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The microgrid (MG) is a complicated cyber-physical system that operates based on interactions between physical processes and 
computational components, which make it vulnerable to varied cyber-attacks. In this paper, the impact of data integrity attack (DIA) has 
been considered, as one of the most dangerous cyber threats to MGs, on the steady-state operation of hybrid MGs (HMGs). Additionally, 
a novel method based on sequential hypothesis testing (SHT) approach, is proposed to detect DIA on the renewable energy sources’ 

metering infrastructure and improve the data security within the HMGs. The proposed method generates a binary sample, which is used 
to compute a test statistic that is further used against two thresholds to decide among three alternatives. The performance of the suggested 
method is examined using an IEEE standard test system. The results illustrated the acceptable performance of the proposed methodology 
in detection of DIAs. Also, to evaluate the effect of DIA on the operation of the HMGs, DIAs with different severities are launched on 
the measured power generation of renewable energy resources (RESs) like wind turbine (WT). The results of this part showed th at a 
successful DIA on renewable units can severely affect the operation of electric grids and cause serious damages.  
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1 INTRODUCTION 

Microgrid (MG) is a combination of controllable loads, distributed generation (DG) units, and energy storage devices, 
which acts as an individual controllable unit and can operate in islanded or grid-connected mode. The concept of MG 
brings many benefits to both power generation companies and electricity consumers. From the consumer's point of view, 
the MG can increase reliability, reduce greenhouse gas emissions, improve power quality, and from power generation 
companies’ point of view, it can eliminate peak consumption points, reduce power loss, reduce operation costs, etc. [1-4]. 
Moreover, the development of MG is able to aid to supply remote loads when the proper distributions or transmission 
infrastructure are not available. It is expected that the installation of MG capacity in the United States (US) will reach more 
than 30% increase by 2020 [5].  

In terms of voltage types, MGs is able to be categorized into three different categories of AC, DC, and hybrid AC-DC 
[6]. In AC MGs, all DG agents and loads have been coupled to the AC busses. Therefore, the DC sources have been 
connected to the grid using DC-AC converters and DC loads can be supplied using AC-DC inverters. DC MGs use rectifiers 
to connect AC generation agents to the system and HMGs make usage of advantages in both DC and AC MGs through 
incorporating both kinds of technologies and busses [7]. In this way, the use of advanced communication and information 
technology by MGs to provide an infrastructure for the exchange of information such as advanced metering infrastructure 
(AMI), improves the dynamics and operation of MGs. However, it makes MGs vulnerable to cyber-attacks at the same 
time. Therefore, the health of data transmission and measuring devices (AMI in short) must be taken into consideration to 
increase MG security [8].  

Regarding the growth of the MGs in modern power systems, serious concerns about cyber-attacks have appeared. 
Pursuant to the recent reports from the US department of homeland security, 224 attacks on electrical companies were 
reported from 2013 to 2014. The malicious cyber-attack of Stuxnet worm to the SCADA system in 2010 could damage the 
industrial electrical systems severely [9, 10]. Therefore, concerns have been raised about cyber-attacks on MG’s vulnerable 

points in the power system. In [11,12], a machine learning based DIA detection scheme on the basis of upper and lower 
bound estimation way and symbiotic organisms search algorithm is proposed to detect anomaly in MGs’ AMI. The results 

in that paper showed the proposed evolutionary method over genetic algorithm and other methods. the main drawback of 
the proposed method in [12] is the reverse relation between the attack severity and detection rate. Authors in [13] presented 
a review of cyber-attacks in power systems, their impacts on economic aspects of the system, and describe possible attack 
scenarios and some defense strategies. A sequential false data injection detection scheme is investigated in [14]. The results 
of that paper showed the good performance of the proposed methodology in attack detection. In [15], hybrid model based 
on SHT is proposed to detect several attacks. the results of that paper showed the high accuracy and performance of the 
SHT in detection of identity-based attacks. Authors in [16] developed a method to identify the false data injection attacks 
in MGs. The main drawback of the proposed method in that paper is the high rate of false negative. In [17] the authors 
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used a hierarchical framework to detect cyber attacks and a decision tree algorithm to eliminate the cyber-attacks targeting 
PMUs. The mentioned hybrid framework was able to detect most of FDI and DoS attacks. A deep learning regression 
method can be used to boost the accuracy of the mentioned method instead of decision tree. Authors in [18] focused on the 
Sybil attacks and proposed a detection model. The results of that paper illustrated the vulnerability of MGs against such 
attacks. They also introduced various models of flooding attack and malware installation attack on AMI. Authors in [19-
21] introduced two types of false data injection attacks against power system economic dispatch and analyzed their impact 
on optimality and stability of the system. Table 1 displays a summary of some of the well-known cyber-attacks on the 
power grid in recent years [12]. In [22], an SHT based detection method is introduced to identify Sybil attack in wireless 
sensor networks. In this method, each node uses the identity and location of neighboring nodes to detect Sybil nodes in 
wireless sensor networks. Once the Sybil node was identified, all neighboring nodes cut off communication with it and the 
malicious node will be isolated. Reference [23] investigated the denial of service (DOS) cyber-attack on static VAR 
compensator (SVC) and its impacts on the smart grid. In that paper, two kinds of delays are modeled, exponentially 
distributed delay and fixed delay. The results show that such attacks on SVC can strongly affect voltage stability of the 
system and in some cases even cause voltage collapse. Wavelet transform is applied to detect false data injection attacks 
in AC smart grids [24]. Authors in [25] proposed a detection scheme using the statistical model to predict automatic 
generation control operation and also to consider the impact of DIAs from the electricity market and power system 
frequency perspectives. References [26-28] proposed blockchain technology as an intrusion prevention system to improve 
the security of data transactions.  

Table 1: A review of most well-known cyber-attacks in recent years [12] 
Attack type Impact Attack point 
DOS attack Disconnecting 30 substations for about three hours and outage of more than 

230000 people 
SCADA system, Ukraine, 2015 

Slammer Worm Disabling safety alert system Ohio Nuclear Power Plant, USA, 
2002 

Stuxnet worm Disrupting industrial components SCADA System, Iran, 2010 
Havex malware Disruption and damage to ICS (Industrial Control Systems) ICS  United States and Europe, 

2014 
 
As each of the mentioned studies has addressed an aspect of cyber-attacks in modern power systems, none of them has 

considered the cyber-attack issues in the HMGs. In fact, the widespread penetration of AMI technology in modern power 
systems brings many security issues. The intelligent operation of MGs has been endeavored with the secured monitoring 
and control of local power generation units and consumers. In this way, DIAs can interrupt MGs operation by injecting 
false data instead of healthy data reported through smart meters. Such attacks can silently manipulate legitimate data and 
lead MG central control (MGCC) to make wrong decisions and give commands based on incorrect data and cause problems 
in dynamic and steady-state operation of MGs.  

This paper is focused on the DIA on the RESs’ metering interfaces and its effects on HMGs' steady-state operation. To 
investigate the effects of such attacks, the DIA is executed with different severities on a practical HMG. In the simulation 
section, a hybrid AC-DC MGs has been analyzed based on IEEE standard test system that includes five RESs in AC and 
DC sub-grids. It has been assumed that an adversary suddenly increases the measured output power of these RESs by 35%, 
50%, and 65% of their maximum capacity. The performance of the system and the effects of this cyber-attack from both 
social and economic point of views is analyzed in detail. A new and relatively simple method to detect DIA is considered 
based on Wald’s procedure [29]. The SHT is a widespread approach to identify defect items in manufacturing industries. 
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Unlike conventional hypothesis testing techniques, SHT does not reach the decision with fixed-size samples, and also it 
aims to minimize the decision error. Experimental outcomes display that sequential sampling requires fewer instances than 
fixed-size sampling [30].  

Generally, there are several advantages associated with the proposed method over traditional detection methods. For 
instance, the proposed SHT-based method is a sequential decision making approach, meaning that this method makes 
decisions based on the sequence of samples rather than only one sample. Therefore, this method is more trustworthy than 
non-sequential based methods. Another advantage of the proposed method is its ability to build a sequence of statistics 
where each step builds on the prior steps. In contrast with machine/deep learning-based detection methods, which require 
high computational power to train, this method can detect anomalies using only several simple operations. Therefore, the 
proposed method has a highly effective performance from computation point of view. In order to investigate the 
performance of the proposed method, its performance is examined using a case study. It is worth noting that this paper is 
the first work addressing impact of cyber-attacks on the scheduling of hybrid microgrids. 

The main contribution of this paper is summarized as follow: 1) Investigating the cyber security in hybrid microgrids 
as a cyber-physical system; 2) Developing a SHT-based cyber-attack detection method; 3) Simulating data integrity attack 
against measured output power of renewable energy resources. 

The rest of the study has been formed as follows: Part 2 has been explained cyber security in MGs and descries the 
cyber-attack pattern. The system layout and assumptions have been expressed in part 3. In part 4, an efficient anomaly 
detection model has been proposed based on the SHT procedure to diagnose and stop DIA in HMGs. In this part, the 
formulation of the suggested technique and analysis of its performance are presented. In section 5, DIA with different 
severities executed on a HMG and feasibility and proficiency of the suggested technique is investigated. The main 
conclusion of this paper is explained in Section 6. 
2 CYBER SECURITY IN MGS WITH DIA 
This part is focused on the cyber security of MGs, defines MGs as a cyber-physical system (CPS), and explains the model 
of cyber-attacks. 
2.1 Cyber security in MGs as a CPS 

According to the United States’ national science foundation, CPS is defined as “systems that are built from, and depend 

upon, the integrated physical components and computational algorithms.” MGs generally consist of two infrastructures: 

the cyber layer and the physical layer. The physical layer contains DG units, controllable loads, substations, etc., and the 
cyber layer mainly includes MGCC, metering devices, and communication platforms and makes decisions based on data 
obtained from the physical layer using AMI. Extensive interaction between the two layers makes MG a complex cyber-
physical system that is a great target for hackers to cause damages to the grid. Therefore, appropriate measures should be 
taken to increase the system’s cyber security. AMI is the main key layer producing a two-way communication channel 
among the automated physical layer and MGCC. AMI is responsible for gathering data from the physical layer and 
communicating between system components, which makes real-time decision making in both the consumption and 
production side possible.  

Generally, information security is characterized by three main principles, confidentiality, integrity, and availability 
together known as “CIA triad” [31]. A cyber-attack can be defined as any unauthorized action in the cyber layer that targets 
at least one of these indices. For instance, a DOS attack is an attack targeting the availability of data in the system. Integrity 
in AMI is defined as preventing varies to data as it is gained from metering devices and deterring unauthorized commands 
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to be transmitted through the AMI system. figure 1 displays the schematic framework of MG incorporating the AMI. Also 
through AMI, all DGs are scheduled at optimal operation point and consumers are able to make informed choices about 
energy usage based on market price. Due to the great penetration and impact of intelligent devices on modern power 
systems, various security mechanisms such as encryption, signatures, alarms, detection schemes, identifiers, etc. should be 
implemented to ensure secure and reliable operation. 

  
Figure 1: Illustration of MG structure as a cyber-physical system 

2.2 Cyber-attack  
One of AMI’s main goals is to gather data from consumers and DG agents and transfer it to the MGCC to provide the 

real-time information needed by central control for proper scheduling of loads and generation units. AMI can also reduce 
MG operation costs and avoid feeder congestion by shifting peak load hours using demand response technology. Benefits 
associated with AMI deployment depend on the accuracy and validity of the real-time data collected by smart meters. As 
using AMI brings a variety of benefits to the power grid, new security challenges arise at the same time. As described 
above, MGs are able to operate in islanding or non-islanding mode. The cyber-attack on AMI in grid-connected mode can 
increase operating costs and power loss and cause voltage collapse but in islanding mode, due to the lack of a high-powered 
grid, a cyber-attack can cause more damages such as losing the balance between generation and load demand, load 
shedding, blackouts, etc. MGCC optimizes the power dispatch based on loads and power generation capacity and decides 
to buy or sell power to the main grid based on electricity market price.  

As one of the significant sources of energy in modern power systems, RESs play an important role in MG operation, 
so that any mismatch between measured power reported to the MGCC and actual power of RESs can lead MGCC to 
dispatch based on false data and cause problems in dynamic and steady-state operation of MGs. An attack that injects false 
data to the operation center or controllers of the grid is denoted as a DIA. In this paper, DIA has been analyzed on RESs 
measured data such that the adversary manipulates the measured power generation of the RESs either in the location of 
smart metering devices or in the communication path. This scenario has been investigated with different severities. An 
SHT based detection model is also offered to identify the cyber-attack activities in the HMG that has been described 
comprehensive in the following sections. The suggested anomaly detection scheme makes usage of the forecasted power 
generation of RESs, which MGCC uses for a day-ahead optimal economical dispatch. 
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Figure 2: conceptual illustration of HMG system 

3 SYSTEM MODEL AND ASSUMPTIONS 
Figure 2 shows a conceptual illustration of HMGs in which different DC and AC loads and power agents are connected 

to the corresponding DC and AC busses. Also, HMG central control (HMGCC) is able to decide to buy/sell energy to the 
main grid and work in the islanding or non-islanding mode at different time intervals. To support the idea of RESs, 
photovoltaic (PV) and WT resources have been supposed as non-dispatchable units. In the day-ahead optimal dispatch, 
HMGCC schedules the DGs at their optimal point based on the system’s information, load forecasted data, RESs forecasted 

data, and market price.  
In this paper, it has been assumed that the forecasted power generation of the units is equal to the power provided in 

the operation moment and also stable and equal current sharing between parallel sources or power converters has been 
provided. In the operation moment, HMGCC uses the real-time data gathered by AMI in regular time intervals to provide 
a balance among power production and consumption in the grid. In this work, smart meters communicate with HMGCC 
once every hour. To achieve more reliable and realistic results, power generation units’ ramp up/down rates are considered. 
4 PROPOSED DIA DETECTION METHOD BASED ON THE SHT 

HMGCC communicates with RESs’ local smart metering devices in regular time intervals and monitors their real-time 
output power. Due to the lack of a suitable algorithm to check the validity of the received data, an adversary can disrupt 
the performance of the system by manipulating the data measured by smart meters. The SHT is adapted to tackle this 
problem.  

SHT, also known as the sequential probability ratio test, is a statistical decision-making process that was presented and 
expanded via Wald [29]. SHT can be considered as a one-dimensional random walk with upper and lower thresholds. In 
SHT, first, two hypotheses have been described in such a way that the alternative hypothesis is related to the upper 
threshold, and the null hypothesis is related to the lower threshold. The process of making a decision, which it has been 
considered as a random walk, begins from a point among two thresholds and moves toward the upper or lower threshold 
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concerning each observation. Once the random walk reaches/exceeds the upper threshold, the SHT admits the alternative 
hypothesis. In contrast, when the random walk reaches/exceeds the lower threshold, SHT admits the null hypothesis. Upper 
and lower thresholds are defined based on user-configured false negative and false positive rates in such a way that decision 
of false positive and false negative rates will not exceed these values, respectively. 
4.1 Formulation 

In order to formulate the SHT, two hypotheses have been considered: 
 H1 (alternative hypothesis): The sequence of data measured by the RES’s metering device is corrupted. 
 H0 (null hypothesis): The sequence of data measured by the RES’s metering device is legitimate. 

For each RES, during the hypothesis testing process, Xki considers as a random variable and a hypothesis concerning 
is tested the integrity of data measured by the ith RES’s smart meter. The process of determining the value of the random 
variable Xki, which is known as the observation, is based on comparing any data received from the smart meter with the 
corresponding value predicted by the HMGCC. Since the result of each observation does not affect the subsequence 
observations and all of the observations have equal distributions, then the probability of the random variables X i is 
independent and identically distributed (iid) and is able to be collected as follows: 

                                                                                 | |fme P Pij ij ij                                                                             (1) 
                                                                  00 0.08

1 0.08 0.2
fe Pij ijiXk f fP e Pij ij ij
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



  


   

                                                           (2) 

Due to the unusual difference between measured and forecasted data, in a case where e ij is greater than 0.2×Pijf, we 
have been accepted the alternative hypothesis without calculating Xk+1i and continuing the process. It is worth noting that 
considered Xki=1 and Xki=0 as an observation with type H1 and observation with type H0 respectively. The decision to 
reject or accept the hypothesis is always made based on finite observations. A set of finite observations is called a sample 
and the number of observations contained in the sample is called the sample size. In this way, the successive observations 
has been denoted by X1i,…,Xni. For any positive value n, the probability that sample X1i,…, Xni is obtained so far is given 
by:                                                                     1 1 1 2 1 1( | ) ( | ).... ( | )i i i in nY f X H f X H f X H= ´                                                       (3) 

when H1 is true, and by:                                                                    0 1 0 2 0 0( | ) ( | ).... ( | )i i i in nY f X H f X H f X H= ´                                                     (4) 
 when H0 is true. 
At each step of the process (at nth observation), the value of the probability ratio is computed by 
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At each step of the process, if Pr ln( )1 i
k

n i Lk 


, the process is terminated with the acceptance of H0. If ln( ) Pr1i ik
nU k 


, the process is terminated with the acceptance of H1 and if  ln( ) Pr ln( )1i iik
nL Uk 


 the process moves forward by taking 
an additional observation. According to (5), in the next observation, if the Xn+1 is an observation with type H0, the constant 
ln((1-P1i)/(1-P0i)) is added to the preceding value of (6) and if the observation is an observation with type H1, the constant 
ln(P1i/P0i) is added to the preceding value of (6). This process will continue until the probability ratio reaches one of the 
thresholds. The constants Ui and Li must be determined in such a way that the test has the desired strength (αi, βi). For this 
purpose, based on [29], it should be considered Ui and Li as below: 

                                                                                     ( )( )
(
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i i i
i i i
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b a

ìï = -ïï
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ï = -ïïî

                                                                      (7) 
It is worth noting that (1-βi) and (1-αi) denote the detection rate and true negative rate respectively. Figure 3 displays 

the flowchart of the suggested SHT based method. 

 
Figure 3: Flowchart of the suggested SHT based method 

4.2 Analysis 
Let λi (γi) denotes the ratio of the number of the observations with type H1 (H0) to the number of total observations in a 

sample with size n that HMGCC considers the sequence of data originated from i th RES as an adversary (legitimate) if 
sample X1i,…,Xni includes at least λi×n  (γi×n) ones (zeroes). According to (6), if the excess of probability ratio is neglected 
over the thresholds, λi and γi are able to be computed like below: 
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To explore how changing the n, αi, and βi affect the λi and γi, according to (8) and (9), λi-n and γi-n diagrams are plotted 
considering two scenarios. In the first (second) scenario, the λi-n(γi-n) diagram is plotted considering different values of 
αi(βi). It is worth noting that in Figure 4 and Figure 5, it is assumed that P1 i=0.85 and P0i=0.1. As can be seen, in both 
cases λi and γi gradually decrease when n increases. Figure 4 indicates that this method requires a lower fraction of 
observations with type H1 to detect DIA when the size of the sample increases. Similarly, Figure 5 indicates that this 
method requires a lower fraction of observations with type H0 to consider a sequence of data originated from corresponding 
RES as legitimate when the size of the sample increases.  

Generally, it is desirable for us to minimize αi and βi. In this regard, as can be seen from Figure 5 that decreasing βi 
significantly increases γi. Generally, it can be concluded that although decreasing either αi or βi makes our model more 
accurate, it slows down the decision-making process at the same time. The bottom line is that there is a trade-off between 
minimizing the αi and βi and the speed of the decision making process.  

Let Ni denote the observation number at which the probability ratio of the ith RES first hits either upper threshold ln(Ui) 
or lower threshold ln(Li). Since Xi is a random variable and the number of observations required for a decision to be made 
is not predetermined, it should be denoted the expected value of Ni by E(Ni|H1) when the decision is made to accept 
alternative hypothesis and by E(Ni|H0) when the decision is made to accept the null hypothesis. If it has been neglected the 
excess of (Y1ni/ Y0ni) over the boundaries Ui and Li, for a decision to be made, the probability ratio can take only the values 
ln(Ui) or ln(Li) with the probability (1-Wi(Hs)), s=0,1 and Wi(Hs) respectively. Therefore, the expected value of 
E(X1i,…,Xni) can be calculated by (9). In this way the conditional expected value of Ni is able to be obtained like below: 
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 Figure 4. The effect of n on λi by considering different values for αi. 
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 Figure 5. The effects of n on γi by considering different values for βi. 

 Figure 6. E[Ni|H1] vs. P1i when βi =0.01 and αi=0.01 
 

As shown in (11) and (12), E(Ni|H0) and E(Ni|H1) are functions of four parameters P1i, P0i, αi, and βi. With these values 
set, it can estimate the average number of observations needed by the process to reach a decision. Figure 6 shows how 
E(N|H1) changes as P1 increases. With αi=0.01, βi=0.01, and P0i=0.3, E(Ni|H1) is 4.22 when P1i=0.97, and it increases to 
18.6 when P1i=0.63. According to Figure 6, by increasing P1i, the average number of observations needed via the technique 
to admit H1 decreases, and by increasing P0i, this number increases. On the other hand, as can be seen from Figure 7, which 
presents the E[Ni|H0] vs. P0i diagram, the values of the E(Ni|H0) and P0 have direct relation. Note that in Figure 7 αi=0.01 
and βi=0.01. Additionally, it can be seen from Figure 7 that E(Ni|H1) is highly sensitive to the value of P1 such that when 
P0=0.37, by increasing P1 from 0.7 to 0.9, the value of E(Ni|H0) goes from 5.46 to 19.8. It is worth noting that this sensitivity 
decreases when lower values for P0 are considered. 
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 Figure 7. E[Ni|H0] vs. P0i when βi =0.01 and αi=0.01 
5 NUMERICAL SIMULATIONS 
5.1 Operation of the HMG under cyber-attack 

The following part has been devoted to the numerical simulation result on a practical HMG, which is constructed based 
on the IEEE 33-bus standard test system, to investigate the effects of DIA on the steady-state operation. In the HMG, the 
IEEE 33-bus system is considered as the AC grid with an interconnected DC grid on the 18th bus. Figure 2 displays the 
schematic diagram of the HMG. The voltage level of the system in the AC part is 12.66 kV and the DC and AC parts have 
been coupled using AC-DC converters. As shown in Figure 2, five RESs (three WTs and two PVs) with the same pattern 
as shown in Figure 8 are connected to the system and three micro-turbines (MTs) are installed on busses 25, 18, and 12. 
The complete data of the DGs and converter can be found in Table 2. The AC MG load factor and DC MG load demand 
are also available in Figure 8. In the simulation, the resistance of the lines in the DC section has been neglected and bus 1 
is assumed as an infinite bus. Power generation of RESs and loads are recorded on an hourly basis by smart meters installed 
in the location of loads and RESs.  

The attack scenario is that the hacker penetrates the AMI and increases the value of recorded data related to RESs by 
35%, 50%, and 65% of the RESs’ maximum capacity in the 12th hour. To make a deep comparison, the analysis is simulated 
for 24 hours and in two different modes of islanded and grid-connected. As has been shown in Table 2, the energy 
production cost is various for different kinds of resources. Thus, HMGCC optimizes the operation of the loads and DGs to 
minimize the cost. For this purpose, the teacher learning algorithm has been used as a powerful tool for optimizing the cost 
and managing the energy in the grid. Note that in this work, the energy not supplied penalty factor is considered as the 
maximum market price value in the operation day (i.e. 5 $/kWh), while the dynamic effect of DIAs on the system is 
neglected and considered as the future work. 
5.1.1 Islanded Mode 

In this section, the effects of the DIA has been investigated on the islanded HMG operation. Technically, the HMG can 
decide to operate in either islanding or non-islanding modes depending on the situation. In the islanding mode, the main 
grid is modeled as a slack bus and controls the frequency of the system. In this operating mode, due to the presence of an 
infinite bus in the system, the HMG is resistant to frequency changes, which means that the upstream grid can generate or 
consume as much power as it needs to keep the frequency in the desired range. But in the islanded operation mode, due to 
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the lack of the slack bus, it is the responsibility of the DGs to keep the frequency constant. Therefore, if unanticipated 
changes in the load or generation of the DGs exceeds the total ramp rate of the DGs, the frequency of the system cannot 
remain at the desired value. Table 3 displays the optimal power dispatch of the units in the islanded mode when no attack 
has been carried out. According to Table 3, when the system is not hacked, there is a balance between generation and 
consumption in both DC and AC sections, and the system operates normally.  

Tables 4, 5, and 6 show the grid’s hourly cost and the output power of generation units when an attacks with 35%, 50%, 
and 65% severity are launched against the RESs measured data. In these scenarios, the moment system has faced the cyber-
attack, the adversary suddenly increases the data measured by smart meters dramatically. At this point, the HMGCC, based 
on incorrect data, observes excess power in the grid and decides to reduce the output power of other DGs. If the excess 
power is greater than the total ramp-down rate of the generation units, to balance between generation and consumption, 
the HMGCC will inevitably send an emergency shutdown command to at least one unit. As soon as the unit is switched 
off, due to the lack of power in the system, the balance among generation and consumption is lost and the frequency 
deviates from the desirable level. To adjust the frequency, HMGCC commands other units to increase their generation 
again. 

Table 2: Characteristics of the converter and DG units 
Type Min Power          (KW) Max Power (KW) Bid ($/KWh) Startup/   shutdown cost ($) Ramp Up/Down Rate 

MT2 100 1300 0.475 75 185 
MT3 90 1100 0.475 70 150 
WT2 0 550 1.073 0 - 
WT3 0 450 1.073 0 - 
PV2 0 400 2.584 0 - 

AC-DC converter -1500 1500 - - - 
Fuel cell 50 700 0.194 38.5 110 

WT1 0 200 1.073 0 - 
MT1 35 300 0.18 60 60 
PV1 0 250 2.584 0 - 
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Figure 8 forecasted values of DC MG load demand, AC MG load factor and normalized output of WT and PV power 

units  
Table 3: Output Power and Hourly Cost of Units When No Attack Has Been Carried Out (Islanded mode) 

Time  PV1 WT1 MT1 Fuel AC-DC MT2 MT3 WT2 WT3 PV2 Hourly 
cell Converter cost 

1 0 23.8 269.29 287.28 -424.38 1300 403.37 65.45 53.55 0 890.56 
2 0 23.8 364.29 231.42 -469.511 1300 545.597 65.45 53.55 0 950.365 
3 0 17.8 254.726 174.637 -297.164 1300 514.373 48.95 40.05 0 870.743 
4 0 30 361.653 221.518 -460.172 1267 443.614 82.5 67.5 0 937.423 
5 0 40.8 414.188 237.608 -524.597 1300 593.614 112.2 91.8 0 1087.61 
6 0 36 323.533 196.259 -381.792 1300 742.245 99 81 0 1089.23 
7 27.25 48 306.486 171.782 -343.519 1281.28 738.294 132 108 43.6 1333.69 
8 62.5 52 415.671 220.092 -525.264 1249.36 824.594 143 117 100 1644.35 
9 85 52 525.403 251.958 -686.362 1200.58 951.681 143 117 136 1849.71 

10 97.5 60 586.587 299.977 -804.064 1108.57 1022.77 165 135 156 1996.64 
11 117 58 679.297 239.99 -860.288 1273.12 1100 159.5 130.5 187.2 2210.77 
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12 117.5 62 659.946 277.466 -894.913 1298.07 1100 170.5 139.5 188 2252.62 
13 115.2 58 641.718 294.468 -893.436 1300 1085.68 159.5 130.5 184.4 2206.99 
14 125 54 700 264.152 -927.152 1300 1100 148.5 121.5 200 2256.79 
15 117.5 57 605.489 242.713 -794.702 1300 1100 156.7 128.2 188 2205.42 
16 87.5 59.6 655.68 248.368 -811.149 1300 1070.62 163.9 134.1 140 2019.34 
17 65 66 595.339 225.629 -696.969 1300 1087.18 181.5 148.5 104 1901 
18 47.5 70 487.431 165.993 -506.925 1179.85 1100 192.5 157.5 76 1739.42 
19 10 80 538.497 225.87 -584.368 1234.84 1055.91 220 180 16 1575.61 
20 0 90 559.58 218.383 -606.964 1300 1049.52 247.5 202.5 0 1597.16 
21 0 84 613.757 255.815 -719.573 1300 1040.74 231 189 0 1571.41 
22 0 78 503.757 205.277 -574.035 1292.11 1062.41 214.5 175.5 0 1509.71 
23 0 72 412.696 152.745 -442.442 1186.35 915.992 198 162 0 1351.21 
24 0 44 346.57 97.7466 -320.317 1001.35 1054.68 121 99 0 1132.18 

 
Once the other units reach their ramp-up rate limit, if the power shortage is not compensated, HMGCC has no choice 

but to cut off some loads. After the period of shutdown and startup of the off unit, which is neglected in this work, is 
passed; it will turn on again but due to the limitation on its ramp-up rate, it must start from the minimum value and increase 
its output power step by step. For instance, in the second scenario, wherein an attack with 50% severity has been carried 
out, the HMGCC that observes 925 kW excess power at the 12th hour, which is 420 kW more than the total ramp-down 
rate of dispatchable DGs, sends an emergency shutdown command to both fuel-cell and MT1. The shutdown of these two 
units reduces the total generation of the DGs by 937.4 kW. Table 4: output power and hourly cost of units when attack with 35% severity has been carried out (Islanded mode) 

Time  PV1 WT1 MT1 Fuel AC-DC MT2 MT3 WT2 WT3 PV2 Hourly 
cell Converter cost 

1 0 23.8 269.296 287.289 -424.385 1300 403.379 65.45 53.55 0 890.561 
2 0 23.8 364.29 231.42 -469.51 1300 545.597 65.45 53.55 0 950.365 
3 0 17.8 254.726 174.637 -297.163 1300 514.373 48.95 40.05 0 870.743 
4 0 30 361.653 221.518 -460.172 1267 443.614 82.5 67.5 0 937.423 
5 0 40.8 414.188 237.608 -524.597 1300 593.614 112.2 91.8 0 1087.61 
6 0 36 323.533 196.258 -381.792 1300 742.245 99 81 0 1089.23 
7 27.25 48 306.486 171.782 -343.518 1281.28 738.294 132 108 43.6 1333.69 
8 62.5 52 415.671 220.092 -525.264 1249.36 824.594 143 117 100 1644.35 
9 85 52 525.403 251.958 -686.36 1200.58 951.681 143 117 136 1849.71 

10 97.5 60 586.587 299.977 -804.064 1108.57 1022.77 165 135 156 1996.64 
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11 117 58 679.297 239.99 -860.287 1273.12 1100 159.5 130.5 187.2 2210.77 
12 117.5 62 50 299.99 -307.49 1300 1100 170.5 139.5 188 4795.62 
13 115.2 58 160 300 -417.25 1300 1100 159.5 130.5 184.4 4194.26 
14 125 54 270 300 -533 1300 1100 148.5 121.5 200 3938.91 
15 117.5 57 380 300 -626.5 1300 1100 156.7 128.2 188 2923.9 
16 87.5 59.6 490 300 -697.1 1300 1100 163.9 134.1 140 2371.73 
17 65 66 595.339 240 -711.339 1286.19 1087.18 181.5 148.5 104 1898.41 
18 47.5 70 487.431 180 -520.931 1166.23 1100 192.5 157.5 76 1736.83 
19 10 80 538.497 225.87 -584.36 1234.84 1055.91 220 180 16 1575.61 
20 0 90 559.58 218.383 -606.964 1300 1049.52 247.5 202.5 0 1597.16 
21 0 84 613.757 255.815 -719.572 1300 1040.74 231 189 0 1571.41 
22 0 78 503.757 205.277 -574.035 1292.11 1062.41 214.5 175.5 0 1509.71 
23 0 72 412.696 152.745 -442.441 1186.35 915.991 198 162 0 1351.21 
24 0 44 346.57 97.7466 -320.316 1001.35 1054.68 121 99 0 1132.18 

Table 5: output power and hourly cost of units when attack with 50% severity has been carried out (Islanded mode) 

Time  PV1 WT1 MT1 Fuel AC-DC MT2 MT3 WT2 WT3 PV2 Hourly 
cell Converter cost 

1 0 23.8 269.296 287.289 -424.385 1300 403.379 65.45 53.55 0 890.561 
2 0 23.8 364.29 231.42 -469.51 1300 545.597 65.45 53.55 0 950.365 
3 0 17.8 254.726 174.637 -297.163 1300 514.373 48.95 40.05 0 870.743 
4 0 30 361.653 221.518 -460.172 1267 443.614 82.5 67.5 0 937.423 
5 0 40.8 414.188 237.608 -524.597 1300 593.614 112.2 91.8 0 1087.61 
6 0 36 323.533 196.258 -381.792 1300 742.245 99 81 0 1089.23 
7 27.25 48 306.486 171.782 -343.518 1281.28 738.294 132 108 43.6 1333.69 
8 62.5 52 415.671 220.092 -525.264 1249.36 824.594 143 117 100 1644.35 
9 85 52 525.403 251.958 -686.36 1200.58 951.681 143 117 136 1849.71 

10 97.5 60 586.587 299.977 -804.064 1108.57 1022.77 165 135 156 1996.64 
11 117 58 679.297 239.99 -860.287 1273.12 1100 159.5 130.5 187.2 2210.77 
12 117.5 62 50 35 -42.5 1300 1100 170.5 139.5 188 6013.17 
13 115.2 58 160 95 -212.25 1300 1100 159.5 130.5 184.4 5117.44 
14 125 54 270 155 -388 1300 1100 148.5 121.5 200 4578.74 
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15 117.5 57 380 215 -541.5 1300 1100 156.7 128.2 188 3292.23 
16 87.5 59.6 490 275 -672.1 1300 1100 163.9 134.1 140 2479.06 
17 65 66 595.339 225.629 -696.968 1300 1087.18 181.5 148.5 104 1901 
18 47.5 70 487.431 165.993 -506.925 1179.85 1100 192.5 157.5 76 1739.42 
19 10 80 538.497 225.87 -584.367 1234.84 1055.91 220 180 16 1575.61 
20 0 90 559.58 218.383 -606.964 1300 1049.52 247.5 202.5 0 1597.16 
21 0 84 613.757 255.815 -719.572 1300 1040.74 231 189 0 1571.41 
22 0 78 503.757 205.277 -574.035 1292.11 1062.41 214.5 175.5 0 1509.71 
23 0 72 412.696 152.745 -442.441 1186.35 915.991 198 162 0 1351.21 
24 0 44 346.57 97.7466 -320.316 1001.35 1054.68 121 99 0 1132.18 

After these two units turned back on again and the rest of the units increased their generation as much as they could, 
there is still a power shortage in the grid. In order to restore the balance between generation and consumption, HMGCC 
has to cut off 781.92 kW of loads. Grid’s hourly load shedding (LS) in all three scenarios is available in Table 8. As can 
be seen from the results, due to the non-optimal operation of the DGs and failure to supply loads (ENS penalty cost), the 
operation cost of the grid has greatly increased. For instance, according to table 3 and table 4, in the 12th hour, when an 
attack with 65% severity has been carried out, the cost of the system has increased to 6682.41$ comparing to the case that 
no attack has been carried out. Also as shown in the results, in addition to the time of the attack, the system will be damaged 
both economically and socially in the next hours. 

Table 6: output power and hourly cost of units when attack with 65% severity has been carried out (Islanded mode) 
Time  PV1 WT1 MT1 Fuel AC-DC MT2 MT3 WT2 WT3 PV2 Hourly 

cell Converter cost 
1 0 23.8 269.296 287.289 -424.385 1300 403.379 65.45 53.55 0 890.561 
2 0 23.8 364.29 231.42 -469.51 1300 545.597 65.45 53.55 0 950.365 
3 0 17.8 254.726 174.637 -297.163 1300 514.373 48.95 40.05 0 870.743 
4 0 30 361.653 221.518 -460.172 1267 443.619 82.5 67.5 0 937.423 
5 0 40.8 414.188 237.608 -524.597 1300 593.614 112.2 91.8 0 1087.61 
6 0 36 323.533 196.258 -381.792 1300 742.245 99 81 0 1089.23 
7 27.25 48 306.486 171.782 -343.518 1281.28 738.294 132 108 43.6 1333.69 
8 62.5 52 415.671 220.092 -525.264 1249.36 824.594 143 117 100 1644.35 
9 85 52 525.403 251.958 -686.361 1200.58 951.681 143 117 136 1849.71 

10 97.5 60 586.587 299.977 -804.064 1108.57 1022.77 165 135 156 1996.64 
11 117 58 679.297 239.99 -860.287 1273.12 1100 159.5 130.5 187.2 2210.77 
12 117.5 62 700 299.99 -957.49 1300 90 170.5 139.5 188 6682.41 
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13 115.2 58 700 300 -957.25 1300 240 159.5 130.5 184.4 5863.18 
14 125 54 700 300 -963 1300 390 148.5 121.5 200 5391.67 
15 117.5 57 700 300 -946.5 1300 540 156.7 128.2 188 4149.19 
16 87.5 59.6 700 300 -907.1 1300 690 163.9 134.1 140 3364.4 
17 65 66 700 300 -876 1300 840 181.5 148.5 104 2271.47 
18 47.5 70 597.431 240 -690.931 1117.15 990 192.5 157.5 76 1707.11 
19 10 80 538.497 225.87 -584.364 1234.84 1055.91 220 180 16 1575.61 
20 0 90 559.58 218.383 -606.964 1300 1049.52 247.5 202.5 0 1597.16 
21 0 84 613.757 255.815 -719.572 1300 1040.74 231 189 0 1571.41 
22 0 78 503.757 205.277 -574.035 1292.11 1062.41 214.5 175.5 0 1509.71 
23 0 72 412.696 152.745 -442.441 1186.35 915.992 198 162 0 1351.21 
24 0 44 346.57 97.7466 -320.316 1001.35 1054.68 121 99 0 1132.18 

Table 7: output power and hourly cost of units (Grid-connected mode) 
Time  PV1 WT1 MT1 Fuel AC-DC MT2 MT3 WT2 WT3 PV2 Hourly 

cell Converter cost 
1 0 23.8 50 35 47.2 0 0 65.45 53.55 0 680.1259 
2 0 23.8 0 0 126.2 0 0 65.45 53.55 0 704.6611 
3 0 17.8 0 0 132.2 0 0 48.95 40.05 0 429.8804 
4 0 30 50.3447 0 72.65531 0 0 82.5 67.5 0 564.6907 
5 0 40.8 50 0 77.2 185 150 112.2 91.8 0 776.8465 
6 0 36 158.507 60 -80.5071 337.286 286.536 99 81 0 1004.389 
7 27.25 48 268.507 120 -253.757 522.286 426.512 132 108 43.6 1213.097 
8 62.5 52 378.507 180 -448.007 707.286 576.305 143 117 100 1569.593 
9 85 52 488.319 240 -637.319 892.286 726.305 143 117 136 1898.961 

10 97.5 60 597.824 299.07 -814.394 1077.16 875.693 165 135 156 2094.948 
11 117 58 553.831 296.196 -791.027 1261.94 1022.33 159.5 130.5 187.2 2199.036 
12 117.5 62 533.935 236.196 -727.631 1300 1100 170.5 139.5 188 2261.439 
13 115.2 58 622.446 291.652 -871.348 1143.71 1100 159.5 130.5 184.4 2223.685 
14 125 54 698.473 240.879 -902.352 1152.41 1099.83 148.5 121.5 200 2263.273 
15 117.5 57 643.79 198.035 -788.325 1300 953.814 156.7 128.2 188 2203.602 
16 87.5 59.6 590.732 138.035 -635.867 1300 1100 163.9 134.1 140 1982.149 
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17 65 66 640.343 198.035 -714.378 1122.91 956.32 181.5 148.5 104 2065.795 
18 47.5 70 698.424 138.035 -689.958 943.338 814.947 192.5 157.5 76 1769.06 
19 10 80 632.277 180.255 -632.532 762.397 872.295 220 180 16 1462.595 
20 0 90 700 240.255 -769.255 694.025 726.353 247.5 202.5 0 1583.322 
21 0 84 700 300.255 -850.255 524.041 576.353 231 189 0 1580.967 
22 0 78 700 243.163 -808.163 339.041 458.344 214.5 175.5 0 1528.648 
23 0 72 590 183.163 -650.163 157.453 320.029 198 162 0 1303.25 
24 0 44 480.86 139.452 -496.312 0 214.603 121 99 0 989.4464 

Table 8: hourly load shedding of the grid due to attacks 
Time (Hour) 9 10 11 12 13 14 15 16 17 18 
35% scenario  0 0 0 528.87 412.95 350.1 149.48 72.181 0 0 
 50% scenario 0 0 0 781.92 604.96 483.28 226.21 94.548 0 0 
 65% scenario  0 0 0 959.36 792.44 678.93 425.4 294.16 86.315 0 

5.1.2 Grid-Connected Mode 
In the islanding mode, when a hacker increases the measured data of RESs, based on units’ production cost and upstream 

grid market price in the twelfth hour, HMGCC decides to reduce the power generation of DGs and also reduce the power 
received from the upstream grid. At this moment, the upstream grid (bus 1) acts as a slack bus, and by increasing the power 
injected to the HMG does not allow the frequency to be changed. On the other hand, the HMGCC, which observes an 
increase in the power received from the upstream grid, orders DGs to increase their power production again to prevent the 
economic loss caused via the purchase of expensive power from the upstream grid. Therefore, due to the negligence of the 
dynamic effect of DIA on the operation of the HMG, it can be concluded that this type of attack does not affect the 
performance of the grid-connected HMGs in the steady-state. Table 7 presents the hourly cost and output power of units 
in grid-connected mode. 
5.2  SHT based DIA detection method efficiency evaluation 

In this part, the performance and efficiency of the suggested SHT based DIA detection method is examined in a case 
study. To this end, a scenario is considered in such a way that the received data (i.e. the measured output power that is 
received in the HMGCC) related to the first PV unit (i.e. PV1) in the test system is hacked. In this scenario, the adversary 
penetrates to the system in the 5th hour of the day and hacks the measured output power of the PV1. The hacked data are 
generated using a random uniform distribution in such a way that their deviation from the corresponding forecasted value 
is in the range [0.08*Pijf, 0.2*Pijf]. Note that, since the errors higher than 0.2*P ijf are directly considered as the cyber-attack 
and are not imported to the detection method, data with a deviation of more than 0.2*P ijf are not generated. Complete data 
related to the forecasted values and hacked data of the case study can be found in Table 9. In order to detect DIA on the 
measured output power of the PV1, an SHT based detection agent with parameters P1i=0.95, P0i=0.1, αi=0.01, and βi=0.02 
is considered. According to (7), the upper and lower thresholds are ln(U i)=4.5850 and ln(Li)=-3.9020 respectively. Note 
that in the process after a decision is made, the value of the probability ratio becomes zero. As it can be seen from Table 
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9, in the fourth hour, the probability ratio is lower than the lower threshold and the null hypothesis is accepted. In the next 
hour wherein the data is hacked, the value of ln(P1=0.95/P0=0.1)=2.25 is added to the preceding probability ratio (which 
is zero after a decision is made in the previous hour). But since the probability ratio has not reached one of the thresholds, 
no decision has been made. This process is repeated until at the 7th hour the probability ratio passes the upper threshold, 
and the model detects the attack.  
6  CONCLUSION 

The secure operation of electrical power grids is very critical to the economy and security of the nations. However, the 
integration of intelligent technologies applied in modern power systems makes these systems vulnerable to cyber-attacks. 
DIA can damage the management and operation of HMGs by misleading the HMGCC to dispatch the units based on false 
data. This can result in not only increasing the operation cost of the grid by making DGs operate in the non-optimal point 
but also can force HMGCC to cut-off loads. Therefore, in addition to causing economic damages, this kind of attack can 
also damage social welfare. To address this problem, this paper proposed an efficient detection method based on SHT to 
detect such attacks. The performance and sensitivity of this method analyzed in detail. The simulation result on a practical 
HMG constructed based on IEEE standard system, revealed that DIA on RESs, unlike the grid-connected mode, which 
does not have much effects on the system, in the islanded-mode can have destructive effects. The bottom line is that grid’s 

security must be guaranteed to achieve a reliable, efficient, and stable system. As the future work, the proposed method 
can be combined with machine learning algorithms like convolutional neural network or long short term memory. Also the 
proposed method can be utilized for loads’ smart meters for detection purposes. The proposed method can be extended to 
detect even other types of attacks like identity-based cyber-attacks. However, there are several limitations associated with 
the proposed methodology specifically its vulnerability to stealthy long term attacks and false positive alarm in the event 
of sudden unusual load changes. 

Table 9 performance of the proposed method on a case study 
Hour Forecasted Hacked Probability ratio Decision 

  value data   vs thresholds   
1 29.75 29.75 Ln(Li)<-2.89<ln(Ui) No decision 
2 29.75 29.75 -5.78<ln(Li) No attack 
3 22.25 22.25 Ln(Li)<-2.89<ln(Ui) No decision 
4 37.5 37.5 -5.78<ln(Li) No attack 
5 51 55.7517 Ln(Li)<+2.25<ln(Ui) No decision 
6 45 53.7102 Ln(Li)<+4.50<ln(Ui) No decision 
7 60 53.0285 Ln(Ui)<6.75 Attack 
8 65 73.3235 Ln(Li)<+2.25<ln(Ui) - 
9 65 56.8597 Ln(Li)<+4.50<ln(Ui) - 
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