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We developed a systematic algorithmic solution for quantitative drug sensitivity scoring (DSS), based on
continuous modeling and integration of multiple dose-response relationships in high-throughput
compound testing studies. Mathematical model estimation and continuous interpolation makes the scoring
approach robust against sources of technical variability and widely applicable to various experimental
settings, both in cancer cell line models and primary patient-derived cells. Here, we demonstrate its
improved performance over other response parameters especially in a leukemia patient case study, where
differential DSS between patient and control cells enabled identification of both cancer-selective drugs and
drug-sensitive patient sub-groups, as well as dynamic monitoring of the response patterns and oncogenic
driver signals during cancer progression and relapse in individual patient cells ex vivo. An open-source and
easily extendable implementation of the DSS calculation is made freely available to support its tailored
application to translating drug sensitivity testing results into clinically actionable treatment options.

C
ell-based compound screening provides a rich functional readout for many biomedical applications. In
cancer research, the possibility to profile cellular responses to an extensive collection of anti-cancer
compounds enables a systematic means to repurpose existing drugs to new indications, identify druggable

vulnerabilities in various types of cancer cells and to functionally investigate cellular pathways behind drug
sensitivity or resistance. Recent studies have successfully explained or even predicted drug responses by means
of genetic aberrations or other genomic biomarkers in wide panels of cancer cell lines1–4. Similar large-scale drug
testing efforts in primary cancer samples are increasingly being carried out to enable functional investigation of
cellular addictions in individual cancer patients; for instance, to predict pathway dependencies and to identify
potential therapeutic options for leukemia patients5,6. Systematic profiling of the relative activity of hundreds or
thousands of drugs at several concentrations in a large number of cancer samples or cell types facilitates the
stratification of cancer patients and disease subtypes, as well as development of personalized treatment strategies
for clinical applications.

However, high-throughput drug testing experiments often result in high-dimensional sample-dose-response
matrices, with inherent measurement noise and technical variability, which hinders many downstream analyses,
such as those aimed at detecting differential drug sensitivities or clustering of patients and/or drugs based on their
selective response patterns. To provide quantitative information about the degree of drug efficacy in a given
sample, the dose dimension of these matrices is often summarized into single response parameter estimated form
dose-response models, such as IC50 or EC50 (half-maximal inhibitory/effective concentration)1–3,5,7,8. Although
proven sufficient in many applications, any single model parameter can capture only limited information about
the differences in the response patterns9, especially when comparing cancer and normal cells. Recently, an
‘Activity Area’ metric was used to estimate both the efficacy and potency of 24 compounds in hundreds of cancer
cell lines3. This type of discrete approximation, based on summing up the observed responses at each dose level,
was shown to perform well under controlled in vitro settings with relatively densely-sampled concentration
ranges and narrow bioactivity spectra3.

Here, we developed and implemented a quantitative scoring approach, named drug sensitivity score (DSS),
which captures and integrates the multiparametric dose-response relationships into a single metric to identify
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selective drug response patterns between cancer and control cells,
rather than scoring drug activity in cancer cells alone. Analytic integ-
ration of the area under the non-linear dose-response model com-
bines the advantages of both the model-based and area-based
response calculations. Applications of DSS to drug sensitivity testing
of acute myeloid leukemia (AML) patient cells ex vivo demonstrated
its improved performance, also when profiling larger compound
panels and broader bioactivity spectra at sparsely-sampled dose
levels (10,000-fold range) in fresh, primary cells. Several case studies
in in vitro models from the Cancer Cell Line Encyclopedia (CCLE)
resource3 also supported the applicability of the DSS metric to vari-
ous experimental settings and application cases, where the aim is to
identify both sensitive and selective drug response patterns. To pro-
mote its application to the future drug testing studies, we have made
publicly available an open-source and easily extendable implementa-
tion of the model-based DSS calculations in the form of a stand-alone
R-package.

Results
Our quantitative scoring approach is based on closed-form integ-
ration of the area under the estimated dose-response curve (AUC;
Figure 1a); the generic modeling approach can be used in the context
of standard logistic, sigmoidal or Hill slope response functions
(Figure 1b). The continuous model estimation and interpolation
effectively summarize the complex dose-response relationship into
a single response metric, named DSS (Supplementary Fig. 1b). More
formally, if R(x) models the normalized drug response at a concen-
tration x, then the integral response I over the dose range that exceeds
a given minimum activity level, Amin, is calculated analytically as a
continuous function of multiple parameters of the non-linear res-
ponse model, including its slope at IC50 as well as the top and bottom
asymptotes of the response (Rmax and Rmin).:

DSS!
ð

R§Amin

R(x)dx~I(IC50,Slope,Rmin,Rmax,Amin) ð1Þ

Importantly, differential DSS (dDSS) quantifies the selective response
of cancer cells, relative to that of control cells, when control samples
are available; dDSS is calculated by the difference between drug res-
ponse quantified in patient cells (patient DSS) and the average drug
response of control samples (controls DSS) (Figure 1c). To discrim-
inate those compounds which are effective at higher concentrations
only (potential toxic off-target responses), and to favor those that
show potency over a relative wide therapeutic window, the analytic
AUC calculation (referred to as DSS1) was further normalized by the
logarithm of the top asymptote Rmax(DSS2) and by the dose range
over which the response exceeds the activity threshold Amin (DSS3),
respectively (mathematical derivation of the closed-form solutions
when using four-parameter logistic response model is given in Supple-
mentary Methods). The DSS R-package and its source code are freely
available at https://dss-calculation.googlecode.com/svn/trunk/.

DSS calculation improves drug response profiling in primary
leukemic cells. We initially developed and implemented the DSS
calculation in the context of our ongoing drug sensitivity and
resistance testing (DSRT) program, with the aim to provide
informed choices for clinicians on the treatment of relapsed or
chemorefractory acute myeloid leukemia (AML) patients based on
the ex vivo DSRT results of the patient cells6. The screening panel of
204 compounds used in this study covers virtually all FDA-approved
small molecule anti-cancer drugs, along with a collection of
emerging, investigational and preclinical oncology compounds,
including signal transduction inhibitors targeting major oncogenic
signaling pathways (Supplementary Table 1). The drugs were plated
at 5 concentrations in 10-fold dilution series. The challenge here was
to score the individual drug sensitivities in a patient testing setup,

where limited sources of fresh, primary cancer cells are available to
quantify selective responses in comparison to control cells from
healthy donors. Here, we functionally profiled 22 bone marrow
aspirates from 14 AML patients, whereas 4 bone marrow samples
from healthy donors tested in the same way were used as controls. In
the present study, a total of 5,161 sample-compound pairs were
analyzed using the DSS analysis pipeline (Figure 1).

To test its quantitative performance, we first systematically eval-
uated the predictive power of DSS in terms of its accuracy at differ-
entiating between visually-classified active and inactive compounds
across the AML patient and control samples (Figure 2a). Especially
the integrated and normalized DSS2 and DSS3 versions systematic-
ally improved the sensitivity of the drug efficacy detections at each
specificity level, when compared to using the relative IC50 parameter
alone (p , 1025, DeLong’s test, DSS vs. relative IC50; Figure 2b). The
Activity Area (AA) score also showed comparable sensitivity at the
highest specificity levels, but its accuracy significantly decreased after
moving beyond the most obvious active cases (p 5 6.6 3 1029,
DeLong’s test, DSS3 vs. AA), resulting in similar overall performance
with IC50 (p 5 0.499, DeLong’s test, IC50 vs. AA; Figure 2b). This was
expected since the AA calculation was developed under more focused
settings (Supplementary Fig. 1a). While all the response scores could
accurately detect the compounds exhibiting the highest efficacy, the
DSS3 proved especially informative for capturing the subtle differ-
ences between the drugs showing low or no activity (Supplementary
Table 2).

We next evaluated the performance of DSS in terms of how accur-
ately it can cluster drugs in our oncology compound collection
according to their known mechanisms of action (MoA). The differ-
ential dDSS response profiles across the AML patient and healthy
bone marrow control samples were clustered to reveal similarities
and differences in selective drug response patterns between the AML
patients (Figure 1e). The unsupervised drug clustering reflected clo-
sely the classification of the drugs based on their established MoA
(Figure 3a). We note that there is no unambiguous one-to-one map-
ping between generic MoA classes and many polypharmacological
compounds, explaining why the response-driven clustering does not
perfectly agree with the MoA-based drug classification. For instance,
while majority of VEGFR family and ABL tyrosine kinase inhibitors
clustered together, nilotinib and tandutinib clustered with mTOR/
PI3K inhibitors. However, DSS3 response profiling systematically
improved the match to the primary MoA classes, compared with
IC50 or AA (p , 5 3 1024, permutation test; Figure 3b;
Supplementary Fig. 2), demonstrating that DSS calculation enables
functional grouping of diverse set of compounds in order to predict
MoA of uncharacterized drugs.

DSS calculation improves the response scoring resolution in
cancer cell models. To evaluate how the DSS performs in more
controlled settings, we utilized in vitro profiling data from the
published CCLE study, where various cancer cell lines were
screened against 24 anticancer compounds3. We first compared the
response patterns of PLX4720, a selective RAF family kinase
inhibitor, across the wild type BRAF and BRAF-V600E mutated
melanoma cell lines; this case study was also used in the original
work to demonstrate the operation of the AA score3. The AA and
DSS3 calculations provided similar power to detect the selective
sensitivity of PLX4720 treatment in the BRAF-V600E mutated
cells, compared with the non-mutated BRAF cells (p , 10215,
Wilcoxon rank-sum test; Figure 4a, Supplementary Fig. 3). While
these two response scores showed similar distributional patterns in
the mutated cells, the DSS3 had lower responses in the WT cells,
compared to the AA, after re-scaling these metrics to the same
range (p , 10250, Wilcoxon rank-sum test). The IC50 response
parameter was not able to detect the selectivity of PLX4720 to
BRAF-V600E mutated cells, rather it scored wild-type cells as
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Figure 1 | Implementation of the drug sensitivity scoring (DSS) pipeline in the AML samples. (a) Each compound was tested in a dose response series in

10-fold dilutions at 5 different concentrations (typically 1–10,000 nM). The response readout (CellTiter-Glo reagent) was normalized using positive and

negative controls on each dose plate to provide the response measure (relative inhibition %). (b) Dose-response parameters estimated through logistic

function model include IC50 (half-maximal inhibitory concentration), slope of the curve at IC50, and the bottom and top asymptotes of the curve (Rmin

and Rmax). (c) Schematic illustration of the differential DSS calculation (dDSS, the grey area). The two dose-response curves show clearly differential

activity patterns, yet their relative IC50 is equal, showing an example in which IC50 is not informative enough for detecting selective responses in patient

samples. Inset: analytic calculation of the DSS statistic as an integral over the dose range where the drug response exceeds a given minimum activity level

Amin. (d) Waterfall plots of the individual dDSS profiles enable identification of cancer-selective drugs for a given patient sample. (e) Heatmap plots of the

dDSS profiles over all the samples enable identification of drug-sensitive patient sub-groups. dDSS for the control samples reflect the variability among

the control sample responses. (f) Network maps of the kinases the particular sample is addicted to enable identification of oncogenic driver signals.
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more sensitive to PLX4720. These results indicate that the DSS
outperforms the conventional activity metrics, such as IC50, and
shows comparable selectivity to that of the recently introduced AA
measure in this selected cell line case study.

In the second CCLE case example, we compared the distributions
of the three activity scores in response to the MEK1/2 kinase inhib-
itor PD20325901 in hematopoietic and lymphoid cell lines with or
without RAS mutations based on the fact that the MEK1 and MEK2

Figure 2 | Predictive accuracy of the response scores against a visual evaluation. (a) Average drug-response profiles in five activity classes. The error bars

indicate standard error of the mean (SEM). A subset of 795 dose-response curves was visually classified into either inactive (612), low active (70), semi

active (65), active (30) or very active (18) classes by an experienced drug screener (T.P.), who was blind to the response parameters during the visual

evaluation. The reproducibility of the expert-assigned classifications was confirmed by repeating the visual classification six months later, showing high

reproducibility (97.5% of the curves were assigned to the same class by the expert across the five activity classes). (b) Predictive accuracy of each response

score was evaluated using the receiver operator characteristic (ROC) analysis, where the dose-response curves were ordered according to the

increasing value of the response score (see Methods). The area under the ROC curve (AUROC) is listed for each response score when distinguishing

between 612 inactive and 183 active dose-response curves (Supplementary Table 2 details the AUROC for each activity class separately). The statistical

significance of observed AUROC differences between the scores (table in the inset) was calculated using the DeLong’s test17.

Figure 3 | Unsupervised clustering of the compounds based on their drug response profiles. (a) Clustering dendrogram of the compound screening

panel. The DSS drug response profiles over all the AML patient samples, relative to the control samples, were clustered using the Ward’s hierarchical

clustering algorithm19 and Spearman’s rank-based correlation coefficient (see Supplementary Fig. 6 for dendrograms from the other response scores). The

primary mechanism of action (MoA) classification of the compounds is illustrated in color coding (Supplementary Table 1). (b) Comparison of the

response scores in terms how accurately their compound clustering reflects the established MoA classes in terms of the adjusted Rand index21 (see

Supplementary Fig. 2 for other evaluation indices). The empirical statistical significance of the relative differences in the cluster evaluation indices was

assessed with respect to permutation-based random null distribution (see Methods).
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kinases are key signaling components downstream of RAS onco-
genes. Similar to the BRAF-V600E:PLX4720 example, DSS3 and
AA were able to detect that the RAS-mutated cell lines as a group
were more sensitive to MEK1/2 inhibition compared with non-
mutated cells (p 5 0.0024 and p 5 0.012, respectively, Wilcoxon
rank-sum test; Figure 4b). Interestingly, among the most MEK inhib-
itor sensitive cell lines, there were also several non-RAS mutated
cells, indicating that the RAS mutational status is not the sole deter-
minant of the MEK inhibitor sensitivity. Upon closer inspection of
these highly sensitive cells (highlighted in green in Figure 4b and
Supplementary Table 3), we noticed that they were predominantly
AML-derived cell lines, irrespective of their mutational status.
Hence, while MEK inhibitors are not magic bullets for treating can-
cers carrying mutated RAS isoforms in general, a sub-population of
AMLs, including those with RAS mutations, appear highly addicted
to MEK signaling and might serve as a promising disease cohort to
explore MEK inhibitor therapy.

As a third application case, we selected data for a set of 26 breast
cancer cell lines from the CCLE resource and studied their differ-

ential responses to lapatinib, a clinically approved dual EGFR and
ERBB2 (HER2) kinase inhibitor. A subset of four cell lines resulted
in significantly higher DSS3 response, compared with the others
(p 5 0.00013, Wilcoxon rank-sum test), suggesting that these lines
are addicted to HER2 signaling (Figure 4c). Such multimodality was
not seen in either the IC50 or AA distributions (Figure 4c), whereas
the sensitized sub-group was readily detectable by significant posi-
tive skewness in the DSS3 distribution (c 5 1.484, p 5 0.021,
D’Agostino test). All the four cell lines (SK-BR-3, ZR-75-30, AU-
565, and BT-474) are known to harbor HER2 amplifications and
overexpression. To confirm that these responses were specifically
linked to HER2 addiction, we showed that the four lapatinib-
responsive cell lines were insensitive to erlotinib (p . 0.75,
Wilcoxon rank-sum test), a compound that is known to target spe-
cifically EGFR but not HER2 (Supplementary Table 4). Interestingly,
in the set of 26 breast cancer cells, there were also HER2-amplified
cases, such as HCC1569, which showed relatively low sensitivity to
lapatinib (Figure 4c), indicating that HER2 positivity does not neces-
sarily imply HER2 addiction.

Figure 4 | Distributions of the drug response scores in the CCLE in vitro cancer cell models. Distribution of the three scores in response to (a) PLX4720

treatment in melanoma cell lines; and (b) PD20325901 treatment in hematopoietic and lymphoid cells. The boxes depict the median and the

interquartile range of the response score, and the p-values the difference in the treatment sensitivity between the BRAF-V600E or RAS-mutated and the

wild type cells, respectively (Wilcoxon rank-sum test). (c) Individual breast cancer cell responses to lapatinib treatment. The sub-group of highly

responsive samples (dotted box) was identified automatically using the observed skewness value c and its significance level (D’Agostino test15).
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DSS calculation improves the identification of drug-sensitive
AML patient groups. Finally, we identified a number of examples
of translational importance, where positive skewness of the DSS
distribution allowed us to distinguish sub-groups of AML patient
samples with unique and novel sensitivities to specific drugs. The
first such example is ruxolitinib, a recently approved JAK inhibitor
for myelofibrosis, which showed increased differential DSS3 response
in five AML patient samples (p 5 0.00063, Wilcoxon rank-sum test;
Figure 5a), but whose selective response was totally missed by the AA
or IC50 distributions (Supplementary Fig. 4). Ruxolitinib has
previously been explored in patients with relapsed or refractory
leukemias, with results showing high heterogeneity in individual
response patterns10. It is currently undergoing phase II trials for
advanced adult AML patients (clinicaltrials.gov; NCT01251965;
NCT00674479), but surprisingly without any molecular or func-
tional biomarkers as inclusion criteria, suggesting that the response
rate may end up being low. Strikingly, the DSS-based sample
stratification gave us novel insights into the characteristics of those
advanced AML cases that are highly responsive to JAK inhibitors ex
vivo, which could be promising cases to treat with ruxolitinib in the
clinic.

Similarly, we observed that ex vivo drug response to the histone
deacetylase (HDAC) inhibitor entinostat resulted in distinctly multi-

modal DSS3 distribution, where all of the controls and most of the
patient samples were clustered into a low-response background
group, whereas four of the patient samples formed an distinct outlier
group (252_2, 718, 600_2, and 393_3), which showed significantly
higher response levels (p 5 0.00013, Wilcoxon rank-sum test;
Figure 5b; Supplementary Fig. 4). Entinostat is currently undergoing
several phase II clinical trials for treatment of various cancers, includ-
ing AML and myelodysplastic syndrome. Also in this case it is strik-
ing that no molecular or phenotypic biomarker inclusion criteria are
used in the ongoing trials. Based on our results, entinostat may
induce beneficial epigenetic modifications in a specific subgroup of
AML patients only, warranting its further testing in more stratified
clinical trials. In general, these examples demonstrate that DSS cal-
culation provides a quantitative and highly selective means to
identify drug-sensitive subgroups of patient samples that are likely
to benefit from a particular drug treatment.

A majority of AML patient samples ex vivo appear to be addicted
to kinase signaling5,6. To map the molecular dependencies in the
patient cells, we compared the dDSS response profiles with the drug
target profiles from a published set of kinase inhibitor specificities11.
This allowed us to identify potential kinase-driven signals that the
particular patient cells may be addicted to (see Methods). As a case
study, we studied two serial samples from the same AML patient

Figure 5 | Distributions of DSS3 responses across the primary cancer samples ex vivo. The AML patient and control sample responses to (a) ruxolitinib

and (b) entinostat. The sub-group of highly responsive samples (dotted box) was identified automatically using the observed skewness values c and

their significance levels (D’Agostino test15). Tables below list the molecular profiles (significant AML mutations and recurrent gene fusions), disease stages

(D, diagnosis; D*, secondary AML diagnosis; R, relapsed and/or refractory), and French–American–British (FAB) classification of the patients to

illustrate the lack of correlation between functional drug sensitivity and somatic mutation profiles in this limited cohort. Examples of drug-response

curves behind some of the individual response values are shown in Supplementary Fig. 7.
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(252) before and after treatment with the tyrosine kinase inhibitor
dasatinib. At the compound-level, DSS highlighted a reduced sens-
itivity to a number of kinase inhibitors, such as dasatinib, after the
treatment (Figure 6a). At the target-level, the kinase addiction score
supported the decreased addiction to the activity of multiple kinase
targets (Figure 6b). The kinase addiction network provided an addi-
tional view of changes in the target addiction scores before and after
the dasatinib treatment (Figure 6c). Such integrated network
approach facilitates not only mapping of the key oncologic signals
underlying the initial treatment sensitivity, but also following-up and
understanding the mechanisms behind the acquired resistance dur-
ing the disease evolution6.

Discussion
We have shown that the model-based drug sensitivity quantitation
effectively captures and integrates complementary information
extracted by IC50, slope and other activity parameters from the com-
plex dose-response relationships. The importance of considering
information from multiple response parameters was recently shown
in cancer cell line drug testing applications9. We used here AML as
the primary disease model since the driving molecular signals under-
lying AML are still poorly understood, and there is no standardized
and effective second line AML treatment, resulting in very poor
prognosis for relapsed patients. While next-generation sequencing
of clinical AML samples has allowed for extensive cataloging of

Figure 6 | Monitoring of treatment response using drug sensitivity and target addiction profiling. (a) Correlation of DSS3 response profiles in an

individual patient (252) before and after dasatinib treatment (252_1 vs 252_5). (b) Correlation of target addiction profiles estimated with the kinase

inhibition sensitivity score (KISS, see Methods). (c) Network view of the kinase addiction changes before and after treatment (left and right panels,

respectively). The kinase addiction sub-networks show connections among the initially most active and selective kinase targets (KISS . 5 in the sample

252_1). Node coloring indicates the degree of kinase addiction (KISS, Eq. (2)), and edges connect kinases with similar inhibitor selectivity profiles

(Spearman’s rank-based correlation . 0.5) based on a biochemical screen of kinase inhibitor specificities11. Non-expressed kinase targets were excluded

from the networks. Dynamic changes in the kinase addiction maps during the all the serially sampled phases of the disease progression in this patient are

shown in Supplementary Fig. 8.
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recurring mutations, these have not yet provided links to clinically
actionable therapeutic strategies in most individual cases, perhaps
because of our limited understanding of the complex genetic events
and extensive clonal heterogeneity that induce and drive an AML6,12.
The difficulty of making predictive links between the molecular pat-
terns and drug sensitivity or resistance was also exemplified here in
the two AML patient examples (Figure 5). The DSS calculation was
implemented and tested in this study to provide a standardized
means for functional investigation of druggable vulnerabilities in
individual cancer samples ex vivo, even in the absence of genetic or
epigenetic profiling information, thereby providing complementary
insights into cancer phenotypes and cellular addictions on an indi-
vidualized basis.

The continuous model estimation makes the DSS calculation
robust against many sources of technical variability. For instance,
the model fitting enables interpolation of missing values at inter-
mediate concentration levels. Further, while many of the single res-
ponse parameters, such as IC50, are dependent on the concentration
ranges being tested, the summary response metrics, such AA and
DSS, provide more comparable results also for compounds tested
under different concentration windows. The robustness of the
area-based metrics was confirmed in AML cell line models, where
AA and DSS response profiles showed improved reproducibility
compared to IC50 (Supplementary Fig. 5). Increased inconsistency
and problems in extrapolating IC50 levels was also recently noted in
the comparison between CCLE and Sanger cell line drug testing
data13. Importantly, area-based metrics enable straightforward cal-
culation of the differential responses, relative to that of the control
samples, while differential IC50 is not so straightforward to interpret.
In many case examples, the waterfall plots of the drug response
distributions over a set of patients were relatively uniform when
plotted using standard metrics such as IC50. In contrast, especially
the DSS3 version, which involved further normalization of AUC by
the active dose range, was shown to amplify the differential res-
ponses, making the systematic identification of sensitive patient sub-
groups more straightforward (e.g. Figures 4 and 5).

The previously introduced AA metric provides an approximation
of the AUC through a discrete rectangle method (Supplementary Fig.
1a). AA was shown to work well on a smaller collection of 24 com-
pounds, with relatively narrow bioactivity spectra and densely-
sampled concentration ranges, carefully centered around an
expected IC50 for the primary target of the inhibitors to avoid off-
target effects3. However, such discrete approximation may provide
sub-optimal response estimates under other settings, especially when
broader bioactivity spectra are being tested with a more complex set
of compounds. The basic version of DSS (named DSS1) is an AUC
measurement with the baseline noise subtracted and therefore con-
ceptually similar to AA (Supplementary Fig. 1b). However, the fur-
ther normalizations of the DSS calculation make the DSS2 and DSS3

versions different from the AA. In particular, DSS3 captures addi-
tional dose-response relationships, and it was shown to outperform
AA in the AML case studies, which rely on sparsely-sampled data
from limited sources of primary cells (Figure 2 and 3, Supplementary
Figs. 2 and 4). An additional advantage of DSS3 in the clinical settings
is its reduced correlation with the blast counts (Supplementary Fig.
9), which make samples with varying leukemic blast percentages
easier to cross-compare. Further, DSS3 version is able to distinguish
toxic response patterns that show activity at the highest dose levels
only from the clinically more relevant patterns that show potency
over a wider therapeutic window, even if their AUC is similar (see e.g.
the entinostat example in Supplementary Fig. 7).

The adequate performance of the DSS was shown here both in
controlled cancer cell line models as well as in clinical patient-derived
applications. Therefore, we believe it should benefit a range of drug
testing applications in vitro and ex vivo. Further, it was shown in our
previous work that the observed ex vivo drug responses are predictive

of the in vivo treatment response observed in the clinic6. As with any
response score, however, the dose-response curves behind the top
DSS hits should be visually confirmed before clinical decision mak-
ing. As a future development, calculation of confidence intervals
would provide estimate of the uncertainty of response scores, such
as IC50, AUC and DSS, in studies where enough sample material is
available for technical replicates or increased number of dose levels
sampled for parameter confidence estimation. However, the current
DSS implementation was already shown to enable statistical iden-
tification of such patient subgroups that are most likely to benefit
from a treatment (Figures 4 and 5), whereas DSS profiles across the
compounds revealed mechanistic similarities among those drugs
showing correlated response patterns (Figure 3). Further, when com-
bined with information on the cellular targets of the most sensitive
and selective drugs, one cannot only start identifying pharmacolo-
gically targetable oncogenic driver signals (Figure 6), but also to
monitor and identify potential mechanisms behind in vivo emerging
resistance to the targeted agents6. We expect that this integrated
approach will help us to predict next line of more effective treatment
strategies, such as multi-targeted combination therapies14, for each
individual refractory patient, and will complement the genomic pro-
filing approaches for AML and other cancers.

Methods
Patient material. As a primary clinical evaluation material, we used a set of 22 bone
marrow aspirates from 14 mainly relapsed and refractory AML patients, as well as 4
bone marrow samples from healthy donors as controls from our ongoing study6. All
the samples were fresh and collected in EDTA treated tubes after informed consent
with approval (No. 239/13/03/00/2010, 303/13/03/01/2011), in accordance with the
ethical standards of the Helsinki University Central Hospital (HUCH), approved by
HUCH Institutional Review Board (Dnro 60/2011). The drug sensitivity and
resistance testing (DSRT) was performed as previously described6. Briefly, ex vivo
DSRT was run on mononuclear cells isolated from AML patient or healthy bone
marrow aspirates using Ficoll density gradient (Ficoll-Paque PREMIUM; GE
Healthcare) suspended in Mononuclear Cell Medium (MCM; PromoCell)
supplemented with 0.5 mg/mL gentamicin and 2.5 mg/mL amphotericin B. The
oncology screening panel used in the present study included 204 compounds
covering the approved cancer small molecule pharmacopeia and the active substances
of emerging investigational and experimental anticancer compounds, including
signal transduction inhibitors targeting major kinase and non-kinase targets
(Supplementary Table 1). The compounds were dissolved in DMSO and pre-printed
on tissue culture treated 384-well plates (Corning) with an acoustic liquid handling
device, Echo 550 (Labcyte Inc.). Each compound was tested in five different
concentrations covering a 10,000-fold concentration range (no technical replicates).
Prior to addition of the cells, the compounds were dissolved in 5 mL of MCM for
30 min on a plate shaker. Single cell suspension (10,000 cells/well in 20 mL) was
transferred to each well with a peristaltic dispenser (MultiDrop Combi; Thermo
Scientific). The plates were incubated at 37uC for 72 h, after which the cell viability
was measured using CellTiter-Glo luminescent assay (Promega) according to
manufacturer’s instructions with a Molecular Devices Paradigm plate reader. The
response readout was normalized in relation to negative control (DMSO) and positive
control (100 mM benzethonium chloride), resulting in relative growth inhibition %.
The raw dose-response data were processed in Dotmatics Browser/Studies software
(Dotmatics Ltd.), and then subjected to the DSS analysis pipeline (see Supplementary
Methods).

Cell line material. As an additional evaluation material, we made use of the set of 479
cell lines screened against 24 anticancer compounds from the Cancer Cell Line
Encyclopedia (CCLE) resource3. Dose response for those compounds was measured in
dilutions at 8 different concentrations, namely 2.5, 8, 25, 80, 250, 800, 2,530 and
8,000 nM. The medians over the technical replicates of the dose responses were used
in the DSS calculation (Supplementary Methods). In the CCLE cell line case studies,
we used the Activity Area (AA) values reported in the Supplementary material of the
original work3. For comparative evaluations in our AML samples and controls, we
implemented the Activity Area calculation according to the descriptions in the
Supplementary Material of the original work3, with the help of instructions from one
of the authors (personal communication with Dr. Joseph Lehár). The AA calculation
is based on discrete summing of the differences between the measured response
(relative growth inhibition %) and the reference level (response set to zero) over the
eight dose levels (so-called rectangle approximation of the integral function, see
Supplemental Fig. 1a). AA has a value of zero, when there is no drug activity and eight
for compounds with 100% inhibition across all the eight drug concentrations.

Statistical analysis. To objectively identify compounds whose response distributions
show exceptional positive response, that is, a relatively few highly responsive samples
at the right tail of the drug response distribution, we calculated the sample skewness c
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of the drugs’ empirical response distribution over all the samples under analysis. The
one-sided significance p-value of the observed positive skewness was assessed using
the D’Agostino15 test in the R-package ‘‘moments’’ (version 0.13, http://cran.r-
project.org/package5moments). This enables systematic detection of drug-sensitive
patient sub-groups for a given compound, without visually going through all the drug
response distributions. When comparing two sets of samples, such as highly
responsive patient samples against the remaining samples for those compounds
initially identified with positive skewness, we assessed the difference in the response
levels between the two pre-defined sample groups with the Wilcoxon rank-sum test.
We chose to use the non-parametric test because the response distributions cannot be
assumed to be normally distributed.

The predictive accuracy of the DSS, IC50 and AA metrics was assessed in terms of
their capability to distinguish the active dose-response curves from the inactive ones
using the receiver operating characteristic (ROC) analyses; ROC curves evaluate the
relative trade-off between true positive rate (sensitivity) and false positive rate (1 –
specificity) of the metric when ordering the dose-response curves according to the
increasing value of the response metric16. The overall accuracy of each response
metric was summarized using the area under the ROC curve (AUROC) measure; for
an ideal metric, AUROC 5 1, whereas a random metric obtains an AUROC 5 0.5 on
average. Statistical significance of an observed AUROC, when compared to random
classifier, was assessed using the roc.area function in the R-package ‘‘verification’’.
Statistical significance of an observed AUROC difference between two response
metrics was assessed using the ‘‘pROC’’ package with the De Long’s test17.

Kinase addiction scoring. To identify the selective kinase targets the individual AML
samples may be addicted to, we compared the sample-specific dDSS response with the
target profiles of 35 kinase inhibitors overlapping between our compound panel and
the kinase inhibitors whose target specificity was biochemically profiled in a recent
kinome-wide study11. We designed a kinase inhibition sensitivity score (KISS), which
estimates how sensitive the cells are to inhibition to a specific kinase target (or in other
words, the addiction to the activity of the given kinase). Formally, for each kinase
target k, we calculated KISS by summing the dDSS values over those kinase inhibitors
i that selectively target k:

KISSk~
Xnk

i~1

dDSSi

nk
ð2Þ

Here, the sum is through those nk inhibitors that specifically target the kinase k and
whose skewness c shows significant positive selectivity (p , 0.05, D’Agostino test15).
These selective drug response and target profiles were used to define putative kinase
addiction pathways for each individual sample, that is, the connected sets of selective
kinases that the individual leukemia cells are likely to be addicted to. This is similar to
the concept of kinase pathway dependence5. The identified kinase addiction sub-
networks for the patient samples were visualized using the automated layout options
in the Cytoscape network analysis software18.

Response profile clustering. To reveal similarities and differences in the drug
response patterns over the samples, the DSS, IC50 and AA drug response profiles were
grouped into functionally similar drug clusters using unsupervised hierarchical
clustering technique, Ward’s algorithm19. The Spearman’s correlation coefficient was
used as the similarity function, because the rank-based correlation provided relatively
robust and reproducible results between different runs. The evaluation of the
clustering solutions was carried out using external cluster evaluation indices, which
measure performance by matching the identified clustering solution to a priori
information of the drugs. Here, the external benchmarking drug clusters
corresponded to the known mode of action (MoA) classes of the drugs, if available
(Supplemental Table 1). MoA classes with less than three drugs were excluded, since
these present too narrow and potentially unstable drug classes for the cluster
validation purposes.

More specifically, we first determined the response score-based drug clusters by
cutting branches off the hierarchical clustering dendrogram using the
‘‘dynamicTreeCut’’ library20. The obtained drug partitions were then compared to the
MoA drug classes using thee different cluster evaluation indices. The Rand index has a
value between 0 and 1, with 0 indicating that the two partitions do not agree on any
pair of drugs, and 1 indicating that the drug clusters are exactly the same21. In the
Jaccard index, value 1 indicates that one of the partitions lies completely within the
other, and value 0 indicates that the partitions have no common drugs. With the
Fowlkes–Mallows index, a higher value indicates a higher similarity between the two
drug partitions, whereas for two unrelated partitions the index approaches zero as the
number of drugs increases22.

Statistical differences in the cluster evaluation indices between the response scores
were tested through permutation-based null-distributions. More specifically, a large
set of random cluster assignments was simulated by randomly shuffling the drug
labels in the observed clustering solutions, separately for DSS, IC50 and AA metrics,
while preserving the number of clusters in the original clustering solutions. The
random null-model for the differences was obtained by taking pairwise differences in
the index values between any two random drug cluster assignments (e.g one for DSS
and the other for AA score). The empirical p-value was calculated by counting the
number of the pairwise random permutations having greater or equal index differ-
ence value when compared to the observed difference, divided by the number of
random permutations (here: 10,000).
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