\

R

4. UNIVERSITY
s OF TURKU

ESSAYS ON SOFTWARE
VULNERABILITY
COORDINATION

Jukka Ruohonen

TURUN YLIOPISTON JULKAISUJA - ANNALES UNIVERSITATIS TURKUENSIS

PUBLICATION SERIES INFORMATION SHOULD GO HERE

University of Turku

Faculty of Technology
Department of Computing
Software Technology
MATTI Doctoral Programme

Supervised by

Ville Leppéanen
University of Turku

Sami Hyrynsalmi
Lappeenranta University of Technology

Reviewed by

Mathias Ekstedt Kimmo Halunen
KTH Royal Institute of Technology University of Oulu
Opponent

Tommi Mikkonen
University of Jyvaskyla

The originality of this publication has been checked in accordance with the University
of Turku quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-8913-3 (PRINT)
ISBN 978-951-29-8914-0 (PDF)
ISSN 2736-9390 (PRINT)

ISSN 2736-9684 (ONLINE)
Punamusta Oy, Turku, Finland, 2022

Dedicated to my family

UNIVERSITY OF TURKU

Faculty of Technology

Department of Computing

Software Technology

RUOHONEN, JUKKA: Essays on Software Vulnerability Coordination
Doctoral dissertation, ?? pp.

MATTI Doctoral Programme

June 2022

ABSTRACT

Software vulnerabilities are software bugs with security implications. Exposure to
a security bug makes a software system behave in unexpected ways when the bug
is exploited. As software vulnerabilities are thus a classical way to compromise a
software system, these have long been coordinated in the global software industry in
order to lessen the risks. This dissertation claims that the coordination occurs in a
complex and open socio-technical system composed of decentralized software units
and heterogeneous software agents, including not only software engineers but also
other actors, from security specialists and software testers to attackers with malicious
motives. Vulnerability disclosure is a classical example of the associated coordina-
tion; a security bug is made known to a software vendor by the discoverer of the bug,
a third-party coordinator, or public media. The disclosure is then used to patch the
bug. In addition to patching, the bug is typically archived to databases, cataloged
and quantified for additional information, and communicated to users with a security
advisory. Although commercial solutions have become increasingly important, the
underlying coordination system is still governed by multiple stakeholders with vested
interests. This governance has continued to result in different inefficiencies. Thus,
this dissertation examines four themes: (i) disclosure of software vulnerabilities; (ii)
coordination of these; (iii) evolution of these across time; and (iv) automation poten-
tial. The philosophical position is rooted in scientific realism and positivism, while
regression analysis forms the kernel of the methodology. Based on these themes,
the results indicate that (a) when vulnerability disclosure has worked, it has been
relatively efficient; the obstacles have been social rather than technical in nature,
originating from the diverging interests of the stakeholders who have different in-
centives. Furthermore, (b) the efficiency applies also to the coordination of different
identifiers and classifications for the vulnerabilities disclosed. Longitudinally, (c)
also the evolution of software vulnerabilities across time reflect distinct software and
vulnerability life cycle models and the incentives underneath. Finally, (d) there is
potential to improve the coordination efficiency through software automation.
KEYWORDS: Software vulnerability, coordination, life cycle, CVE, CWE, CVSS

iv

TURUN YLIOPISTO

Teknillinen tiedekunta

Tietotekniikan laitos

Ohjelmistotekniikka

RUOHONEN, JUKKA: Essays on Software Vulnerability Coordination
Vaitoskirja, ?? s.

MATTI tohtoriohjelma

Kesakuu 2022

THVISTELMA

Ohjelmistohaavoittuvuudet ovat bugeja, joilla on tietoturvamerkitys. Hyviksikéytta-
milld timénkaltaisia bugeja ohjelmistosysteemi saadaan toimimaan ennakoidusta
poiketen. Koska ohjelmistohaavoittuvuudet ovat néin ollen klassinen keino murtaa
ohjelmiston tietoturva, nditd on pitkdin koordinoitu ohjelmistoteollisuudessa riskien
vilttamidmiseksi. Vditoskirja viittdd, ettid timi koordinaatio tapahtuu monimutkaisessa
ja avoimessa sosio-teknisessi systeemissi, joka koostuu hajautetuista ohjelmistokom-
ponenteista ja heterogeenisistid ohjelmistoagenteista, mukaan lukien ohjelmistoke-
hittdjét, tietoturva-asiantuntijat, ohjelmistotestaajat ja haavoittuvuuksia hyvéksikiyt-
tavit hyokkédjat. Haavoittuvuuksien julkituonti on klassinen esimerkki koordinaa-
tiosta; tietoturvabugi tuodaan julki sen 16ytdjdn, kolmannen osapuolen tai julkisu-
uden toimesta. Tamén jdlkeen bugi korjataan. Korjauksien ohella bugi myos ark-
istoidaan tietokantoihin, luokitellaan ja kvantifioidaan lisdinformaation vuoksi ja kom-
munikoidaan kéyttdjille tietoturvailmoituksen muodossa. Vaikka kaupalliset ratkaisut
ovat tulleet entisti tarkeammiksi, timéinkaltaista koordinatiota hallinnoidaan edelleen
useiden eri intressejd omaavien toimijoiden kesken. Hallinnointi on tuottanut myos
tehokkuusongelmia. Niin ollen tdmé viitoskirja tarkastelee neljad teemaa: (i) ohjel-
mistohaavoittuvuuksien julkituontia; (ii) ndiden koordinaaatiota; (iii) ndiden ajallista
evoluutiota; sekd (iv) automaatiopotentiaalia. Tulokset osoittavat teemoihin poh-
jautuen, ettd (a) julkituonnin toimiessa, se on ollut myos suhteellisen tehokasta; jo-
htuen eri toimijoista ja heidén erilaisista intresseistd ja vaikuttimista, ongelmat ovat
olleet sosiaalisia pikemminkin kuin teknisid. Lisédksi (b) tehokkuushavainto pitee
myds eri identifikaatiokomponenttien koordinointiin sekd haavoittuvuuksien luokit-
teluun. Pitkittdintutkimuksen ndkokulmasta myds (c) ohjelmistohaavoittuvuuksien
ajallinen evoluutio heijastaa erilaisia ohjelmisto- ja haavoittuvuuselinaikamalleja ja
ndiden taustalla olevia vaikuttimia. Lopuksi: (d) koordinaation tehokkuutta voidaan
parantaa ohjelmistoautomaatiolla.

ASIASANAT: ohjelmistohaavoittuvuus, koordinaatio, elinaika, CVE, CWE, CVSS

Acknowledgements

Dissertation research is a long journey. My sincere gratitude goes to my supervi-
sors Ville Leppédnen and Sami Hyrynsalmi who guided me throughout the journey.
In addition, I had the pleasure of working with Johannes Holvitie, Sampsa Rauti,
Samuel Laurén, Antero Jirvi, Kalle Hjerppe, Kai Kimppa, Shohreh Hosseinzadeh,
Kalle Rindell, Lauri Koivunen, José Apolinario Teixeira, Sanja Séepanovié, Igor
Mishkovski, Tuomas Aura, Janne Pirttilahti, Joakim Sandstrom, Alexey Kirichenko,
Jurka Rahikkala, Joonas Salovaara, Joni Uitto, Luca Allodi, Lotta Hamari, Tiina
Kullberg, Sanna Salanterd, Jesse Kaukola, Antti Tuomisto, Arho Suominen, Marko
Seppédnen, Mari Lehto, Susanna Paasonen, Annamari Vinski, Anne-Marie Tuikka,
and anyone I might have forgotten.

May 31, 2022
Jukka Ruohonen

Vi

Table of Contents

Acknowledgements L.
Tableof Contents
List of Original Publications
1 Introduction

2 Background
2.1 Definitions

22 GOVEINANCe o e e

2.3 Coordination

2.4 Markets

25 LifeCycles

251 SoftwareLifeCycles

2.5.2 \Vulnerability Life Cycles

2.6 ResearchQuestions

3 ResearchDesign.........
3.1 Philosophical Foundation
3.2 ResearchStrategy
3.3 Dataand Methodology

4 Results
4.1 Disclosure
411 Rationale

412 Results

4.2 Coordination
421 Rationale
422 Results

43 Evolution.
431 Rationale
432 Results

4.4 Automation

Jukka Ruohonen

441 Rationale. 28

442 Results 29

5 Discussion 31
5.1 Conclusions 31

5.2 Limitations. 33

5.3 Claimsand Takeaways 34

5.4 ConcludingRemarks. 35
List of References 36
Original Publications 42

viii

List of Original Publications

The original publications have been reproduced with the permission of the copyright holders.

Py

Po

P3

Pa

Ps

P

Ps

Py

Pio

Ruohonen, J., Hyrynsalmi, S., Leppinen, V. (2020). A Mixed Methods Probe into
the Direct Disclosure of Software Vulnerabilities. Computers in Human Behavior 103:
161-173.

Ruohonen, J., Holvitie, J., Hyrynsalmi, S., Leppinen, V. (2016): Exploring the Cluster-
ing of Software Vulnerability Disclosure Notifications Across Software Vendors. Pro-
ceedings of the /3th ACS/ IEEE International Conference on Computer Systems and
Applications (AICCSA 2016). Agadir: IEEE, pp. 1-8.

Ruohonen, J., Rauti, S., Hyrynsalmi, S., Leppinen, V. (2018). A Case Study on Software
Vulnerability Coordination. Information and Software Technology 103: 239-257.

Ruohonen, J. (2019): A Look at the Time Delays in CVSS Vulnerability Scoring. Ap-
plied Computing and Informatics 15(2): 129-135.

Ruohonen, J., Hyrynsalmi, S., Leppinen, V. (2017). Modeling the Delivery of Security
Advisories and CVEs. Computer Science and Information Systems 14(2): 537-555.

Ruohonen, J., Hyrynsalmi, S., Leppédnen, V. (2015). The Sigmoidal Growth of Oper-
ating System Security Vulnerabilities: An Empirical Revisit. Computers & Security
55: 1-20.

Ruohonen, J. (2018). An Empirical Analysis of Vulnerabilities in Python Packages
for Web Applications. Proceedings of the 9th International Workshop on Empirical
Software Engineering in Practice IWESEP 2018). Nara: IEEE, pp. 25-30.

Ruohonen, J. (2019). A Demand-Side Viewpoint to Software Vulnerabilities in Word-
Press Plugins. Proceedings of the 23rd International Conference on the Evaluation and
Assessment in Software Engineering (EASE 2019). Copenhagen: ACM, pp. 222-228.

Ruohonen, J. (2017). Classifying Web Exploits with Topic Modeling. Proceedings of
the 28th International Workshop on Database and Expert Systems Applications (DEXA
2017). Lyon: IEEE, pp. 93-97.

Ruohonen, J., Leppédnen, V. (2018). Toward Validation of Textual Information Re-
trieval Techniques for Software Weaknesses”. Proceedings of the 29th International
Conference on Database and Expert Systems Applications (DEXA 2018). Regensburg:
Springer, pp. 265-277.

1 Introduction

Software vulnerabilities are defects, bugs, in software products that have security implica-
tions. These provide the classical way to compromise a software product or a larger software
system, or to otherwise disturb the intended functioning of the product or the system. Typ-
ically, software vulnerabilities are caused by systematic or accidental mistakes in software
design, implementation, verification, and other activities in software engineering. The detec-
tion and prevention of software vulnerabilities is a classical research topic in the academic
research of software engineering. But there is more to the topic.

The amount of discovered and published software vulnerabilities has increased contin-
uously ever since the 1990s. In the 2010s, thousands and thousands of vulnerabilities were
published every year, and a large amount presumably never reached the public. Thus, there
were vast amounts of vulnerable software products and systems exposed to exploitation. Even
when unpublished vulnerabilities are excluded from consideration, many products and sys-
tems remained vulnerable because the vulnerabilities were never fixed despite the availability
of corrections known as patches. These points were true throughout the 1990s and 2010s,
and they are true also in the early 2020s.

But there is still more to the topic. The discovery of vulnerabilities takes time and effort.
The publishing of these takes time and effort. The engineering of patches takes time and
effort. These and other related engineering activities require collaboration between engineers.
They require both technical and social coordination. This socio-technical coordination of
software vulnerabilities is the topic of this dissertation. It is addressed by ten individual peer-
reviewed publications (P) included in the dissertation. These publications can be grouped
into four distinct but overlapping Themes (7):

T1 — { P1, P2 }: disclosure of software vulnerabilities;

T2 — {Ps, PsPs }: coordination of software vulnerabilities;

Ts +— { Ps, Pz, Ps }: evolution of software vulnerabilities across time;
T4 — { Py, P1o }: automation potential for vulnerability coordination.

Of these themes, 72 can be actually understood as a superset to which the other themes
belong: vulnerability disclosure is explicitly a coordination activity; evolving software re-
quires constant coordination, including the patching and management of security issues; and
automation provides means with which coordination efficiency can be potentially improved.
Here, in essence, vulnerability disclosure refers to the ways vulnerability discoverers make
their discoveries known to other parties. Coordination, in turn, refers to the noted, more
general software engineering activities involving the management of abstract dependencies,
including not only technical dependencies between software products but also dependencies
between work activities. These activities, then, cover not only developing of patches for dis-
closed vulnerabilities but also tracing through past software releases possibly affected, merg-
ing changes in version control systems, writing of security advisories, allocating identifiers

Jukka Ruohonen

for systematically tracking the vulnerabilities and patches, and notifying third-party vendors
potentially affected by the same vulnerability; to name a few examples. The efficiency of
these activities is important because vulnerability coordination is linked to increased security
risks. Unpatched software products connected to the Internet are quickly exploited.

If T2 provides the superset for the remaining three Themes, together these describe not
only coordination between engineers but also a larger socio-technical governance systems.
In addition to individual engineers, this system is composed of different norms, institutions,
and stakeholders, from companies and governmental agencies to open source software volun-
teers. In contrast to software engineering coordination conducted within a company or com-
panies, or within a software project or software projects, software vulnerability coordination
often involves coordination between engineers affiliated with different companies, projects,
and organizations. The coordination is held together by informal norms for the engineering
activities as well as more formal institutional practices. The allocation of identifiers is the
prime example in this regard: there are institutional arrangements through which these iden-
tifiers are reserved, but the arrangements also revolve around distinct norms on appropriate
behavior. The institutional arrangements and the associated norms also separate vulnerability
coordination from conventional bug tracking.

The preceding concise introduction leads to five Claims (C) defended in the dissertation.
The first Claim C; is partially theoretical; the remaining ones are supported by empirical
evidence. Most of the other claims rehash C; by emphasizing the social over the techni-
cal in the concept of socio-technical coordination but with empirical material to support the
claims put forward. In general, in the software engineering context, socio-technical coor-
dination systems are complex, dealing with decentralized software units and heterogeneous
software agents, operating in—and adopting to—situated social environments [1]. Thus, a
socio-technical approach maintains that technology is embedded to organizational and social
processes with accompanying policies, preferences, and incentives [2]. As is clarified later
on in Subsection 3.2, furthermore, Claims Cs, C3, and C4 are based on basic, knowledge-
seeking research, whereas the last Claim Cj is better classified as applied research, proposing
prototype-like software solutions to enhance the efficiency of vulnerability coordination.

C1 Software vulnerability coordination is a socio-technical phenomenon like software
engineering coordination in general; it is shaped by institutions, informal norms and
values, economic incentives, and other related factors—it should not and cannot be
explained by technical aspects alone.

Co Despite historical obstacles, anecdotes, and occasional telltales, software vulnerabil-
ity coordination has been relatively fast and efficient.

Cs Instead of being technical in nature, the past and current obstacles are determined by
other factors, including social and economic phenomena.

Cy4 The evolution of software vulnerabilities across time follows distinct observable lon-
gitudinal patterns that reflect other than technical factors.

Cs Like in software engineering in general, automation provides means to improve the
efficiency of software vulnerability coordination.

These claims and their practical takeaways are revisited later on in Section 5.3. Otherwise, the
structure of the dissertation is straightforward, containing five chapters. The opening Chap-
ter 2 presents a more thorough but still concise introduction to the theoretical background and

2

Introduction

existing research. To this end, definitions, governance, coordination, vulnerability markets,
and vulnerability and software life cycles are discussed. The section further presents four
research questions. These align with the four Themes. The subsequent Chapter 3 outlines
the overall research design, summarizing the philosophical foundation across the individual
publications, the research strategy for these publications, and the data and methodology used
in these. The main results from the publications included are presented in Chapter 4. The
structure of the presentation follows the four Themes, each of which is motivated by a brief
rationale before a summary of the results reached. Finally, Chapter 5 concludes by discussing
the answers to the four research questions, limitations, and the preceding claims, concluding
with a few remarks about directions for future research.

2 Background

In what follows, the dissertation’s theoretical and scholarly background are elaborated. The
discussion starts with a few definitions and some terminological clarifications. From there,
it proceeds to the concepts of governance, coordination, and so-called vulnerability markets.
The subsequent discussion addresses software and vulnerability life cycles. Both are impor-
tant analytical frameworks for understanding the scope and the publications. Based on the
elaboration, four research questions are finally introduced to sharpen the four themes.

2.1 Definitions

Confidentiality, integrity, and availability (CIA) are the fundamental concepts of information
security. In essence, these refer, respectively, to a condition that information is not disclosed
or otherwise made available to unauthorized parties; to a condition that information remains
accurate and complete during its whole life cycle; and to a condition that information is
continuously available upon request. A violation of any of these conditions implies that a
given asset has been impaired; a risk has realized to a known or unknown threat. A risk, in
turn, is typically understood as a probability that an attack by an attacker succeeds. With
these classical concepts, defensive information security can be seen as a set of activities
carried out by stakeholders, who value an asset, in order to minimize the risk and protect the
asset through implementing sufficient countermeasures [3]. These fundamental information
security concepts are illustrated in Fig. 1.

Weakness Vulnerability Asset Countermeasure

O Exposes O Contains O Protects

Exploits Harms Decreases

O Conducts Realizes Increases O
ot et

Attacker Attack Threat Risk

Figure 1. Analytical Breakdown of the Basic Concepts (adopted from [4])

These terminological clarifications are deliberately simple or even naive. There are nu-
merous alterations, considerations, and questions that could be attached to the basic con-
cepts. There are also many alternative concepts for technology-related security, among them
network security, system security, hardware security, and cyber security. Of these, the last
one is the most encompassing, essentially covering anything from information technology

4

Background

to societal security, but, nevertheless, the basic concepts retain their functions also for cyber
security. There are attacks, threats, and risks irrespective whether the assets refer to elections,
democracy, or space stations. But for the purposes of this dissertation, the notion of software
security is relevant; it “is the idea of engineering software so that it continues to function
correctly under malicious attack™ [5]. Although the word attack appears in the quotation,
it is more important to underline the engineering of software, that is, software engineering,
which is the “practical application of scientific knowledge in the design and construction
of computer programs and the associated documentation required to develop, operate, and
maintain them”, such that software “is both cost-effective and reliable enough to deserve our
trust” [6]. This quotation, again, contains numerous fundamental concepts, among them sci-
entific knowledge, design, development, operation, cost-efficiency, and trust. The type of
scientific knowledge pursued in this dissertation is described later in Chapter 3. Otherwise
there is no particular reason to delve deeper into these concepts—except to note that software
security can be seen as a subset of software reliability, which essentially means that software
continues to function properly in the face of an error, whether benign or maliciously intro-
duced. Regarding reliability, it is worth also noting that Publication Pg follows the classical
tradition of reliability engineering [7] by modeling the cumulation of software vulnerabilities
with different growth curves. Another term worth picking from the quotation is maintenance.
As is later clarified in Section 2.5.1, the dissertation indeed deals with the maintenance of
software products instead of the operation or development of such software products.

Thus, in terms of software security, software is the asset that is protected with counter-
measures. Secure programming practices—or lack thereof—are among the primary coun-
termeasures [8], and insecure software the primary threat. The context of software security
makes the concepts of weakness and vulnerability important. A weakness in a software prod-
uct is “a type of mistake that, in proper conditions, could contribute to the introduction of
vulnerabilities within that product”, whereas a vulnerability is “an occurrence of a weakness
(or multiple weaknesses) within a product, in which the weakness can be used by a party to
cause the product to modify or access unintended data, interrupt proper execution, or perform
incorrect actions that were not specifically granted to the party who uses the weakness” [9].
When excluding system administration mistakes [10], such as vulnerabilities arising from
configuration flaws of otherwise properly functioning systems, a software vulnerability is
simply a software bug with security implications, and a weakness an abstract representation
of the given bug. A buffer overflow is the presumably most famous example of a weakness.

Tens of thousands of known buffer overflows and other vulnerabilities have been cata-
loged with the Common Vulnerabilities and Exposures (CVEs), identifiers used to system-
atically archive vulnerabilities in order to ease the coordination of information sharing and
patching of the software products affected [11]. The CVE identifiers can be linked to the
Common Weakness Enumeration (CWE) framework, which, in turn, catalog the abstract
weaknesses behind the concrete vulnerabilities identified with CVEs. In addition, CVEs can
be linked to the Common Vulnerability Scoring System (CVSS), which is used to quantify
the severity of software vulnerabilities. The second version of this system, which is used in
the publications included in the dissertation, contains two variable groups for the intrinsic
and fundamental characteristics of vulnerabilities [12]. The first is the exploitability of a vul-
nerability; whether a network access is required, how complex is the attack for exploitation,
and whether authentication is required. The second is the impact of successful exploitation.
As is further elaborated in Publication P, the impact group is measured with the CIA triad.

5

Jukka Ruohonen

2.2 Governance

In what follows, governance is understood as a socio-technical system composed of institu-
tions and norms that allow actors to reach specific engineering goals through coordination
and other transactions. The definition is specific to this dissertation. That is to say, there
are numerous alternative definitions for governance in social sciences, although most of these
share the viewpoint that governance is about governing without the necessity of a govern-
ment [13]. In other words, governance does not necessitate the presence of a sovereign insti-
tution that holds the exclusive power to enforce rules, including the legitimate monopoly over
the use of physical force in a given territorial area, to paraphrase a classical characterization
of a nation state and its sovereignty.

The Internet is a prime example of governing without such an exclusive power over a
territorial area. Although the Internet is not ungovernable, as was often assumed in the early
literature, it still is—despite a recent trend toward more governmental involvement [14], a
resilient socio-technical system that spans practically all of the world’s geographical areas
without being controllable by a single government or a group of governments. Therefore,
governing the Internet has often been viewed through the lens of so-called multi-stakeholder
governance [15]. Although no formal definitions are available, the essence is that there are
multiple stakeholders with vested interests for governing the Internet on multiple different
governance forums. From this perspective, Internet governance involves autonomous sys-
tems, regional Internet registries, international but not necessarily inter-governmental orga-
nizations, standardization bodies, governmental agencies, companies, and civil society as-
sociations, among many other actors. This broad but apt term applies also to vulnerability
coordination; there are many stakeholders with varying interests and incentives for discover-
ing, disclosing, and patching vulnerabilities.

These actors coordinate vulnerabilities through different institutions and norms. In gen-
eral, the former are commonly seen as more or less formal “rules of the game”, such as
bureaucracy, the rule of law and judiciary, property, political systems, and so forth [16].
These abstractions can be observed through concrete institutions, such as national, regional,
and local administrative bodies, and even more concrete institutions, such as courts, party
systems, patent offices, and so forth. In contrast, norms are typically seen as culturally and
socially produced informal representations about appropriate behavior; values, customs, tra-
ditions, religions, and so forth. With these clarifications, governance can be seen as the “play
of the game”, and like with all games, tactics and strategies can be changed relatively rapidly
over the course of years or even less, whereas institutions change only slowly over decades
or more, and norms even more slowly, over centuries or more [17]. This insight is impor-
tant. During the last decade, in the 2010s, nation-states, international organizations, and
companies tried to establish different norms for cyber security, although the success remains
debatable at best [13]. However, this point does not imply that there would not be norms, and,
as discussed in Publication P, norms have characterized also vulnerability coordination.

There are also various concrete institutions for vulnerability coordination. As the disser-
tation only deals with visible, observable coordination, computer emergency response teams
(CERTs) are particularly noteworthy. Alongside international standardization organizations,
such as FIRST that manages the CVSS standard, CERTSs constitute a global institutional net-
work composed of national and regional response teams, their further coordination institu-
tions, analogous teams within companies and their consortia, and so forth [18; 19]. But while
these institutions often act in coordinator positions particularly for high-profile vulnerabili-
ties, there are also other acfors involved. On the coordinator side, particularly noteworthy

6

Background

is the MITRE corporation who handles the allocation of CVEs. As is discussed in Publi-
cation P3, these are essentially “coordination identifiers”. As such, there is nothing special
about CVEs, except perhaps their rigorousness, authority, and publicity. In theory, bug iden-
tifiers serve the same purpose, and many companies indeed use these instead of CVEs.

A closely related actor is the National Institute of Standards and Technology (NIST) of
the United States who maintains the National Vulnerability Database (NVD) for archiving
the known vulnerabilities identified as CVEs. MITRE and the NVD team further rank the
severity of the vulnerabilities coordinated with them with the CVSS standard as well as map
the CVEs to CWEs. For the purposes of this dissertation, these actors can be considered
as institutions in a sense that they have formal procedures on the rules of the game. The
two main players of the game are vendors, the producers of software and hardware, and the
discoverers of vulnerabilities.

The roles are interchangeable; a vendor may be a discoverer. Traditionally, however, the
discoverers have been referred to independent security researchers, often characterized with
the ambiguous term “hacker”. Due to the increased professionalism, as discussed in Sec-
tion 2.4, the concept of security researcher is more apt [20], especially given that none of the
publications deal with discoverers holding criminal motives. Furthermore, particularly the
three Publications P3, P4, and P5 address the software and security engineering activities
taking place after a vulnerability has already been disclosed. The two publications Pg and
P10 address technical solutions that may help with these tasks. When combined with these
activities, which are social due to the multi-stakeholder nature of the coordination, the term
socio-technical emerges as a umbrella that characterizes the coordination. By implication,
there are dependencies between the social and technical elements of the coordination; the en-
gineering tasks involved depend on the actors as well as on technology. These dependencies
often cause problems: the coordination tasks may be poorly aligned among the actors; there
may be a misfit between the actors and the coordination technologies used; and so forth [21].
Finally, the coordination is also about transactions of security information. Such transactions
include not only technical vulnerability details, but also CVEs and CWEs, knowledge about
patches, security advisories, and other security information. These points allow to attach the
dissertation’s focus to software engineering.

CWE
{P3, P4, P7,Ps, Pro} Other security identifiers
- {P1, P2, P7,Ps, Po, P10}
CVE g

{Pll 7)3/ P4r PS/ Pé/ P7r PS/ 739/ Plo}
. Security advisories,
O notifcations, emails, etc.

CVSS
{P2,P3,Ps5,Ps}

{P1,P3, Py, Ps,P7,Ps, Po}
Figure 2. Basic Vulnerability Information Sources Used in the Publications

However, the focus is still strongly CVE-centric. As can be concluded from Fig. 2, only
one publication (P2) does not operate with CVEs. Another point to make from the figure is
that CVEs, CWEs, and CVSS scores can be explicitly linked, whereas only implicit, incom-

7

Jukka Ruohonen

plete, or even absent linkage is present for other information sources; such linkage must be
constructed by data mining techniques. In fact, a couple of publications address the CVE-
centric vulnerability coordination explicitly: P3 the allocation of CVEs for known vulnera-
bilities and P4 the scoring of CVSS severity information for these. The other publications
use CVE, CWE, and CVSS information either for descriptive purposes or for independent
variables used in statistical analyses. Although CVE-centric approaches have been classi-
cal also in software engineering, more recent research has considered larger ontologies for
linking different information sources together. To improve the traceability of vulnerability
information, CVEs have been further linked to projects, bug reports, commits, pull requests,
software developers, and other online sources [22]. At the same time, more fine-grained ap-
proaches have gained increasing traction, including the examination of the vulnerable lines
of code in commits to a version control system [23; 24]. That said, CVE identifiers have
retained their importance in both research and practice. In terms of the latter, these identifiers
still guide the decisions to patch deployments and share information—CVEs are fundamental
to the institutionalized vulnerability coordination.

2.3 Coordination

The preceding discussion provides the building blocks for defining coordination in socio-
technical engineering settings. Accordingly, coordination originates from dependencies be-
tween different activities, and as a way to govern these dependencies between the activi-
ties [25]. The definition is broad, covering practically the whole field of software engineering
and its research. Therefore, it is not a surprise that coordination also belongs to the classical
topics and basic theories in the software engineering discipline [26; 27]. The scholarly back-
ground is further discussed in Publication P3. For the present purposes, it suffices to elaborate
vulnerability coordination through vulnerability disclosure. Although such disclosure is only
one phase in a longer vulnerability coordination process, it is particularly illuminating, and
presumably the most studied phase. It is also a part of the vulnerability life-cycle models
discussed in Section 2.5.2. At minimum, three distinct vulnerability disclosure models are
typically identified. These disclosure types are analytically illustrated in Fig. 3.

A. Public (full) disclosure B. Direct disclosure C. Coordinated disclosure

1. Discoverer 1. Discoverer 1. Discoverer

3. Vendor

4 ’

|

O 3. Vendor \ 2. Vendor 4. Public
|
|

s
v

’

2. Public O 3. Public

Figure 3. Three Analytical Vulnerability Disclosure Types

2. Coordinator

The first is public disclosure: a discoverer releases the vulnerability information to the
public Internet. Then, only if a vendor, or a group of vendors, are aware of the information,
they can develop patches to fix given vulnerability. If also sensitive information, such as
details about exploitation, are released, the term full disclosure is also sometimes used. Both
disclosure types are riddled with ethical issues: although these may put users at risk, they are

8

Background

1. “Full mesh” 2. “Point-to-point”

5
250l

3. “Hub-and-spoke” 4. “Shared bus”

Figure 4. Four Analytical Coordination Types (adopted from [28])

sometimes necessary because many vendors are not willing to participate in other disclosure
types. The second model is a so-called direct disclosure via which a discoverer contact a
vendor privately. If successful, the coordination required is also done privately, possibly
without the release of information to the public. This model and its associated problems are
the topic of Publication P; .

The third model is a coordinated disclosure model: a discoverer contacts a coordinator
who then handles the communication with the discoverer, the given vendor or a group of
vendors, and the public. Typically, the coordinator is a public sector organization such a
computer emergency response team. This disclosure model is examined in Publication P4
by focusing on high-profile disclosure via the national CERT of the United States. When
multiple vendors, or multiple discoverers, are present, the CERT-based coordinated vulnera-
bility disclosure type can be further elaborated as a “hub-and-spoke” model. As seen from
Fig. 4, standard network terminology elaborates also further possibilities for the disclosure
and associated coordination. Although the topic is not vulnerability disclosure in itself, the
coordination mailing list examined in Publication P3 can be seen as a “shared bus” model.
Finally, it should be noted that disclosure increasingly occurs via private sector companies
who act as a coordinator or a broker between vendors and discoverers.

2.4 Markets

Coordination always involves some transactions made under some institutional settings. In
economics, therefore, institutions and transaction costs are closely related. Traditionally,
transaction costs refer to costs required to draft, negotiate, and maintain contracts between
businesses in order to participate in a market [29]. This definition emphasizes the prior in-
centives to make contracts and the later governance of these, both of which contradict the
viewpoint of economic activity as a mere resource allocation problem [30]. To augment the
definition, also property rights and other related business constraints have been incorporated

9

Jukka Ruohonen

into the concept. The costs of transacting have even been used as a general theory for ex-
plaining why institutions emerge and how they are shaping human behavior [16]. As is later
emphasized in Section 3.2, the dissertation does not operate with such a grand theory, but,
nevertheless, the emergence of new institutions is relevant for understanding the historical
background and the existing research associated with it.

The coordination problems particularly in vulnerability disclosure incited the appearance
of different vulnerability markets in the late 1990s and early 2000s. Although conceptual
inaccuracies are worth remarking [31; 32], these vulnerability markets, in essence, refer to
marketplaces on which those who discover vulnerabilities sell their information to vendors
who patch their software products with the help of the information sold. These early markets
conform relatively well with the core tenets of the transaction cost theory. Incentives are
fundamental in this regard [33]. From an economic perspective, information security has
always been riddled with numerous market failures.

There has been a prevalent lack of both supply-side and demand-side incentives to invest
in information security [31]. Traditionally, consumers have valued innovativeness, new fea-
tures, usability, and other software product characteristics over information security. At the
same time, governments have regulated information security only lightly. A good example
would be software product liability for security lapses, which, despite of a long-standing de-
bate [34; 35; 36], has never fully realized. The software industry has also been marked by
monopolist tendencies, various technical lock-in properties, information asymmetries, net-
work externalities, and related market imperfections that have hampered information security
and its improvement [37; 34]. Some of these failures can be traced to the concept of switch-
ing costs: economic actors tend to stick with existing institutions because these outweigh the
marginal efficiency gains that would be gained from abandoning the institutional surround-
ings [38; 39]. Technical standards would be a good example: even though these may improve
interoperability and thus decrease the costs of switching between products, it is also true that
insecure standards and their implementations are frequently used even though newer, secure
alternatives would be available. Although some new solutions—including data protection
regulations, product certification, and cyber insurance—have been introduced to patch the
market failures [40; 41], the fundamental disincentives are still largely present. In many
ways, information security is a public good for which only a few actors have been willing to
make substantial investments. Though, the term information security should be underlined;
if the focus is turned toward cyber security, the claim about investments may no longer hold.

Different incentives are present also among those who discover and disclose software
vulnerabilities. For instance, Publication Pg shows that the amount of web vulnerabilities
disclosed for software add-ons correlate with the amount of web deployments using those
add-ons. In other words, to some extent, the market share of a software product affects the
incentives to examine the product for security issues, which, in turn, tends to translate into
a high amount of vulnerabilities disclosed for the product [42]. This reasoning is further
discussed in Publications Pg and Pg. For the present purposes, it suffices to stress that
monetary compensations and related economic aspects do not cover all of the incentives.
Traditional, volunteer-based open source software projects are a good example; not only are
direct economic incentives absent in such projects, but “the tragedy of the commons” [31] is
also present because commercial software vendors benefiting from the projects have seldom
invested in the information security of the software produced in the projects.

These and other market failures prompted the early research on vulnerability disclosure
in the then infant field of information security economics. In essence, the early research was

10

Background

motivated by a question whether new markets could alleviate the market failures associated
with vulnerability disclosure and software patching [31]. In other words, to use the termi-
nology from Fig. 4, a similar hub-and-spoke coordination model emerged but this model was
market-based; the orchestrator of a marketplace acted as the coordinator.

A large branch of both theoretical and
empirical research followed. A central Direct Bug Bounty
question was about the possibility of a the- Rewards
oretically optimal vulnerability disclosure o
model [43;44;45]. The theoretical effi-
ciency was also empirically tested; vulner- ~—
ability markets were observed to be effi-

Bugs

cient in reducing the diffusion of vulner- Two-Sided Bug Bounty Platform
ability information and the volume of ex- Rewards Rewards
ploitation [46; 47], among other things.
Later on, the questions examined have

o, \/ \/
been extended toward competition between Bugs Bugs

software vendors [48], crowdsourcing in
terms of so-called bug bounties [20], ethical
concerns [49], criminal underground mar- Py
kets [50], disclosure policies for govern-

mental agencies [51], and international reg- \/\/
ulation [52], among other topics. The bug Bugs Bugs

bounty programs are worth emphasizing not
only because of their contemporary impor-
tance but also because these are directly re-
lated to the disclosure Theme 7 ;. To this
end, Fig. 5 illustrates three different bug bounties; the direct bug bounty shown is comparable
to the direct vulnerability disclosure model examined in Publication P;. Despite these new
research avenues, however, the approach pursued does not follow the tradition of information
security economics and the market-based theories. There are six reasons for this framing.

One-Sided Bug Bounty Platform

Rewards

Figure 5. Three Analytical Types of Bug
Bounties (adopted from [20])

First and foremost, the new research avenues foretell that markets cannot solve all of the
problems. The questions related to governmental agencies, international regulation, and cy-
ber security in general are good examples in this regard. Second, only Publications P; and Py
address vulnerability disclosure explicitly, and neither one is related to the market-based dis-
closure mechanisms. Third, only publicly available data is used, and in most cases this data
refers to coordination and engineering activities that take place after disclosure has already
occurred. This point is further discussed in Py and Ps. Fourth, all of the coordination ac-
tivities, institutions, and norms are voluntary. There are no mandatory disclosure schemes,
software liability constraints, or related arrangement. Fifth, the publications either address
open source software explicitly or examine these in a conjunction with commercial software
products. A good example would be Publication Pg that compares the cumulation of vul-
nerabilities across operating system releases and their aging. Sixth, some of the publications
deal with vulnerabilities only implicitly; the focus in these publications is on the coordina-
tion of the associated security information. Namely: Publication P3 examines the allocation
of CVE identifiers, P, the quantification of CVSS scores, and P5 the delivery of security
advisories. These remarks restate the earlier emphasis: the dissertation’s focus is on software
engineering rather than on economics or information security in itself.

11

Jukka Ruohonen

2.5 Life Cycles

Most of the publications are explicitly or implicitly longitudinal in terms of their underlying
research strategies. To accompany the generally longitudinal focus, the dissertation’s analyt-
ical approach is attached to a so-called [ife cycle thinking. This kind of analytical thinking is
common in numerous distinct disciplines, including as different fields as marketing [53], in-
novation and technology [54], and sustainability [55]. Life cycle thinking has been common
also in software engineering. In addition to providing a model for software development and
maintenance [56], life cycles have been used to understand the evolution of software in gen-
eral [57]. In this dissertation analytical life cycle thinking is applied for software life cycles
and vulnerability life cycles. These two life cycles are used as analytical research vehicles
rather than theoretical frameworks. In particular, neither the software nor the vulnerability
life cycles considered refer to so-called process theories. In addition to life cycle (process
theory) variants and their state sequences, there are also evolutionary, teleological, and di-
alectic process theory variants [19; 58; 59; 60]. In a contrast to these, the life cycle thinking
followed distinguishes different phases in an evolution of a software product and vulnerabil-
ities in it. A close analogue would be different state machines used in bug tracking research;
a bug report may be opened, closed, reopened, and so forth [61; 62]. Thus, the phases are not
explanatory theoretical construct; they are used to frame the focus of a given publication.

2.5.1 Software Life Cycles

In terms of software life cycles, the analytical focus is on so-called evolving software, which is
usually considered to start upon the first operational release made for the software [63]. This
post-delivery focus is important for framing the dissertation’s scope. In particular, so-called
software development life cycles are excluded by design. This exclusion applies also to the
means by which security engineering is incorporated into software development life cycles,
the prime example being the security development life cycle model from Microsoft [64]. In
other words, the analytical focus is on the maintenance-side than on the development-side. In
Fig. 6 the maintenance side correlates with the evolution of servicing phases in a software’s
life cycle. This focus also affects the perspective adopted for the coordination of software
vulnerabilities. In particular, the coordination of discovered vulnerabilities and other secu-
rity issues can be done in a relatively closed environment during a software development life
cycle. Once a software product is released, the environment opens substantially, covering
third-party security researchers as well as adversaries with malicious motives. If also de-
ployments are covered in a software life cycle—as is typical in the current cloud computing
paradigm, the open operating environment extends also to concrete security risks.

Particularly Publications Pg and P7 more or less conform with the classical release-
based approach to software evolution [57]. Although both publications address also open
source software, which is usually under perpetual development [65], the units of analysis still
refer to software releases. The two publications differ in terms of whether the releases have a
fixed life cycle. For the Python packages examined in P, the life cycle of a release may be
unfixed and short in terms of calendar time; only a current release may be actively maintained,
for instance. In a stark contrast: the operating system releases examined in Pg have a long
and fixed life cycle; a release may be actively maintained for even over a decade. As is
further discussed in the latter publication, these different release engineering dynamics also
introduce analytical problems for empirical research. Although shortening these dynamics

12

Background

{ 1. Initial development J
Evolution changes

First running version |

y 1
g [2. Evolution
§ | Servicing patches
ko] Loss of evolvability
£ "
<
= { 3. Servicing

Servicing discontinued I—l
{ 4. Phase-out

Switch-off I—l

[5. Close-down J

Figure 6. A Staged Software Life Cycle Model (adopted from [63] and Pg)

has long been a goal for some software projects [66], many operating systems projects still
follow a more traditional release engineering approach. In this context, there oftentimes still
exist more encompassing product lines under which multiple parallel releases are actively
maintained [67]. In addition to such parallelism, a fundamental analytical problem is that the
actual software life cycles may have started already in the early 1990s—or even earlier.

Another difference between the two release-based publications is that Publication Pg
operates with continuous time, whereas Publication P7 examines release histories across dis-
crete time. Even though both time concepts have their own mathematical underpinnings, in
empirical software engineering the distinction is typically about whether calendar time or
some abstractions are used for longitudinal analysis. Software releases are a prime example
of the abstractions [68]. Other good examples range from so-called sprints used in agile soft-
ware development to so-called function points measuring business functionality of a software.
A further important point is that recent continuous software engineering practices (including
the so-called DevOps movement) have blurred the analytical boundary between development
and maintenance. Increasingly, software developers also maintaining and operating the de-
ployments on which the software developed is installed. This transformation has also brought
new life cycle and security challenges [69]. It could be even said that there are also deploy-
ment life cycles that intervene with both software and development life cycles. Patching a
vulnerability in the online context may require rolling a new release embedded to a new de-
ployment system, whether a container or a virtual machine. In this sense, also deployments
and even larger infrastructures can be thought to follow their own life cycle logic.

2.5.2 Vulnerability Life Cycles

Software bugs have a life cycle: a bug is introduced during software development, and when
found, it is preferably but not necessarily fixed. These two events define the bug’s life cycle in
a software product. A similar life cycle applies to software vulnerabilities, given the definition
of these as software bugs with a security implications. In theory, a similar definition and a life

13

Jukka Ruohonen

cycle logic applies also to hardware vulnerabilities. Either way, just like with products [53]
and technologies [54], the life cycle logic is based on the general idea that there are different
analytical stages, which reflect different theoretical concepts such as introduction, growth,
maturity, and decline [70; 71; 72]. For instance, the growth state could convey disclosure,
patching, and exploitation, whereas the maturity state might connote with a time upon which
most deployments have been patched, signatures have been added to intrusion detection and
prevention systems, and security advisories have been delivered to users. Although it remains
debatable whether the stages are reasonable for approaching security questions, these are
useful for framing the dissertation’s analytical scope.

By definition, life cycle thinking posits that an object studied lives from its birth to
its death [60]. A software vulnerability is born when a security-related software weak-
ness is introduced to a software source code. In terms of current software engineering
practices, usually this birth can be retrospectively traced to a specific commit in a version
control system [24]. Tracing vulnerabilities to specific commits is also an active research
area [22;23;73; 74], as well as a common practical software engineering activity related
to vulnerability coordination. Analytically, the latent weakness introduced by a commit be-
comes a vulnerability when someone discovers it from the software source code and correctly
identifies it as a defect with security implications, such that a discovery occurs. In Fig. 7 these
stages are marked by B, and Co.

If disclosure, Do, never occurs, a vulnerability would
be defined as a “zero-day vulnerability”. The actors
who possess such vulnerabilities range from criminals and
national intelligence agencies to third-party security re-
searchers and software vendors themselves. Although the
former two actors have received much of the attention
in many public policy debates [75; 49; 76], it should be
stressed that vulnerabilities are commonly discovered by
software developers, and often also silently fixed by the
developers. Regardless of particular actors, zero-day vul-
nerabilities also constitute a good example of the unfalsi-
fiability of insecurity claims noted in Subsection 3.1. Al-
ready because publicity is a fundamental requirement for
science [77], empirical observations about public items
cannot be used to prove that an object is secure due to
the potential presence of private items. In this regard, it
must be again underlined that such vulnerabilities are not
considered by any of the dissertation’s publications. All
cases considered have reached the publication phase Eo.

A. Defect

B; “Normal bug”

B> Vulnerability

C1 Unknown

C, Identified

D, Secret

D, Disclosed

Eq Private

Es Published
However, there exists an axiom in the sense that soft- F1 Fixed
ware vulnerabilities seldom, if ever, die. Although those
developing and using exploits for zero-day vulnerabili-
ties may define the death once E, or related events are
reached [78], a more axiomatic life cycle definition would Figure 7. A Few Examples of

be that the software affected would no longer exist. But Analytical States (adopted from
this ontological position is impossible to maintain. For [72] and Ps)

instance, the Morris worm from 1988 can be considered

as the starting point in the historical internationalization, institutionalization, and standard-

F> Unfixed

14

Background

ization developments related to software vulnerabilities [19]. But while the actual software
products exploited by the worm have long been only a part of the history of technology, the
corresponding vulnerabilities are still alive, well, and exploitable [79]. From a software en-
gineering perspective, however, it is sensible to attach the death of a vulnerability to an event
upon which the software in question is no longer maintained either explicitly or implicitly.
In terms of Fig. 6, the close-down phase would have been completed. Though, as is pointed
out in Publication Pg, there are many open source software projects for which updates have
not been done even in a decade, meaning that deprecation has occurred implicitly. For Publi-
cation Pg, on the other hand, explicit deprecation is apparent because the software products
observed have mostly reached their end-of-life (EOL) software life cycle states. Questions
related to EOL states are currently debated also in the CVE coordination framework [80].
Furthermore, regarding deployment life cycles and vulnerable websites [20], a death of a par-
ticular vulnerability might be defined to occur either in case a website is patched or in case it
is no longer reachable from the public Internet.

To proceed more formally, let f(z) = y and g(x) = z, where z is an abstract representa-
tion of a vulnerability, while f(z) and g(z) are abstract coordination activities that transform
the vulnerability’s representation into further abstractions. For instance, f(z) could refer to
the disclosure event, Do, in Fig. 7 and g(x) to the subsequent publication event, E5. The
coordination activities are assumed to occur at times ¢, and ¢, respectively, such that ¢, > ¢,
always holds. Many of the dissertation’s publications operate with a simple time difference
¢ = t, —t, for which ¢ > 0 holds. This difference can be understood as a metric for
coordination efficiency; the optimum for a given security bug is ¢ = 0. Thus, the earlier
example would measure a time difference between the disclosure and publication; the former
would refer to ¢, at which a given vulnerability was disclosed to a vendor, whereas ¢, could
refer to the publication of a CVE, a CVSS score for it, a security advisory, or some related
event. Therefore, the event Es is important: when extended toward systematic archiving
tasks, classification tasks, severity scoring tasks, and related tasks, the event can describe the
publication set { P3, P4, Ps, Po }. Furthermore, the general focus on E, rules out research
that examines vulnerability life cycles in terms of actual attacks, using data from intrusion
detection and prevention systems, anti-virus software, and related sources [81; 82; 83]. In-
stead, the interpretation of ¢ is better framed with more general concepts, such as problem
resolution interval used in software engineering [84] and time between failures used in reli-
ability engineering [7]. This interpretation again underlines the dissertation’s focus on soft-
ware and security engineering rather than security research; the aspects of governance and
socio-technical coordination instead of information security in itself.

2.6 Research Questions

The preceding discussion motivates to ask four board research Questions (Q). These align
with the Themes and Claims outlined in the introduction. Thus:

Q1 — {T1,Ca,C3 }: How efficient has software vulnerability disclosure and associated
coordination been historically, and what obstacles have there been?

Qs +— {T2,Ca }: How efficient has the coordination of CVEs, CVSS scores, and security
advisories been, and what partially explains the efficiency?

Qs +— { T3, Cy4 }: How software vulnerabilities evolve across time?

Q4 +— { T4, Cs }: What prospects there are for automating the coordination?

15

3 Research Design

The underlying research design is based on empirical software engineering. The emergence
of this type of software engineering research occurred in the 1990s. The developments later
matured in to the current urge for so-called evidence-based software engineering [85; 86],
which also necessitates the development and use of software engineering theories [87; 88].
Rather analogous developments have occurred in the security domain [89; 90]. In what fol-
lows, the research design is elaborated against these disciplinary developments.

3.1 Philosophical Foundation

The dissertation follows a conventional scientific tradition. The underlying philosophical
foundation relies on the fundamental ontological position that the objects studied exist inde-
pendently of the conceptual and theoretical frameworks used to study the objects. Although
software as an artifact does not exist in nature [91], this ontological position is sensible be-
cause none of the research questions examined address abstract, mind-dependent software
artifacts in the sense that the frameworks used would influence the existence of the objects
studied. The context should be underlined also from an information security perspective. In-
formation security itself is unfalsifiable by empirical means: empirical observations cannot
prove whether an object is secure—even though these can be used to declare insecurity of an
object [92]. However, nor do the research questions relate to security per se, which makes it
sensible to also rely on a conventional viewpoint to scientific knowledge.

Thus, the dissertation’s epistemological position follows the developments in the philos-
ophy of science, from logical empiricism to scientific realism and contemporary positivism:
although there are many practical limitations, knowledge about the objects studied should
still be based on propositions and hypotheses on one hand, and reproducible and preferably
quantifiable empirical observations on the other. In other words, “scientific knowledge with
its empirical and theoretical ingredients—obtained by systematic observation, controlled ex-
periments, and the testing of theoretical hypotheses—is an attempt to give a truthlike de-
scription of mind-independent reality” [77]. In general, these two philosophical positions
are commonly shared across most current scientific disciplines using empirical data to draw
conclusions. Among these disciplines are also empirical software engineering and empirical
information security research, including parts of information security economics.

3.2 Research Strategy

To further disseminate the distinct research strategies used in the individual publications,
Table 1 shows a concise breakdown based on a recent taxonomy specifically tailored for
empirical software engineering research [93]. There are three general points worth briefly
raising about the taxonomic breakdown.

16

Research Design

Table 1. Research Strategies (based on a taxonomy from [93])

Outcome Logic Purpose Approach
“P1 Basic Inductive Explanatory Mixed

P2 Basic Inductive Exploratory Positivist
Ps Basic Deductive Explanatory Positivist
P4+ Basic Deductive Explanatory Positivist
Ps Basic Deductive Explanatory Positivist
Ps Basic Deductive Explanatory Positivist
Pr Basic Inductive Exploratory Positivist
Ps Basic Deductive Explanatory Positivist

Pyg Applied Deductive Evaluation Positivist
Pio Applied Deductive Evaluation Positivist

First, software engineering is an engineering discipline. Historically software “engineer-
ing was essentially applied science, and the science was mathematics” [94]. While the refer-
ence to mathematics was later replaced with a reference to computer science, the essentially
same distinction has continued to be a part in the disciplinary debates about the nature of soft-
ware engineering research [6; 95; 96]. Analogous debates have been present in the security
domain [97; 90]. In fact, there have even been attempts to distinguish a specific engineering
method of empirical inquiry from other methods, including the scientific method [91]. The
keyword behind such a method is improvement; software development should be more ef-
ficient, software should be more secure, and so forth. This quest for improvements is also
implicitly present in another long-standing debate about the nature of software engineering.
This debate revolves around the nexus between software engineering as a scientific discipline
and software engineering as a practice in the software industry [87; 59]. For the purposes
of this dissertation, however, such demarcations and related debates are largely artificial and
unfruitful.

Engineering depends on science and science depends on engineering [90]. Improvement-
seeking is not incompatible with the conventional positivist epistemology [98], and quantifi-
cation has been a long-standing issue for improving security [99]. Contemporary software
engineering may also produce both basic and applied research outcomes. Although the de-
marcation here is somewhat ambiguous and debatable [100], the essence is that basic research
outputs knowledge by seeking to understand a problem, whereas applied research seeks to
produce a solution to a problem by applying existing knowledge [93]. The same point can be
delivered also via a distinction between solution-seeking (~ applied) and knowledge-seeking
(~ basic) software engineering [88; 101]. Accordingly: the former aims to solve practical
problems with engineered solutions, whereas the latter seeks to understand software and its
development in a given context. Given these distinctions, the majority of the publications seek
knowledge rather than engineer software solutions. That said, particularly the two Publica-
tions Py and P are better classified into the solution-seeking domain. Although neither one
presents complete software artifacts, both seek improvements and provide technical sketches
for solutions to the practical problems identified in the other eight knowledge-seeking publi-
cations.

Second, the publications vary in terms of their underlying logic for empirical inquiry.
Some of the publications follow an inductive (specific-to-general) logic: conclusions and

17

Jukka Ruohonen

theoretical arguments are sought after observing patterns and regularities in empirical obser-
vations. The other publications use a deductive (general-to-specific) logic for their empirical
inquiry: hypotheses, theoretical arguments, and general conclusions are contested with spe-
cific empirical observations. It should be emphasized that the demarcation is again used
for heuristic purposes—theories can be built and tested also with inductive logic, theoreti-
cal terms are necessary for inductive systematization, inductive and deductive reasoning can
be mixed, and so forth [102; 77; 90]. Furthermore, there are only a few—if any—software
engineering theories that could be tested without some inductive reasoning. Even the el-
egant theoretical knowledge-seeking arguments in software engineering fall into the scope
of so-called middle-range theories [101], which involve “abstractions, of course, but they
are close enough to observed data to be incorporated in propositions that permit empirical
testing” [103]. This characterization applies also to the distinctively hypothetico-deductive
Publications P3, P4, Ps, P, and Pg.

Third, the research purposes used in the publications vary. The grouping is relatively
clear-cut, however: all three publications using an inductive logic with weak theoretical
premises lean toward exploratory analysis: the goal is to seek new insights and generate
hypotheses for further research [104]. The deductive publications seek explanations to prior,
theoretically motivated questions. Here, the primary distinction is between generating and
testing hypotheses; both are necessary for building middle-range software engineering theo-
ries. Although all publications satisfy the requirement of proper contextualizing [105], only
Publication P; mixes a quantitative analysis with a qualitative examination of the context.
All other publications use quantitative data and methods, thus being positivist in this limited,
non-philosophical sense. That is, the positivist methodological outlook does not imply that
the ontological and epistemological positions taken in the dissertation would strictly conform
with the presence and research of law-like causal relations.

3.3 Data and Methodology

All ten publications rely on archival data [104; 93] for their empirical inquiries. This type
of data is sometimes also known as naturally occurring data [106]. In other words, the data
emerges naturally during software engineering activities. Software vulnerability coordination
is not an exception. Filing a CVE, archiving it to a database, and incorporating it to a security
advisory creates archival data. Scoring CVSS information for it and mapping it to CWEs
creates further data. The data generated depends on a context and a software development
system; a version control system produces vastly different data than a bug tracking system. In
general, archival data typically represent itself as sequences, graphs, or text [107]. Sequences,
including time series, are manifestly a part of the evolution Theme 7 3. Graph theoretical
(social network) methods are used in Py and Ps3, and text mining applications in Pg3, Py,
and P1g. All in all, the ten publications can be placed to the so-called mining of software
repositories genre of empirical software engineering research.

All ten publications are case studies. These are methods of empirical inquiry that in-
vestigate a phenomenon in a given context [104]. Given the ontological and epistemological
positions adopted, such a phenomenon must be mind-independent, existing in a real-life con-
text. In this dissertation, governance provides the general context and the socio-technical
coordination system the particular context, as was outlined in Section 2.2. The units of anal-
ysis are important for case studies, like for most empirical studies. The ten publications differ
in this regard. By merging CVEs with other security identifiers (cf. Fig. 2), there are three

18

Research Design

different units of analysis: vulnerabilities and related security artifacts (P, P3, P4, Py, and
P10), security advisories and vulnerability notifications (P2, P5 and Pg), and software pack-
ages and add-ons (P7 and Pg). Though, this classification is not entirely straightforward
analytically. For instance, in Publication Pg security advisories constitute the units of anal-
ysis, but these are merely aggregates of vulnerability counts. As is further discussed in Psg,
these and related issues cause also difficulties for abstraction and statistical estimation. It
is difficult to move through the ladders of abstractions: if vulnerabilities are represented as
vulnerable lines of code in a commit, for instance, it is difficult to switch to software projects
as the units of analysis. A further point is that a case study is the only possible archival data
approach in Publication P3, which examines a historically unique but now defunct practice
of allocating CVEs through a mailing list.

Ps

Ps

Pse

)

e Non-Linear Least Squares (NLS)

e Quantile Regression (QR)

e Ordinary Least Squares (OLS)

o Generalized Linear Model (GLM)

e Poisson Regression (PR) or related

e Logistic Regression (LR)

e Analysis of Variance (ANOVA)

e Least Absolute Shrinkage and
Selection Operator (LASSO)

P2

Figure 8. A Summary of Regression Methods

All ten publications are based on a quantitative methodology. Even Publication P; uses
a quantitative analysis to accompany the qualitative analysis. Regression analysis is the
workhorse for all but two publications included in the dissertation. The two exceptions are
‘Pg, which operates with a supervised machine learning classification algorithm, and Publi-
cation P, which likewise deals with a classification problem for evaluating the text mining
results derived. The other eight publications rely on regression analysis. As was elaborated
in Section 2.5.2, much of the analytical life cycle thinking operates with simple time dif-
ferences. These are count data by definition; in the present context, the days between two
life cycle events are counted. In addition to the conventional ordinary least squares regres-

19

Jukka Ruohonen

sion with variable transformations, count data points toward generalized linear models, and,
indeed, Poisson regression and its variants, including the negative binomial regression, are
used three publications. Two publications use logistic regression to model truncated count
data variables, and two other publications further use regularization methods originating from
machine learning research. Given the summary in Fig. 8, Publication Py is an exception: it
uses non-linear least squares to model growth curves for vulnerabilities in operating sys-
tem products.

20

4 Results

In what follows, the results from the individual publications are disseminated. The structure
follows the four Themes and the four research Questions.

4.1 Disclosure

Two publications address vulnerability disclosure. Although disclosure is only a part of co-
ordination, it is a particularly relevant part because many of the problems have manifested
themselves, and continue to do so, through vulnerability disclosure. These problems, includ-
ing inefficiency, supply the rationale for the two publications. This rationale can be further
briefly elaborated.

41.1 Rationale

By now, software vulnerability disclosure is a well-established research topic. As was elab-
orated in Section 2.4, the origins of the topic’s academic research trace to the coordinated
vulnerability disclosure model, its efficiency, and the then infant market-based coordination
models. However, the problems that prompted these coordinated disclosure models have
been poorly understood. Although the academic understanding and practice have both im-
proved [108], partially due to the late 2010s commercialization of vulnerability disclosure
through the crowd-sourced bounty programs [20], the problems, and thus the motivation for
the research, have often been based on mere anecdotes. This provides the motivation for
Publication PP to examine the direct disclosure of software vulnerabilities from the 1990s to
the mid-2010s. The leading research question in the publication is the presumed reluctance
of software vendors to engage in this type of disclosure practice. Thus, indirectly, the answer
to the question helps to also understand the historical emergence of the coordinated vulner-
ability disclosure model and software vulnerability coordination in general. To augment the
answers provided, Publication P2 examines the notifications sent by the CERT of the United
States to software vendors about vulnerabilities disclosed to and coordinated by the CERT.
The main research questions are whether these notifications cluster across software vendors,
and whether such clustering can explain the associated time delays. The efficiency aspects—
as discussed in Section 2.5.2, are also examined in Publication P;.

41.2 Results

The dataset examined in P; originates from the so-called Exploit Database (EDB), which,
unlike the NVD noted in Section 2.2, archives also the proof-of-concept programming code
required to prove the existence of a given vulnerability by demonstrating its exploitability.

21

Jukka Ruohonen

Unlike the other publications, P; mixes qualitative and quantitative methods for the analysis.
Namely: a thematic analysis for the former and the ordinary least squares regression for the
latter. According to the results, many software vendors were indeed reluctant to participate in
direct disclosure. Communication problems and conflicts between discoverers and vendors
were a central factor behind the obstacles revealed by the qualitative analysis. Also software
life cycles caused problems; particularly the phase-out and close-down stages in Fig. 6 were
problematic as many vendors no longer provided patches for products that had reached these
stages. In addition, poor software quality, limited time, and scarce resources contributed to
the problems, which, in many cases, implied that many software vulnerabilities were never
patched. As was discussed in Section 2.4, these issues reflect the lack of incentives and com-
mitments to information security. However: when direct disclosure worked, it was efficient.

a =Publication — Disclosure b = Disclosure - Discovery
(N =987, mean = 65, median = 33) (N = 380, mean = 23, median = 2)
2 2
© [
O -500 o
-1000 |
1500 —— O\ —
POC exploit (index) POC exploit (index)
¢ =Response - Disclosure d = Publication — Patching
(N =540, mean = 8, median = 1) (N = 489, mean = 21, median = 4)
‘ \ 500
400 ‘
w 300 ® 0
z %
A 200 aQ -500 —
(215} <] ‘ L4
100 0 ° -1000
0 °
I I
POC exploit (index) POC exploit (index)

Figure 9. Efficiency of Direct Disclosure (adopted from P;)

The efficiency aspects are illustrated in Fig. 9 with four quantifications. The analytical
meaning of these is further elaborated in the publication, but, in essence, these measure (a) the
overall length of direct disclosure; (b) the time a discoverer possessed a zero-day vulnerability
before disclosing it; (c) the time lag before a vendor responded to an inquiry; and (d) the time
a vendor took to release patches. The values shown are all reasonable. The median is a little
over a month for discoverers to release their information after contacting vendors; the median
is as low as two days for discoverers to contact vendors after their discoveries; the median is
only one day for vendors to respond to inquiries; and the median for patches to arrive after a
public disclosure is only four days. The results from the regression analysis indicate that the

22

Results

time delays have also shortened in the 2010s compared to the 2000s and 1990s. These tend
to further decrease with low-impact vulnerabilities on one hand and seasoned discoverers on
the other. Though, as is discussed in the publication in detail, these quantitative results do
not nullify the qualitative results; in fact, the quantifications explicitly exclude those cases
whereby vendors neither responded to inquiries nor patched their software products.

To some extent, similar problems are implicitly revealed in Publication Ps in that the
dataset is restricted to those vendors who have actively participated in the coordination through
the CERT. In other words, many vendors are reluctant to participate even in coordinated dis-
closure of high-profile vulnerabilities, as is also revealed by the qualitative results in P;. With
respect to those who have participated, efficiency is again present; it took less than about a
week for vendors to release patches after having been notified. But as for the clustering ef-
fect, the notifications sent by the CERT indeed bundle across vendors, implying that many of
the high-profile vulnerabilities have affected multiple vendors due to shared software code.
This clustering can also explain a portion of the time delays. This result provides means to
speculate about the possibility to improve the coordination; whether customized coordination
might be possible for particular groups of vendors, for instance. As for academic contribu-
tions, both P; and P examine the disclosure Theme 7 ; from a novel viewpoint. Particularly
Publication P advances the existing research by providing a nuanced, qualitative perspective
on vulnerability disclosure.

4.2 Coordination

The three publications that address the coordination Theme 72 and the associated Ques-
tion Q5 operate at later vulnerability life cycle phases than vulnerability disclosure. With
respect to the analytical illustration in Fig. 7, the latter can be understood to operate with the
time window between C, and Dy, whereas the coordination examined in P3, P4, and P5
consider the events Do and E,. Despite these differences, the rationale remains similar.

4.2.1 Rationale

Vulnerability disclosure practices improved throughout the 2010s, but some related problems

remained. As the decade progressed, the slowness of allocating CVE identifiers emerged as

a particular concern. In general, there were four primary ways to obtain these coordination

identifiers: by contacting an assignment authority (such as a large company or an open source

project, or a governmental agency), having an affiliation with such an authority, contacting the

MITRE corporation directly, or using a public mailing list for open coordination. The essence

of the last mechanism is summarized in Fig. 10. It is the topic examined in Publication Ps.
The topic is novel; there is no

prior research that would have ex-

amined the CVE allocation ques- Time

tion in detail. The same applies to () ()

the efficiency of CVSS quantifica-

tion examined in Publication Py.

To some extent, both publications “Hello, there is a “Sure, please use

can be seen to refer to the in- vulnerability...” CVE-YYYY-1234.”

ternal coordination done by engi-

neers affiliated with MITRE, the Figure 10. CVE Coordination via a Mailing List Between
2008 and 2016 (adopted from P3)

23

Jukka Ruohonen

NVD, and associated parties. Pub-

lication P5 augments such coordi-

nation by examining how three operating system vendors have aligned their security advi-
sories with CVEs. However, there are notable differences between the three publications in
terms of their theoretical rationale. First, P5 focuses on a specific hypothesis: that the age
of an operating system software product affects the time lags between security advisories
and CVEs. Although also CVSS information is used for statistical modeling, this hypoth-
esis is distinct from those examined in the other two publications. Second, P, examines
the time delays between CVE and CVSS assignments, hypothesizing that the delays are af-
fected by the severity of the corresponding vulnerabilities and efficiency trends across time.
In contrast to Ps, these hypotheses are on the side of the internal MITRE/NVD coordination.
Third, Publication P3 is the most encompassing, bringing the social and technical aspects
of socio-technical vulnerability coordination together. Three questions are examined in the
publication: whether social collaboration aspects, technical characteristics in terms of CWE
and CVSS information, and infrastructural characteristics can statistically explain the coordi-
nation efficiency through the mailing list. Much of the dissertation’s motivation, theoretical
background, and associated literature are also discussed in this publication.

4.2.2 Results

All three datasets examined in the three publications use CVEs and CVSS scores from the
NVD. This database is the sole data sources for P4. Publication P5 uses security advisories
and information about product releases as additional data sources. The most comprehensive
dataset is examined in P3. In addition to CWE variables, the publication uses a number of
variables to model the socio-technical aspects of CVE coordination delays. Among these are
social network variables about the individuals who participated in the coordination and in-
frastructural variables, such as references to bug tracking and version control systems, other
vulnerability databases, and other coordination channels and information channels histori-
cally used in open source software development. In total, nearly fifty independent variables
are used to model the delays of well over fine thousand CVE allocations that were done
through the open mailing list between 2008 and 2016. As can be observed from Fig. 11,
on average, these delays were gain sensible. The median was fifteen days. However, the
distribution has a long tail; the standard deviation is as much as 147 days. A few outlying
CVEs took even as long as over four years to appear in the NVD. These cases justify the
publication’s rationale.

Ordinary least squares and quantile regression (with and without LASSO) are used to
estimate the delays in P3. According to the results, social aspects and communication prac-
tices, coordination infrastructures, and the technical characteristics of the vulnerabilities co-
ordinated all affect the CVE allocation delays. However, the strength of the statistical evi-
dence follows the order of the listing; social aspects tend to overweight but not overrule the
more technical aspects of the CVE coordination efficiency. Strong effects are also present
for control variables used to account for the annual variation. In particular, weekends tend
to increase the delays slightly. Based on regularization with LASSO, none of the CVSS and
CWE variables used retain their statistical effects. Although it is impossible to strictly re-
ject the effects of the technical characteristics, the social dimension seems to matter more.
Implicitly, this result supports the earlier results about vulnerability disclosure and the theo-
retical coordination facets discussed in Section 4.2. These include also the famous Conway’s

24

Results

5000 — 0.20
24000 5 015
(72}
N é 0.10
% 3000 — 0.05
>
i 2000 — 000 — T \ \
0 2 4 6
1000 — log(delay + 1)
0]
\ \ \ \ \
0 500 1000 1500 2000
Delay (days)

Figure 11. CVE Allocation Delays (adopted from P3)

n = 88090
Zeros = 19.3 %

60000
|

Minimum = O days
Maximum = 6788 days

Frequency
|

Median = 1 day
Mean = 134.7 days
Standard deviation = 410.9 days

0 20000
|

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Aj

Figure 12. CVE-CVSS Allocation Delays (adopted from P4)

law; software engineering of a product tends to reflect the social aspect of a team engineering
the product [109]. Although social aspects are not modeled in P4 and P, their results share
certain similarities with Ps.

The delays between CVE and CVSS allocations examined in P4 have a highly similar
distribution (see Fig. 12) with the CVE allocation delays through the mailing list (P3). On av-
erage, the delays have again been short, but, yet again, there is a large standard deviation and a
few extreme outliers. Based on ordinary least squares, negative binomial regression, Poisson
regression, and LASSO, these delays are almost entirely explained by annual trends rather
than the CVSS information itself. In other words, the delays are explained by endogenous,
within-MITRE/NVD factors. The dataset used in the publication is too limited to speculate
beyond this result, but at least a hint toward social aspects is present; human resources are
a plausible hypothesis for further research. In a similar vein, the age hypothesis examined
in Ps is rejected: the age of an operating system software product at the time of issuing a
security advisory does not statistically explain the delay between the advisory and the CVE
identifiers embedded to the advisory. In contrast to P4, however, severity (CVSS) does fair
a little better statistically, suggesting that severe vulnerabilities are coordinated by operating
system vendors slightly faster than more mundane vulnerabilities. Due to an omitted vari-
able bias, nothing can be said about social factors, however. Taken together, the results from
Theme 7T 5 pave the way for the subsequent evolution Theme 7 3.

25

Jukka Ruohonen

4.3 Evolution

The research Question Q3 asks: how software vulnerabilities evolve across software releases?
The question is addressed by the three Publications Pg, P7, and Pg. Of these, P7 is sec-
ondary; it supports the theoretical arguments put forward in Pg but does not address the
evolution Theme 7 3 in itself.

4.3.1 Rationale

Software evolution is a classical research topic in software engineering. The origins of this
research trace to Lehman’s work from the 1970s onward [57]. Evolution is also a classical
topic in software vulnerability research. In particular, the so-called vulnerability discovery
models examine how the (cumulative) amount of vulnerabilities evolve across a product’s
software life cycle [110]. The name of these models is a little misleading, however. Building
on the long tradition of software reliability growth models [7], the models do not address
discovery itself—in the sense of Fig. 7 and the actual finding of vulnerabilities—but instead
model the evolution of these with curve fitting methods. The theoretical context is usually
framed to well-established software products, such operating systems that have a long life
cycle. As is further discussed in Pg, the theoretical assumption is that the growth of soft-
ware vulnerabilities slows down as software products age. Similar idea is present in software
testing and reliability engineering. In a sense, furthermore, the idea is similar to the age
hypothesis examined in Py, although coordination is not the theme examined by the vul-
nerability discovery models. Given the theoretical and empirically verifiable assumption of
decelerating growth, the theoretical but empirically difficult explanation relates to incentives.
In essence: the growth tends to follow the popularity of a product, and, therefore, there are
no strong incentives to find vulnerabilities from old products as the user bases of these prod-
ucts decreases as they age. When the phase-out stage in Fig. 6 is reached, the incentives
start to diminish, which, however, does not mean that all incentives would be gone; there are
always deployments that use outdated and deprecated software products. As was noted in
Section 2.5.2, vulnerabilities are analytically almost immortal. They seldom die; there are
exploitable software products deployed in the Internet even after decades.

There is a difference between Pg and rest of the nine publications: the publication seeks
to replicate earlier results about S-shaped growth curves [111]. Replications have become in-
creasingly important also in empirical software engineering, particularly in order to improve
generalizability [112]. In contrast, Publication P~ pursues a novel idea by modeling vulnera-
ble and non-vulnerable software releases across sequences of releases. Instead of cumulative
growth over continuous time, the evolution is seen as a binary-valued state machine. By a
theoretical assumption, a current release, or a future release, tends to be vulnerable if a past
release has been vulnerable, or several past releases have been vulnerable. Also the units
of analysis differ from Py in that typically only short-lived releases of Python packages are
examined. Prior to the publication, there was no directly comparable previous research on
the idea of state changes in the empirical software vulnerability research domain.

4.3.2 Results

The dataset examined in Pg covers numerous operating system releases from Red Hat Linux
and Microsoft Windows. Instead of CVEs, the dataset is assembled by the security advisories

26

Results

released by these two vendors. These correspond with patches released for the products. As
is often the case, a single patch release may fix multiple vulnerabilities particularly in the op-
erating system context. Although the operationalization does not strictly measure the growth
of individual vulnerabilities across time, the theoretical premise about S-shaped, sigmoidal
growth applies. The operationalization allows to further test a hypothesis that also normal,
non-security, bug fixes tend to follow a similar growth curve than the security bug fixes re-
leased for vulnerabilities. The three growth curves illustrated in 13 are used to examine these
hypotheses. Of these, the one Gompertz formulated in the 1920s and the logistic growth
curve are similar except with respect to their different inflection points at which the growth
starts decelerate. Both contain three parameters.

1.0

0.8

04 0.6

0.2

Linear

=== |ogistic
o | Gompertz
° T T T T T
-4 -2 0 2 4
t
Figure 13. Three Growth Curves (adopted from Pg)
RHEL 4.6 AS RHEL 6.3 SEUS
o
® o
7 S
g 2 | // g | /
@» 4 @»
> >
8 8 8-
Ea 2
5 s
2 2 %1
=3 =3
o o
8 : o] /
/' Linear S / Linear
—— Logistic —— Logistic
Gompertz Gompertz
T T ° T
2007-11-15 2008-07-23 2012-06-20 2014-07-02
Time Time

Figure 14. Example Growth Curve Estimations (adopted from Pg)

Based on non-linear least squares estimates, the two sigmoidal growth curves apply well
to the dataset. The Gompertz growth curves yields better estimates for many products, sug-
gesting that the inflection points tend to occur before the midpoint postulated by the logistic
growth curve. But given the large amount of products examined, there are some outliers
for which also linear growth is appropriate; such an example is shown on the left-hand side
plot in Fig. 14. However, as the right-hand side plot hints, the linear model is generally
ill-suited for most products. Similar observations apply to conventional non-security patch

27

Jukka Ruohonen

releases. All in all, the earlier results replicated in Pg are well-supported. As with the ear-
lier results [111], the theoretical assumption about incentives can be explained neither with
the datasets examined nor the growth curves estimated. In other words, the theoretical as-
sumption is well-supported but the theoretical explanation is not. To indirectly patch this
limitation, Publication Pg examines vulnerabilities in WordPress plugins with an assumption
that more vulnerabilities are discovered and disclosed for popular plugins. Based on a dataset
of about 1.6 and 2.6 thousand plugins and vulnerabilities, respectively, and estimation with
the negative binomial and logistic regression models, the popularity hypothesis holds ground;
multiple vulnerabilities are typically discovered from those plugins with wide online deploy-
ments. In other words, there are no strong incentives to devote time and effort to discover and
disclose vulnerabilities from software that is not widely used. This result provides indirect
support also for Publication Pg.

The other publication addressing the evolution theme, P, uses a dataset containing over
five hundred vulnerabilities that have affected over three hundred Python packages. Estima-
tion across the packages’ release histories is carried out with first-order Markov chains and
so-called autologistic regression model. The results are exceptionally good. If, for brevity, the
results are simplified as a classification problem that a current release is vulnerable given past
releases, the prediction accuracy is as high as 0.99. Although the result is partially explained
by the fact that many of the vulnerabilities have affected all previous releases, the level of
accuracy is still rare in empirical software engineering. The good statistical performance
provides also means to contemplate practical foresight applications based on packages’ re-
lease histories. Practical applications motivate to turn into the final automation Theme 7 4.

4.4 Automation

The practical problems outlined in the disclosure and coordination Themes 7 and 79, as
well as the results regarding the evolution Theme 7 3, motivate to consider technical software
solutions that may improve the socio-technical coordination of software vulnerabilities. The
research Question Q4 asks about prospects for such automated technical solutions. Thus,
prototype-like software solutions, which reflect but do not necessarily fulfill the solution-
seeking rationale noted in 3.2, are examined in the two Publications Py and P1j.

441 Rationale

Empirical software engineering has a long history for classifying bugs. There is a solid ratio-
nale behind the research: many software projects, including open source projects in particular,
receive a large amount of bug reports daily. Given that many of these are duplicates, invalid,
or even spam—yet many are also important and well-assembled, automated prioritization so-
lutions may improve manual triaging, which may further translate into faster bug resolution
times [62]. This rationale again reflects the analytical life cycle thinking. Thus, security bugs
and vulnerability databases are not exceptions. To this end, Py examines the classification
of exploits for web vulnerabilities by using existing meta-data and text mining features. In
addition to triaging, there are indirect but generally related arguments justifying the rationale.
Improvements for traceability between information sources is one [22]. Threat intelligence
is another: similar text mining techniques could be used to classify security information har-
vested from the open Internet with web crawling.

Publication P continues the same text mining theme. Instead of examining triaging in

28

Results

terms of database inputs, however, the goal is to examine how well text snippets embedded to
CVEs can be mapped to categories in the CWE framework. Although the rationale is similar
to Py, the focus on CVEs and CWEs places the publication into the within-MITRE/NVD
coordination, and, thus, to the coordination Theme 7 5 discussed in Section 2.3. Poten-
tial decreases of the associated coordination delays provide the practical justification. In
general, text mining applications have been common in the software vulnerability research
domain [22; 113], although there exists no existing research regarding the particular topics
examined in Publications Pg and P1g.

4.4.2 Results

The dataset examined in Py is based on the EDB, which is also used in P;. To simplify the
statistical analysis, the publication only considers binary-valued categories of web exploits
and exploits for web applications written with the PHP programming language. Although
the approach is not realistic for practical applications, which would require a multi-class
classification approach, it is sufficient for testing the general prospects for a more thorough
prototype. Against this backdrop, the main motivation for the statistical computation is to
evaluate performance improvements brought by text mining features against existing meta-
data information. This evaluation approach reflects the practical rationale: the text mining
features should bring large improvements to be useful for actual solutions. These features are
constructed in two steps. First, the conventional “bag-of-words” approach is used with a fairly
standard preprocessing routine. As the textual entries in EDB contain both natural language
and programming code, two separate corpora are used: lemmatized English words and other,
non-lemmatized tokens. The latter contain not only programming code but also technical
terms and associated slang. Then, in order to reduce the dimensionality, the latent Dirichlet
allocation method (LDA) is applied for both corpora by using & = 5, 10, . . ., 50 topics. Each
exploit is classified to the two dominant topics. Given the existing 38 meta-data features,
the classification performance increases with the two LDA-based features are summarized in
Table 2. There are improvements for both the web and PHP categories. For the former, in
particular, about forty LDA topics yield large improvements, resulting in accuracy of about
0.914.

Table 2. Classification Performance in Pg

Accuracy

Topics Features Web [95 % Cls] PHP [95 % CIs]

0 38 0.788 [0.765, 0.810] 0.742 10717, 0.766]

5 40 0.895 [0.877,0.911] 0.843 [0.821, 0.862]
10 40 0.910 [0.893, 0.925] 0.861 [0.841, 0.880]
20 40 0.920 1[0.904, 0.935] 0.888 [0.869, 0.905]
30 40 0.912 [0.894, 0.927] 0.881 [0.862, 0.898]
40 40 0.914 10.897, 0.929] 0.863 [0.843, 0.882]
50 40 0.913 [0.896, 0.928] 0.878 [0.858, 0.895]

Publication P is based on the same “bag-of-words” approach by using a dataset as-

29

Jukka Ruohonen

Cosine similarities

) - \
TF —/ U'nlgrams}
0 Bigrams ‘
= = Trigrams]
T B O O AN e =
TF-IDF

L =

0.00 0.05 0.10 0.15 0.20 0.25

Precision (max = 0.22)

Cosine similarities with LSA

TF ! C— Unigrams |
0 Bigrams ‘
T L O [WilErems |

TF-BOOLEAN)

-
TF-IDF = T
DLM-IDF ——‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25

Precision (max = 0.22)

Figure 15. Precision for CVE-CWE Mappings (adopted from P1)

sembled from the CWE database on one hand and the commercial Snyk database [114] on
the other. The scope is limited to those a little over a hundred CWEs that are present also
in the NVD via CVE identifiers. The Snyk database tracks web vulnerabilities in different
language-specific repositories, four of which are included in the publication. Given these data
sources, the goal is to compare simple CVE/CWE regular expression matches against infor-
mation retrieval techniques. Although there is no available ground truth, a regular expression
is assumed to provide a decent enough confidence that an entry in the Snyk database maps to
a given CWE either directly or indirectly via a CVE. Given again a rather conventional pre-
processing routine, the information retrieval is based on five conventional weighting schemes.
In addition, the so-called latent semantic analysis (LSA) is briefly examined. The maximum
cosine similarities are used to map the Snyk entries to the CWE entries. Unlike with Py, the
overall matching is poor. As seen from Fig. 15, the precision—the share of similar matches
between the regular expression and information retrieval approaches—remains below 0.25.
Although better values are obtained for some individual repositories, these cannot be con-
sidered promising for practical applications. This negative evaluation result is similar to the
rejection of the knowledge-seeking deductive hypothesis examined in Publication P5. But,
as always, negative results pave the way for improvements; these provide valuable knowledge
about what does not work.

30

5

Discussion

The following summarizes the conclusions reached for the four research questions, discusses
the limitations and contributions, and finally concludes with a few remarks about future re-
search directions on vulnerability coordination.

5.1

Conclusions

The five Themes amounted to five Claims and four research Questions, as enumerated in
Chapter 1 and Subsection 2.6. Before reconsidering the claims in Subsection 5.3, the Answers
(A) to these Questions can be briefly summarized as follows.

Ay

As

The first Q; asked about the efficiency of vulnerability disclosure and the problems hin-
dering the efficiency. With two case studies about direct and coordinated disclosure, the
efficiency has been good—when disclosure has worked to begin with. In other words,
various historical problems were also identified, including those related to communi-
cation, software life cycles, and software quality. There are good reasons to assume
that similar problems continue to cause problems particularly for direct disclosure. Ac-
cording to the results, a particular problem related to the reluctance of many vendors
to engage with disclosure, whether direct or coordinated. These results bespeak about
the lack of forceful incentives discussed in Section 2.4. Given the increased impor-
tance of the market-based disclosure mechanisms, there are also good reasons to suspect
that at least some of the problems have been successfully remedied. Another aspect re-
lates to legislations enacted or emerging in some countries. Given these points, it can
be argued—or at least hypothesized—that the socio-technical multi-stakeholder gov-
ernance of vulnerability disclosure is slowly moving from informal norms to formal
institutional practices. A further important theoretical conclusion is that the direct and
coordinated disclosure types (cf. Fig. 3) are not as straightforward as often presented in
the existing literature. In particular, also direct disclosure have often involved different
third-parties, suggesting that it and the coordinated disclosure types intervene in prac-
tice. Thus, in general, more analytical types such as those in Fig. 4 seem theoretically
more fruitful.

The second Question, Qs, continued the disclosure Theme 7 ; by asking about coor-
dination efficiency of CVE identifiers, CVSS severity scores, and security advisories.
With three case studies, the efficiency can be again concluded to be good. Given the the-
oretical socio-technical viewpoint pursued, the social aspects can be seen to overweight
but not overrule the technical aspects of coordination. Although endogenous factors are
strongly present—theoretically unmotivated longitudinal control variables strongly con-
tribute to the efficiency, the technical characteristics of the vulnerabilities coordinated
are still less relevant particularly with respect to CVEs and CVSS scores. Furthermore,

31

Jukka Ruohonen

As

Ag

32

the age of operating systems products neither shorten or lengthen the coordination de-
lays. In general, the overall efficiency indicates that the “shared bus” model in Fig. 4
is not necessarily theoretically worse than the “hub-and-spoke” model. Taken together,
these conclusion connect vulnerability coordination to classical theories about coordi-
nation in software engineering. Whether it is the coordination of abstract identifiers for
vulnerabilities or the development of a software product, team structures, communica-
tion practices, media and tools used for the coordination and communication, and other
related socio-technical factors are fundamental for efficiency.

The third Q3 asked how software vulnerabilities evolve across time. Two case studies
were used to answer to the question, the other based on continuous calendar time and the
other on discrete time across software release. The first case study replicated an existing
result: the cumulative amount of vulnerabilities discovered and disclosed for particular
operating system products follows sigmoidal growth curves, including the logistic and
Gompertz growth curves in particular. The second case study demonstrated a high sta-
tistical accuracy for predicting whether a current software release is vulnerable based on
past releases. Both studies reinforce the importance of software life cycles for explain-
ing the evolution of software vulnerabilities. These results align with .4; not only in
terms of software life cycles but also in terms of incentives. Although empirically dif-
ficult to verify, particularly the former case study points toward a lack of incentives for
discovering vulnerabilities from old software products. More generally, popularity of a
software product matters for incentives, and decreasing popularity decreases incentives.
This theoretical explanation was further examined by a third case study, which showed
that multiple vulnerabilities are more likely to be found from popular software add-ons
than from unpopular ones. When again interpreted against the broader socio-technical
framework, the results and theorization can be interpreted to weaken the technical as-
pects. In particular, software quality is not necessarily a major force behind discovered
and disclosed vulnerabilities. Unpopular software with poor quality may well contain
more vulnerabilities than popular high-quality software, but this assertion does not nec-
essarily imply that more vulnerabilities would be discovered and disclosed from such
software products. The robust empirical findings from the three case studies also pin-
point to potential practical improvements in terms of release engineering, prioritization,
and automation.

The fourth Q4 asked about potential for automation in order to improve the efficiency of
vulnerability coordination. Here, potential was framed as a solution-seeking prototype
instead of a complete software solution. To this end, two case studies were presented to
demonstrate such potential. The first case study examined the classification of exploits
for web vulnerabilities. By relying on text mining techniques and a machine learning
classification algorithm, notable improvements were observed from the inclusion of the
variables constructed via text mining. This improvements suggest a potential for prac-
tical applications. Although fully automated solutions may not be realistic, already a
semi-manual classification could bring efficiency improvements; a human could quickly
verify the automated classification of inputs to the database in question. Such an ap-
proach would likely further improve the efficiency. In a stark contrast, the second case
study demonstrated only poor performance for mapping more or less unstructured vul-
nerability information automatically to CWEs. Given the deductive research strategy
used for the case study (see Table 1), the poor performance can be equated to a negative
result; the applied solution presented cannot be concluded to work sufficiently even as

Discussion

a prototype. Further research is required in this regard. Finally, it is worth mentioning
the automation potential implicitly discussed in P». The clustering of disclosure notifi-
cations across software vendors could be potentially automated to improve efficiency.

What do these answers tell about socio-technical governance in general? As was dis-
cussed in Section 2.2, institutions change slowly and norms even more slowly. The answers
reached can be reflected against this tardiness. In many ways, Answer A5 about the coordina-
tion of vulnerability artifacts resembles the classical answers given for software engineering
coordination in general. Coordination is about managing dependencies, which are unavoid-
able in software engineering but which also cause inefficiencies [26; 27]. Although there is
always a room for improvements, efficiency was generally concluded to be good across all
case studies addressing it. Therefore, it is perhaps more relevant to note that the actual coordi-
nation practices have remained surprisingly stable over the years. Although the coordination
channel examined in P35 has been replaced by other mechanisms, CVEs, CWEs, and CVSS
scores are still largely coordinated and managed like they were a decade ago. Although some
initiatives have been taken, also automated solutions (.A4) are still rare for vulnerability co-
ordination and associated tasks. By and large, the same can be said about bug tracking in
general. Also Answer .4; about vulnerability disclosure can be reflected against the slow-
ness of changes. And although some of the problems identified—including the reluctance
of many vendors to engage in vulnerability disclosure—have been partially remedied by the
new market-based models discussed in Section 2.4, these models can be interpreted to be
fairly conservative in their coordination practices. Even today, many of the models can be
reduced to the analytical types in Fig. 4, or to some variations of these types. Despite the
argued trend toward institutionalization, the underlying coordination practices have remained
quite stable. The same applies to cultural and social norms. Finally, it is even a small surprise
that CVEs have retained their position as the only globally recognized identifiers for vulnera-
bilities. The same goes for the allocation of these via MITRE and the systematic archiving of
these to the NVD. Although the European Union has recently announced a goal for European
vulnerability coordination, the general slowness of institutional changes and the results pre-
sented allow to expect that the traditional arrangement will continue in the foreseeable future.
Socio-technical governance changes slowly.

5.2 Limitations

Different validity concepts are commonly used to assess empirical software engineering re-
search [115]. Among these are external, internal, and construct validity. Although there are
no universally accepted definitions [116], validity, in essence, means that a given operational-
ization of a variable, or a set of variables, really measures what is intended to be measured.
Reliability, in turn, basically means that a variable operationalized measures consistently the
same object across different measurement periods. While these concepts are related, interven-
ing with each other, reliability is generally a lesser concern for the ten publications included
in the dissertation. As was noted in Section 3.3, these can be placed to the mining of software
repositories genre of empirical software engineering research. Within this genre, unlike in
survey research for example, consistency is usually archived due to the archival data. There
are some exceptions, such as when a project changes a version control system [117], but
these do not affect the publications. Although all ten publications further address their own
limitations in more detail, the three validity concepts provide a good way to summarize some
main limitations.

33

Jukka Ruohonen

External validity means that a sample is representative and can be generalized to some
larger population. This requirement is generally unattainable in case study research. In fact,
it is arguably unattainable in software repository mining in general. Even big data analy-
sis, such as research based on GitHub repositories, cannot be generalized to a theoretical
population of all software projects; the repositories mined are typically biased toward open
source projects, and so forth. Nevertheless, external validity can be achieved in case study
research by focusing on an “analytical generalizability” toward a theory instead of a popula-
tion [118]. In this regard, A;, A2, Az, and A4 each provide some analytical generalizability
toward 71, T2, T3, and T 4, and together these provide analytical generalizability toward the
middle-range theory of socio-technical coordination of software vulnerabilities. There is also
variance among the individual publications. For instance, P¢ replicates existing empirical
research, thus providing further support for the theoretical arguments made about sigmoidal
growth of vulnerabilities across products.

Construct validity is close to the traditional meaning of validity: a concept and its oper-
ationalization have construct validity if it and its operationalization describe what is claimed
to be investigated. In other words, to borrow the terminology from Section 3.1, the concept
and its operationalized, concrete representation accurately describe the mind-independent re-
ality observed in a given study. This kind of validity is generally a problem for the mining
of software repositories. The reason is simple: unlike in survey research, controlled exper-
iments, or related research setups, it is impossible to predefine the constructs of interest as
these are dependent on the technical characteristics of the repositories mined. If something
is not logged or otherwise recorded in a given software repository, it cannot be directly ob-
served to begin with. Particularly Publications P; and P3 discuss these construct validity
issues in detail with respect to vulnerability coordination. A general limitation relates to the
analytical vulnerability life cycles; many of the events in Fig. 7 cannot be measured rigor-
ously. Nevertheless, it should be emphasized that while construct validity may be slightly
problematic in some of the publications, software repositories usually still provide a more
robust data source than survey research or related research setups. When a given construct
can be properly operationalized, it can be also accurately measured; there are no selection
biases or other problems that are typical to human subject research.

Internal validity refers particularly to causal assumptions between constructs and their
valid empirical verification. Here, valid empirical verification refers to generally sound em-
pirical reasoning, whether based on qualitative or quantitative analysis. Although a causal
analysis is not the intention in most of the publications, internal validity is still a concern par-
ticularly for the explanatory, hypothetico-deductive publication set { P3, P4, P5, Pg, Ps }-
Within this set, with the possible exception of Pj, the soundness of statistical computing is
particularly well-considered. As seen from Fig. 8, the publications in the set use multiple re-
gression methods, and even the non-linear least squares analysis in Py is accompanied with
multiple robustness checks. When compared to the external and construct validity threats,
internal validity is arguably a lesser concern for the publications included in the dissertation.
In general: if a concept has construct validity issues, it is already problematic in terms of
internal validity, irrespective of a statistical or a qualitative method.

5.3 Claims and Takeaways

All research contributes something, including solution-seeking, practically oriented research.
If practical solutions or prototypes thereto constitute a contribution, so do theory-advancing,

34

Discussion

knowledge-seeking research results. To this end, the eight Publications from P; to Pg to-
gether all support the first Claim C;. In other words, vulnerability coordination is best under-
stood as a socio-technical phenomenon; it cannot be reduced to technical aspects only. Dif-
ferent incentives—and disincentives—are important in this regard. Whether it is vulnerability
disclosure or the evolution of vulnerabilities across software product lines (Cy4), the participat-
ing actors have different incentives and disincentives for their participation—or lack thereof.
Vendors have still been reluctant to participate in vulnerability disclosure; vulnerability dis-
coverers seldom devote effort and time to find vulnerabilities from old software products;
and so forth. These disincentives shape the social aspects underneath vulnerability coordi-
nation. Like software engineering in general, vulnerability coordination is a social activity;
consequently, also the problems and obstacles are largely social instead of technological, as
asserted by Claim C3. However, the problems should not be overemphasized; historically, to
put outliers aside, when coordination has worked well, it has been also relatively efficient, as
asserted by Claim C». Like in many software engineering phenomena, the efficiency can be
characterized to represent a long-tailed probability distribution; the inefficiencies are repre-
sented by a minority group located at the distribution’s tails.

Although there are still no formal constraints, such as mandatory disclosure schemes or
software liability laws, the problems and disincentives have been increasingly addressed by
different market-based solutions such as bug bounties. Yet these have retained the multi-
stakeholder governance model for vulnerability coordination. The point is important. Unlike
traditional, commercial software engineering, vulnerability coordination cannot be analyzed
as a closed socio-technical system. Instead, it is an open socio-technical system governed by
multiple stakeholders. Although not in the dissertation’s scope, the openness becomes more
evident when also threats, attacks, and other information security concepts are considered.

The final Claim C5 was about automation and its potential efficiency improvements. The
evidence presented is a little mixed in this regard. Although the two prototype-like solutions
proposed did not both fully establish efficiency advances, automation in itself can be argued
to still offer benefits. Even open socio-technical systems can adapt to new circumstances.
Innovations are possible, especially when considering that the environment for vulnerability
coordination has mostly remained relatively stable over the decades.

5.4 Concluding Remarks

This dissertation addressed vulnerability coordination through several case studies. In ad-
dition to addressing the limitations briefly discussed, four paths for further research seem
prolific. First—as discussed in Publication P, further research is required to examine dis-
tinct coordination practices instead of comparing the practices across multiple analytical co-
ordination models. Here lies also the strength of case studies, which expose nuances better.
Second—as discussed in the same publication, further research is required to examine the
policy side, including the existing and emerging legal frameworks for vulnerability disclo-
sure, which has always been a controversial topic with respect to discoverers and their legal
status when disclosing new vulnerabilities. This policy-related research extends the already
interdisciplinary research field toward social sciences, including information security eco-
nomics but limited to it. Third, the automation potential should be further examined. Here,
the NVD together with the CVE, CWE, and CVSS frameworks establish a good target for
further data mining examinations. Fourth, little is known about the viewpoints and concerns
among practitioners. Survey research would offer a decent path for guiding further solution-
seeking applications.

35

List of References

(1]

(2]

(3]

(4]

[5]
(6]

(71

(8]

(91

[10]
(11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

36

Franco Zambonelli, Andrea Omicini, and Paul Scerri. Coordination in Large-Scale Socio-
Technical Systems: Introduction to the Special Section. IEEE Transactions on Emerging Topics
in Computing, 4(1):5-8, 2016.

Enid Mumford. A Socio-Technical Approach to Systems Design. Requirements Engineering, 5:
125-133, 2000.

ISO/IEC et al. Common Criteria for Information Technology Security Evaluation. Version
3.1, Revision 5, CCMB-2017-04-001, available online in December 2020: https://www.
commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf}, 2017.
Markus Schumacher. Security Engineering with Patterns: Origins, Theoretical Model, and New
Applications. Springer, Berlin, 2003.

Gary McGraw. Software Security. IEEE Security & Privacy, 2(2):80-83, 2004.

Barry W. Boehm. Software Engineering. /IEEE Transactions on Computers, 25(12):1226-1241,
1976.

Amrit L. Goel and Kazu Okumoto. Time-Dependent Error-Detection Rate Model for Software
Reliability and Other Performance Measures. IEEE Transactions on Reliability, 28(3):206-211,
1979.

Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven Pernicious Kingdoms: A Taxonomy
of Software Security Errors. IEEE Security & Privacy, 3(6):81-84, 2005.

MITRE et al. CWE Glossary. Common Weakness Enumeration (CWE), available online
in December 2020: http://cwe.mitre.org/documents/glossary/index.html,
2020.

OECD. Encouraging Vulnerability Treatment: Overview for Policy Makers. The Organisation
for Economic Co-operation and Development (OECD) Digital Economy Papers No. 307, 2021.
MITRE. Common Vulnerabilities and Exposures. Available online in April: https://http:
//cve.mitre.orqg/, 2022.

Peter Mell, Karen Scarfone, and Sasha Romanosky. A Complete Guide to the Common Vul-
nerability Scoring System, Version 2.0. FIRST, available online in December 2020: https:
//www.first.org/cvss/v2/cvss—-v2-guide.pdf, 2007.

Jukka Ruohonen. Do Cyber Capabilities and Cyber Power Incentivize International Cooper-
ation? Archived manuscript, available online in December: https://arxiv.org/abs/
2011.07212,2020.

Jukka Ruohonen. The Treatchery of Images in the Digital Sovereignty Debate. Minds and
Machines, (Published online in July):1-18, 2021.

Milton L. Mueller. Networks and States: The Global Politics of Internet Governance. The MIT
Press, Cambridge, 2010.

Douglass C. North. Institutions, Institutional Change and Economic Performance. Cambridge
University Press, Cambridge, 1990.

Olivier E. Williamson. The New Institutional Economics: Taking Stock, Looking Ahead. Jour-
nal of Economic Literature, 38(3):595-613, 2000.

Nazli Choucri, Stuart Madnick, and Jeremy Ferwerda. Institutions for Cyber Security: Inter-
national Responses and Global Imperatives. Information Technology for Development, 20(2):
96-121, 2014.

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
http://cwe.mitre.org/documents/glossary/index.html
https://http://cve.mitre.org/
https://http://cve.mitre.org/
https://www.first.org/cvss/v2/cvss-v2-guide.pdf
https://www.first.org/cvss/v2/cvss-v2-guide.pdf
https://arxiv.org/abs/2011.07212
https://arxiv.org/abs/2011.07212

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

LIST OF REFERENCES

Jukka Ruohonen, Sami Hyrynsalmi, and Ville Leppinen. An Outlook on the Institutional Evo-
lution of the European Union Cyber Security Apparatus. Government Information Quarterly, 33
(4):746-756, 2016.

Jukka Ruohonen and Luca Allodi. A Bug Bounty Perspective on the Disclosure of
Web Vulnerabilities. In Proceedings of the 17th Annual Workshop on the Economics
of Information Security (WEIS 2018), pages 1-14, Innsbruck, 2018. Available online
in June 2019: https://weis2018.econinfosec.org/wp—-content/uploads/
sites/5/2018/05/WEIS_2018_paper_33.pdf.

Kalle Lyytinen, Lars Mathiassen, and Janne Ropponen. Attention Shaping and Software Risk—
A Categorical Analysis of Four Classical Risk Management Approaches. Information Systems
Research, 9(3):233-255, 1998.

Dongdong Du, Xingzhang Ren, Yupeng Wu, Jien Chen, Wei Ye, Jinan Sun, Xiangyu Xi, Qing
Gao, and Shikun Zhang. Refining Traceability Links Between Vulnerability and Software Com-
ponent in a Vulnerability Knowledge Graph. In Tommi Mikkonen, Ralf Klamma, and Juan
Herndndez, editors, Proceedings of the 18th International Conference on Web Engineering
(ICWE 2018), Lecture Notes in Computer Science (Volume 10845), pages 33—49, Céceres, 2018.
Springer.

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. A Screening Test for Disclosed
Vulnerabilities in FOSS Components. [EEE Transactions on Software Engineering, 45(10):
945-966, 2019.

Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez Tejeda, Matthew
Mokary, and Brian Spates. When a Patch Goes Bad: Exploring the Properties of Vulnerability-
Contributing Commits. In Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2013), pages 65-74, Baltimore, 2013.

James Howison and Kevin Crowston. Collaboration Through Open Superposition: A Theory of
the Open Source Way. MIS Quarterly, 38(1):29-50, 2014.

Pontus Johnson and Mathias Ekstedt. The Tarpit — A General Theory of Software Engineering.
Information and Software Technology, 70:181-203, 2016.

Thomas W. Malone and Kevin Crowston. The Interdisciplinary Study of Coordination. ACM
Computing Surveys, 26(1):87-119, 1994.

Allend D. Householder, Garret Wassermann, Ant Manion, and Chris King. The CERT® Guide to
Coordinated Vulnerability Disclosure. Special Report, CMU/SEI-2017-SR-022, CERT Division,
Carnegie Mellon University. Available online in August 2017: https://resources.sei.
cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf,2017.
Giorgos Meramveliotakis and Dimitris Milonakis. Surveying the Transaction Cost Foundations
of New Institutional Economics: A Critical Inquiry. Journal of Economic Issues, 44(4):1045—
1071, 2010.

Olivier E. Williamson. Pragmatic Methodology: A Sketch, With Applications to Transaction
Cost Economics. Journal of Economic Methodology, 16(2):145-157, 2009.

Rainer Bohme. A Comparison of Market Approaches to Software Vulnerability Disclosure.
In Giinter Miiller, editor, Proceedings of the International Conference on Emerging Trends in
Information and Communication Security (ETRICS 2006), Lecture Notes in Computer Science
(Volume 3995), pages 298-311, Freiburg, 2006. Springer.

Andy Ozment. Improving Vulnerability Discovery Models: Problems with Definitions and As-
sumptions. In Proceedings of the 2007 ACM Workshop on Quality of Protection (QoP 2007),
pages 6-11, Alexandria, 2007. ACM.

Ross Anderson and Tyler Moore. Information Security: Where Computer Science, Economics
and Psychology Meet. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, 367:2717-2727, 2009.

Roksana Moore. Standardisation: A Tool for Addressing Market Failure Within the Software
Industry. Computer Law & Security Review, 29(4):413-429, 2013.

37

https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf
https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/2017_003_001_503340.pdf

Jukka Ruohonen

(35]
(36]
(37]
(38]

(39]

(40]

[41]
[42]
[43]

[44]

[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

38

Daniel J. Ryan. Two Views on Security Software Liability: Let the Legal System Decide. I[EEE
Security & Privacy, 99(1):70-72, 2003.

Edward Snowden. The Insecurity Industry. Substack, available online in July: https://
edwardsnowden.substack.com/p/ns—-oh—-god-how-is—-this—-legal, 2021.
Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.
Wiley, New York, second edition, 2008.

Joseph Farrell and Carl Shapiro. Dynamic Competition with Switching Costs. The RAND Jour-
nal of Economics, 19(1):123-137, 1988.

Steven K. Vogel. The Re-Organization of Organized Capitalism: How the German and Japanese
Models Are Shaping Their Own Transformations. In Wolfgang Streeck and Kozo Yamamura,
editors, The End of Diversity? Prospects for German and Japanese Capitalism, pages 306-333.
Cornell University Press, London, 2003.

Vasiliki Diamantopoulou, Aggeliki Tsohou, and Maria Karyda. From ISO/IEC 27002:2013 In-
formation Security Controls to Personal Data Protection Controls: Guidelines for GDPR Com-
pliance. In Proceedings of the International Workshop on Attacks and Defenses for Internet-of-
Things (CyberICPS 2019), pages 238-257, Luxembourg, 2020. Springer.

Angelica Marotta, Fabio Martinelli, Stefano Nanni, Albina Orlando, and Artsiom Yautsiukhin.
Cyber-Insurance Survey. Computer Science Review, 24:35-61, 2017.

Munawar Hafiz and Ming Fang. Game of Detections: How Are Security Vulnerabilities Discov-
ered in the Wild? Empirical Software Engineering, 21(5):1920-1959, 2016.

Ashish Arora, Rahul Telang, and Hao Xu. Optimal Policy for Software Vulnerability Disclosure.
Management Science, 54(4):642-656, 2008.

Hasan Cavusoglu, Huseyin Cavusoglu, and Rinivasan Raghunathan. Efficiency of Vulnerability
Disclosure Mechanisms to Disseminate Vulnerability Knowledge. IEEE Transactions on Soft-
ware Engineering, 33(3):171-185, 2007.

Karthik Kannan and Rahul Telang. Market for Software Vulnerabilities? Think Again. Manage-
ment Science, 51(5):726-740, 2005.

Sabyasachi Mitra and Sam Ransbotham. Information Disclosure and the Diffusion of Informa-
tion Security Attacks. Information Systems Research, 26(3):565-584, 2015.

Sam Ransbotham, Sabyaschi Mitra, and Jon Ramsey. Are Markets for Vulnerabilities Effective?
MIS Quarterly, 36(1):43-64, 2012.

Ashish Arora, Chris Forman, Anand Nandkumar, and Rahul Telang. Competition and Patching
of Security Vulnerabilities: An Empirical Analysis. Information Economics and Policy, 22(2):
164-177, 2010.

Serge Egelman, Cormac Herley, and Paul C. van Oorschot. Markets for Zero-Day Exploits:
Ethics and Implications. In Proceedings of the 2013 New Security Paradigms Workshop (NSPW
2013), pages 41-46, Banft, 2013. ACM.

Luca Allodi. Economic Factors of Vulnerability Trade and Exploitation: Empirical Evidence
from a Prominent Russian Cybercrime Market. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS 2017), pages 1483-1499, Dallas, 2017. ACM.
Tristan Caulfield, Christos Ioannidis, and David Pym. The U.S. Vulnerabilities Equities Process:
An Economic Perspective. In Stefan Rass, Bo An d Christopher Kiekintveld, Fei Fang, and
Stefan Schauer, editors, Proceedings of the 8th International Conference on Decision and Game
Theory for Security (GameSec 2017), Lecture Notes in Computer Science (Volume 10575), pages
131-150, Vienna, 2017. Springer.

Jukka Ruohonen and Kai K. Kimppa. Updating the Wassenaar Debate Once Again: Surveil-
lance, Intrusion Software, and Ambiguity. Journal of Information Technology & Politics, 16(2):
169-186, 2019.

William E. Cox. Product Life Cycles as Marketing Models. The Journal of Business, 40(4):
375-384, 1967.

Frank M. Bass. A New Product Growth for Model Consumer Durables. Management Science,
15(2):215-227, 1969.

https://edwardsnowden.substack.com/p/ns-oh-god-how-is-this-legal
https://edwardsnowden.substack.com/p/ns-oh-god-how-is-this-legal

[55]
(561
(571
[58]
[59]
[60]

[61]

[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]

(73]

[74]

[75]

[76]

[77]

LIST OF REFERENCES

Morten Bidstrup. Life Cycle Thinking in Impact Assessment — Current Practice and LCA Gains.
Environmental Impact Assessment Review, 54:72-79, 2015.

Ralf Kneuper. Sixty Years of Software Development Life Cycle Models. IEEE Annals of the
History of Computing, 39(3):41-54, 2017.

M. M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of the
IEEE, 68(9):1060-1076, 1980.

Kalle Lyytinen and Mike Newman. Explaining Information Systems Change: A Punctuated
Socio-Technical Change Model. European Journal of Information Systems, 17:589-613, 2008.
Paul Ralph. The Two Paradigms of Software Development Research. Science of Computer
Programming, 156:68-89, 2018.

Andrew H. Van De Ven and Marshall Scott Poole. Explaining Development and Change in
Organizations. Academy of Management Review, 20(3):510-540, 1995.

Mayy Habayeb, Syed Shariyar Murtaza, Andriy Miranskyy, and Ayse Basar Bener. On the Use
of Hidden Markov Model to Predict the Time to Fix Bugs. [EEE Transactions on Software
Engineering, 44(12):1224-1244, 2018.

Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib Shah. A Survey
on Bug Prioritization. Artificial Intelligence Review, 47(2):145-180, 2017.

Viclav T. Rajlich and Keith H. Bennett. A Staged Model for the Software Life Cycle. Computer,
33(7):66-71, 2000.

Microsoft, Inc. Microsoft Security Development Lifecycle (SDL). Available online in January:
https://www.microsoft.com/en-us/securityengineering/sdl/, 2019.
Ayelet Israeli and Dror G. Feitelson. The Linux Kernel as a Case Study in Software Evolution.
Journal of Systems and Software, 83(3):485-501, 2010.

Mika V. Mintyld, Foutse Khomh, Bram Adams, Emelie Engstrom, and Kai Petersen. On Rapid
Releases and Software Testing. In Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICSME 2013), pages 20-29, Madrid, 2013. IEEE.

Mikael Svahnberg and Jan Bosch. Evolution in Software Product Lines: Two Cases. Software:
Evolution and Process, 11(6):391-422, 1999.

Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan: Visualization of Code Evolution.
In Proceedings of the ACM Symposium on Software Visualization (SoftVis 2005), pages 47-56,
St. Louis, 2015. ACM.

Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar, and Liming Zhu. An Empirical
Study of Architecting for Continuous Delivery and Deployment. Empirical Software Engineer-
ing, 24:1061-1108, 2019.

William A. Arbaugh, William L. Fithen, and John McHugh. Window of Vulnerability: A Case
Study Analysis. Computer, 32(12):52-59, 2000.

Ben Buchanan. The Life Cycle of Cyber Threats. Survival: Global Politics and Strategy, 58(1):
39-58, 2016.

Guido Schryen. Is Open Source Security a Myth? Communications of the ACM, 54(5):130-140,
2011.

Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An Empirical Analysis of Vulnera-
bilities in OpenSSL and the Linux Kernel. In Proceedings of the 23rd Asia-Pacific Software
Engineering Conference (APSEC 2016), pages 105-112, Hamilton, 2016. IEEE.

Sofia Reis and rui Abreu. SECBENCH: A Database of Real Security Vulnerabilities. In Pro-
ceedings of the International Workshop on Secure Software Engineering in DevOps and Agile
Development (SecSE 2017), pages 69-85, Oslo, 2017. CEUR-WS.

Patrick Burkart and Tom McCourt. The International Political Economy of the Hack: A Closer
Look at Markets for Cybersecurity Software. Popular Communication: The International Jour-
nal of Media and Culture, 15(1):37-54, 2017.

Marty J. Wolf and Nir Fresco. Ethics of the Software Vulnerabilities and Exploits Market. The
Information Society: An International Journal, 32(4):269-279, 2016.

Ilkka Niiniluoto. Critical Scientific Realism. Oxford University Press, Oxford, 2002.

39

https://www.microsoft.com/en-us/securityengineering/sdl/

Jukka Ruohonen

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

40

Lillian Ablon and Andy Bogart. Zero Days, Thousands of Nights: The Life and Times of Zero-
Day Vulnerabilities and Their Exploits. RAND Corporation, Santa Monica. Available online in
September 2017: https://www.rand.org/content/dam/rand/pubs/research_|
reports/RR1700/RR1751/RAND_RR1751.pdf, 2017.

William Wu. The Ghost of Exploits Past: A Deep Dive into the Morris Worm. Rapid7
Blog, available online in January: |https://blog.rapid7.com/2019/01/02/
the-ghost-of-exploits—-past—-a-deep-dive—-into-the-morris—worm/,
2019.

MITRE. CVE Board Meeting Summary — 12 December 2018. Available on-
line in December: http://cve.mitre.org/data/board/archives/2019-01/
msg00004.html, 2018.

Luca Allodi and Fabio Massacci. Attack Potential in Impact and Complexity. In Proceedings
of the International Conference on Availability, Reliability and Security (ARES 2017), pages
32:1-32:6, Reggio Calabria, 2017. ACM.

Leyla Bilge and Tudor Dumitras. Before We Knew It: An Empirical Study of Zero-Day Attacks
in the Real World. In Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security (CCS 2012), pages 833—844, Raleigh, 2012. ACM.

Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras. The Attack
of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching. In Proceedings
of the IEEE Symposium on Security and Privacy (IEEE S&P 2015), pages 692—708, San Jose,
2015. IEEE.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309-346, 2002.

Victor R. Basili. A Personal Perspective on the Evolution of Empirical Software Engineering. In
Jiirgen Miinch and Klaus Schmid, editors, Perspectives on the Future of Software Engineering:
Essays in Honor of Dieter Rombach, pages 255-273. Springer, 2003.

Martin Shepperd. Combining Evidence and Meta-Analysis in Software Engineering. In Andrea
De Lucia and Filomena Ferrucci, editors, Proceedings of the International Summer School on
Software Engineering (ISSSE 2010), Lecture Notes in Computer Science (Volume 7171), pages
46-70, Salerno, 2010. Springer.

Daniel Méndez Fernandez and Jan-Hendrik Passoth. Empirical Software Engineering: From
Discipline to Interdiscipline. Journal of Systems and Software, 148:170-179, 2018.

Klaas-Jan Stol and Brian Fitzgerald. The ABC of Software Engineering Research. ACM Trans-
actions on Software Engineering and Methodology, 27(3):11:1-11:51, 2018.

Tyler Moore. The Dangers of Cyber Security Folk Wisdom. International Journal of Critical
Infrastructure Protection, 12:27-28, 2016.

Jonathan M. Spring, Tyler Moore, and David Pym. Practicing a Science of Security: A Phi-
losophy of Science Perspective. In Proceedings of the 2017 New Security Paradigms Workshop
(NSPW 2017), pages 1-18, Santa Cruz, 2017. ACM.

Victor R. Basili. The Experimental Paradigm in Software Engineering. In H. Dieter Rombach,
Victor R. Basili, and Richard W. Selby, editors, Proceedings of the International Dagstuhl Work-
shop on Experimental Software Engineering Issues: Critical Assessment and Future Directions,
Lecture Notes in Computer Science (Volume 706), pages 1-12, Wadern, 1993. Springer.
Cormac Herley. Unfalsifiability of Security Claims. Proceedings of the National Academy of
Sciences of the United States of America, 113(23):6415-6420, 2016.

Claes Wohlin and Aybiike Aurum. Towards a Decision-Making Structure for Selecting a Re-
search Design in Empirical Software Engineering. Empirical Software Engineering, 20(6):1427—
1455, 2015.

Michael S. Mahoney. Finding a History for Software Engineering. IEEE Annals of the History
of Computing, 26(1):8-18, 2004.

https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
https://blog.rapid7.com/2019/01/02/the-ghost-of-exploits-past-a-deep-dive-into-the-morris-worm/
https://blog.rapid7.com/2019/01/02/the-ghost-of-exploits-past-a-deep-dive-into-the-morris-worm/
http://cve.mitre.org/data/board/archives/2019-01/msg00004.html
http://cve.mitre.org/data/board/archives/2019-01/msg00004.html

[95]
[96]
(971
(98]
[99]
[100]

[101]

[102]

[103]
[104]

[105]

[106]
[107]

[108]

[109]
[110]
[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Lionel Briand. Embracing the Engineering Side of Software Engineering. IEEE Software, 29
(4):92-96, 2012.

Klaas-Jan Stol and Brian Fitzgerald. Theory-Oriented Software Engineering. Science of Com-
puter Programming, 101:79-98, 2015.

David Evans and Sal Stolfo. The Science of Security: Guest Editors’ Introduction. IEEE Security
& Privacy, 9(3):16-17, 2011.

D. Budgen, J. Bailey, M. Turner, B. Kitchenham, P. Breton, and S. Charters. Cross-Domain
Investigation of Empirical Practices. IET Software, 3(5):410-421, 2008.

S. W. Smith and Eugene H. Spafford. Grand Challenges in Information Security: Process and
Outputs. IEEE Security & Privacy, 2(1):69-71, 2004.

Donald E. Stokes. Pasteur’s Quadrant: Basic Science and Technological Innovation. Brookings
Institution Press, Washington, 1997.

Klaas-Jan Stol, Michael Goedicke, and Ivar Jacobson. Introduction to the Special Section—
General Theories of Software Engineering: New Advances and Implications for Research. In-
formation and Software Technology, 70:176—180, 2016.

Edwin A. Locke. The Case for Inductive Theory Building. Journal of Management, 33(6):
867-890, 2007.

Robert K. Merton. Social Theory and Social Structure. The Free Press, New York, 1968.

Per Runeson and Martin Host. Guidelines for Conducting and Reporting Case Study Research
in Software Engineering. Empirical Software Engineering, 14:131-164, 2009.

Tore Dyba. Contextualizing Empirical Evidence. IEEE Software, 30(1):81-83, 2013.

David Silverman. Interpreting Qualitative Data. Sage, London, third edition, 2006.

Ahmed E. Hassan and Tao Xie. Software Intelligence: The Future of Mining Software Engi-
neering Data. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research (FoSER 2010), pages 161-166, Santa Fe, 2010. ACM.

Marleen Weulen Kranenbarg, Thomas J. Holt, and Jeroen van der Ham. Don’t Shoot the Mes-
senger! A Criminological and Computer Science Perspective on Coordinated Vulnerability Dis-
closure. Crime Science, 7(16):1-9, 2018.

Melvin E. Conway. How Do Committees Invent? Datamation, 14(5):28-31, 1968.

Fabio Massacci and Viet Hung Nguyen. An Empirical Methodology to Evaluate Vulnerability
Discovery Models. IEEE Transactions on Software Engineering, 40(12):1147-1162, 2014.

O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring, Analyzing and Predicting Security Vul-
nerabilities in Software Systems. Computers & Security, 26(3):219-228, 2007.

Martin Shepperd, Nemitari Ajienka, and Steve Counsell. The Role and Value of Replication
in Empirical Software Engineering Results. Information and Software Technology, 99:120-132,
2018.

Fayola Peters, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh. Text Filtering and Ranking for
Security Bug Report Prediction. IEEE Transactions on Software Engineering, 45(6):615-631,
2019.

Snyk, Ltd. Vulnerabilities DB. Available online in June: https://snyk.io/vuln, 2021.
Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders
Wesslén. Experimentation in Software Engineering. Springer, Heidelberg, revised edition, 2012.
Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on Internal and External Validity
in Empirical Software Engineering. In Proceedings of the IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE 2015), pages 9-19, Florence, 2015. IEEE.

Jukka Ruohonen, Sami Hyrynsalmi, and Ville Leppédnen. Time Series Trends in Software Evo-
lution. Journal of Software: Evolution and Process, 27(2):990-1015, 2015.

Michael Gibbert and Winfried Ruigrok. The “What” and “How” of Case Study Rigor: Three
Strategies Based on Published Work. Organizational Research Methods, 13(4):710-737, 2010.

https://snyk.io/vuln

Original Publications

Jukka Ruohonen & Sami Hyrynsalmi & Ville Leppénen
A Mixed Methods Probe into the Direct Disclosure of
Software Vulnerabilities

Computers in Human Behavior, vol 103, 2021, 161-173.

Jukka Ruohonen & Johannes Holvitie & Sami Hyrynsalmi &
Ville Leppanen

Exploring the Clustering of Software Vulnerabilities Across
Software Vendors

Proceedings of the 13th ACS / IEEE International Conference on Computer
Systems and Applications (AICCSA 2016), IEEE, 2016, 1-8.

Jukka Ruohonen & Sampsa Rauti & Sami Hyrynsalmi &
Ville Leppanen
A Case Study on Software Vulnerability Coordination

Information and Software Technology, vol 103, 2018, 239-257.

Jukka Ruohonen
A Look at the Time Delays in CVSS Vulnerability Scoring

Applied Computing and Informatics, vol 15, 2019, 129—-135. IV

Jukka Ruohonen & Sami Hyrynsalmi & Ville Leppanen
Modeling the Delivery of Security Advisories and CVEs

Computer Science and Information Systems, vol 14(2), 2017, 537-555. ‘ 4

Jukka Ruohonen & Sami Hyrynsalmi & Ville Leppénen
The Sigmoidal Growth of Operating System Security
Vulnerabilities: An Empirical Revisit VI

Computers & Security, vol 55, 2015, 1-20.

Jukka Ruohonen
An Empirical Analysis of Vulnerabilities in Python Packages

for Web Applications

Proceedings of the 9th International Workshop on Empirical Software
Engineering in Practice (IWESEP 2018), IEEE, 2018, 25-30.

Jukka Ruohonen
A Demand-Side Viewpoint to Software Vulnerabilities in
WordPress Plugins

Proceedings of the 23rd International Conference on the Evaluation and
Assessment in Software Engineering (EASE 2019), ACM, 2019, 222—-228.

Jukka Ruohonen
Classifying Web Exploits with Topic Modeling

Proceedings of the 28th International Workshop on Database and Expert
System Applications (DEXA 2017), IEEE, 2017, 93-97. IX

Jukka Ruohonen & Ville Leppanen
Toward Validation of Textual Information Retrieval
Techniques for Software Weaknesses

Proceedings of the 29th International Conference on Database and Expert
Systems Applications (DEXA 2018), Springer, 2018, 265-277.

	Acknowledgements
	Table of Contents
	List of Original Publications
	Introduction
	Background
	Definitions
	Governance
	Coordination
	Markets
	Life Cycles
	Software Life Cycles
	Vulnerability Life Cycles

	Research Questions

	Research Design
	Philosophical Foundation
	Research Strategy
	Data and Methodology

	Results
	Disclosure
	Rationale
	Results

	Coordination
	Rationale
	Results

	Evolution
	Rationale
	Results

	Automation
	Rationale
	Results

	Discussion
	Conclusions
	Limitations
	Claims and Takeaways
	Concluding Remarks

	List of References
	Original Publications

