to construct the dependent binary response variable. All the other
independent variables in both models are also changed to returns to remove any
possible trends.

A usual way to further preprocess a time series is to standardize the variables
or use a min-max rescaling where the values are scaled to any arbitrary range,
typically within the range of 0 and 1 (Chollet 2021). In this study, all the explan-
atory variables are standardized by first subtracting their mean from the values
and then dividing the result by their standard deviation. To avoid any possible
look-ahead bias, only observations from the training set are used to standardize
the variables. The obtained values from the training sample are then also used
to standardize the validation and out-of-sample data sets. Thus the standardized
daily value of any independent variable, xi, can be written as

xit =
xit − µi,train
σi,train

,

where µi,train is the mean return of ith variable in the training sample and σi,train
is the standard deviation of ith variable in the training sample. This procedure is
calculated separately for each of the ten estimation windows.

Neural networks are also stochastic as they initialize the preliminary weight
matrices with different values each time. This means that each training instance
gives a different result as the model finds different local minimums in the high-
dimensional loss surface of the network. (Géron 2019.) Thus, in this study, the
network is run through three times for each separate occasion and the average
performance metrics are reported unless stated otherwise. The same random ini-
tializations, also known as random seeds, are used for each run and each model to
make the results replicable.
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3.2 Model configurations

Here the configurations of the models of this thesis are represented. First, the
modifications for the original Transformer are described. The original Transformer
architecture described in Section 2.2.3 was developed mainly for NLP-related tasks
and as such, it will be modified to fit the needs of financial time series prediction.
Most importantly, only the Transformer encoder will be utilized in this model.
The autoregressive decoder is not needed since the estimations are done using
a rolling window approach. Numerous different configurations were considered
during the construction of the architecture and only the selected final modifications
are presented here. The final Transformer-based model architecture used in the
empirical analysis is shown in Figure 8. The illustration only shows a general
overview of the model and a more detailed description of the model layers, including
the activation functions and regularizations, is shown in Appendix I.

Figure 8: The proposed model architecture

Firstly, the temporal dimension of the input has to be presented to the model
using positional encodings. Instead of the original fixed positional encoding, a
learnable vector representation called Time2Vec, is utilized (Kazemi et al. 2019).
Time2Vec represents the passage of time in both periodic and linear patterns. The
formula for Time2Vec is

t2v(τ)[i] =

ωiτ + ϕi, if i = 0,

F (ωiτ + ϕi), if 1 ≤ i ≤ k,
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where τ is the time series input, F is a periodic activation function, ω and ϕ are
learnable weight and bias parameters respectively, and k is the number of peri-
odical representations. Based on the experiments of Kazemi et al. (2019), a sine
function is chosen to be the periodic activation function F . Only one periodical
representation is used in this study. Theoretically, multiple representations could
be used to potentially capture different seasonal patterns. The temporal represent-
ations are added to the input matrix as two additional features instead of adding
together the input and the encoding, as in the original Transformer.

Additionally, following Ding et al. (2020), a linear layer with tanh activation
is applied to the original input as well as to the positional encodings before the
Transformer encoder. Thus, the modified input X̄ can now be represented as

X̄ = tanh
(
[t2v (X)] WI

)
,

where WI ∈ Rdmodel×dmodel is the input weight matrix.
The encoder itself has the same sub-layers, multi-head attention and feed-

forward layer, as the original. However, numerous tweaks have been implemented
to further improve the model. Xiong et al. (2020) show that applying the layer
normalization before the sub-layers improves the optimization procedure signific-
antly. In their implementation, layer normalizations were added before the two
sub-layers, but also a third normalization was implemented on the output with
added residuals. However, in this architecture, the final normalization is not in-
cluded. The activation functions in the model are changed from ReLU to a more
recent activation function called Swish, which has achieved improved performance
in multiple datasets (Ramachandran et al. 2017). Mathematically, Swish can be
written as

Swish(x) = xσ(x),

where σ(x) is the sigmoid activation function.
After the encoder, the data dimensions are reduced from T × dmodel to T × 1

by using a method called global average pooling (Lin et al. 2013). It averages
across the values of explanatory variables to produce a single value for each time
step. The values are then multiplied by a fully-connected network with a Swish
activation function. Lastly, these values are fed into another fully-connected layer
with a sigmoid function that transforms the values into probabilities.

One of the hardest problems in neural networks is their tendency to learn noisy
representations of the in-sample data too well, and thus fail at generalizing to new
unseen data. Because of this, the networks are often punished for overfitting to
the in-sample data by using different techniques known as regularization methods.
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An often-applied form of regularization is a technique called dropout. In linear
regression the dropout is equal to the ridge regression, also known as L2 regulariz-
ation. Nevertheless, in neural networks, it has been shown to be more effective. It
is also computationally cheap and works well with almost all model architectures.
(Goodfellow et al. 2016.) The dropout removes some of the outputs, yij, of layer
h randomly with a probability p as follows

Ȳh = Dh �Yh, Dh
ij ∼ Ber(p),

where � is the Hadamard product. The probability p is one of the most important
hyperparameters of any machine learning model. In the proposed Transformer-
based model of the study, there are three different dropout layers utilized and
their placements can be seen from the full model architecture in Appendix I.

Hyperparameters, one of which is the probability p in Dropout, are a set of
variable settings that are not learned by the model and have to be specified by
the user of the network. As neural networks are often complex structures, the
latter part of the in-sample data, i.e., the validation data, is used to optimize the
hyperparameters. (Goodfellow et al. 2016.) The hyperparameter choices can either
be chosen based on some specified grid of possible values or by a rule-of-thumb
(Claesen & De Moor 2015).

For this empirical study, the hyperparameter optimization is conducted using a
trial-and-error based approach accompanied by results from experiments with the
Keras Tuner library (O’Malley et al. 2019). The Keras Tuner includes a random
search that randomly combines different model configurations of a pre-specified
grid and tests them to find the optimal hyperparameters that minimize the loss on
the validation set. The tuning is done on the validation sets of the assets for the
years 2010 and 2011 before the out-of-sample data, and the same configurations
are used throughout the ten years for all the assets. This makes the models non-
optimal for the full period as each asset and year differs from one another. However,
it gives a more general representation of the model’s ability to forecast time series.
The chosen hyperparameters of all the models are listed in Table 2. In addition, a
search grid of values that have been tried is reported as well as the total number
of trainable parameters in each model.

The chosen hyperparameters differ for both main and extended models in
Transformer and LSTM. In the main Transformer model, referred to as TF(M),
two different heads are used in the multi-head attention layer as opposed to only
one in the extended model, referred to as TF(E). The number of stacked encoder
blocks in both models is one. The number of hidden units refers to units within
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Table 2: Hyperparameters of the different model configurations

Model Hyperparameter Search grid Final value

TF(M) Number of heads [1, 2, 3, 4] 2
Number of encoders [1, 2, 3, 4] 1
Number of hidden units [8, 16, 24, ..., 64] 32
Dropout [0, 0.1, 0.2, ..., 0.5] 0.4
Key dimension (dk) [7, 126, 252, 504] 504
Total trainable parameters 25,993

TF(E) Number of heads [1, 2, 3, 4] 1
Number of encoders [1, 2, 3, 4] 1
Number of hidden units [8, 16, 24, ..., 64] 64
Dropout [0, 0.1, 0.2, ..., 0.5] 0.4
Key dimension (dk) [7, 126, 252, 504] 504
Total trainable parameters 41,624

LSTM(M) Number of hidden layers [1, 2, 3] 1
Number of hidden units [4, 6, 8, ..., 32] 16
Dropout [0, 0.1, 0.2, ..., 0.5] 0.2
Total trainable parameters 1,425

LSTM(E) Number of hidden layers [1, 2, 3] 2
1st hidden layer units [4, 6, 8, ..., 32] 6
2nd hidden layer units [4, 6, 8, ..., 32] 6
Dropout [0, 0.1, 0.2, ..., 0.5] 0.1
Total trainable parameters 895

the last dense layer with a swish activation function. The main Transformer model
seemed to work the best using 32 hidden units in the layer, whereas the extended
Transformer model required 64 units. For both Transformer models, the dropout
probabilities and dimensions of the key matrices were the same at 0.4 and 504,
respectively. The dimension of the key matrix allows the model to learn a 504-
dimensional representation of each of the 252 lagged observations instead of the
original features.

The main LSTM model, LSTM(M), only uses a single hidden layer in it, while
the extended model, LSTM(E), uses two hidden layers. The number of hidden
units and layers in LSTMs is often quite small in financial applications (Fischer
& Krauss 2018; Siami-Namini et al. 2018). The number of hidden units in the
main model is selected to be 16, while the amount of hidden units in the extended
model is selected to be six in both layers. Bengio (2012) also states that layers of
matching sizes generally have seemed to work better. The dropout probabilities
of the main and extended models are 0.2 and 0.1, respectively.

The total number of trainable parameters in the Transformer greatly surpasses
the amount used by the LSTM model, as expected. The main models, TF(M) and
LSTM(M), have 25,993 and 1,425 variables, respectively. The contrast between
the number of variables for the extended models is even greater. The logistic
regression also has one controllable parameter, the lag window length. If the
model is given the full 252 lagged observations with multiple predictors, the model



46

predictions will become extremely unstable. Thus, lag windows between 1–60
days were tested using the same validation sets as for the neural networks. For
the main logistic model, LOG(M), a lag window of 22 observations is used, while
the extended model, LOG(E), uses the last 18 observations.

Deep learning models are also often sensitive when it comes to the selection
of the optimizer and its learning rate. The original Transformer uses an Adam
optimizer that has a warm-up period with exponential decay. (Vaswani et al.
2017.) The only difference in this thesis compared to the original is the usage of
cosine decay instead of exponential decay. In the warm-up, the learning rate is
first increased rather fast until it reaches a set maximum after which it decays
over a longer period. The changes in the learning rate over 150 training epochs
are visualized in Figure 9 to give a more intuitive explanation of the warm-up and
decay. A learning rate warm-up is often essential for Transformer-based models as
otherwise, the gradients might become large and thus make the estimation unstable
(Xiong et al. 2020).

Figure 9: Learning rate warm-up with cosine decay

3.3 Performance metrics

The out-of-sample performance of classification models can be evaluated using
several different criteria. The most common performance metrics in the literature
include accuracy, precision, recall, and F1 score which can all be derived from the
confusion matrix. F1 score may also be construed as the harmonic mean of recall
and precision. The confusion matrix, represented in Figure 10, is often used to
summarize the forecasting results of a classification task.
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Figure 10: The confusion matrix

The above-mentioned performance evaluation metrics are calculated from the
confusion matrix as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2TP

2TP + FP + FN
.

(10)

The metrics shown in Equation 10 assume that the data is evenly distributed.
However, on average there are more days with positive returns than negative and
thus there is a clear class imbalance. While these variables are often used in the
literature, they can sometimes depict a false image of the model performance,
especially with unbalanced data sets. This can easily lead to poor generalization
as the classifier usually only predicts the class with the largest size. This poor
performance is not always visible in the classical metrics. As an example, given
100 values of which 90 are positive, always predicting true will yield an accuracy
of 90 % and an F1 score of 0.947.

Nowadays, a growing number of studies in several fields have addressed these
problems. Two recommended metrics for imbalanced data are the Matthew’s cor-
relation coefficient (MCC) and the area under the ROC curve (AUC). The MCC,
also known as the phi coefficient in statistics, has been shown to be one of the
best options in multiple studies (Boughorbel et al. 2017). According to Chicco &
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Jurman (2020), the MCC is reliable since it has to have relatively good results in
all four confusion matrix categories. The formula for MCC based on the confusion
matrix can be written as

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (11)

The ROC curve is a common graphical way to evaluate binary classifications
and it is based on two values from the confusion matrix: sensitivity and specificity.
The plot shows their tradeoff as the values of the two metrics are plotted against
each others. The area under the ROC curve (AUC) is a single value that can be
used to simplify the performance in the graphical ROC. It can be defined from the
ROC as

AUC =

∫ 1

0

ROC(t)dt. (12)

A value of 0.5 can be interpreted as a coin toss and a value of 1 as a perfect
predictor. Halimu et al. (2019) even find the AUC to be a better measure than
MCC because of its discriminancy, though both are statistically consistent. Based
on the previous, the main reported evaluation metrics throughout the results are
accuracy, MCC and AUC. In addition, the F1 score is reported for the main
results of the empirical analysis. These metrics are used to analyze the differences
between model predictions of the different indices. Also, since Transformer should
be relatively fast to train compared to its size, the time needed to fit the model
network is reported.

As the estimations and predictions are done separately for each index it is also
possible to conduct the one-tailed test by Pesaran & Timmermann (1992). The
null hypothesis states that there is no directional predictability and as such, the
realizations, yt, and predictions, ŷt, are distributed independently. This gives an
opportunity to evaluate the predictability of each index separately. Given that P̂
is the share of correctly predicted signs of yt, it has a sample success probability
of

P̂∗ = P̂yP̂ŷ + (1− P̂y)(1− P̂ŷ),

where P̂y = P(yt > 0) and P̂ŷ = P(ŷt > 0) are the sample means. The test statistic
under the null can now be presented as

PT =
P̂ − P̂∗(

V̂ar(P̂ )− V̂ar(P̂∗)
)1/2 as.∼ N(0, 1),
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where V̂ar(P̂ ) = n−1P̂∗(1− P̂∗) and

V̂ar(P̂∗) = n−1(2P̂y − 1)2P̂ŷ(1− P̂ŷ) + n−1(2P̂ŷ − 1)2P̂y(1− P̂y)

+4n−2P̂yP̂ŷ(1− P̂y)(1− P̂ŷ).

Diebold & Mariano (2002) have also introduced a common test to evaluate
the performance of different forecasts. This test can be used to see whether the
predictions of one forecast are significantly different from another. Under the null
hypothesis, the predictions are equal and the test statistic is asymptotically N(0, 1)

distributed. The alternative hypothesis states that the predictive performance of
the first model is superior to the second model. The Diebold-Mariano test statistic
can be expressed as

DM12 =
d̄12
σ̂d12

,

where d̄12 is the sample mean of the loss differential between the forecasts, L(ε1)−
L(ε2), and σ̂d12 is an estimate of the standard deviation. Following Fischer &
Krauss (2018), a vector of zeros and ones are used as the classification errors
L(εi). Zero is assigned if the forecast is correctly classified and otherwise, the
assigned value is one.

3.4 Trading strategy

The possible economic significance of the forecasts is also studied as it is one of
the most important factors behind a successful prediction model. Even though
higher predictability does support the possibility of economic success, it is not
always the case. Only a small percentage of the returns often yield most of the
profits, and thus the misclassification of those observations would adversely affect
the performance of the model. Since all the models in the thesis provide conditional
probabilities of the predictions, these probabilities can be converted into a trading
strategy to showcase the economic significance. All the models are compared
in terms of profitability against each other and a simple buy-and-hold method.
The portfolios built based on the trading strategy are reviewed with and without
transaction costs.

Daily observations often hurt the trading performance as the number of trans-
actions in daily frequencies is fairly high. Thus, a method for reducing transactions
is highly sought after. Nevasalmi (2020) uses the multinomial response variable of
his study to split the trading strategy implementation into multiple option strategy
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where the thresholds are the upper and lower quartiles. This approach also reduces
the number of transactions. The following method used here is somewhat similar
to the study. As most of the probabilities around the median are the noisiest,
the lower quartile is considered as the trading threshold instead. This might also
benefit the trading strategy as probabilities further away from the median should
reflect greater confidence. The conditional prediction based on the probabilities
can then be equated as

B̂t =

0, if P̄(yt+1 = 1) < Q1,

1, if P̄(yt+1 = 1) ≥ Q1,

where B̂t is the bin indicator showing whether the asset is included in the portfolio
or not, P̄ is the average conditional probability of the three random out-of-sample
forecasts for each index and Q1 is the lower quartile of the estimated probability.
The value of the lower quartile Q1 is the average of the three results on the first
validation set of 2011 for each index. As logistic regression only has one estimation,
the probabilities and quartiles of the single estimation are used.

Implementing the above-mentioned strategy in the year 2011 reduced the num-
ber of transactions by 28.2% and 41.9% for the TF(M) and LOG(M) model, re-
spectively. However, the LSTM(M) model seemed to favor more positive probab-
ilities and as such, the implementation of the lower quartile would increase the
transactions by 84.4%. Thus, LSTM models will be evaluated using the average
probability of 0.5.

The long-only trading portfolio is constructed from all n indices. To avoid daily
weight adjustments that would become extremely costly in a combined portfolio,
the assets are handled separately and each is given a starting amount of 25. Con-
sequently, the total starting value of the portfolio is indexed to 100. The value of
the trading portfolio, V , at any given time t is

Vt =
4∑
i=1

Vit,

and
Vit = Vi,t−1 ×

(
1 +

(
RitB̂it − cait

))
,

where Rit is the simple daily return of the ith asset, c is the fixed transaction cost
and ait is a binary indicator indicating if an action, i.e., buying or selling, in asset i
took place at time t. The transaction cost c is fixed to be 0.05 percent per one-way
transaction based on the academic literature on the topic (Hsu et al. 2010; Krauss
et al. 2017; Fischer & Krauss 2018).
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4 RESULTS

4.1 Performance evaluation

The empirical part of this research is focused on evaluating the predictive perform-
ance of the Transformer model and its benchmarks on four different US indices:
the S&P 500, Dow Jones Industrial Average, Nasdaq Composite, and Russell 2000.
The out-of-sample period in this empirical study is from the 1st of January 2012
until the 31st of December 2021. The predictions for the out-of-sample period are
made using the main and extended versions for each of the models. Thus, the
evaluated models are the main Transformer model TF(M), the main LSTM model
LSTM(M), the main logistic regression model LOG(M), the extended Transformer
model TF(E), the extended LSTM model LSTM(E) and the extended logistic re-
gression model LOG(E).

Table 3 represents the main results of the empirical study where the perform-
ance metrics of the full 10-year out-of-sample predictions are displayed. The re-
ported results are averaged across the assets as well as across the three different
random runs for each asset. The performance metrics that are used to evaluate
the models include the directional accuracy, area under the ROC curve (AUC),
Matthew's correlation coefficient (MCC), F1 score, Pesaran-Timmermann value,
and the time used to fit the model. The statistical significance of the Pesaran-
Timmermann test is also reported.

Table 3: Performance results of the models 2012–2021

The table represents the main findings of the study. The classification accuracy, area under the
ROC curve (AUC), Matthew’s correlation coefficient (MCC), F1 score, Pesaran-Timmermann
test (P-T) and execution time (ET) are reported. The performance metrics reported are the
average results across the four individual indices. The reported Pesaran-Timmermann scores
are the average scores over the three random out-of-sample forecasts. The execution time is
the average time (in seconds) required to fit the model for the 10-year estimation window. The
bolded values represent the top values for each metric. The symbols *, ** and *** denote the
statistical significance at the 10%, 5%, and 1% levels, respectively.

Metrics TF(M) LSTM(M) LOG(M) TF(E) LSTM(E) LOG(E)
Accuracy (%) 52.52 53.87 50.65 52.33 52.82 50.22
AUC 0.507 0.503 0.494 0.506 0.501 0.496
MCC (%) 1.54 1.03 -1.25 1.30 0.53 -0.75
F1 score 0.612 0.679 0.578 0.610 0.651 0.549
P-T 1.730** 0.398 -1.043 1.387* -0.451 -0.246
ET 281.2 99.5 - 164.1 175.6 -
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It can be seen from the table that the LSTM models, LSTM(M) and LSTM(E),
provide the highest directional accuracies out of the models. The LSTM(M) man-
aged to achieve an accuracy of 53.87% across the assets during the ten-year out-of-
sample period, while the extended LSTM(E) model reached an accuracy of 52.82%.
The main and extended Transformer models attained slightly lower accuracies at
52.52% and 52.33%, respectively. The accuracies of the logistic regression models
were close to a coin toss of 50%. From the accuracy perspective, the addition of
technical indicators in the extended versions did not improve the performance of
any model. In fact, the results show decreasing accuracies across the models. The
reported accuracies are below those reported in some previous studies, like the
ones by Zhong & Enke (2019) and Ding et al. (2020), but are mostly in line with,
e.g., Skabar (2013).

Although the accuracies of the Transformer models were below the ones of
LSTMs, they were able to beat the benchmark models on the two metrics that
measure predictive performance on unbalanced data. In terms of AUC, the TF(M)
and TF(E) managed to get scores of 0.507 and 0.506, respectively. Those are
somewhat higher than the scores achieved by LSTM(M) and LSTM(E) models of
0.503 and 0.501, respectively. The logistic regression model showed scores under
the coin toss value of 0.5. The MCC scores also show similar results across the
six models. While the Transformer models performed better on these metrics,
the differences from a coin toss are minimal. Thus, the performance does not
necessarily indicate any predictive capabilities. Altogether the reported values
were far below the results of previous studies that report AUC or MCC statistics
(Jiang et al. 2018; Ding et al. 2020; Yoo et al. 2021).

The one-tailed Pesaran-Timmerman test of directional accuracy shows that the
null hypothesis of having no directional predictability is accepted at the 5% level
for five out of the six models despite the models having higher accuracies than
50%. The directional predictability of the main Transformer model on the other
hand is statistically significant at the 5% level as the test score was 1.730 with a p-
value of 0.042. The TF(E) model is nevertheless significant at the 10% level. The
fact that LSTM models fail in terms of the more robust predictability metrics can
likely be attributed to the fact that the models had a higher number of positive
predictions on average, i.e., higher recall. As the classes were unbalanced, this
resulted in a higher accuracy even though the model might not actually have any
predictive power.

In terms of the F1 score, the LSTM also shows superior performance. As the
F1 score is the harmonic mean between recall and precision, the high score can
be mainly attributed to the high recall rate of the model. The metric can also be
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seen as misleading in terms of real predictive accuracy. Thus, while slightly losing
on the normal accuracy metrics, Transformer models showed the best predictive
performances out of the tested models when the imbalanced data was taken into
account. As such, the main Transformer model seems to have some predictive
capabilities, although small.

When comparing execution times of the model fitting process, the times of the
main models differ quite significantly as LSTM(M) is almost three times faster to
fit than TF(M) at only 99.5 seconds for ten model estimations. The TF(M) on
the other hand has approximately 18 times as many trainable parameters which
shows the power of parallelized calculations. The TF(E) is even slightly faster to
estimate than LSTM(E), even though the TF(E) has approximately 47 times more
parameters. Overall, the models are fast to train as refitting the model ten times
during a ten-year period only takes a maximum of 300 seconds.

The Table 4 reports the performance metrics of the models for each individual
index used in the empirical study. The classification accuracy, AUC and MCC
scores as well as the significance of the Pesaran-Timmermann test with asterisks
next to accuracies is reported. The models show various predictive capabilities
on an index-specific level. The Transformer models achieve the highest AUC and
MCC scores for three out of the four predicted indices. However, the main LSTM
model attains higher scores in the Russell index. In terms of accuracy, the main
LSTM model reaches the highest accuracies across all four different indices. The
logistic regression classifiers show the worst performance out of the models also on
individual indices.

The performance of the TF(M) model seems to be relatively stable across the
indices in each metric, and all the AUC and MCC scores remain positive. For
example, the accuracies range between 51.61% and 53.58%, and the MCC scores
are in the range of 0.67%–2.30%. The extended Transformer model also shows
similar aspects, though the performance is slightly lower in most cases. However,
the TF(E) has the best performance on S&P 500 across any model or any index
as it achieves an AUC of 0.513 and MCC of 3.12%. All the AUC scores are also
positive, but the MCC for Russell index is practically zero.

The main LSTM model has the highest accuracy of all the models for each of
the four indices. In addition, the AUC and MCC scores are the highest in the
Russell index. The AUC score is positive for three of the indices overall, while
the MCC is positive for only two. As with the extended Transformer model, the
LSTM(E) model shows slightly lower performance on average than the main model.
Only the AUC and MCC scores in the Nasdaq index beat those of the LSTM(M)
model.
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Table 4: Performance metrics of the models for different indices 2012–2021

The table represents selected performance metrics for the individual forecasted indices. The
classification accuracy, area under the ROC curve (AUC) and Matthew’s correlation coefficient
(MCC) are reported. The bolded values represent the top values for each metric in each of
the individual assets. Also, the significance of the Pesaran-Timmerman test is reported. The
symbols *, ** and *** denote the statistical significance at the 10%, 5%, and 1% levels, respect-
ively. The reported performance metrics are the average results of three random estimations
for each index over the ten-year out-of-sample period from 1st of January 2012 until 31st of
December 2021.

S&P500 DJIA Nasdaq Russell

Model Acc. (%) AUC MCC (%) Acc. (%) AUC MCC (%) Acc. (%) AUC MCC (%) Acc. (%) AUC MCC (%)

TF(M) 53.12** 0.510 2.30 51.79 0.503 0.67 53.58* 0.508 1.63 51.61* 0.508 1.55

LSTM(M) 54.28 0.507 1.99 53.26 0.501 -0.17 54.99 0.498 -0.56 52.93 0.508 2.86

LOG(M) 49.92 0.485 -3.27 49.88 0.489 -2.30 52.24 0.502 0.36 50.56 0.501 0.19

TF(E) 53.16*** 0.513 3.12 51.44 0.502 0.65 53.65 0.506 1.45 51.05 0.501 0.00

LSTM(E) 53.30 0.503 1.11 52.41 0.499 -0.19 54.59 0.501 1.02 51.00 0.499 0.19

LOG(E) 51.20 0.507 1.39 49.64 0.489 -2.30 50.60 0.498 -0.37 49.42 0.491 -1.73

The logistic regressions show varying performances and seem to perform well
in totally different indices. While the LOG(M) has an MCC of -3.27% on the
S&P500 index, the LOG(E) reaches a positive score of 1.39%. This indicates that
the models are not consistent at all. Altogether, both logistic regressions report
accuracies of over 50% in two of the four indices. The MCC and AUC scores are
positive in two of the four cases in the LOG(M) model and positive in one of the
four indices for the extended model.

In terms of the significance of the directional accuracies measured by the
Pesaran-Timmermann test, only the Transformer models were able to reach stat-
istical significance even at the 10% level. The LSTM(M) model was close, however,
as the accuracy for the Russell index had a p-value of 0.106. Both the Transformer
models were statistically significant at forecasting the directional accuracy of the
S&P 500 index. The TF(M) model was statistically significant at the 5% level
while the TF(E) achieved significance at the 1% level. The TF(M) model also
had significant directional accuracy at the 10% level both in Nasdaq and Russell
indices.

The results at the index level point out that in terms of accuracy, the Nasdaq
model produces the highest accuracies followed by the S&P 500. The slightly
less-studied indices, DJIA and Russell, report lower accuracies and for the Dow
Jones only the Transformer models are able to have positive results in terms of
MCC. The accuracy and MCC score achieved with the Transformer model for
the Nasdaq index fall significantly behind those reported by Ding et al. (2020).
Although, the LSTM(M) model seems to reach higher levels of accuracy than
their benchmark LSTM. The reported accuracies for the Nasdaq index by Bekiros
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& Georgoutsos (2007) and Yoo et al. (2021) are 54.30% and 54.06%, respectively,
which are relatively close to the accuracies attained here.

The individual results of the TF(M) model for each year, index, and for all of
the three random trials can be seen in Appendix II. From there it can be observed
that the variation between years and different trials is quite high. Therefore, the
decision to use multi-year and multi-trial analysis is important when comparing
the predictive abilities of stochastic neural networks. This way the results are
a lot more robust and representative of the true behavior of the models. For
example, the highest and lowest accuracies for a single year are 61.35% and 46.40%,
respectively. This corresponds somewhat with the varying performance of the
accuracies in Bekiros & Georgoutsos (2007). Furthermore, the highest and lowest
reported MCC scores are 17.61% and -11.08%, respectively. One random trial in
the Nasdaq index during quite the same period as in Ding et al. (2020) does also
correspond well with their results, however, the two other trials show far worse
performance.

The results for the Diebold-Mariano test between the model predictions are
reported in Table 5. The table reports the p-values of the test. A rejection of the
null hypothesis indicates that the predictions made by the model on the row index
of the table are superior to the model on the column index. The comparisons are
made pairwise and a p-value below 0.05 indicates statistical significance at the 5%
level which is considered the accepted confidence level in this comparison. The
results concerning the TF(M) model can be seen to show no superiority against
the LSTM models or the extended Transformer model. The predictions show
statistical significance over the performance of the main logistic model but the
null hypothesis of equal predictions is also accepted against the LOG(E) model.

The LSTM(M) model seems to show a lot better performance in terms of the
Diebold-Mariano test. The model predictions are better at the 5% significance
level than any of the Transformer and logistic regression models. Moreover, the
predictions against both the logistic regressions and the TF(E) model are stat-
istically significant at the 1% level. However, the predictions are not superior to
the extended LSTM model. The main version of the logistic regression showed no
statistical significance over any other model.

Of the extended models, TF(E) and LOG(E), are not shown to have signific-
antly better predictions compared to any other model in the study. The LSTM(E),
on the other hand, also has superior performance over the two logistic regressions
at the 1% level and also defeats the performance of the TF(E) model at the 5%
level. When comparing the overall performance of the main model and extended
models, it seems that the addition of technical indicators has negative effects, if
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Table 5: Diebold-Mariano test for the models

The table represents the p-values obtained from the pairwise Diebold-Mariano test. The null
hypothesis states that the predictions of the two models are equal. Alternative hypothesis is
that the predictions of the method represented on the row index of the table is superior to
the one in the column index of the table. The predictions are the binary predictions of all the
indices from the out-of-sample period from the start of 2012 to the end of 2021.

TF(M) LSTM(M) LOG(M) TF(E) LSTM(E) LOG(E)
TF(M) - 0.976 0.014 0.192 0.759 0.152
LSTM(M) 0.024 - 0.000 0.006 0.172 0.000
LOG(M) 0.986 1.000 - 0.884 0.997 0.4605
TF(E) 0.808 0.994 0.116 - 0.969 0.096
LSTM(E) 0.241 0.828 0.003 0.031 - 0.001
LOG(E) 0.985 0.999 0.540 0.904 0.999 -

any. While the results indicate superior performance for the LSTM model, the
Diebold-Mariano test, as used by Fischer & Krauss (2018), is only interested in
the portion of correct predictions, i.e., accuracies, which partly explains the results
here.

The predictive classification performance of the models also varies over time as
seen in Appendix II. Concerning the variations, the 126-day rolling accuracies of
the models are presented in Figure 11. The upper plot shows the rolling accuracies
of the main models while the lower plot displays the accuracies of the extended
models. Rolling accuracies of 126 days, i.e., approximately half a year, are used
to smooth out the volatile accuracies in shorter periods and show a more full
representation of the real predictive power. The illustrated time series contains
the period from the 1st of July 2012 until 31st of December 2021.

The Transformer and LSTM models show similar performance for most of
the time series. The logistic regression on the other hand seems to have almost
contradictive behavior as the accuracy usually rises when the other models show
lower accuracies and vice versa. This can also be attributed to the shorter lag
window since it only has information from a relatively short period. As the two
neural network models show similar attributes, it can be seen that there is some
time-varying predictability in these financial time series. The LSTM models seem
to exhibit similar characteristics as their peaks happen approximately at the same
time, although in different volumes. The Transformer models instead have less
comovement as the TF(E) model seems to have a much more stable accuracy
throughout most of the period than the TF(M).
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Figure 11: The 126-day rolling classification accuracies of the models

The neural network models seem to have a varying performance during the first
two years of the time series. The models experience elevated levels of accuracy
during 2017–2018, except for the more stable TF(E). The extended models for
Transformer and LSTM seem to have similar performances across the year 2020
and right until the end of 2021. Oppositely, the LSTM(M) reached higher levels
of accuracy than any other model in late 2020, while the TF(M) model shows
the worst performance out of the four neural networks. Even though previous
literature has found more volatile periods to exhibit better predictability, there
does not seem to be any major shifts in accuracy during the beginning of the
COVID-19 crisis for example. If anything, the directional accuracy seems to drop
during the early stages of COVID-19. A longer period of poor performance can
be seen from the start of 2015 until the mid of 2016. This corresponds quite well
with the stock market sell-off of 2015–2016 that occurred around the same period.
Another shorter decline in accuracy happened in the second half of 2018.
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4.2 Trading strategy implementation

The results of the trading strategy examined in Section 3.4 are presented here. The
trading strategy was implemented to showcase any possible economic significance
of the models. Reporting the average results of three runs is not practical, as
in reality the investment decision is made only once and on the basis of current
information. Thus, the average probabilities across the three predictions are used
to construct the strategy. The summary statistics of the trading strategy portfolios
before (after) transaction costs are reported in the upper (lower) part of Table
6. The full trading period spans from the 1st of January 2012 until the 31st of
December 2021. The buy-and-hold portfolio (B&H), highlighted on the right hand
side of the table, is constructed by buying the same amount of each index at the
start of the period. Similarly, in the trading portfolio, each of the four assets is
given the same starting amount. No further adjustments on the amounts are made
besides those resulting from trading the assets.

In part a) of the table, the summary statistics are reported without transac-
tion costs. While the accuracies and even the other metrics like MCC and AUC
were positive for most models, almost every model lost to the simple buy-and-hold
strategy in terms of returns. The main Transformer model was able to achieve
an annualized mean return of 15.7%, while the B&H came second with a return
of 14.2%. The worst performing model was the main logistic regression with an
annualized return of 8.2%. The logistic regression was the only model that bene-
fitted from the usage of technical indicators in terms of the trading returns. When
adjusting for the transaction costs, it can be seen from part b) that no model was
able to beat a simple buy-and-hold strategy. Now the LSTM models are close to
TF(M) model in terms of returns and have surpassed the TF(E) model that was
ahead of them before transaction costs. This can be attributed to the fact that
the number of transactions reported at the bottom of the table is a lot smaller for
the LSTM models.

As the LSTM models use the 0.5 probabilities to reduce transactions, a con-
firmation check was conducted using a lower quartile threshold in order to see if it
would provide better results. The number of transactions experiences an increase
of 106%, while simultaneously the annualized mean return decreases from 13.4%
to 9.49%, even before transaction costs. Thus, the decision to use the method with
lower transactions proved to be beneficial.

The standard deviations of all the models are smaller than that of the B&H
strategy. The logistic regressions have the smallest standard deviations while the



59

Table 6: Summary statistics of the trading strategy portfolios

The table illustrates the summary statistics of all trading portfolios before and after transaction
costs for the out-of-sample period from 1st of January 2012 until 31st of December 2021. The
annualized mean return, annualized standard deviation, skewness, excess kurtosis, maximum
drawdown (MDD), historical Value-at-Risk (VaR), historical approximated expected shortfall
(ES) and Sharpe ratio are reported. In addition, the number of transactions made in the
out-of-sample period is reported for all the models.

a) Before transaction costs
TF(M) LSTM(M) LOG(M) TF(E) LSTM(E) LOG(E) B&H

Return 0.157 0.134 0.082 0.139 0.125 0.094 0.142
St.dev. 0.148 0.157 0.139 0.130 0.137 0.111 0.172
Skewness -0.338 -0.700 -2.182 -1.233 -0.909 0.004 -0.836
Kurtosis 11.716 13.112 25.096 40.805 25.843 12.796 16.029
MDD 0.221 0.318 0.391 0.299 0.306 0.277 0.346
VaR0.95 -0.014 -0.015 -0.013 -0.011 -0.012 -0.010 -0.016
VaR0.99 -0.026 -0.028 -0.025 -0.021 -0.025 -0.022 -0.030
ES0.95 -0.022 -0.024 -0.021 -0.018 -0.020 -0.017 -0.026
ES0.99 -0.036 -0.039 -0.037 -0.033 -0.035 -0.029 -0.044
Sharpe ratio 1.061 0.855 0.589 1.064 0.910 0.852 0.827

b) After transaction costs
TF(M) LSTM(M) LOG(M) TF(E) LSTM(E) LOG(E) B&H

Return 0.126 0.123 0.044 0.097 0.121 0.049 0.142
St.dev. 0.148 0.157 0.139 0.130 0.137 0.111 0.172
Skewness -0.344 -0.715 -2.161 -1.196 -0.904 0.046 -0.836
Kurtosis 14.696 16.204 27.944 43.128 28.510 16.143 16.029
MDD 0.223 0.321 0.444 0.292 0.307 0.341 0.346
VaR0.95 -0.014 -0.015 -0.013 -0.011 -0.012 -0.010 -0.016
VaR0.99 -0.026 -0.028 -0.025 -0.021 -0.025 -0.022 -0.030
ES0.95 -0.022 -0.024 -0.021 -0.018 -0.020 -0.017 -0.026
ES0.99 -0.036 -0.039 -0.037 -0.033 -0.035 -0.029 -0.044
Sharpe ratio 0.851 0.781 0.319 0.745 0.877 0.446 0.827
# of transactions 2180 832 2940 2896 332 3361 -

LSTM models are the most volatile. This falls in line with the 126-day rolling
accuracies in Figure 11, where the LSTM models had the most variation in their
accuracies. In each model, while their performance metrics got worse, the volat-
ilities are somewhat lower when technical indicators are utilized. Apart from the
LOG(E) model, the returns of each portfolio are negatively skewed. The highest
reported negative skewness of -2.182 is contrastingly in the LOG(M) model. All
the values of excess kurtosis were extremely high.

The Sharpe ratio reports a measure of the generated return of the portfolio
in regards to the risk it carries. As the models had lower standard deviations,
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every model except for the LOG(M) is able to beat the buy-and-hold strategy
which has a Sharpe ratio of 0.827. The TF(M) and TF(E) achieve the highest
Sharpe ratios of 1.061 and 1.064, respectively. As the models that utilize technical
indicators have lower standard deviations, the TF(E) is the best in terms of risk-
return ratio. When the transaction costs are taken into account, only two models
are able to attain better Sharpe ratios than the B&H strategy. The best model
is the LSTM(E) model with a Sharpe ratio of 0.877 and the TF(M) model has a
Sharpe ratio of 0.851.

The maximum drawdown (MDD) is the depreciation from the historical peak
expressed in percentages. The B&H strategy, for example, lost at most 34.6%
of its value from a previous peak. Only the logistic regression model LOG(M)
endured more serious losses. From the neural networks, the Transformer models
were able to avoid all declines of over 30%, and the LSTM models have declines
of just slightly over 30%. The MDD of the TF(M) model was impressively small
at 0.221 (0.223) before (after) transaction costs, and it defeated the second-best
model of TF(E) by almost 8pp and 7pp, depending on whether transaction costs
were taken into account. It suggests that the main Transformer model was able
to recognize highly negative periods more precisely than other models.

The Value-at-Risk (VaR) and expected shortfall (ES) are risk measures that
measure expected returns given a tail risk event. A VaR of 95% indicates that
there is a probability of 0.05 to lose at least the value the measure indicates.
For example, the buy-and-hold strategy loses at least -1.6% in a day with a 0.05
probability. Here, the historical VaR is reported which means that the return of
the 5th percentile is used as the historical VaR measure. Every model portfolio
seems to have a slightly lower VaR than the B&H strategy with both 0.05 and 0.01
probabilities. The logistic regressions mostly have the lowest tail risk according
to the VaR measures, although the 99% VaR is the lowest for TF(E) model. The
models with technical indicators also seem to have lower VaRs than their main
version counterparts.

The VaR does not reveal anything of the loss beyond the 0.05 probability and
thus, expected shortfall is often used to better describe the possible loss of the
portfolio. The expected shortfall indicates the expected return given the worst
α-th percentile. Here, an approximation using the average over 0.1% confidence
intervals of the historical percentiles up until the αth percentile is used. This
should be able to approximate the actual integral over the area to some degree.
The results from the ES measures are almost identical to the ones of VaR in terms
of portfolio performances, though now the LOG(E) has the lowest tail risks in
both probabilities. The main Transformer model, on the other hand, has a lower
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expected loss at the 0.01 probability than the logistic regression. Again, each
portfolio has a lower expected loss than the buy-and-hold strategy.

The cumulative returns before transaction costs generated by the model port-
folios are also visualized in Figure 12, where the upper (lower) plot shows the
development of the main (extended) versions. The time series are displayed from
the start of 2012 until the end of 2021. The upper plot shows almost no differ-
ences in the top-three strategies before 2018–2019, where the TF(M) and B&H
fare slightly better than the LSTM(M) model. The LOG(M) model is clearly the
worst of them all. It seems that the main difference between TF(M) and B&H is
the start of 2020 when the COVID-19 pandemic hits. This is also representative
of the lot smaller MDD that TF(M) had. This might be construed as a sup-
portive result for time-varying return predictability, and especially highlights the
possibly higher predictability around regime changes as suggested by, e.g., Pesaran
& Timmermann (1995).

In the lower plot, there are some deviations already around 2015–2016 where
TF(E) model achieves the best returns in the stock market sell-off. Unlike the
TF(M) model with the main variables, the addition of technical indicators ac-
tually made TF(E) perform a lot worse during the COVID-19, and it also had
another drop at the end of 2020, unlike other extended models. The LSTM(E)
never recovered from the decline of 2016. The LOG(E) performed better than the
LOG(M) model and the start of 2020 also saw a slighter drop compared to others.

The same visualizations of the cumulative returns after the transactions can
be seen in Figure 13. Now the B&H strategy already gains an advantage al-
most right from the start. As the amount of transactions is large even after con-
trolling for them with a modified trading strategy, the development of the TF(M)
model just slightly overcomes the LSTM(M) model. The TF(M) seems to perform
slightly worse from 2015 until 2018, and both show similar performance around
the COVID-19 pandemic. The logistic regression just barely makes a profit over
the ten-year period.

The cumulative returns of the extended models paint an even worse picture
for the Transformer model, as it pretty clearly loses to the B&H strategy, as well
as to the LSTM(E) model. This time the TF(E) and LSTM(E) show far more
similar performance during 2015–2018. However, right after the start of 2018, the
TF(E) starts to perform worse at the same time as TF(M) starts to perform better.
Especially after the start of 2020, TF(E) model was not able to extract any useful
information from the data to achieve better performance than the benchmarks of
B&H and LSTM(E). As with the LOG(M) model, the LOG(E) model is far behind
the other models.
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Figure 12: The cumulative returns of the models before transaction costs 2012–
2021

Figure 13: The cumulative returns of the models after transaction costs 2012–2021
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The trading strategy portfolios are also examined individually for each of the
four assets to illustrate any significant differences in their predictability. For simpli-
city, besides the B&H strategy of each respective index, only TF(M) and LSTM(M)
are analyzed as they are the main versions of their respective models. The main
logistic model is left out as its performance was subpar throughout the indices and
does not contribute to any significant remarks. The trading portfolio statistics
are displayed in Table 7. The performances of the models are only studied before
transaction costs.

Table 7: Summary statistics of the trading strategy portfolios for individual assets

The table illustrates the summary statistics of the trading portfolios for each of the four in-
dices before transaction costs for the out-of-sample period from 1st of January 2012 until 31st
of December 2021. The annualized mean return, annualized standard deviation, maximum
drawdown (MDD), historical Value-at-Risk (VaR) and Sharpe ratio are reported.

Return St.dev. MDD VaR0.95 VaR0.99 Sharpe ratio
TF(M) 0.155 0.145 0.177 -0.013 -0.026 1.067

S&P 500 LSTM(M) 0.135 0.156 0.339 -0.014 -0.028 0.870
B&H 0.138 0.163 0.339 -0.015 -0.030 0.843
TF(M) 0.110 0.151 0.321 -0.013 -0.028 0.733

DJIA LSTM(M) 0.105 0.162 0.347 -0.014 -0.028 0.647
B&H 0.111 0.167 0.371 -0.015 -0.029 0.667
TF(M) 0.199 0.162 0.230 -0.016 -0.030 1.224

Nasdaq LSTM(M) 0.158 0.178 0.372 -0.017 -0.034 0.886
B&H 0.189 0.186 0.301 -0.018 -0.035 1.016
TF(M) 0.148 0.195 0.300 -0.018 -0.033 0.758

Russell LSTM(M) 0.134 0.189 0.296 -0.019 -0.032 0.710
B&H 0.115 0.209 0.434 -0.019 -0.034 0.549

Overall, in terms of annualized mean returns, the TF(M) was the top model in
three out of the four indices. In the Dow Jones index, the B&H strategy was able
to slightly defeat the TF(M) model. The TF(M) model also beat the benchmark
LSTM(M) model on all four indices, and the LSTM(M) even lost to the B&H in
three indices. The TF(M) also had the highest Sharpe ratios in each of the four
indices while the LSTM(M) only beat the buy-and-hold strategy on two indices.
The best Sharpe ratio obtained by the TF(M) was 1.224 in Nasdaq while the lowest
one in Dow Jones was 0.733.

In S&P 500, the TF(M) had the best results in each of the metrics. Especially
the maximum drawdown of 0.177 was extremely small compared to the benchmarks
which both had a maximum drawdown of 0.339. While the LSTM(M) lost in
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terms of return, the lower standard deviations achieved by the model improved its
Sharpe ratio and it managed to beat the B&H strategy. Similar situations were
also evident in the full combined portfolio. Similarly to S&P 500, the TF(M) had
the top results in DJIA for almost every metric, although TF(M) had a slightly
lower mean return than the buy-and-hold strategy. Unlike in the case of the SP
500, the TF(M) model now had a similar drawdown compared to the benchmarks.
The DJIA also provided the lowest returns altogether.

On the opposite, the Nasdaq index provided the highest returns throughout.
The TF(M) was again victorious in each of the metrics. The LSTM(M) model,
on the other hand, was clearly the worst as it lost to the buy-and-hold strategy
in terms of return, MDD and Sharpe ratio. Based on the result of the MDD, the
LSTM(M) failed to recognize the COVID-19 pandemic in early 2020, while TF(M)
seemed to be able to avoid some of the declines in the market.

Looking at the metrics for the B&H strategy in Russell, we can see that it had
almost the lowest return while simultaneously being the most volatile and having
the highest maximum drawdown of 0.434. Here, the performances of LSTM(M)
and TF(M) were quite close to each other and both proved to be able to benefit
from the higher volatility of the index. This is further proof that increased volatility
might be beneficial in terms of economic significance, as discussed by Krauss et al.
(2017), even though this behavior is not visible in the accuracies for the year, as
seen in Appendix II. The reported average accuracy for the year was 49.8%, and
both the AUC and MCC scores were negative for the whole year. Comparing
the models, the LSTM(M) lost 1.4 percentage points in annualized returns to the
TF(M), although it was able to beat the TF(M) in terms of standard deviation
and MDD. In terms of Sharpe ratio, the TF(M) came slightly on top with a score
of 0.758 while the LSTM(M) had a score of 0.710.

The corresponding time series graphs of trading portfolios’ development on the
four individual assets are illustrated in Appendix III. It can be observed that the
TF(M) model was able to generate higher returns during the start of the COVID-
19 pandemic in each of the four models than the benchmarks. The sudden declines
were quickly reversed in both S&P 500 and Russell indices, while the performances
in Nasdaq and DJIA were not as superior. The LSTM(M) only performed better
than the buy-and-hold in Russell, and the performance was identical in the S&P
500. The performances in DJIA and Nasdaq were inferior to the B&H strategy.
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4.3 Subperiod analysis of the COVID-19 pandemic

Based on the results presented earlier, the development of the models together
with the overall market, i.e., the buy-and-hold strategy, seemed relevantly stable
prior to the COVID-19 pandemic. The predictability of the stock market returns
should also be more evident during financial turmoil as shown by, e.g., Krauss
et al. (2017). Thus, motivated by this, a shorter subperiod analysis of the effects
of the COVID-19 on the model performances is executed. Most papers that study
the effects of COVID-19 crisis on stock markets focus on the very early days of the
crisis and especially on the month of March (Al-Awadhi et al. 2020; Mazur et al.
2021). However, some studies expand the period until April and June (Baker et al.
2020; Chowdhury et al. 2022). Loosely following previous literature, the analyzed
period around COVID-19 pandemic is set to range from the 1st of January 2020
until the 30th of June 2020, as it provides a slightly longer period to be analyzed. It
also captures the most volatile periods indicated by the VIX index, which measures
the expected volatilities of the S&P 500 index (CBOE 2021).

Table 8 reports the results of the trading portfolio strategies during the COVID-
19 subperiod. The results during the period are very heterogenous as, e.g., the
annualized mean returns between models vary from a negative return of -30.1%
up to a positive return of 19.8%. The only two models to have a positive return
during the period were the TF(M) and LSTM(M) models with respective returns
of 19.8% and 0.9%. In addition, the LSTM(E) was also able to defeat the buy-
and-hold strategy having returns of -3.6% and -4.2%, respectively. However, the
additional technical indicators hurt the performance of the TF(E) model greatly, as
it recorded an annualized return of -9.00%. The only model again, that benefited
from the use of technical indicators was the logistic regression. The LOG(E) model
recorded only a slightly negative return of -5.6% during the period whereas the
LOG(M) had a return of -30.1%.

The standard deviations of the models were all below the B&H, with the
LOG(E) having the lowest standard deviation. The skewness was somewhat neg-
ative for all models, except for the LOG(E) model. The excess kurtosis of the
TF(M), LSTM(M) and LOG(E) are also close to B&H at just slightly positive
values. However, the extended neural networks, as well as the LOG(M) model
document kurtosis values well above the others. The maximum drawdowns were
mostly the same as in Table 6, since the start of COVID-19 had the largest de-
clines of the whole empirical study. However, the logistic regression models do not
achieve the maximum drawdowns in this period.
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Table 8: Summary statistics of the trading portfolios for January–June 2020

The table illustrates the summary statistics of all trading portfolios before transaction costs
for the out-of-sample period from 1st of January 2020 until 30th of June 2020. The annualized
mean return, annualized standard deviation, skewness, excess kurtosis, maximum drawdown
(MDD), approximated Value-at-Risk (VaR), approximated expected shortfall (ES) and Sharpe
ratio are reported. In addition, the number of transactions made in the out-of-sample period
is reported for all the models.

TF(M) LSTM(M) LOG(M) TF(E) LSTM(E) LOG(E) B&H
Return 0.198 0.009 -0.301 -0.090 -0.036 -0.056 -0.042
St.dev. 0.381 0.410 0.345 0.393 0.391 0.290 0.476
Skewness -0.217 -0.546 -2.234 -0.801 -0.661 0.414 -0.573
Kurtosis 0.992 1.389 8.608 5.247 3.307 0.926 1.068
MDD 0.221 0.318 0.351 0.299 0.306 0.248 0.346
VaR0.95 -0.038 -0.042 -0.037 -0.041 -0.040 -0.030 -0.049
VaR0.99 -0.055 -0.060 -0.052 -0.058 -0.057 -0.043 -0.069
ES0.95 -0.048 -0.052 -0.046 -0.051 -0.050 -0.037 -0.061
ES0.99 -0.061 -0.067 -0.058 -0.065 -0.064 -0.048 -0.078
Sharpe ratio 0.520 0.021 -0.872 -0.228 -0.091 -0.194 -0.087

Now the reported VaR and expected shortfall are not the historical values as
they were previously. The number of observations is too small and thus a more
theoretical approach is used. The VaR is calculated as the mean return over the
period summed up with the product of the standard deviation and the inverse of
the cumulative distribution function of N(0, 1) at 1 − α, where α = 0.95, 0.99.
The expected shortfall is again averaged over smaller increments to arrive at an
approximation of the integral over the area. It can be observed that all the values
are below the ones of the B&H strategy. As previously, the LOG(E) provides the
lowest values on all four metrics. The TF(M) slightly surpasses the LSTM(M),
however, the reverse is true for the extended versions.

In terms of the Sharpe ratio, the clear winner is the TF(M) with a Sharpe ratio
of 0.520, while the second-best model, LSTM(M), only achieves a score of 0.021.
The buy-and-hold strategy is able to beat all the other models with a Sharpe ratio
of -0.087. The TF(E) had a poor performance over the period as the Sharpe ratio
was only -0.228. Overall, there seems to be time-varying predictability in the stock
market that has not been arbitraged away as discussed by Pesaran & Timmermann
(1995) and Fischer & Krauss (2018).

Supported by these results, a small long-short experiment on the subperiod is
also conducted. The experiment is backed up by the study of Krauss et al. (2017)
who note the great performance of the long-short strategy during high volatility
periods. The long-short strategy using the predictions of the TF(M) model yield
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an annualized return of 39.5% over the half-year period and record a Sharpe ratio
of 1.007. Furthermore, the maximum drawdown during the period is only 0.144
which is also well below the results of other models. To visualize the findings of
the subperiod analysis, the time series of the trading strategy portfolios with an
additional long-short portfolio (TF L-S) are illustrated in Figure 14.

Figure 14: Development of the trading portfolios during COVID-19 pandemic

By observing the time series, it can be seen that the TF(M) model and the long-
short strategy are both superb at recognizing the downturn in the market, and can
significantly outperform all other models during turbulent markets. Even though
the TF(M) also slightly dips at the beginning of the COVID-19 pandemic together
with other models, it seems to be able to learn some predictable patterns from
the data. However, the extended model that also utilizes the technical indicators
seems to be unable to capitalize on the same signals. Both the LSTM models, and
also the TF(E) model, seem to almost mimic the behavior of B&H. Though, for
example, the LSTM(M) did have a marginally smaller decline in March and as an
result it slightly beats the buy-and-hold strategy.
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The logistic regression models seem to already decline before the pandemic, and
bottom out when the COVID-19 pandemic is just beginning. Thus, the pandemic
itself does not seem to bother the performance of the models. The LOG(E),
which has benefitted from the technical indicators, actually seems to be the top-
performing extended model for some time after mid-March. As the Transformer
model was able to utilize the predictability at times of market distress, the findings
strongly support the results of Pesaran & Timmermann (1995), Krauss et al. (2017)
and Fischer & Krauss (2018).

4.4 Interpretability of the model

The interpretability of the Tranformer model is associated with the attention scores
of the network, as discussed at the end of Section 2.2.3. While the information
provided by the attention scores is debated, some heatmaps of attention scores are
visualized and analyzed here. Moreover, an attempt to utilize the distance metric
by Lim et al. (2021) without using volatility data is presented at the end of the
section.

The Figure 15 shows six different attention maps attained from the S&P 500
index training period that precedes the validation and out-of-sample periods of
2011 and 2012. Augmented versions of the images can be seen from Appendix
IV. Unlike in the other parts of the empirical study, here only one attention head
is used for both TF(M) and TF(E) models, as it makes the visualization more
interpretable. The attention maps in a), c) and d) are different realizations of
the 252x252 attention map that is used to calculate the next day’s forecast. The
calculation of the attention scores visualized in the attention mapping is shown in
Equation 7. The attention map in image b) is a close-up look at the most recent
lagged observations of a). The e) and f) provide the average attention maps for
the main and extended model, respectively. The formula for these is provided in
Equation 8.

The first image a) in the upper left corner shows a visualization of the attention
map for an individual arbitrary day. The first image shows that most of the more
attended observations seem to focus on the more recent values. There are some
white vertical and horizontal lines near the first observations that indicate higher
attention scores for the areas. As their attention scores are larger, the model has
considered them to be the most important variables for the next prediction.
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a) b)

c) d)

e) f)

Figure 15: Visualizations of different attention score mappings
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The image b) is a magnified version of the attention map in image a). Here
only the 30 most recent lagged observations and their attention scores are shown,
as now the relevance of each individual day can be demonstrated better. As the
0th observation indicates time t when forecasting for t+ 1, it can be observed that
especially the t− 4 and t− 5 seem to have relatively high attention scores. Also,
their mutual interaction has one of the lowest attention scores, indicating that they
might have learned very different dynamics from one another. These values could
possibly be used to indicate some kind of weekly seasonal effect. In addition, for
example, the t − 12 and t − 23 also exhibit similar but not as strong relevance.
These are values within a temporal distance of approximately half a month and
one month, respectively.

Even though the example in a) and b), where the attention focuses on some
of the nearest observations can be more common, different days will get entirely
different attention mappings from the lagged observations. The image in c) shows
the observations used for a prediction of some other individual day. Here we
can see that the attention scores are more evenly distributed across the lagged
observations. The overall attention scores shown on the right-side bar are also
smaller, as the highest observations only get scores a bit over 0.007, while on
a) the highest scores were close to 0.014. Uniformly distributed attention would
indicate attention scores slightly under 0.004 throughout. Only a small number of
days show slightly higher attention scores like t−29 and t−31, t−150 and t−151,
and t − 220. In this case, the values seem more random and do not necessarily
have any further explainability.

Opposingly, in image d) the attention score is only focused on very few obser-
vations and the rest of the days share low and practically even attention scores.
One thing to notice is that the value of the largest attention score gets a very high
value of 0.05. The two most highlighted values in the attention map are t − 50

and t− 131. It seems that these values are somehow that important, but without
knowing the specific days there is nothing more to analyze. The above examples
highlight that while the importance of individual lagged observations can be visu-
alized and analyzed, the attention scores change for each observation and thus do
not necessarily show the whole picture. To address this issue, the average attention
scores over a specific time span can also be visualized. In images e) and f) the
average attention scores during the first training period are visualized.

Interestingly, although the individual days show vertical and horizontal lines,
the averages over arbitrary periods show diagonal lines. The vertical and horizontal
lines can be interpreted as the importance of single days and diagonal lines can
be interpreted as the importance of connections within certain temporal distances.
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As the key and query matrices learn different representations of the input, the
importance of, e.g., t−1 on t−3 might differ from the importance of t−3 on t−1.
The image e) shows the average attention scores obtained from the main model. It
can be observed that the temporal distance of 0, i.e., the days themselves, have the
most importance when predicting the results for the next day and other interaction
terms are not as relevant. The white line in e) highlights the temporal distance of
0. The attention mapping also seems very symmetrical along the main diagonal.

The image in f) is even more interesting as it highlights the differences between
the main model and the extended model. The extended model seems to take into
account many of the interaction terms. Based on this picture alone, it could
be argued that the extended model learns a fuller picture of the interactions of
the independent variables. However, the addition of technical indicators possibly
increases overfitting and thus the model does not generalize as well to unseen data
where the relationships might differ significantly. It is more generally applicable
to only attend to the values of the lagged observations themselves. In addition to
the values of the lagged observations themselves, there seems to be high relevance
of t with values in the range [t− 1,t− 6]. This can be seen as a thicker white line
in the image. The interaction terms with previous observations seem much more
important than with more recent observations. This is probably caused by the
technical indicators, as they utilize only previous observations to construct their
values. As the main model does not explicitly use interaction terms, it attends to
the interaction term of t− i on t− j very similarly as to t− j on t− i.

Figure 16 showcases the results obtained from the distance metric dist(t) shown
in Equation 9. It is visualized together with the volatility index VIX, as it provides
a better visualization counterpart than the S&P 500 index in terms of regime
changes. The attention scores used for the regime calculations are from the first
training data of the empirical analysis. The significant regimes were chosen to
represent instances where the 10-day moving average of the distance scores was
above the third quartile, i.e., the 75th percentile. After the regimes were calculated,
the areas were shifted five steps backwards in time to represent the center of the
10-day moving average. The usage of moving averages smooths down the areas of
significant regimes and makes the graph more interpretable.

The deviations from the average attention scores in the graph can be found near
periods of higher volatility. Especially during the financial crisis of 2008–2009, the
distance metric captures the volatility regime shifts almost instantaneously with
the VIX index. The metric does also highlight periods in the start of 2008 when
the VIX index is slightly peaking. It seems, however, that the metric is not as
persistent as the periods of high volatility represented by the VIX index. The
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model shows no further significant regimes after the start of 2009, even though
the VIX stays at elevated levels for more than half a year after that. Thus, the
distance metric seems to attend to more sudden increases in volatility like at the
start of the financial crisis. However, the distance metric did not attend to the
first two small but sudden peaks in 2007.

Figure 16: The distance metric versus the VIX index in 2007–2009
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5 CONCLUSION

The goal of this thesis was to find out whether a Transformer-based deep learn-
ing model is viable for forecasting stock market returns. The research aimed to
evaluate the feasibility of the model with comparisons against benchmarks through
performance metrics and a trading strategy. The empirical analysis focused on pre-
dicting the directional return of four US indices between 2012–2021. Altogether,
five research questions focusing on the empirical analysis were considered in this
thesis. Here, they are gone through one by one in order to conclude the main
findings of the study.

Is the Transformer-based deep learning model a viable tool for financial time
series prediction?

Given the earlier research, it seemed that the Transformer model could prove
extremely useful at predicting financial time series. However, the results of the
studies have not been very robust and leave room for data mining and pure chance
to play a part. This study tried to focus more on the robustness of the analysis,
as the models were trained three times for each instance to avoid random chance
from affecting the results considerably. Also, multiple assets and a rather long
time period were used as it should provide stronger evidence of the true potential
of the model.

Based on the empirical results of this thesis, the Transformer-based deep learn-
ing model seems to be a valid tool to be used in financial time series forecasting.
The reported classification accuracies showed levels of over 50% throughout the
indices, and overall the model’s performance was fairly stable. Similarly, the AUC
and MCC metrics appeared positive in every single instance, which is further proof
of decent and stable performance. Furthermore, the Pesaran-Timmermann tests
showed that the Transformer model had some significant directional predictability.
The training time of the model was also quite low considering the complex network
and the number of trainable parameters. As such, the model could possibly be
also used for applications with high-frequency data.

Does the model achieve higher performance compared to the benchmark models?

In previous literature, the Transformer model has been able to beat all bench-
mark models, including LSTMs, in terms of accuracy, as well as in terms of other
metrics. The empirical results here partly state otherwise, as the main and ex-
tended LSTM models seemed to post higher accuracies throughout the indices.
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However, when the imbalance of the data is considered, at least the main Trans-
former model is capable of achieving higher performance than the benchmark mod-
els. The Transformer is superior to the benchmarks in terms of AUC and MCC.
In addition, no other model had significant directional accuracy according to the
Pesaran-Timmermann test. Thus, it can be concluded that the Transformer was
able to achieve higher performance, even though the classification accuracies were
somewhat lower.

Do the model predictions contribute to any considerable financial gains over other
methods?

Previous machine learning literature has shown that trading strategies based
on the predicted probabilities have usually beaten the benchmark models and the
buy-and-hold strategy, even after transaction costs. The empirical results here
indicate that the main Transformer model does generate financial gains exceeding
the benchmarks, at least before transaction costs are considered. However, when
transaction costs are taken into account, the benchmark of a simple buy-and-hold
strategy is superior for the full period, even though the transactions are already
reduced by the trading strategy. It has to be noted, however, that risk-adjusted
returns indicated by the Sharpe ratio are higher for the Transformer model than
for the overall market.

It is also noticeable, especially from the Russell index, and from the time series
graphs over the out-of-sample period, that the Transformer model does exhibit
more profitable features in times of higher volatility. Thus, an additional analysis
was conducted for the early months of the COVID-19 pandemic as the markets
experienced unusually high volatility in the period. These results show that the
Transformer model can be extremely profitable in times of market distress.

Does the inclusion of technical indicators help the model performance?

The academic literature on the effectiveness of technical indicators has been
rather mixed. It was hypothesized, however, that the inclusion of technical indic-
ators would benefit the model greatly as the input transformation matrices would
gain a finer representation of the model inputs. However, it seems that the inclu-
sion of technical indicators reduces the performance of both the Transformer and
the LSTM model in most situations.

Based on the visualizations of the average attention scores in the results, it may
be that the technical indicators provided the model with too much noise, as the
information presented by them was too elaborate to be generalized to new data.
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As such, the model does learn the data that it is fitted to extremely well, but
fails to show similar performance out-of-sample. Possibly, the model configuration
was wrong and better regularization methods should have been used. However,
similar results from LSTM might point to the fact that they provided too noisy
information to be applicable.

Can the black box decisions of the model be interpreted to some degree?

A few previous studies have shown some possible visualizations of the Trans-
former model for time series. Thus, the hypothesis here was that some interpretab-
ility through visualizations might be offered by the Transformer model. Using the
methods presented in the previous studies, as well as a more original idea of using
the average attention scores over an arbitrary period, some interpretability can
be shown. Nonetheless, the actual takeaways from the explanations might not
be satisfying as it is hard to provide any fundamental reasons behind the model
decisions. However, the distance metric did seem to provide some insight into the
model behavior. The model seems to give higher attention to certain observations
during times of higher volatility, which can also partly explain the excellent trading
performance in early 2020.

In summary, the Transformer model seemed to work as a predictive model.
Even though the results were not outstanding, it still defeated the benchmarks
more often than not. It seems that any daily return predictability, at least in the
recent years, is very hard to find and oftentimes, decent results might be a result of
chance. However, the favorable trading portfolio development during the COVID-
19 pandemic was evident in all stock indices and it provides some evidence of the
Transformer models’ predictive power.

As the Transformer model is still a recent invention and it has so few imple-
mentations for financial time series, future research should be conducted. One
could experiment with different attention mechanisms that have been developed
to, e.g., reduce the memory attributes. In fact, almost every single layer could, in
theory, be replaced and experimented on. Besides the changes to model configur-
ations, weekly or monthly observations could be employed as they might possess
more directional predictability. The model could also be experimented with other
data sets than US stock indices where there might be less efficiency and more
volatility to be exploited. Furthermore, some fundamental or macroeconomic ex-
planatory variables could be included to see whether they would improve the model
performance.
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APPENDIX I

Figure 17: The full model architecture of the TF(M) model
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APPENDIX II

Table 9: Full results of TF(M) model for the S&P 500

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.
Acc. 0.548 0.584 0.567 0.524 0.528 0.494 0.496 0.530 0.482 0.518 0.527

Seed #3 AUC 0.533 0.519 0.534 0.535 0.518 0.474 0.491 0.508 0.450 0.489 0.505
MCC 0.078 0.066 0.076 0.077 0.039 -0.053 -0.018 0.016 -0.110 -0.023 0.015
Acc. 0.544 0.592 0.556 0.468 0.556 0.554 0.524 0.474 0.522 0.585 0.537

Seed #6 AUC 0.529 0.523 0.497 0.484 0.554 0.513 0.521 0.463 0.506 0.555 0.515
MCC 0.069 0.092 -0.012 -0.038 0.108 0.032 0.042 -0.073 0.013 0.122 0.035
Acc. 0.524 0.528 0.516 0.480 0.524 0.582 0.552 0.510 0.553 0.522 0.529

Seed #9 AUC 0.511 0.481 0.488 0.490 0.513 0.563 0.544 0.496 0.524 0.482 0.509
MCC 0.026 -0.045 -0.025 -0.022 0.030 0.130 0.093 -0.008 0.052 -0.044 0.019
Acc. 0.539 0.568 0.546 0.491 0.536 0.543 0.524 0.505 0.519 0.542 0.531

Avg. AUC 0.524 0.508 0.506 0.503 0.528 0.517 0.519 0.489 0.494 0.509 0.510
MCC 0.058 0.038 0.013 0.006 0.059 0.036 0.039 -0.021 -0.015 0.018 0.023

Table 10: Full results of TF(M) model for the Dow Jones Industrial Average

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.
Acc. 0.476 0.548 0.520 0.524 0.556 0.554 0.484 0.510 0.490 0.522 0.518

Seed #3 AUC 0.479 0.508 0.502 0.528 0.542 0.540 0.478 0.491 0.466 0.496 0.503
MCC -0.046 0.019 0.004 0.057 0.088 0.081 -0.045 -0.019 -0.078 -0.010 0.005
Acc. 0.496 0.464 0.492 0.480 0.524 0.614 0.488 0.470 0.530 0.542 0.510

Seed #6 AUC 0.499 0.454 0.464 0.488 0.522 0.573 0.484 0.458 0.518 0.514 0.497
MCC -0.003 -0.092 -0.082 -0.026 0.044 0.176 -0.033 -0.085 0.036 0.032 -0.003
Acc. 0.464 0.568 0.512 0.488 0.524 0.562 0.548 0.566 0.518 0.506 0.526

Seed #9 AUC 0.467 0.523 0.500 0.495 0.510 0.545 0.534 0.542 0.495 0.475 0.509
MCC -0.072 0.057 0.000 -0.010 0.020 0.091 0.076 0.087 -0.011 -0.059 0.018
Acc. 0.479 0.527 0.508 0.497 0.534 0.576 0.507 0.515 0.513 0.523 0.518

Avg. AUC 0.482 0.495 0.489 0.504 0.525 0.553 0.499 0.497 0.493 0.495 0.503
MCC -0.040 -0.006 -0.026 0.007 0.051 0.116 0.000 -0.005 -0.018 -0.012 0.007
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Table 11: Full results of TF(M) model for the Nasdaq Composite

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.
Acc. 0.524 0.544 0.536 0.508 0.516 0.546 0.528 0.494 0.545 0.605 0.535

Seed #3 AUC 0.519 0.491 0.510 0.502 0.498 0.498 0.519 0.461 0.499 0.577 0.508
MCC 0.040 -0.020 0.022 0.004 -0.004 -0.004 0.040 -0.084 -0.002 0.173 0.016
Acc. 0.520 0.556 0.516 0.504 0.575 0.550 0.524 0.542 0.522 0.573 0.538

Seed #6 AUC 0.512 0.518 0.477 0.498 0.572 0.484 0.512 0.522 0.487 0.548 0.513
MCC 0.028 0.040 -0.054 -0.004 0.144 -0.037 0.026 0.045 -0.026 0.105 0.027
Acc. 0.500 0.576 0.524 0.476 0.508 0.538 0.580 0.550 0.573 0.522 0.535

Seed #9 AUC 0.493 0.514 0.495 0.469 0.488 0.492 0.569 0.523 0.502 0.484 0.503
MCC -0.014 0.037 -0.010 -0.070 -0.027 -0.018 0.147 0.049 0.004 -0.039 0.006
Acc. 0.515 0.559 0.525 0.496 0.533 0.544 0.544 0.529 0.547 0.567 0.536

Avg. AUC 0.508 0.508 0.494 0.490 0.519 0.491 0.534 0.502 0.496 0.536 0.508
MCC 0.018 0.019 -0.014 -0.024 0.038 -0.020 0.071 0.003 -0.008 0.080 0.016

Table 12: Full results of TF(M) model for the Russell 2000

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.
Acc. 0.492 0.468 0.476 0.548 0.548 0.506 0.564 0.550 0.478 0.498 0.513

Seed #3 AUC 0.493 0.446 0.478 0.550 0.532 0.492 0.560 0.538 0.456 0.491 0.504
MCC -0.013 -0.111 -0.043 0.100 0.067 -0.016 0.122 0.078 -0.095 -0.019 0.007
Acc. 0.516 0.536 0.472 0.508 0.544 0.530 0.524 0.494 0.506 0.542 0.517

Seed #6 AUC 0.518 0.511 0.456 0.514 0.544 0.511 0.516 0.481 0.503 0.536 0.509
MCC 0.037 0.024 -0.092 0.030 0.087 0.024 0.034 -0.040 0.005 0.076 0.019
Acc. 0.520 0.580 0.500 0.464 0.528 0.510 0.508 0.542 0.510 0.522 0.518

Seed #9 AUC 0.522 0.567 0.505 0.468 0.513 0.497 0.505 0.531 0.485 0.512 0.510
MCC 0.044 0.135 0.009 -0.066 0.026 -0.007 0.010 0.063 -0.033 0.029 0.021
Acc. 0.509 0.528 0.483 0.507 0.540 0.515 0.532 0.529 0.498 0.521 0.516

Avg. AUC 0.511 0.508 0.480 0.511 0.529 0.500 0.527 0.517 0.481 0.513 0.508
MCC 0.023 0.016 -0.042 0.021 0.060 0.000 0.055 0.034 -0.041 0.029 0.016
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APPENDIX III

Figure 18: The development of the individual trading strategy portfolios 2012–2021
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APPENDIX IV

Figure 19: The augmented versions of images a) and b) from Figure
15
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Figure 20: The augmented versions of images c) and d) from Figure
15
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Figure 21: The augmented versions of images e) and f) from Figure
15
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APPENDIX V

The Python code displays a simplified and pruned version of the code used in the
empirical analysis, and hence it is for illustrative purposes only:

1 ### NETWORK SETTINGS ###
2 seed = 3
3 tech_ind = 0 # 0 = main model , 1 = extended model
4 seq_len = 252
5 input_shape = x_train.shape [1:]
6

7

8 # Train the model for the out -of -sample period
9 for testyear in range (2012 ,2022):

10

11 ### DATA PROCESSING ###
12 data = pd.read_excel(io.BytesIO(uploaded_data[’LRPG_data.xlsx’])) # load data
13

14 if tech_ind == 1:
15 data[’SMA10 ’] = ta.sma(data["Close"], length =10) # Simple Moving

Average of 10 days
16 data[’SMA50 ’] = ta.sma(data["Close"], length =50) # Simple Moving

Average of 50 days
17 data[’MOM’] = ta.mom(data["Close"], length =9) # Momentum
18 data[’STO_K ’] = ta.stoch(high = data["High"], low = data["Low"], close =

data["Close"]).iloc [:,0] # Stochastic %K
19 data[’STO_D ’] = ta.stoch(high = data["High"], low = data["Low"], close =

data["Close"]).iloc [:,1] # Stochastic %D
20 data[’RSI’] = ta.rsi(data["Close"]) # Relative Strength

Index
21 data[’MACD’] = ta.macd(data["Close"]).iloc [:,0] # Moving Average

Convergence Divergence
22 data[’CCI’] = ta.cci(data["High"], data["Low"], data["Close"]) # Commodity

Channel Index
23 data[’PPO’] = ta.ppo(data["Close"]).iloc [:,0] # Percent Price

Oscillator
24 data[’BB_low ’] = ta.bbands(data["Close"]).iloc [:,0] # Lower Bollinger

Band
25 data[’BB_upp ’] = ta.bbands(data["Close"]).iloc [:,2] # Upper Bollinger

Band
26 data[’RVI’] = ta.rvi(high = data["High"], low = data["Low"], close = data["

Close"]) # Relative Volatility Index
27 else:
28 pass
29

30 # Create binary response variable
31 df = data.pct_change ()
32 df.loc[df["Close"]>0,"Sign"] = 1
33 df.loc[df["Close"]<=0,"Sign"] = 0
34 df["Sign"] = df["Sign"].shift(-1)
35

36 # Train -val -test split
37 start = datetime(testyear - 4, 1, 1)
38 split1 = datetime(testyear - 1, 1, 1)
39 split2 = datetime(testyear , 1, 1)
40 end = datetime(testyear + 1, 1, 1)
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41

42 df_train = df[(df.index.to_pydatetime () + timedelta(days =365) >= start) & (df.
index.to_pydatetime () < split1)]

43 df_val = df[(df.index.to_pydatetime () + timedelta(days =365) >= split1) & (df.
index.to_pydatetime () < split2)]

44 df_test = df[(df.index.to_pydatetime () + timedelta(days =365) >= split2) & (df.
index.to_pydatetime () < end)]

45

46 # Create x’s and y’s
47 x_train , y_train = [],[]
48 for i in range(seq_len , df_train.shape [0]):
49 x_train.append(df_train.iloc[i-seq_len +1:i+1,:-1])
50 y_train.append(df_train.iloc[:, -1][i]) # Using -1 since we want to

predict ’Sign’
51 x_train , y_train = np.array(x_train), np.array(y_train)
52

53 x_val , y_val = [],[]
54 for i in range(seq_len , df_val.shape [0]):
55 x_val.append(df_val.iloc[i-seq_len +1:i+1,:-1])
56 y_val.append(df_val.iloc[:, -1][i])
57 x_val , y_val = np.array(x_val), np.array(y_val)
58

59 x_test , y_test = [],[]
60 for i in range(seq_len , df_test.shape [0]):
61 x_test.append(df_test.iloc[i-seq_len +1:i+1,:-1])
62 y_test.append(df_test.iloc[:, -1][i])
63 x_test , y_test = np.array(x_test), np.array(y_test)
64

65 # Value rescaling
66 scaler = StandardScaler ()
67 x_train = scaler.fit_transform(x_train.reshape(-1, x_train.shape [-1])).reshape(

x_train.shape)
68 x_val = scaler.transform(x_val.reshape(-1, x_val.shape [-1])).reshape(x_val.shape

)
69 x_test = scaler.transform(x_test.reshape(-1, x_test.shape [-1])).reshape(x_test.

shape)
70

71

72 ### MODEL ARCHITECTURE USING KERAS FUNCTIONAL API ###
73 def build_tf_model ():
74

75 inputs = keras.Input(shape=input_shape)
76 pos_enc = Time2Vec(seq_len)(inputs)
77 pos_enc = layers.Concatenate(axis=-1)([inputs , pos_enc ])
78 x = layers.Dense(pos_enc.shape[-1], activation=’tanh’)(pos_enc)
79

80 for _ in range (1):
81 x = layers.LayerNormalization(epsilon =1e-6)(x)
82 x, weights = layers.MultiHeadAttention(key_dim =504, value_dim = pos_enc.

shape[-1], num_heads=2, attention_axes = 1)(x, x, return_attention_scores =
True)

83 x = layers.Dropout (0.4)(x)
84 res = x + pos_enc
85

86 x = layers.LayerNormalization(epsilon =1e-6)(res)
87 x = layers.Conv1D(filters=pos_enc.shape [-1]*4, kernel_size =1, activation="

swish")(x)
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88 x = layers.Dropout (0.4)(x)
89 x = layers.Conv1D(filters=pos_enc.shape[-1], kernel_size =1)(x)
90 x = res + x
91

92 x = layers.GlobalAveragePooling1D(data_format="channels_first")(x)
93 x = layers.Dense (32, activation="swish")(x)
94 x = layers.Dropout (0.4)(x)
95 outputs = layers.Dense(1, activation="sigmoid")(x)
96

97 tfmodel = keras.Model(inputs ,outputs)
98

99 tfmodel.compile(
100 loss="binary_crossentropy",
101 optimizer=keras.optimizers.Adam(beta_2 =0.98 , epsilon =1e-09),
102 metrics =["binary_accuracy", "AUC"])
103

104 return tfmodel
105

106 # Initiate model with random seed
107 random.seed(seed)
108 np.random.seed(seed)
109 tf.random.set_seed(seed)
110 model = build_tf_model ()
111

112 callbacks = [
113 keras.callbacks.ModelCheckpoint(
114 "best_model.h5", save_best_only=True , monitor=’val_loss ’, mode=’min’
115 ),
116 keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience=5, verbose =1),
117 LRscheduler ,
118 ]
119

120 # Model fitting
121 start = time.time()
122 history = model.fit(
123 x_train ,
124 y_train ,
125 validation_data =(x_val , y_val),
126 epochs =200,
127 batch_size =32,
128 callbacks=callbacks ,
129 verbose=0,
130 )
131 train_time = time.time() - start
132

133 # Load the best model & get the predictions
134 best_model = keras.models.load_model("best_model.h5",
135 custom_objects ={’Time2Vec ’: Time2Vec })
136 y_pred = best_model.predict(x_test)
137 y_pred[y_pred >0.5]= int(1)
138 y_pred[y_pred <=0.5]= int(0)
139

140 # Save performance metrics of each year to a list
141 acc = np.append(acc , accuracy_score(y_test ,y_pred))
142 auc = np.append(auc , roc_auc_score(y_test ,y_pred))
143 mcc = np.append(mcc , matthews_corrcoef(y_test ,y_pred))


