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In this thesis it is studied how neural networks can be used for anomaly detection in day-ahead 

wholesale electricity market trading data. Economics of electricity markets lays a foundation on 

detecting distinctive patterns in supply behavior reflecting market manipulation, such as 

economic and physical withholding of production capacity. The impact of market abusive supply 

behavior is studied on shapes of supply curves. A neural network model is used to provide score 

to measure stationarity of bidding behavior. An unsupervised machine learning framework for 

anomaly detection is set up by using a rolling window approach. 24 hours of high dimensional 

supply trading data is used as input to make prediction one hour ahead. Prediction errors of every 

individual hour are used as a time series of anomaly score, which is thoroughly analyzed in the 

light of signs of market manipulation based to the literature of electricity market economics. The 

study is conducted on two years of anonymous aggregated day-ahead trading data collected by 

The European Union Agency for the Cooperation of Energy Regulators received from Energy 

Authority of Finland.  

Idea is to fit neural network to the data to estimate how supply curve of an hour would look like 

conditional on 24 previous hours and external variables. Neural networks are used for the 

estimation as they are capable of modelling non-linear spatial dependencies in the data. LSTM 

model is further chosen because it is designed to handle long term dependencies in the data. If the 

prediction errors are low enough on average, it can be assumed that the model can capture 

stationary behavior in the data and outliers can be assumed to result from changes in data 

generation process. If model can predict supply curves well enough on average, large prediction 

errors can indicate that something unexpected has happened in the markets. LSTM-model is 

trained to make rolling window predictions using 5-fold walk forward validation approach, where 

chronological order of the data is maintained to mimic real life prediction scenario. Early stopping 

is used to prevent overfitting. Hyperparameters are chosen via grid search likewise using 5-fold 

walk forward validation. 

Two major distinctive types of supply behavior are identified from the literature, economic 

withholding and physical withholding. Their impact is studied on supply curves and is paid 

attention in the analysis of anomaly score. Mean absolute error of individual hour is chosen for 

anomaly score, which is referred as h-MAE. Performance of the model is compared to one used 

by Guo et al. (2021) in similar function of predicting supply curves. Method is promising in 

detecting out-of-ordinary supply curves, based on thorough statistical survey of the results and 

brief qualitative survey, in which a confirmed market violation was detected, as well as 

erroneous period in the data. Linking market manipulation to the anomaly score directly proves 

difficult. However, the method offers a noteworthy possibility to surveil and study supply 

curves in day-ahead market as it benefits from enormous amount of high-dimensional data and 

is capable to take account the spatial and temporal non-linear relations of the supply curves. 

This Master’s thesis was done in affiliation with Energy Authority of Finland. 

Key words: Unsupervised machine learning, anomaly detection, electricity markets, day-ahead 

market, long short-term memory, market manipulation. 
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1 Introduction 

 

1.1 Electricity markets and surveillance 

Historically electricity markets around the world started out as regulated monopolies of 

large vertically integrated utilities. All sectors of electricity markets were typically 

integrated under ownership and operation of one such actor. The early model of regulated 

regional monopolies was consequence of large investment costs in electricity production 

and distribution, and physical qualities related to electricity as commodity that led to 

natural monopolies. Regulated monopolies have since given way to reconstructed, or 

liberalized, market design around the world, where disintegrated market-design and 

market-oriented mechanisms are set up to induce competition (Brown & Olmstead 2017). 

Around the world markets have been reconstructed from regulated monopolies to 

disintegrated monopoly design. Finland’s electricity market was opened to competition 

also gradually from 1995 to 1998 after the Electricity Market Act was passed. Finland 

joined in integrated Nordic power markets in 1998, which was the evolved into Nord Pool 

of today that operates multiple markets in 20 countries including Baltic and UK. 

Reconstruction of electricity markets in Finland meant that retail, distribution and 

production of electricity were separated and opened for competition. Electricity producers 

started to sell production in stock markets provided by Nord Pool.  

Although many electricity markets today have been opened for competition, some 

inherent qualities in electricity production have not changed. Investments in most 

profitable generation technologies still remain large and are in scope of only the 

dominating producers. Network congestions and bottlenecks can also result in 

monopolistic traits in electricity production locally. Even thought Nordic markets were 

among the first to open up for competition and first to establish international power 

exchange, market concentration in electricity production was still high even in 2009.  

There is ongoing dispute over best methodology when it comes to assessment of market 

concentration and views on its impact differ. (Hellmer & Wårell 2009). 

Electricity markets differ from most markets in the absence of possibility to store 

production. Even though the technology for storing electricity is constantly improving, 

efficient long term electricity storages is not yet viable option for large scale usage. This 
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leads to balance required between consumption and production of electricity at all times, 

which leads to high intertemporal supply variation. In addition to the high intertemporal 

variation of electricity supply, the demand of electricity is very inelastic in the short run. 

One reason for the inelasticity of demand is retailers protecting their customers from price 

variation, which leads to indifference in consumption decision among the final consumers 

(Borenstein et al. 2002). Properties of electricity as a commodity and concentration of 

electricity markets, make the market vulnerable to market manipulation. As such, 

electricity markets are strictly regulated. Market manipulation is prohibited in the 

regulation of the European Parliament and of the council of 25 October 2011 on wholesale 

energy market integrity and transparency (REMIT).  

Reliability of transparent and functioning electricity market rely on surveillance. 

Surveillance of electricity markets does not come without challenges. The number of 

transactions and actions taking place daily is enormous, as there are multiple parallel 

markets operating simultaneously. Intertemporal variation and high dimensionality 

brought by the market mechanism makes statistical inference and manual surveillance 

difficult. Trading activity in electricity markets is increasing due to increasing utilization 

of algorithm trading (Epex 2022). Also, in addition to intertemporal variation brought by 

factors like weather, time of year and time of day, the underlying circumstances in the 

markets are constantly changing, new production and consumption enters and exit the 

market, consumption profiles change, and new technologies emerge. Surveillance of 

electricity markets need to adapt as going through the enormous daily data feed manually 

can quickly prove impossible. Automatic surveillance is called-for. Problem with 

automatic surveillance is the intertemporal variety, it is difficult to label transactions 

suspicious based on some threshold, when volume of demand and supply are highly 

seasonal and circumstances like weather and price of fuel impact them. Therefore, a more 

flexible way is needed. Deep learning algorithms are widely used for anomaly detection 

across many demanding fields (Lindemann et al. 2015). Such applications could also 

benefit surveillance of electricity markets, since high dimensional seasonal data with non-

linear relations restrain inference by parametric models and traditional time series 

analysis. 
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1.2 Research question and structure of the thesis 

The first research question of this thesis is to find out if neural networks can be used in 

unsupervised anomaly detection to detecting abnormal events in day-ahead markets. 

Second research question is, do the abnormal events indicate market manipulation? 

Strategy is to predict day-ahead supply curve based on supply curves that occurred in 

previous 24 hours and assess the hours that result in high prediction error. Study is 

conducted on aggregated anonymous day-ahead market supply curves of Finland’s price 

area received from Energiavirasto. Labelling hours strictly anomalous or non-anomalous 

is not the focus of this thesis, but to examine if the method is capable to capture elements 

in the supply curves that could indicate market manipulation, erroneous orders or 

unexpected abnormal events and inspect the results. In chapter two, market design and 

regulation are described as well as economic theory related to electricity markets and 

market power to shed light on how market manipulation should show in supply curves. 

In economic approach, first optimal bidding in perfect competition is defined, and after 

that, motivation to differ from perfect competition is examined in light of monopoly 

profits. In chapter three, anomaly detection framework is introduced as well as literature 

survey on prediction of supply curves, in which the framework relies on. In chapter four 

method is explained and long short-term memory network is introduced. Also, the details 

of model selection are reported. In chapter five the results of model selection and model 

fitting are reported with examination of the data distribution. In chapter six the results are 

examined both qualitatively and qualitatively and discussion of the shortcomings and 

successes of the study and perspectives on future directions of developing the method are 

provided. The thesis ends in summary in chapter seven, conclusion. 
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2 Electricity market description 

2.1 Day ahead electricity market 

2.1.1 Price formation and spot price 

In electricity markets, there are two important centralized market processes to be 

considered, day-ahead and intraday markets. In addition, there are also future markets and 

regulatory power markets, which are left outside the scope of this thesis. Intraday and 

day-ahead markets operate in two stages.  First, before the actual dispatch, bids and asks 

are placed to the day-ahead market, which form step functions. Market operator calculates 

optimal dispatch over every hour of the subsequent day, and the market participants are 

paid according to the provided forecast price and forecast dispatch. All supply bids 

summed horizontally form market supply bid curve, the market demand curve is formed 

the same way by summing all the demand asks. The day-ahead price is determined by 

cross-section of market supply bid curve and demand ask curve. From now on, the curve 

that is the sum of supply bids is referred to as market supply curve, and respectively the 

sum of demand asks is referred to as market demand curve. Market participants provide 

bids and asks for every hour of the subsequent day, so there are 24 market supply and 

demand curves for each day in day-ahead markets resulting in day-ahead, also called spot, 

price for every hour of the day. In figure 1 cross section of market supply and demand is 

illustrated. Step-like shape of the curves results from bidding types available on day-

ahead markets elaborated in the chapter 2.1.3 and the minimum operating level of certain 

electricity generation technologies. The most expensive technologies incorporate higher 

marginal costs and thus place higher in the merit order of supply bids. It is typical for 

market supply curve to present a hockey-stick like shape, less volume is offered at higher 

prices. Less volume offered at higher prices is also consequence of rare need to dispatch 

generation technology that has high marginal cost, so in order to cover the fixed costs the 

production of high marginal cost technology must be offered to the market with a price 

exceeding the true marginal costs. Most of the variance in electricity price takes place in 

the midrange of the merit order of supply (Ziel & Steinert 2016).  It is important to note, 

that renewable energy that does not incorporate variable costs in their production, such 

as solar and wind production, move the supply curve to the right when available, since 

without variable costs it is always financially beneficial to offer their capacity to the 

coupling at any non-negative price. In practice this is achieved by offering supply at 
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minimum price allowed. In figure 1 the shapes of supply and demand curves are 

illustrated. 

 

Figure 1, Cross-section of market supply and demand curves determine the spot price for each 
hour of the subsequent day. 

Intraday market occurs during the day of actual dispatch, the market operator uses bids 

and asks placed to the intraday market to couple supply and demand conditions resulting 

in real-time intraday price and dispatch. Day-ahead electricity markets can be thought a 

as forward market. If the price and quantity for market participant in the day-ahead market 

are 𝑃𝐷𝐴 and 𝑄𝐷𝐴, the revenue from day-ahead market is 𝑃𝐷𝐴𝑄𝐷𝐴. In addition, market 

participant can sell the difference in real-time and day-ahead dispatch for 𝑃𝐼𝐷(𝑄𝐼𝐷 −

𝑄𝐷𝐴) The total revenue that market participant receives for supplied energy can be thus 

expressed by 

𝑃𝐼𝐷𝑄𝐼𝐷 + (𝑃𝐷𝐴 − 𝑃𝐼𝐷)𝑄𝐷𝐴 

The equation above describes the relationship between intraday price and supply behaviour, 

fundamentally only the intraday price determines the revenue and day-ahead market can be 

considered to operate as a short-term hedge for intraday price. In day-ahead market, individual 

market participant delivers its bids to the wholesales market operator resulting in market 

participants supply curve. It is worth highlighting that supply curve of an individual market 
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participant does not represent marginal costs, but the merely the bidding behaviour. (Biggar et 

al. 2014.) 

2.1.2 Nord Pool Day-ahead 

The scope of this study is limited to the day-ahead market of Finland. Finland is part of 

integrated Nordic and Baltic energy market where the market operator is Nord Pool. In 

day-ahead market participants place sell and buy bids for every delivery hour of the next 

day. Bids are placed in a two-hour time window between 10:00 CET and 12:00 CET on 

the day before delivery. Bids are placed on a grid that consist of price steps and individual 

delivery hours. (Nord pool 2021a.) 

Day-ahead trading is based on four types of orders. Single hourly orders, block orders, 

exclusive groups and flexi orders. Market participants may derive other types of orders 

from four basic order types.  

Firstly, single hourly orders mean that participants specify the buy or sell volume for each 

hour. Single hourly orders must be defined with at least two price steps, which means 

they can be either price dependent or independent, since participant can set the price 

interval to match the minimum and maximum market prices. According to Nord Pool, the 

largest share of the day-ahead trading is based on single hourly orders.  

Secondly, block orders are set with specified volume and price for several consecutive 

hours. Regular block orders must be fully accepted or rejected, which means that all the 

hours the contract covers shall. Block orders are accepted when the average day-ahead 

price is lower (higher) than sales (purchase) block orders over the whole timespan of the 

order. Block orders can be linked so that individual block order can be made dependent 

on acceptance of another block offer. Additionally, volume of the block order can vary 

over the time span. 

Thirdly, exclusive group means a cluster of block orders out of which only one can be 

activated 

Lastly, Flexi order are block orders with maximum timespan of 23 hours. Flexi sales 

orders are used by companies for example to sell power to the day-ahead market by 

closing industrial processes. (Nord Pool 2021a.) 



15 
 

The shape of the market participants supply curve for each individual delivery hour is 

formed by combination of three types of sell orders from those described above, exception 

is block orders, which are dependent on intertemporal conditions. Furthermore, the supply 

curve takes its form as a collection of offered volumes on corresponding price for each 

delivery hour. In Nord Pool, pricing of offered load is limited between upper and lower 

thresholds of 3000€ and -500€. Block offers do not have effect on the shape of the supply 

curve because of their price independent nature, the whole block is either accepted or 

declined. Therefore, accepted block offers add to the volume of each price-volume pair, 

simply shifting the market participants supply curve to the right. To illustrate the daily 

market coupling, eight aggregated anonymous market supply and demand curves from 

Finnish price area are presented from one day in figure 2.  

 

Figure 2, Aggregated market supply and demand curves (Nord Pool 2021) 

In figure 2, same colour represents supply and demand curve of the same hour. The shape 

of both curves is determined by fundamental conditions in the market. Demand of energy 

is inelastic during short period like a day, but changes in volume which shifts the position 

of the demand curve along the horizontal axis. On the other hand, supply conditions have 

greater impact on the shape of the supply curve. For example, the amount of available 

electricity generation without variable costs, such as wind shifts the curve to the right on 

horizontal axis as there are more price-independent supply offers. Both supply and 

demand curves show a great deal of variance within one day. In this this thesis later on, 
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bids will be divided to 15 intervals: from -500 € to -10 €, from -10 to 0 €, from 10 € to 

100 € with increment of 10 €, from 100 € to 200 € and from 200 € to 3000€. In figure 3 

the supply curves from figure 2 are represented after division to price intervals, or price 

bins.   

 

Figure 3, Aggregated supply curves with bidded volume divided to price intervals. 

 

2.2 Perfect competition and market power 

2.2.1 Perfect competition 

In perfect competition conditions, each market participant has incentive to bid according 

to their marginal cost of supply or marginal value of consumption. In perfect competition 

market operator treats every supply and demand curve as truthful representations of 

underlying marginal costs and there are adequately many firms taking part in the market 

with equally low market share, so no firm on supply or demand side has direct influence 

on the market price. Furthermore, there are adequate amount of generation technologies 

utilized by many firms. The system marginal cost (SMC) is determined by sum of supply 

and offer curves, since no participant can gain profit by differing their supply behaviour 

from their marginal costs. SMC in this chapter refers to theoretical aggregated marginal 

cost of the electricity supply and is not to be mistaken with short-run marginal cost. 
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System price in perfect competition shall be equal to SMC and is determined by demand. 

In figure 4, the bidding behaviour in perfect market conditions is illustrated as well as 

speculative non-rational supply curve.  

 

Figure 4, In perfect competition it is not beneficial for supplier to bid outside their marginal costs 

If market participant expects a price P and bids their available volume at a price above 

their marginal costs, their quantity of supplied energy accepted in the coupling at that 

price is less than by offering at marginal cost, thus shifting from Q to Q*. Therefore, there 

is a strong incentive to offer all volume available at that marginal cost. On the other hand, 

there is no incentive on offering volume at a price below the marginal cost since it returns 

negative profits. (Varian 2020 & Biggar et al. 2014.) The perfect market conditions for 

electricity market are very strict and somewhat unrealistic. In truth, the markets typically 

are concentrated as small number of power companies control most of the generation 

capacity (Tangerås & Mauritzen 2018). Instead of perfect competition, circumstances in 

electricity market rather seem to show traits of oligopolistic competition. Reasons behind 

concentration in electricity markets can be economics of scale, political and economic 

barriers making entering the markets difficult, and transmission bottlenecks limiting 

trade. Demand of electricity is considerably inelastic, due to popularity of fixed price 

contracts and the lack of possibility to shift consumption during high prices. The stock of 
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generation assets is fixed in the short-run supply, electricity producers typically can only 

increase their output during the time of high demand to a limited scope, resulting in small 

and expensive suppliers might having a high influence on the market price. Structural, 

unexpected and expected network constraints can reduce the size of the area over which 

the suppliers can compete raising the scope of localised market power. The suppliers are 

continuously in interaction with each other in the market process. The repeated nature of 

the coupling process gives opportunities for suppliers to develop reputations, give signal 

about their intentions and to evolve towards co-operative or collusive arrangements. 

(Hesamzadeh 2014.)  

2.2.2 Market power in electricity market 

Across economics literature there are vast number of definitions for market power. One 

simplest definition for market power used broadly in economics is to define a firm that is 

not a price taker to have market power. It is broadly accepted in economic literature that 

a firm without possibility to influence market price by its actions does not have market 

power. Following this definition, in electricity market, an energy supplier can be stated 

to possess market power if it can influence the market price by varying its rate of supply. 

Thus, a firm altering its bids in a way that is deliberately designed to alter the wholesale 

market price can be defined as exercise of market power. (Hesamzadeh 2014.) 

In chapter 2.1.2 incentives of the market participants were demonstrated to lead to bidding 

at their marginal costs in conditions of perfect competition. As discussed, the condition 

does not represent real day-ahead markets and therefore incentives to exercise market 

power cannot be ruled out. Oligopolistic market power in electricity markets is typically 

modelled by either Cournot model (Neuhoff et al. 2005) or supply function equilibrium 

model (Klemperer & Meyer 1989). Both models assume that firms make bidding 

decisions assuming that the supply function of competitors remains fixed. Both models 

are capable to explain almost the same fraction of price variation in Germanys electricity 

markets. However, Cournot model is preferable in short-term analysis because technical 

details are easier to include in the analysis, and supply function equilibrium is preferable 

on long-term modelling where sensitivity of calibration parameters can become 

hinderance (Willems et al. 2009). Regardless of the model used, the exercise of market 

power in bidding is done with the same measures. As defined in chapter 2.1.2, if a market 

participant exercises market power, by definition, it influences on price through supply 
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behaviour. That is to say that market price 𝑃(𝑄) is a decreasing function of the output 𝑄. 

The profit function is then given by 𝜋(𝑄) = 𝑃(𝑄)𝑄 − 𝐶(𝑄), where 𝐶(𝑄) represents the 

costs related to production of electricity with capacity of 𝑄. The profit maximising rate 

of production is where marginal revenue is equal to marginal cost 𝑃(𝑄) + 𝑄
𝑑

𝑑𝑄
𝑃(𝑄) =

𝑑

𝑑𝑄
𝐶(𝑄). It is typical for electricity producers to meet discontinuity in their marginal 

costs. In case the demand exceeds the capacity, producer can supply with a generator of 

lower cost, the additional capacity must be supplied by using a higher cost generator, 

which can be observed in the marginal cost curve as a vertical line. (Biggar et al. 2014.) 

In figure 5, two different scenarios of demand are presented. 

 

Figure 5, Exercise of market power can lead to lower level of capacity offered. 

In figure 5, marginal costs (MC) are presented as a curve with discontinuity point in Q. 

Prices P and P* occur on quantities Q and Q* where marginal revenue (MR) intersects 

with marginal costs. The profit maximizing combination of the supplier is dependent on 

the level of residual demand (RD & RD*). In case of the higher residual demand, RD 

intersects the marginal cost curve at the same quantity as MR, therefore no market power 

is exercised, and capacity Q is sold at price P. On the other hand, when residual demand 

is on lower level, MR* intersects with MC at smaller quantity Q* resulting in price P*. 

The capacity is sold at higher price that would result from selling the capacity at level 

where marginal costs meet demand, the supply behaviour has direct effect on market price 

and thus market power is exercised. (Biggar et al 2014.) 
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Mansur (2008) studied social welfare in reconstructed electricity markets, which means 

the market design that is in use today and is described in chapter two. According to the 

study, short-run welfare loss can only occur in ineffective allocation of generation 

resources, welfare loss occurs when electricity is generated with technology that has 

higher marginal cost than other available technologies have. In the study, strategic market 

behaviour is shown to lead to welfare loss, which means, exercise of market power 

(Mansur 2008). Since electricity markets are prone to concentration in supply side, and 

exercise of market power leads to welfare loss, it is essential that markets are regulated. 

In practice the suppliers do not directly choose the capacity but submit their supply curve 

to the market operator and get instructions on the capacity to produce. In theory, market 

participants can maximize their profit by submitting offers in way that causes residual 

demand to meet their marginal revenues. In order to do so the market participant must 

ensure that all its capacity does not get dispatched in the coupling. To ensure that bids are 

accepted only at a quantity where marginal revenue is less than marginal costs, market 

participant needs to limit the amount offered in the market coupling. In practice, the 

residual demand is unknown to all market participants, and to exercise market power, the 

offer curve of such market participant is set to price-quantity combinations that would 

lead to more production if the residual demand curve was horizontal. Two common ways 

of capacity withholding are economic withholding and physical withholding. Economical 

withholding is achieved by pricing part of the available capacity purposely sufficiently 

high to ensure it is left out of the coupling. Physical withholding is achieved by 

technically reducing the available output, for example by shutting a plant down. (Biggar 

et al. 2014; Crampes & Creti 2006). Another motivation to engage in capacity 

withholding is seeking profits via intertemporal substitution. If a market participant 

expects the intraday price to be higher than day-ahead price, the profits obtained for the 

available load can be increased by withholding capacity from day-ahead market. Intraday 

prices are typically higher than day-ahead. The difference between prices of the two 

sequential markets can be explained by risk aversion, bidding constraints, capacity 

constraints and market power. Regression analysis on price and quantity difference 

between the two markets on slope of the demand curve and dummies controlling for time 

has shown exercise of market power by withholding capacity from day-ahead market and 

selling it in real-time is shown in some price areas of Sweden (Tangerås & Mauritzen 

2018). Market manipulation under supply curve competition is difficult to detect from 
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aggregated supply bids, and more sophisticated methods measures that include individual 

bidding data a market power are needed (Twomey et al. 2006). Market power of 

individual firm can be examined by residual demand curve cost elasticity the firm meets 

hourly (Wolak 2003). Market dominance on aggregate scale can be inferred from firm’s 

share of all production, or by the relative difference of their marginal costs and bidding 

prices, but there is no single measure that can clearly prove dominant position of some 

firms in the market (Hellmer & Wårell 2009). 

2.2.3 Conclusion on market power 

The examples of non-genuine transactions above share a similar quality with theoretical 

exercise of market power. It does not matter whether the motives of a market participant 

lie in selling the quantity in intraday market or increasing the price for part of the offered 

capacity, the exercise requires market participant to engage in economical or physical 

capacity withholding. If there is a market price cap, market participant has no advantage 

in exercising physical withholding instead of economical withholding, unless legislation 

constrains the latter (Biggar et al. 2014). In Nord Pool there exists a price cap of 

3000€/MWh, thus pointing at economical withholding. However, fifth article of REMIT 

prohibits uneconomical orders and transactions alongside orders and transaction placed 

with interest in influencing price settlement. How would exercise of capacity withholding 

seem in aggregated supply curve?  Following formulation of supply curves as vector of 

price bins is authors own work and follows the idea used by Pelegatti (2013). Let 𝑃𝑖 

represent a price interval of arbitrary size and 𝑉𝑖 all volume offered with price belonging 

to the interval i, where i represents whole numbers 𝑖 = (1,2, … , 𝑖). Aggregated supply 

curve can therefore be written as a vector of sum of bids. 

𝑃𝑖 =  ∑ 𝑉𝑖

𝐼

𝑖=1

,  

𝐴𝑆𝐶 = (𝑃1, 𝑃2, … , 𝑃𝐼) 

 

The supply curves always show increasing price in relation to the volume offered. In case 

single market participant wants to reduce capacity sold by physical withholding, it will 

simply not offer all its available capacity. This means that depending on capacity withheld 
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by a market participant offered volume on some prices will be less than in case there were 

no withholding, this means that for some indexes j  𝑉𝑗
′ < 𝑉𝑖, where  𝑗 = 𝑖. This means 

that  

∑ 𝐴𝑆𝐶𝑖

𝐼

𝑖=1

>   ∑ 𝐴𝑆𝐶𝑖

𝐼∩𝐽

𝑖=1

+  ∑ 𝐴𝑆𝐶𝑗

𝐽

𝑗=1

, 

𝑎𝑛𝑑 ∑ 𝐴𝑆𝐶𝑖

𝐼∩𝐽

𝑖=1

+  ∑ 𝐴𝑆𝐶𝑗

𝐽

𝑗=1

=  𝑃𝑖
′ =  ∑ 𝑉𝑖

𝐼∩𝐽

𝑖=1

+  ∑ 𝑉𝑖′

𝐽

𝑗=1

  

Aggregate supply curve will show less capacity for all prices after the first price interval 

where capacity withholding takes place and shift downwards. The same effect to the 

aggregate supply curve happens if market participant does not bid all available capability 

by mistake. Mistakenly or purposely withheld capacity shifts the aggregated supply curve 

downwards. Physical withholding in situation where withholding takes place in the first 

price interval is illustrated in figure 6. 

 

Figure 6, Mistakenly or purposely withheld capacity shifts the aggregated supply curve 
downwards for all prices after the one for which withholding takes place. 

In economic withholding on the other hand, all the capacity available for supply is 

offered, but at least some of it is priced high enough for being accepted in market 



23 
 

coupling. This means that even though sum of offered capacity remains the same the 

distribution of capacity along prices is concentrated on the right side of the price axis. 

This is illustrated in figure 7. 

 

Figure 7, Economic withholding increases volume offered on higher prices 

 

2.2.4 Market manipulation in EU legislation  

Market manipulation is prohibited in European power markets by fifth article of 

Regulation NO. 1227/2011 of the European Parliament and of Council of 25. October 

2011 on wholesale energy market integrity and transparency (REMIT). European Union 

Agency for the Cooperation of Energy Regulators (ACER) is tasked to enforce REMIT 

and further specifies that market manipulation: 

“– – includes performing false or misleading transactions, price positioning 

which secures or attempts to secure the price at an artificial level, as well as 

transactions involving fictitious devices or deception, and the dissemination 

of false and misleading information.” (ACER 2022).  

ACERs guidance on application of REMIT states that when assessing market 

manipulation, national regulators may identify suspicious orders or transactions that can 
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be held as false or misleading signals. Such transactions are further clarified to not result 

from genuine interest in procuring or selling a wholesale energy product at the ordered 

price while considering the context in which they were placed and the market participants 

rationale for trading. In ACER Guidance on REMIT application for regulators examples 

for orders and transactions that can be considered non-genuine are given, these are: 

• orders placed or transactions executed at price levels that are uneconomical 

for the market participant; 

• orders/transactions which are erroneous and therefore do not reflect a real 

buying or selling interest at the price considered;  

• orders/transactions which are not placed/entered into with a real interest in 

buying or selling energy but rather with other interests (e.g. influencing 

behaviour of others; influencing price settlements; influencing the price of 

other products; circumventing market rules; benefiting positions in other 

contracts; tax evasion; tax fraud; profit/loss sharing; circumventing 

accounting rules; transferring money between market participants …);  

• orders placed with no intention to execute them; and/or  

• buy orders with a volume that exceeds/falls short of the buying 

needs/interest or sell orders with a volume that exceeds/falls short of the 

selling needs/interest of the market participant, in the context of its asset-

backed trading portfolio. (ACER 2021.) 
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3 Anomaly detection with supply curves 

3.1 Anomaly detection 

3.1.1 Characteristics of an anomaly 

To study anomalous market behaviour in unsupervised way it must be assumed that 

abusive behaviour does not take place most of the time. This would mean that market 

manipulation would not take place systematically. In case market manipulation is the 

norm, then anomaly detection can not bring valuable information about its exercise. If 

market manipulation is the norm, detected anomalies could indicate a out-of-usual 

situations in market fundaments or a particularly large or unusual exercise of market 

manipulation. However, normalized use of physical withholding would require the power 

plant in question to always report a failure when suitable conditions for market 

manipulation arises. In Nord Pool market participants are required to inform other market 

participants about decrease in available capacity over 100MW, it is probable that frequent 

downing of generation would raise suspicion. Economic withholding on the other hand is 

dependent on behaviour of other market participants, and frequent over-pricing of 

generation brings strategic risk in being excluded from coupling.  

The primary assumption in anomaly detection is that the normal behaviour is stationary. 

Stationarity ensures that the underlying data generating process remains the same through 

time. If the data generating process does not change through time, it means that the 

characteristics that are present in the data should also be present in the future. The process 

behind can have seasonal, or long-term trends. (Mehrotra et al. 2017.) Anomaly can be 

understood as a deviation from the rule or an irregularity that cannot be considered as a 

part of normal system behaviour. In time series data, anomalies can be categorized to 

contextual, collective and point anomalies. Point anomalies, or outliers, are recognized as 

instances that occur on certain percentile of probability density calculated for target 

parameters. In other words, point-anomalies are instances that are very unlikely to result 

considering historical instances. Collective anomalies are group of vectors where a single 

vector cannot be considered to deviate from normal system behaviour, but irregular 

behaviour is indicated by the composition of the vector group. Contextual anomalies are 

individual data vectors or vector groups that are not point- or collective anomalies, but in 

the scope of surrounding data indicate irregular behaviour. Point- and collective 
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anomalies can be detected by their internal structure or content, but detection of 

contextual anomalies depends on accounting for the short- and long-term characteristics 

in the surrounding data structure. Contextual anomalies are primarily characterized by 

applying distance-based metrics that can be realized on sliding window technique. 

(Lindemann. et al 2015.) 

3.1.2 Anomaly detection using the prediction error 

The problem of predicting supply curve falls into category of multivariate time series 

prediction, where anomaly detection can be done by making inference of the prediction 

error. The prediction task can be formatted to supervised learning with sliding window 

approach (Lindemann et al. 2015).  The data is formatted to have sequence of vectors as 

input and the consecutive vector as a target. In supervised learning terminology, targets 

labels mean the instance that model is trained to predict. To make inference about the 

prediction error, it must be assumed that all instances of the data are realizations from the 

same distribution. The multivariate prediction task can be described by following 

equation 

𝑓(𝑥(𝑡−1), 𝜃) = 𝑦(𝑡) + 𝜀

𝐸(𝑦(𝑡)| 𝑥(𝑡−1) = 𝑥) =   𝑓(𝑥(𝑡−1), 𝜃) =  𝑦̂(𝑡) = 𝑦(𝑡) + 𝐸(𝜀)
 

where 𝑓(∙) is an unknown function that describes the data generating process of 𝑦(𝑡) with 

unknown parameters 𝜃, 𝜀 is the error term related to the data generating process, 𝑥(𝑡−1) 

represents 𝐷1 dimensional input vector, 𝑦(𝑡) is 𝐷2 dimensional output vector where 𝐷1 >

𝐷2 and (𝑥1
(𝑡)

, …, 𝑥𝐷2

(𝑡)
) = (𝑦1

(𝑡)
, …, 𝑦𝐷2

(𝑡)
). The task is to find a function with some parameters 

that can approximate the function of the data generating process to estimate the target by 

mapping the input sequence into output in a way that can generalize also with out-of-

sample data. From the conditional expectation we can see that the predicted 𝑦̂(𝑡) consists 

of the real 𝑦(𝑡)  and expected value of the time invariant error related to the date generation 

process. (Goodfellow et al. 2016, Du & Xu 2016.) In other words, the task is to estimate 

the function for the expected value of the target conditional on the input sequence of the 

data distribution. We know that prediction error should remain in the magnitude of 𝑦̂(𝑡) −

𝑦(𝑡) = 𝐸(𝜀). If prediction error gets above average, it can only be caused by a change in 

the data generating process, thus breaking the assumption of normal behaviour being 

stationary.  
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3.1.3 Supply curve prediction and analysis in literature 

Problem in analysis of supply curves and day-ahead trading in general is the curse of 

dimensionality. Simple linear methods are not sufficient to generalize hourly day-ahead 

bid behaviour where bids are hourly and price grid for bid volume can be practically 

continuous. 

In the literature there are several contributions on statistical analysis of day-ahead supply. 

Jenkin et al. (2018) use regression analysis to estimate the shape of the supply curve. 

Supply curves are estimated by linear and cubic fit to historical hourly realized price and 

load data for various tested time intervals and the analysis repeated on rolling basis. The 

fitted supply curves are used to analyse the effect of retirement or addition of generation. 

The study does not aim to predict supply curves, but to study the shape of the merit-order 

curve on historical data. The authors report lower predictive accuracy in hours with high 

loads which is speculated to be caused by curve not capturing significant changes that are 

due to other variables. The method’s predictive capability is tested by backcasting. Two 

weeks of historical data is used to predict the average supply curve of the following two-

week period. The cumulative average error of weighted average prices and backcast-

estimated prices for entire year is reported to be 5%, it is worth noting that variance of 

hourly errors is mitigated as positive and negative errors cancel each other partly when 

the prediction is repeated for the whole year. The backcast-estimates increase variance of 

the results on hourly basis, and the authors recommend relying on errors mitigating in the 

long run. Inclusion of exogenous variables and more flexible estimation methods are 

recommended to improve curve fit estimates. (Jenkin et al. 2018.) In order to make 

inference on bidding behaviour on hourly level, regression analysis falls short. Price-load 

pairs provide information about the cross section of supply and demand bid curves, but 

the shape of the curves behind the cross section are left outside of the scope. The study 

answers to the question of average marginal cost curve market faces, but the method is 

not suitable for catching temporal trends in daily use.  

 

Pelegatti has conducted study on predicting hourly level aggregate supply bidding curves. 

The bidding curves are first formed by dividing bid volumes into intervals using quantiles 

by price, 49 different 50-tiles are used supplemented with intervals representing minimum 

and theoretical maximum prices of Italian day-ahead market. The 51 intervals are then 
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transformed into logarithmic increments in order to force the non-decreasing shape of the 

supply bid curve on predictions. Two methods for predicting are presented, principal 

component analysis and reduced rank regression. Both methods aim for dimension 

reduction. In the first method based, principal component scores of log-increment price 

intervals are regressed on their lags and exogenous variables that include dummies for 

weekdays as well as sinus and cosine waves to factor in seasonality, the number of 

principal components that minimizes out-of-sample mean squared error (MSE) is chosen. 

Second method uses reduced rank regression directly on the lags of log-increments of 

price intervals, and similarly to the first method, choosing the rank that yields smallest 

out-of-sample MSE. In both methods, the predicted log-increment price intervals are 

applied reverse transform before calculation of the out-of-sample MSE. Both methods are 

tested to make 1 and 24 steps-ahead predictions using two different sets of lags as 

regressors. Out-of-sample mean absolute percentage errors (MAPE) are reported for all 

eight tested models for each day of the week. 1-step-ahead models are reported to yield 

MAPEs from 2.4% to 3.1% averaged over all weekdays. (Pelegatti 2013.)  

 

Ziel & Steinert (2016) approach forecasting of day-ahead electricity price by modelling 

supply and demand bid curves separately and using the estimate of cross section of the 

two curves to predict electricity prices. In contrast to earlier approaches, bids are arranged 

into intervals by mean bid volume. The supply curves are modelled by high dimensional 

autoregressive time series model that utilizes lasso regression to estimate the coefficients. 

No out-of-sample prediction error is reported for predicted supply curves as the focus of 

the study lies in price prediction, however, the out-of-sample error that the method yields 

is as low as 40.6% compared to persistent model, where supply and demand of the 

previous week are used as forecasts. (Ziel & Steinert 2016.) 

The methods for prediction of supply curves in the literature discussed vary from strictly 

statistical to limited use of non-parametric estimation. Another approach to estimate 𝑓(∙) 

is to rely strictly on non-parametric approach, machine learning. In next chapter Neural 

Networks and long short-term memory network are presented. Appeal of machine neural 

networks in this estimation of the 𝑓(∙) is discussed further in the chapter two.  
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4 Method 

4.1 Long short-term memory neural network and machine learning 

4.1.1 Applications of LSTM in literature 

As a gated recurrent network LSTM is suitable for predicting of sequential data following 

the recommendation of Goodfellow et al (2014 p. 420). In literature there are multiple 

applications of LSTM based network for forecasting and anomaly detection of time series. 

Nguyen et al. (2020) suggest stacked LSTM for forecasting of multivariate time series 

and a LSTM autoencoder method with unsupervised learning algorithm on anomaly 

detection. Neural network is used to extract features from data which are then classified 

using one-class support vector machine which is used to subtract outliers from normal 

inputs. Both approaches were applied to synthetic and real data. Reported results show 

12.47% mean forecast error on predicted real data, however multivariate time series are 

used to provide predictions for only single feature. Anomaly detection approach results 

for real data are only discussed qualitatively. On synthetic data the approach is reported 

to perform slightly better comparing to the methods in comparison, however it is only 

applied to univariate time series. Lindemann et al (2021) survey various LSTM network 

applications on multivariate and univariate anomaly detection tasks. Two main 

approaches on network architecture are identified: LSTM-based and encoder-decoder 

based. LSTM-based approach relies on stacked LSTM structure, where outputs of 

previous layer are used as inputs of subsequent layers and the dimension of the outputs 

decreases from the first layer to the last, so no dimensional reduction is utilized to extract 

features. The detection of anomalies is solely based on evaluation of deviation of 

predicted outputs by variance analysis. Encoder decoder-based methods are reported to 

be utilized in majority of cases in various application fields where labelled anomalies are 

not available. Autoencoder networks are an approach where the encoder part of the model 

is set to lower the dimensional representation of the data to extract representative features 

of the input, and decoder part is set to reconstruct the input from the decompressed 

features. Autoencoder framework is fit to data that represents the normal operation of the 

system, and therefore the reconstruction error of data including anomalies results in 

reconstruction error that can be used as an anomaly score. (Lindemann et al. 2021.) 
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4.1.2 Recurrent neural network 

To understand how LSTM network works, first operation of recurrent neural network 

(RNN) is explained. RNN is a class of neural networks which include recurrent 

connections in their architecture and thus are capable of learning order dependence. RNN 

is specialized for processing grid of input values, like the grid of hours and price intervals. 

Recurrent neural networks use sequences to predict the output. Each input 𝑋𝑡 represents 

a vector of p components 𝑋ℎ
𝑇 = {𝑋ℎ,1, … , 𝑋ℎ,𝑝} and the hidden layer consist of K units 

𝐴ℎ
𝑇 = {𝐴ℎ,1, … , 𝐴ℎ,𝐾}. The picture below represents the operation of recurrent neural 

network, where each vector in the input sequence is used to update the hidden layer. 

Hidden layer units use both the corresponding input vector and previous hidden layer unit 

as inputs, which is how RNN uses backpropagation in time to update the activation vector 

that is used to provide the output. The picture below represents a RNN with sequence 

input and single output. The multivariate forecast can be achieved by using also outputs 

resulting from previous hidden units, or by widening the network. RNN neuron means a 

unit that updates its state from the input and provides an output, such as one in the picture 

below. Network width means the number of RNN neurons that use the input sequence to 

provide a single output. The diagram at the left is a concise way to represent the operation 

of RNN, where the backpropagation of information is expressed as a loop. Gareth et al. 

2014.) 

 

Figure 8,  Recurrent neural network cell (Gareth et al. 2014 p. 422) 

 

Figure 6 presents the recurrent structure of RNN unit. The weights W, U are 𝐾 × (𝑝 + 1) 

and 𝐾 × 𝐾 sized matrices and B is a (𝐾 + 1) size vector. They determine how each vector 

of the input sequence effects the hidden layer units 𝐴𝑡 and are not functions of 𝐿, meaning 

that they simply determine what information from the input vectors is used to update 
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hidden layer units, which are also referred to as hidden states. The information of the 

input sequence is carried by the hidden states. (Gareth et al. 2014: 421-435.)  

RNN has an inherent weakness that is known as the vanishing gradient problem, it can 

occur when timesteps of the model increase, it means that the gradient that is used to 

optimize weights of the network explodes or vanishes exponentially. RNNs with many 

layers have deep computational graphs where the same operation is repeatedly applied to 

each step of long sequence, this causes the optimization problem to contain sharp non-

linearities that can prevent the weights to converge optimally (Goodfellow et al. 2016: 

285). Also, the first vectors of the sequence have diminishing effect on the final output of 

the cell as the length of the sequence increases. 

4.1.3 From RNN to LSTM 

Long short-term memory (LSTM) cell was developed to deal with the issue traditional 

recurrent neural networks face with long-term dependencies. LSTM model is a RNN 

where the hidden layer units are replaced with LSTM units. Difference between LSTM 

and RNN units is that LSTM incorporates two tracks of hidden-layer units to compute the 

final hidden layer unit that is used as the activation for the output 𝐴𝐿. This enables the 

last hidden unit to receive signal from both further back in time and closer in time, so the 

signal from last vectors in an input sequence do not get diminished as information 

propagates through hidden units of the network (Gareth et al. 2014: 426). 

4.1.4 Fitting a LSTM network 

Fitting, or training a neural network means a process, where the outputs that the model 

produces for every input sequence are compared to the targets provided alongside training 

data and use of acquired information to update the weights of the neurons to provide 

outputs closer to the target. Loss function means a metric that is used to compare the 

output from one sequence to the target. The cost function means the average loss over the 

entire training dataset. Machine learning differs from pure optimization algorithms by 

minimizing the performance measure indirectly. In machine learning the cost function of 

the training dataset is minimized and the validation dataset is used to evaluate the result. 

The algorithm that is used to minimize the cost function is called optimizer. Optimizers 

are one choice that must be considered in model selection, and in addition to optimizers, 

learning rate of the optimizer. Learning rate quantifies the impact of the gradient update 



32 

on the weights of the network. It can be used to regularize the training process and prevent 

overfitting. Learning rate is crucial to model training, as lower values tend to lead directly 

to better generalization, but too low generalization error leads to stark increase in 

generalization error.  In regression, mean squared error and mean absolute error are 

commonly used cost functions. Mean squared error puts more emphasis on bigger 

difference between target and output, while mean absolute error treats value of an error 

linearly. The fitting algorithm operates by calculating the gradient of the cost function 

from subsets of sequences called batches. Gradient of the cost function is calculated after 

each batch and is used to update the weights of the network. Batch size is one of the 

hyperparameters to be considered when fitting a neural network, because small batches 

can offer a regularization effect while larger batches provide a more accurate estimate of 

the gradient. (Gareth et al. 2014 p. 434-437, Goofellow et al. 2014 p. 271-275). 

 

In order to test the performance of models with different hyperparameters, some 

validation data, a hold-out set, must be left aside from training for two purposes. Firstly, 

the validation data is used to prevent overfitting by cutting the training process as the 

model’s loss on the validation data starts to increase. Secondly, the model’s loss on 

validation data can be used to compare performance between different sets of 

hyperparameters. The loss that model yields on validation data will be referred to as 

validation loss. For reliable results, each model should be trained on several different 

training and validation sets from the same data. (Goodfellow et al. 2014 p.120) However, 

there is no guarantee that the data follows the same distribution through time, on the other 

hand, deep learning models perform better on larger datasets. Same training data can be 

used for validation multiple times by using different subsamples of training data as hold-

out set to train the model multiple times. Walk-forward validation emulates the manner 

that the model is used in practice. In walk-forward validation the entire training set is 

divided into several different sets, and model is trained using all the historic data that has 

occurred before the set that is used for validation. In figure 9, Walk Forward validation 

with 5 folds is visualized. 
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Figure 9, 5-Fold Walk Forward validation 

 

4.1.5 Model and hyperparameter selection 

There are many possible models and model configurations that can be used to estimate 

the output vector from input sample. In practice assumptions about the task and data have 

to be made to narrow down possible options. The selection of the set of models that are 

evaluated must rely on the previous work in the field. After the set of models is chosen, 

the best suitable model is chosen by model selection procedure, where different 

configurations are tested systematically to find the one that provides the best estimate. 

Goodfellow et al. recommend using train-validation-test split, where the data is split into 

three sets sizes of 70 %, 20 %, and 10 % respectively. Train set is used to train each 

model, after which their performance is tested on validation data unseen for the algorithm. 

After the best model and set of hyperparameters is found, training and validation data are 

used to train the chosen model which performance is tested on testing data. In time series 

environment the randomization of data before the split is not appropriate, as the 

systematic behaviour the model is supposed to learn is lost, and furthermore it is 

reasonable to use the most recent data possible for testing which reflects the nature of 

time series altogether. (Goodfellow et al. 2014.) 
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4.1.6 Anomaly detection using LSTM in literature 

The function 𝑓(∙) can be approximated via machine learning. There are numerous 

applications of machine learning on similar problems, ranging from anomaly detection 

tasks to prediction tasks. Lindemann et al. (2015) have surveyed LSTM networks on 

anomaly detection tasks across many fields of application ranging from medicine to 

pedestrian trajectory prediction and network traffic surveillance and proclaim LSTM 

networks to be suitable for detection of contextual anomalies due to their ability to capture 

non-stationary and stationary dynamics of short- and long-term dependencies. LSTM 

network architectures reviewed are categorized to stacked LSTMs and LSTM 

autoencoders as well as hybrid strategies. All three of the architectures result in some kind 

of error term of the predictions, which is evaluated by using either dynamic or static 

threshold or by application of some grouping algorithm such as support vector machine. 

Stacked LSTM architecture is capable of detecting collective and contextual anomalies, 

although LSTM autoencoder further optimize detection abilities on high dimensional data 

(Lindemann et al. 2015). Even though the autoencoder architecture is reported to perform 

better with high dimensional data, the stacked LSTM architecture has some appealing 

qualities. Firstly, stacked LSTM architecture is less challenging computationally, since 

no decoding layer has to be optimized in training. Secondly, stacked LSTM architecture 

has been recently implemented successfully on supply curve prediction by Guo et al. 

(2021). The performance of the stacked LSTM algorithm has therefore a baseline for 

comparison. As mentioned, stacked LSTM architecture has been utilized to predict the 

next instance in anomaly detection in many multivariate applications. Villarreal-Vasguez 

et al. (2021) use three layers of LSTM connected to a dense layer to predict next instance 

of very high dimensional web traffic data to classify anomalies. The sequences provided 

to the LSTM-model are variable in length. LSTM is used to compute the probabilities of 

subsequent events, which are used to classify instance as an anomaly. The target variable 

is categorial vector of possible events. High dimensional data is put through filtering and 

dimension reduction before feeding to the model. The framework reaches 95.16% rate of 

correctly labelled anomalies with 0.32% of instances falsely predicted to be anomalies. 

Tan et al. (2020) use stacked LSTM to predict anomalies from prediction error in a non-

linear dynamic system. The study is conducted on univariate data representing state of a 

dynamic system to provide multi-timestep forecast for anomaly detection purposes.    
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4.1.7 Supply curve prediction with LSTM by Guo et al. (2021) 

Recently Guo et al. (2021) applied LSTM neural network to predict aggregate supply 

curves. Motivation behind predicting aggregate supply curves comes from deriving 

competitions bidding strategies, in which aggregated supply curves is useful and is used 

as a basis for many studies on optimal bidding strategy. In fact, most of the studies about 

optimal bidding strategy rely on correctly forecasted aggregated supply curves. The use 

of LSTM for the task is motivated by successful use of LSTM for forecasting in 

applications across many power market areas and its qualities on dealing with relations 

with long lags of unknown duration. In addition to LSTM, paper introduces feature 

integration method to reduce enormous dimensionality of day-ahead bidding data. Study 

is conducted on bidding data of Midcontinental Independent System operator. Data 

integration is based on using price intervals that are sampled via uniform increment 

method, so that each price interval represents approximately same amount of volume 

offered. Price load pairs that do not often have effect on the market price are masked from 

data. Day-ahead prices in MISO realized 99.5% of the time between prices 10.14 and 

77.49$/MWh, so bids with prices outside that range were not included. Dimension 

reduction is conducted by principal component analysis, and first 4 principal components 

are used as input for LSTM models. In addition to the 4 principal components, also 

external variables are used. External variables are called influencing factors, they are as 

follows: market price, load, capacity and generation mix; fuel price; season, weekday, 

holiday and hour of the day; temperature, irradiation and wind speed. All input data is 

normalized before being fed to the model. One principal component is used at a time as 

LSTM input in addition to external variables. Four distinct models are used to make 

predictions for all four principal components, which are afterwards reconstructed back to 

aggregated supply curves. Four distinct models are motivated by principal components 

not having any linear correlation by definition. Two different evaluation criteria are 

utilized, first for the prediction of principal components, mean squared error is used, then 

mean absolute percentage error is used for reconstructed aggregated supply curves. Data 

set comprises of 39408 hours of data and is split to training, validation and testing sets 

according to 80%, 10% 10% split. Hyperparameters for the LSTM were selected in grid 

search and every model for distinct principal components have different set of 

hyperparameters. With principal components the forecasts provided best results when 

using 48 or 72 previous hours as input, indicating that there is no relevant information to 
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the model beyond two days of past data. LSTM forecasts are compared to supply vector 

regression, random forest and multilayer perceptron with two different data pre-

processing methods for each. The PCA dimension reduction and direct usage of price 

intervals. The performance of the models is reported in mean absolute percentage error 

(MAPE). All models produce testing MAPE between 2.74-6.02%, LSTM with principal 

components resulting the lowest. Study concludes that LSTM is very suitable for 

predicting aggregated supply curves, regardless of the pre-processing technique. (Guo et 

al 2021.) Supply curve prediction with LSTM is appealing for it can benefit from 

excessive dimensionality and regularize itself automatically as long as overfitting is taken 

into consideration.  

 

4.2 Data and method 

4.2.1 Step 1: Data and pre-processing 

The data used in this study consists of price and corresponding volume of wholesale 

electricity supply from Finnish market cross point data, which is REMIT data collected 

by ACER and received from National Regulatory Agency of Finland, Energiavirasto. The 

dataset consists of hourly electricity wholesale price values and corresponding volume of 

supply offers from starting hour of 27.4.2019 00:00 to 1.11.2021 23:00 thus consisting of 

22080 hours of supply curve data. The supply volumes are summed to price intervals 

containing the total supply volume offered for prices: from -500 € to -10 €, from -10 to 0 

€, from 10 € to 100 € with increment of 10 €, from 100 € to 200 € and from 200 € to 3000 

totalling up to fifteen price intervals. The leaps in the lowest and highest price intervals 

are used because less trading occurs on extreme prices, thus information is sufficiently 

represented by larger intervals. 

The weather data is received from Finnish Meteorological Institute and consists of hourly 

time series for temperature and wind speed for the same period as supply curve data. The 

weather data and the volumes in price intervals are all scaled between zero and one by 

linear transformation. 

The data used for prediction also include sin and cosine curves indicating the hour of day 

and day of week. Sin curves are motivated because dummy coding both day of year and 

hour of the year would increase dimensionality of the input unnecessarily. When both sin 
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and cos curves are used, each time unit gets unique value combination due to different 

phases of the functions. The curves are drafted from dummies representing the hour of 

day and the day of week by integers from 0 to 23 and 0 to 6 by using following formulas: 

𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑠𝑖𝑛𝑡 = sin ( (2 ∗ 𝜋 ∗
𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡

7
+ 1) /2) 

𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑐𝑜𝑠𝑡 = cos ( (2 ∗ 𝜋 ∗
𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡

7
+ 1) /2) 

ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑠𝑖𝑛𝑡 =  sin ( (2 ∗ 𝜋 ∗
ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑡

24
+ 1) /2)  

ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑐𝑜𝑠𝑡 =  cos ( (2 ∗ 𝜋 ∗
ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑡

24
+ 1) /2) 

 

The values are thus scaled between zero and one and are well suited to be used as input 

of neural network. In order to format the task to supervised learning, the data is arranged 

into sliding windows, where the length of the window is one of the hyperparameters 

optimized. To hyperparameter optimization, rolling window validation is used to address 

the time series nature of the task.  

 

Since there are fifteen price intervals, four time-related dummies and two exogenous 

variables, the data includes 21 features. There are 22080 observations. Let  

𝑋𝑡
𝑃+6 represents a 𝑇 × 𝑃 + 6 dimensional data matrix where T is the length of the dataset. 

P is the number of price intervals and +6 indicates the four time-related dummies, 

temperature and wind speed, that will be referred as the exogenous variable from now on. 

In order to train the neural network, the data is arranged into samples that include 

sequence of 𝐿 prior hours of P price intervals and exogenous variables and the subsequent 

price interval vector, so that the input sample 𝑋𝑡 consists of pairs 

{(𝑋𝑡−𝐿
𝑃+6, … , 𝑋𝑡

𝑃+6), 𝑋𝑡+1
𝑃 }. In this way L previous vectors of price intervals and exogenous 

variables are used to forecast the next price interval vector 𝑋̂𝑡+1
𝑃  

4.2.2 Step 2: Model selection and validation 

The Adam optimizer is chosen following the practical methodology by Goodfellow et al. 

(2014: 420). A common practise is to schedule learning rate to decrease along with the 

training, the advantage of Adam is that it adapts the learning rate automatically. However, 
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the initial learning rate still must be searched along with the other hyperparameters. 

(Kingma, D & Ba, J 2015). Stacked LSTM architecture is chosen with dropout layer for 

regularization and a fully connected dense output layer, and Rectified Linear Unit used 

as the activation. Stacked LSTM usually performs better than going for wider models 

(Goodfellow et. al 2014). The hyperparameters of the model are: 

Learning rate, 

length of the input sequence 

dropout rate, 

batch size, 

number of units in LSTM layers. 

In order to find best hyperparameters, a grid search is conducted with 5-Fold Walk 

Forward validation. In order to prevent overfitting, an early stopping is employed to cut 

the training when validation error starts to get higher while training error still decreases. 

Early stopping of five is used, which means that if there is no improvement in validation 

error in last five iterations, the training is stopped and the weights resulting in best 

validation error are saved. Hyperparameter space for the grid search was limited to 30 

combinations of hyperparameters listed in table 1. 

Table 1, Hyperparameters to be tested in grid search. 

Learning rate Dropout rate Batch size LSTM units 

(0.005,0.0005) (0.1,0.2) (32,64,128) (240,504,1000) 

 

For each of the tested 30 combinations of hyperparameters, five different models with 

same set of hyperparameters are trained, one for each fold at a time. Mean absolute error 

is used as loss function, and for each of the five folds, validation mean absolute error and 

validation mean absolute error are reported. Average of MAE for all five folds of the each 

hyperparameter combinations are used for comparison and final selection. Also, the 

average of two last folds is reported and used in comparison, since the two last folds hold 

the largest sized training sets and might provide more realistic insight to model 

performance. The model with hyperparameters that performed best in the grid search is 

evaluated by splitting the entire data to sets with 70%, 20% and 10% of the data points to 

evaluate performance of the model and the generalization error. The set of 70% is used 
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to train the model, set of 20% is used to prevent overfitting, and the last 10% is used 

solely for calculation of the mean absolute error the model produces to assess the 

generalization error. If the model performs comparatively well, it can be used for anomaly 

detection. 

4.2.3 Step 3: Anomaly detection 

The selected model is used for anomaly detection in two ways to address collective and 

contextual anomalies. In order to detect anomalies via using the prediction error as 

measurement, one must assume that validation and training data come from the same 

distribution. If the distribution remains the same in the data yet unseen for the model, 

prediction errors should remain under a threshold of average error that can be deducted 

from the validation data. As the anomalies are not labelled beforehand, and there is no 

information if there are anomalies in the data, it is reasonable to apply walk forward 

method to see how prediction error behaves when model gets more data to use for 

training. When model is trained in walk forward method, mean absolute error should 

remain averagely the same for validation set and data that has not been used for training 

or validation. If the model is proven to generalize well and prediction error is higher than 

average for unused data, it can be interpreted to result from different data distribution and 

thus be labelled as anomaly. This way the prediction error can be inferred to answer to 

the question, is the data anomalous conditional on the historical data to that point in time. 

The fourth fold can be used to evaluate the generalization error of the model and compare 

it to the LSTM prediction method used by Guo et al. (2021), since it uses 4/6 of the data 

to training, 1/6 of data for validation and 1/6 is left and can be used for out of sample 

testing. The anomalies are labelled with visual inspection of the error curve and on basis 

of mean absolute error they produce during testing. If mean absolute error for single hour 

exceeds average for validation set, it is inspected as anomaly. 

Threshold setting strategy in anomaly detection usually relies on two strategies. 

Predefined or posteriori. It is difficult to define reliable predefined threshold for normal 

condition of multivariate time series. Usually, posterior threshold is defined by inspecting 

receiver operating characteristics curve (ROC). ROC curve is a scatterplot of true positive 

rate and false positive rate and thus cannot be used in the absence of prior knowledge of 

labelled anomalies. Besides, for anomaly detection, confusion matrix of false positive, 

false negative, true positive and false positive classifications leads to more reliable results. 



40 

(Liang et al. 2021). In a setting where there is no previous information about the 

distribution of anomalies in the dataset one can rely on Gaussian assumptions about 

distributions of past smoothed errors. Computationally costly alternative is to use 

machine learning model can be trained to compare errors, such as k-nearest neighbours 

or support vector machine. Using unsupervised machine learning however reduces the 

interpretability that is already low when using black-box models for prediction. 
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5 Fitting and estimation 

5.1 Model selection 

5.1.1 Steps 1 and 2 

The hyperparameter search was conducted for 32 different combinations of 

hyperparameters. Early stopping of 5 was used with Adam optimizer. L of the input is set 

to 24, so previous data vectors of one day are used as input for the consequent supply 

curve. Model consists of two LSTM layers and the architecture was set up as discussed 

earlier. The combinations that resulted in best validation error on average of all five folds 

are listed in table 2. 

Table 2, Average validation loss for hyperparameters of all five folds from hyperparameter 
search. 

Hyperparameters Validation MAE Validation MSE 

[1000, 0.2, 32, 0.0005] 0.012908 0.000284 

[1000, 0.1, 32, 0.0005] 0.015894 0.000449 

[1000, 0.1, 64, 0.0005] 0.016688 0.000494 

[504, 0.1, 32, 0.0005] 0.017051 0.000524 

 

Hyperparameters reported in the represent number of LSTM units, dropout rate, batch 

size and learning rate respectively. Number of LSTM units represents the first LSTM 

layer, the second LSTM layer has been set to include exactly half the units the first layer 

has. Wider models, which are models with higher number of LSTM units, seem to have 

outperformed narrower models. The smaller learning rate of 0.0005 is present in all best 

combinations, indicating that smaller updates to the weights help the training process to 

optimize the loss function. To get better understanding on how the hyperparameters 

qualified with larger datasets, specifically with folds number four and five, the 

hyperparameters with best averages of the last two folds where 80% of the data and all of 

the data are used for training and validation are reported in table 3. 
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Table 3, Average validation loss for hyperparameters of all five folds from hyperparameter search. 

Hyperparameters Validation MAE Validation MSE 

[240, 0.1, 32, 0.0005] 0.012103 0.000252 

[504, 0.2, 64, 0.0005] 0.012657 0.000276 

[1000, 0.1, 64, 0.0005] 0.012681 0.000277 

[1000, 0.1, 32, 0.0005] 0.012715 0.00028 

 

When only the average of two folds where the model is trained with all or almost all of 

the data are compared, it seems that narrower models outperform wider models. The 

narrower models might learn the task better with bigger datasets because the model 

weights need to adjust more carefully to generalize well, wider models come with more 

modelling power and are capable of adjusting to the training set faster, which also means 

that the danger of overfitting the model is more potential with wider models. Early 

stopping algorithm should overrule the possibility of overfitting, but closer inspection on 

learning curves of the two models is required to assess their suitability. In figure 10, the 

MAE loss of the models with best averages is plotted for training and validation data for 

each training epoch. 



43 
 

 

Figure 10, Learning curves of the models with best performing hyperparameters for all 5 training 
folds. 
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In figure 10, both models seem to converge to the lowest validation loss quickly in the 

folds with lesser data. Narrow model shows much steadier training across all folds, but 

the validation loss it provides for the bigger folds is only slightly smaller than for the 

wider model. Wider model is computationally more demanding but seems to converge to 

the minimum validation loss in less epochs than the narrow model. The wider model with 

hyperparameters [1000, 0.2, 32, 0.0005] is chosen, and used for anomaly detection. For 

every hour, anomaly score is calculated. MAE of each supply curve is reported as h-MAE, 

it is the sum of absolute values of prediction error for each price interval divided by total 

number of intervals which is 15. It is worth noticing that average of h-MAEs over the set 

used for validation is equal by definition to the validation loss.  

ℎ − 𝑀𝐴𝐸𝑡 =  ∑ |𝑋̂𝑡
𝑖 − 𝑋𝑡

𝑖|

15

𝑖=1

/15 

5.2 Evaluation of the model and data distribution  

5.2.1 Fold 1 

Model is first trained using 3676 first hours for training and hours from 3677 to 7352 for 

validation. Total number of epochs was 11 and training time was around 40 minutes with 

2s/step and 115 steps per epoch. Validation loss is 0.0252 which means the average over 

h-MAEs of validation set. Average anomaly score for the unseen data, hours between 

7353 and 22057, is slightly higher, 5248. This indicates that the data unseen for the model 

does not follow the same distribution or that the model is not capable of capturing all non-

linear relations in the data. From figure it is easy to identify that distribution of h-MAE is 

increased after 10000 hours and falls down approximately two months later. This part 

shall be referred as possible collective anomaly for now on. There are also some notable 

spikes around 15000 hours. The statistics of the first fold in table 4. 

 

Table 4, Model training statistics of fold 1. 

Epochs Training loss 

(MAE) 

Validation loss 

(MAE) 

Training 

MAPE 

Validation 

MAPE 

6 0.0190 0.0252 3.53 3.84 

 

 



45 
 

 

Figure 11, Timeseries of h-MAE in the first fold of walk forward validation. Vertical lines indicating 
the index of last hour in training and validation sets.  

 

5.2.2 Fold 2 

Now model is trained using first 7352 hours and validated on hours between 7352 and 

11028. Total number of epochs was 18 and training time around 114 minutes with 2s/step 

and 230 steps per epoch. Now average of h-MAEs outside training and validation set is 

0.204, which is almost the same as for the validation set, thus indicating that model can 

approximate distribution of supply curves conditional to previous supply curves well. 

Now part of the possible collective anomaly was part of the validation set, and model 

seems to have learned to expect it partly, since h-MAE significantly increases in the 

beginning of possible collective anomaly and again after last hour of validation set.  

Statistics of the round in table 5. 

Table 5, Model training statistics of fold 2. 

Epochs Training loss 

(MAE) 

Validation loss 

(MAE) 

Training MAPE Validation 

MAPE 

14 0.0147 0.0203 2.5401 5.0044 
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Figure 12, Timeseries of h-MAE in the second fold of walk forward validation. Vertical lines 
indicating the index of last hour in training and validation sets. 

5.2.3 Fold 3 

Now first 11028 hours were used for training and hours between 11028 and 14704 for 

validation. Average of h-mean for unseen data is now 0.0134, which is slightly less than 

validation loss. Now half of the possible contextual anomaly was included to the training and 

model clearly adapts to it well, still producing big h-MAE for the first hour of its occurrence. 

Total number of epochs was 28 and training time around 322 minutes with 2s/step and 345 steps 

per epoch. Statistics of fold 3 in table 6. 

Table 6, Model training statistics of fold 3. 

Epochs Training loss 

(MAE) 

Validation loss 

(MAE) 

Training  

MAPE 

Validation 

MAPE 

28 0.0126 0.0146 2.3335 3.6605 
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Figure 13, Timeseries of h-MAE in the third fold of walk forward validation. Vertical lines indicating 
the index of last hour in training and validation sets. 

5.2.4 Fold 4 

In fold 4 first 14706 hours were used for training and half of remaining hours is used for 

validation. Average h-MAE of unseen data is 0.0144, which is now higher than for the 

validation set. Interesting in fold 4 is that training loss is less than validation error, which 

can indicate that there were difficult samples in training compared to the validation set. 

This could result from the possible contextual anomaly, which now is included wholly in 

the training and validation sets. Total number of epochs was 20 and training time around 

306 minutes with 2s/step and 460 steps per epoch. Statistics of the fourth fold in table 7. 

Table 7, Model training statistivs of fold 4. 

Epochs Training loss 

(MAE) 

Validation loss 

(MAE) 

Training  

MAPE 

Validation 

MAPE 

15 0.0129 0.0119 2.5351 2.4092 
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Figure 14, Timeseries of h-MAE in the fourth fold of walk forward validation. Vertical lines 
indicating the index of last hour in training and validation sets. 

5.2.5 Fold 5 

In the final round there is no unseen data to assess generalization of the model with. This is the 

model that will be used for anomaly detection relying on results about generalization error the 

previous folds provided. All expect last 3676 hours are used for training and the rest for 

validation. Model produces average h-MAE of 0.0107 over entire dataset. 

Total number of epochs was 23 and training time around 440 minutes with 2s/step and 575 steps 

per epoch. Statistics are reported in table 8. 

Table 8, Model training statistics of fold 5. 

Epochs Training loss 

(MAE) 

Validation loss 

(MAE) 

Training  

MAPE 

Validation 

MAPE 

18 0.0120 0.0136 2.2857 2.8358 
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Figure 15, Timeseries of h-MAE in the last fold of walk forward validation. Vertical lines indicating 
the index of last hour in training and validation sets. 
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6 Results and discussion 

6.1 Examination of distribution of h-MAE 

6.1.1 Examination of hourly prediction errors 

The predictions seem to show some systematic seasonality in error. In the figure 16, 

average h-MAE is calculated for every hour of the day over the entire dataset, in the 

horizontal axis hours are presented by 0 meaning 00:00-01:00, 1 meaning 01:00-02:00 

and so forth. 

 

Figure 16, Average h-MAE according to each hour of the day in data. 

Hours 01:00, 06:00 and 20:00 stand out with bigger average error. These hours have been 

harder to predict in average. Systematic seasonality in predictions imply that daily 

patterns present stationary behaviour the model has not been able to capture. In order to 

inspect prediction errors, the 25 hours with biggest h-MAE will be highlighted as a point 

of interest. There are 25 hours that have h-MAE higher than 0.5789. In figure 17 the 25 

hours with biggest h-MAE are highlighted in red from the time series of the h-MAE. 
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Figure 17, Time series of h-MAE and 25 hours with highest h-MAE highlighted. 

The hours around the possible collective anomaly are affiliated with considerably high h-

MAE in figure 17. Marked hours from 3062 to 5675 show a pattern of high errors, but 

before them comes a peak of h-MAE at 2567, in a period of otherwise low h-MAE. Also, 

the two peaks at 16934 and 17909 indicate something unsuspected considering the 

context of otherwise low h-MAE. The histogram of h-MAE show that the distribution of 

h-MAE is highly skewed to the right, and most of the density concentrated around the 

mean of 0.0107. In figure 18 the histogram of h-MAE, and a red line indicating the 25 

hours with highest error. 
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Figure 18 Histogram of h-MAE with threshold of 0.05789 indicating 25 hours with highest h-MAE. 

From the histogram in figure 18 it can be seen that due to high skewedness of the 

distribution it is difficult to apply a clear threshold to label hours anomalous on the basis 

of h-MAE alone. However, the skewedness of the h-MAE implies that since larger errors 

are not distributed evenly, the model captures some stationary behaviour and thus larger 

prediction errors result from deviation in the data. 

6.1.2 Examination of hours with 25 highest h-MAE 

The 25 hours with highest h-MAE can be categorized to three types. First type includes 

the hours where predicted curve follows the shape of the true curve but is shifted vertically 

to lower level of volume for all price intervals. Second type are the hours where predicted 

curve is shifted to higher level of volume for all price intervals. Third type are the hours 

where shape of the predicted curve does not follow the shape of the true curve. The 

marked hours from 3052 to 5675 excluding the hour 4460 represent the type 1 and share 

the same pattern of predictions systematically underestimating the volume for each price 

interval by around 800 MW. In figure 20 hour 3062. Also, the hours from 12817 to 12861 

and 13834, 16934 and 17030 are type 1 with varying shift downwards. In figure 19, 

typical pattern to type 1 marked hours is observable in hour 3062. Predicted curve in blue 

follows the shape of the true curve in orange on a lower level of volume. Difference of 

true and predicted volumes in green. 
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Figure 19, Hour 3062 represents type 1 of the categorized highest errors with predicted curve 
shifted downwards from the true curve. 

There were 13 type one hours out of the 25 highest prediction errors. Next come the type 

2 errors, where prediction overestimates the true volume, but the shapes of both curves 

are similar. Type 2 hours are 8488, hours from 9673 to 9675, 12577, 12817, 17909, 12534 

and 20816. The last category is type 3, which includes hours 2567, 4460, 4930 and 12135. 

Hour 2567 shows a sharp increase in volume of offers priced between 20€ and 30€. Hour 

2567 in figure 20. 
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Figure 20, Prediction error of the hour 23:00 on 12.8.2019 

 

Clear jump in volume is visible in figure 20. The rest of the type 3 hours show pattern with 

prediction error slightly increasing or decreasing along the price interval. One of them is plotted 

in figure 21. 

 

Figure 21, True and predicted supply curves differ in position and shape on hour 4460. 
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The three different cases among the hours with highest h-MAE share some qualities that 

can be further studied taking the entire dataset into consideration. Firstly, in type 1 and 2 

hours there are no intersections between predicted and true supply curves and the 

difference between the curves along the price intervals remains approximately fixed. In 

type three there can be one or more intersections, but the difference between predicted 

and true curves is not fixed along the price intervals.  

6.1.3 Examination of the three types of hours. 

In the examination of hours that associated with 25 highest h-MAE three categories 

became apparent. In order to understand how the model performs, a further analysis on 

the prediction errors is provided by incorporating analysis of the three identified 

categories to the entire dataset. In chapter 2 possible causes of anomalies were identified 

as physical withholding, economical withholding, erroneous orders and data errors. To 

quantify the relation between predicted and true supply curves, all hours in the data are 

categorized according to how many times the two curves intercept. Analysis of the 

interceptions of two curves is also motivated by theoretical concepts in exercise of market 

power. In economical withholding the mass of the true curve should be shifted towards 

higher prices, which should mean that predicted supply curve intersects the true supply 

curve at least once. In table 9 the hours are categorized based on intersection points 

between predicted and true supply curves. 

Table 9, Hours categorized according to on how many points predicted and true supply curves 
intersect. 

Intersections 0 1 2 3 4 5 6 7 More 

Hours in 
category 

4933 3080 5465 3937 2443 1369 578 168 84 

 

The majority of the hours have less than two intersections. It is to be expected that the 

average h-MAE is lower among the hours with more intersections. In figure 22 boxplots 

are drawn for h-MAE of hours according to their intersections.  



56 

  

Figure 22, Whisker boxes of distribution of h-MAE on hours categorized by the number of 
intersection points between true and predicted supply curve. 

From the boxplots in the figure 22 it is apparent that the largest values of h-MAE are 

strongly represented in the hours where there is one or no intersection between predicted 

and true supply curve. Highest values of h-MAE appear in curves where there is no 

intersection at all. Although it is logical that high prediction errors result from curves that 

do not intersect, the lack of intersections could also indicate capacity withholding or 

surprising events that reduce or increase offered capacity. Type one and two hours 

previously discussed can be studied further by observing the variance of the division of 

the predicted and true volume for each price interval. If the shape of the predicted curve 

follows the true curve, variance of the vector that results from division of true and 

predicted volumes for each price interval remains proportionally low. In other words, if 

the variance of prediction errors of one hour is relatively low. In table x, the number of 

hours with variance below quantiles of variance of prediction errors in the entire dataset 

is reported for hours that do not have intersections, which there were 4933 in total.  
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Table 10, Variances of division of true and predicted curves of hours with no intersections. 

Quantile 25% 50% 75% 

Variance of the 
hour’s prediction 
errors 

5739 9071 14701 

Number of hours with 
no intersections in 
the quantile 

1853 3210 4255 

Share from all hours 
with no intersection 

37.6% 65.1% 86.2% 

 

In table 10 distribution of the errors type one and two are those whose prediction error’s 

variance is below first quantile. There were total of 1853 hours of type one and two. Mean 

h-MAE in type one and two hours is 0.015 while for entire dataset mean h-MAE is 0.012. 

Maximum h-MAE of the type one and two hours was 0.115 occurred on hour 12817. In 

the table, possible type 3 hours belong to hours whose variance is below median or third 

quantile. Type three hours are also those that have one intersection point between 

predicted and true curves. Mean of variance of hour’s prediction errors in hours that have 

one intersection point was 0.012, which equates the mean variance of hour’s prediction 

errors in the entire dataset. 

6.2 Qualitative survey over hours with highest errors 

6.2.1 Hours with the highest errors 

The hours with high h-MAE were divided evenly along the data, with few visible peaks. 

To further examine factors that resulted in low predictability, more enquiries need to be 

made about bidding of individual firms. There were only few public verdicts about 

REMIT violations in Finland between 2019-2021. Possible explanation for those hours 

where offered volume was overestimated can be outage of power plants or transmission 

capacity. 

6.2.2 Hour 2567 

Hour 2567 is the hour 23:00-00:00 on 12.08.2019. Energy authority of Finland has issued 

a verdict about trading of RAO Nordic on the same day. RAO Nordic mistakenly issued 
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a bid of 1060MW for the hour 23:00-24:00 CET while other bids for the same day were 

either 0MW or 140MW.  In addition to the 1060MW mistakenly offered to the day-ahead 

market, RAO Nordic also sold 1060MW via bilateral contract on that specific hour. It 

was not technically possible for the company to supply total of 2320MW, due to available 

transmission capacity from Russia and the fact that the RAO Nordic did not possess any 

production of its own. All the capacity offered to the day-ahead market was accepted in 

the following day. (Energiavirasto 2021). This mistakenly bid excess 1060MW is clearly 

observable in the prediction error of figure 21. Prediction error sharply increases by 

1100MW at price interval of 20-30€. The total h-MAE model results for the hour in 

question is 0.06, which is the 23rd largest prediction error in the entire dataset. 

6.2.3 Hours between 9673 and 12817 

Hours between 9673 and 12817 are summer hours starting from 4.6.2020 00:00 and 

ending in 13.10.2020 00:00. This period was difficult to predict out-of-sample in folds 1, 

2 and 3. Also its beginning and ending raise high prediction errors in-sample in folds 4 

and 5. The period was speculated to be a possible collective anomaly. Further inquiries 

about the period show that the volume traded in each price interval drops around 2000 

MW compared to the time outside the period. The drop of 2000MW equals the size net 

value of imported energy. Further inspections to the data behind price intervals show that 

the net values of imported energy are completely missing during that period, which 

indicates to an error in data, since there was no large-scale interruption in exporting or 

importing electricity during summer 2020. 

6.3 Discussion 

Search of hours that indicate market manipulation or data errors remains difficult. 

Although means of market manipulation as exercise of market power are distinguished 

and much studied in the literature of electricity economics, it is difficult to clearly quantify 

a threshold or measure for unsupervised anomaly detection. The unsupervised anomaly 

detection task was carried out by analysing the in-sample prediction errors of LSTM-

network. LSTM was suitable for the complicated multidimensional prediction task and 

provided comparable results. LSTM has been utilized to predict aggregated supply curves 

by Guo et al. (2021). Guo et al. showed that LSTM can reach validation MAPE of 3.85 

in prediction of aggregated supply curves with 3.28 out-of-sample MAPE. With pre-
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processing and dimension reduction the out-of-sample prediction error can reach MAPE 

of 2.74. In this thesis, the fold 4 provides best comparable MAPE, in which Validation 

MAPE is 2.41. However, results are not entirely comparable, as Guo et al. do not report 

how many price intervals they use in in theirs study, also the authors settled for larger 

number of exogenous variables. Increase of price intervals might lead to higher MAPE, 

but additional exogenous variables are possibly beneficial for the prediction task. Even 

so, LSTM can be concluded to be suitable for prediction of aggregated supply curves. In 

this thesis, mean absolute error over predicted volumes for every price interval of one 

hour was used as metric for prediction error, to provide unsupervised anomaly detection 

method. Qualitative survey of the prediction errors led to discoveries of actual events in 

the data and markets that proved unusual and in line of the research question. 

Unsupervised learning with LSTM algorithm can significantly benefit study of supply 

curves and market surveillance. Another aim in this thesis was to detect market 

manipulation from the hours that stood out, it proved more difficult. Price intervals chosen 

for this study were very sparse making it difficult to assess the true supply behaviour. 

Furthermore, the nature of LSTM makes statistical inference impossible, so it is not 

possible to say what was the fundamental reason for prediction errors. Exercise of market 

power can affect the supply curves in very many ways, making thorough analysis of the 

prediction errors difficult and tedious. The shortage of labelled hours with actual market 

manipulation leads to a fundamental problem in the unsupervised anomaly detection, it is 

difficult to train the model with non-anomalous data. It might well be true, that some 

manipulative behaviour in the power markets is tacit and continuous, making it hard to 

detect with unsupervised learning, which leans on the distribution of non-anomalous 

events. It should be emphasized however, that LSTM used in unsupervised learning can 

provide valuable information of the behaviour in the market and can be used to highlight 

unsuspected and unnormal events. The method in this thesis can further used to provide 

a dynamic threshold on market events. Further study should include more important 

exogenous variables such as level of hydro reservoirs, price of fuels and level of demand 

to the training. Also, some other price intervals could prove more practical. Further study 

on market manipulation should consider tacit, contextual and long-term exercise of 

market power. The assumption about stationary behaviour in itself includes tacit 

arrangements market power possessing firms potentially end up with.  Prediction errors 

as an anomaly measure is dependent on past events in the data, and thus incorporates any 

long-term market power exercise in the learning process. However, the model can be used 
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to give information about unexpected behaviour on individual hours, which makes 

surveillance and further examination of bidding behaviour easier. Model would benefit 

from larger use of external variables, such as fuel prices, price futures and demand of 

electricity. 
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7 Conclusion 

In this thesis, economical and legislative background was provided about non-genuine or 

abusive day-ahead market bidding behaviour. Impact of economic and physical 

withholding were studied on supply curves. Anomaly detection was based on assumption 

of stationary behaviour, which was measured as prediction error. Literature survey on 

studies about prediction and analysis of supply curves, as well as unsupervised anomaly 

detection, based the choice of a long short-term memory neural network model to be used 

to provide predictions of supply curves that were used as a function estimator to provide 

prediction errors as a measure for stationary behaviour. Model was trained in a sliding 

window framework to predict one hour ahead using 24 previous supply curves, time 

features and two weather variables. was used also to search anomalous patterns from two 

years of day-ahead bidding data of Finland’s price area. Pre-processing included dividing 

supply offers to bins according to prices and standardization of the volumes in each bin 

to interval between zero and one. Weather data, sine and cosine curves indicating day of 

week time of day were used as external variables. Stacked LSTM model with two layers 

was chosen and grid search was used to find hyperparameters suitable for the problem. 

After the selection of model hyperparameters, walk forward validation was used also to 

collect information about the data and training process, which lead to discovery of 

erroneous pattern in the data. The mean absolute error of predicted and true supply curve 

of a hour was used as a statistic for prediction error, and as a score for anomaly. Method 

brought several point anomalies into attention, which were examined, and one certified 

case of market manipulation the algorithm detected as an anomaly was confirmed. Results 

were analysed quantitatively and qualitatively, few types of common errors were 

identified and prediction errors that could indicate capacity withholding, data error or 

economic withholding were labelled from the data by categorizing hours according to the 

intersection points between predicted and true supply curves. Although the model was 

capable to highlight anomalous events in supply curves promisingly, it proved difficult to 

make direct inference about market manipulation. 
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