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REPRESENTATIONS OF CLOSED QUADRATIC FORMS
ASSOCIATED WITH STIELTJES AND INVERSE STIELTJES
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Dedicated to our friend and colleague Vladimir Derkach on the occasion of his seventieth birthday

ABSTRACT. In this paper holomorphic families of linear relations that belong to the
Stieltjes or inverse Stieltjes class are studied. It is shown that in their domain of
holomorphy C\ Ry the values of Stieltjes and inverse Stieltjes families are, up to a
rotation, maximal sectorial. This leads to a study of the associated closed sesquilinear
forms and their representations. In particular, it is shown that the Stieltjes and
inverse Stieltjes holomorphic families of linear relations are of type (B) in the sense of
Kato. These results are proved by using linear fractional transforms which connect
these families to holomorphic functions that belong to a combined Nevanlinna-Schur
class and a key tool then relies on a specific structure of contractive operators.

Posrisimarorbes rostomopdHi ciMm’l JIiHIMHUX BiJHOIIEHD, SKi HAJIEXKATH J10 KJIACy
CrinTheca Ta obeprenoro kiaacy Crinrbeca. [Tokasano, mo B TxHii obaacTi rosoMopd-
wmocti C \ Ry 3HaueHHs nux ciMeil €, 3 TouHiCTIO N0 0GEpPTaHHS, MAKCHMAJILHUAMHE
CEeKTOpiaJIbHUMU. [3 MM NOB’s13aHe JOCJIIPKEHHS BIAMOBIIHUX 3aMKHEHUX MIBTOPa-
ninifinnx GopM Ta IXHIX IpeCcTaB/IeHb. 30KpeMa, IOKa3aHO, IO CTIITHECIBCHKI Ta
obepHeHi CTiNTheCiBebKi rosloMopdHi ciM’T iHIRHEX BiIHOIIEHb HaseXaTh 10 Tuiy (B)
y cenci Karo. [loBemenns 6a3yeTbcs Ha BUKOPUCTAHHI APOOOBO-IIHIHHAX II€PETBOPEHD,
K1 TIEpeBOIATh po3riisayBaHi ciM’l B rosiomopdui dyskiil kiacy Hesauninau-Illypa,
IICJIS YO0 BUKOPHUCTOBYETHCH CIEIiaIbHI CTPYKTYPHU OIIEPATOPiB CTHUCKY.

1. INTRODUCTION

The main objective of the present paper is a further study of Stieltjes and inverse
Stieltjes operator-valued functions, or more generally, Stieltjes and inverse Stieltjes
holomorphic families of linear relations (L.r. for short), see [6]. Elements in these classes
are Nevanlinna functions [1, 3, 14, 18, 27, 32, 33, 42] or, more generally, Nevanlinna
families [24, 30, 37, 36, 40] which admit holomorphic continuation to the negative semi-axis
R_. Recall, cf. e.g. [14, 24], that a family of L.r.’s M()\), A € C\R, in a Hilbert space 9t
is called a Nevanlinna family if:

(1) M(X) is maximal dissipative for every A € C; (resp. accumulative for every
A e CL); (2) M(A)* = M(N), A € C\R; (3) for some, and hence for all, u € C,(C_) the
operator family (M(X) + p)~1(€ [9M]) is holomorphic for all A € C(C_).

The class of all Nevanlinna families in a Hilbert space 9 is denoted by R(9). Each
Nevanlinna family M admits the decomposition

M) = My(\) @& Mg, Moo = {0} x mul M(N). (1.1)

to the constant multi-valued part M., and the operator part M(A) (a Nevanlinna family
of densely defined operators in 9t © mul M(A), A € C\R).

Stieltjes and inverse Stieltjes families are particular type of Nevanlinna families being
defined as follows.
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Definition 1.1. [6]. A family of L.r.’s M(X) in a Hilbert space 9 defined on an open
connected set A € C\ Ry is said to be a Stieltjes family (respectively, inverse Stieltjes
family) if it is a Nevanlinna family for A € C\R and, moreover,

(1) for all z < 0 the L.r.’s M(z) are selfadjoint and nonnegative (respectively, non-
positive),

(2) the family M(\) is holomorphic on R_, i.e., for any z < 0 and for some ¢ €
p(M(z)) (and hence for all £ € p(M(z))) the resolvent (M(X) — &I)~" exists
and is holomorphic in A from a neighborhood of z, depending on &.

In what follows the classes of all Stieltjes and inverse Stieltjes families in a Hilbert
space 9 are denoted by S(MM) and SV (M), respectively.

The following statements are equivalent, cf. [33, 6],

(i) M()) is a Stieltjes (an inverse Stieltjes) family,
(i) —M(A71) is an inverse Stieltjes (respectively, a Stieltjes) family,

(iii) —M(A)~!is an inverse Stieltjes (respectively, a Stieltjes) family,

(iv) AM(X) /ATIM(N) is an inverse Stieltjes (respectively, a Stieltjes) family.

In our paper [6] Stieltjes and inverse Stieltjes families were connected to operator-valued
holomorphic functions defined on the domain C \ {(—o0, —1] U [1,00)}. More precisely
it was shown that there are one-to-one correspondences given by a linear fractional
transformation of functions and their variables between the classes of Stieltjes/inverse
Stieltjes families in the Hilbert space 91 and operator-valued functions from the combined
Nevanlinna-Schur class RS(9M) (being recently studied in [5]); see Lemma 2.8 below.

Let us briefly describe the main results in the present paper.

(1) We prove that an arbitrary Stieltjes/inverse Stieltjes family M()) is a holomorphic
family of the type (B) [35] (Theorem 5.1), i.e., M()) is maximal sectorial l.r. with vertex
at the origin and an acute semi-angle in each point A € C\ Ry, the domain DM (A)] = D
of the associated closed form does not depend on A € C\ R, and the quadratic form
M(N)[u] is holomorphic for A € C\ R, for every u € D.

(2) Let 9t and R be Hilbert spaces and let Z be a closed not necessarily densely defined
linear operator on 9. Moreover, let A be a nonnegative selfadjoint l.r. on & and let
V € B(9M, R) be a contraction. Then the holomorphic closed sesquilinear sectorial form

aMu, 0] = ((Lm F (L NVHA =AD"V Zu, Zv)m, u,v € domZ, A € C\R,
defines by the first representation theorem [35] a Stieltjes family in 9 of the form
Q(\) = Z* (Im +(1+NVH(A- M)*lv) z, (1.2)
while the holomorphic closed sesquilinear sectorial form
~ —1
r(\)[u,v] := —q(A\71) = ((—Im -1+ Hvr (A - )\_1]) V) Zu,Zv) )
m
u,v €dom Z, A € C\ R,
defines by the first representation theorem an inverse Stieltjes family in 9t of the form
~ —1
R(\) = Z* (—Im —(1+A v (A - /\‘1[) V) Z. (1.3)

Here Z* is the adjoint Lr., which is an operator if and only if Z is densely defined.

The converse statements are also true: if Q is a Stieltjes (R is an inverse Stieltjes
family) in 91, then there exist an auxiliary Hilbert space K, a closed not necessarily
densely defined linear operator Z in 20, a nonnegative selfadjoint l.r. Ain R, and a
contraction V' € B(91, &) such that the associated closed form Q(A)[-, -] (R(A)[,-]) takes
the form g(A)[-, -] (r(A)[,]), see Proposition 4.8, Theorem 5.1.
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(3) From the above representations we derive, in Theorem 5.4, integral representations
of Stieltjes and inverse Stieltjes B(9)-valued functions similar to the scalar case [33].

(4) Existence of strong resolvent limits at —0 and —oo is proved for any Stieltjes
(inverse Stieltjes) family and their properties are established (Proposition 6.3).

(5) Examples of Stieltjes (inverse Stieltjes) families Q(\) possessing the property

dom Q(A\) Ndom Q (1) = {0}, VA p e C\RL, A #pu

are constructed.

We systematically use the properties of l.r.’s established in [2, 19, 20, 30, 41], relation-
ships given by the linear fractional transformations between selfadjoint contractions and
nonnegative l.r.’s and their resolvents, transfer functions of selfadjoint passive system and
Stieltjes (inverse Stieltjes) families.

Let us mention that in [3, 4, 10, 7, 34, 37, 36, 38, 40] the results related to the
representations of certain classes of operator-valued Nevanlinna functions (Nevanlinna
families) as compressed resolvents of selfadjoint exit space extensions were obtained.
Realizations of some subclasses of Stieltjes and inverse Stieltjes matrix-valued functions
as the impedance functions of singular L-systems have been considered in [3, 17, 48].

On the other hand, Stieltjes and inverse Stieltjes functions whose values are unbounded
operators often appear in the analysis of partial differential operators, for instance, when
considering Laplace operators on bounded (or unbounded) domains 2 C R™ with a smooth
or non-smooth boundary. A well-known object in their study is the (A-dependent) Dirichlet-
to-Neumann map D()\). After a sign change one gets the map —D(\), which in the case
of a smooth boundary, is actually an inverse Stieltjes function on the boundary space
L?(09), whose values are unbounded operators with a constant domain not depending
on A. The inverse function D(\)~! is a Stieltjes function, whose values are compact
operators on L?(9Q); cf. [15] and 23, Proposition 7.6]. When considering in this setting
the so-called Krein Laplacian (associated with the Krein-von Neumann extension of the
underlying minimal operator), which involves so-called regularized trace mappings, one
obtains a Stieltjes function, whose values are unbounded operators. Moreover, it is shown
in [23, Proposition 7.15], [29, Theorem 3.12] that when the boundary gets very irregular
the inverse function D(A\)~! can become even multivalued in which case D(\)~! is a
domain invariant Stieltjes family.

Notations. Throughout this paper separable Hilbert spaces over the field C of complex
numbers are considered. The symbols dom T, ranT', ker T, mul T" stand for the domain,
the range, the null-subspace, and the multivalued part of a linear relation 7. The closures
of domT, ranT are denoted by dom T, Tan T, respectively. The identity operator in a
Hilbert space ) is denoted by I and sometimes by I. If £ is a subspace, i.e., a closed
linear subset of §), the orthogonal projection in §) onto £ is denoted by Pg. The notation
T N means the restriction of a linear operator T to the set A/ C domT. The resolvent
set of a L.r. T is denoted by p(T) and s-R-lim means the strong resolvent limit of linear
relations [35, Chapter 8, §1], [14, Chapter 1]. The linear space of bounded operators acting
between the Hilbert spaces $ and R is denoted by B($), &) and the Banach algebra B($), £)
by B(£). For a contraction T € B($), ) the defect operator (I — T*T)2 is denoted by
Dr and ®p := tan Dy. For defect operators one has the commutation relations from
[47] TDT = .DT*T‘7 T*DT* = DTT*

2. PRELIMINARIES

2.1. Sectorial linear relations. Let A = {{f, f'}} be a linear relation (l.r.) in the
Hilbert space $) with the inner product (-,-). Then

W(A)={(f".f): fedomA, |[f||=1}
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is called the numerical range of A. A l.r. A is called (a) accretive if W(A) is contained
in the closed right half-plane Re A > 0, (b) m-accretive if it is accretive and has no
accretive extensions in £); see [35, 41] (equivalently: the resolvent set p(A) contains the
left half-plane/ the adjoint L.r. A* is accretive). Moreover, A is said to be sectorial with
vertex at the origin and the semi-angle a € [0,7/2) if

W(A) C{zeC: |argz| < a} =: S(a).

Clearly, a sectorial l.r. is accretive; it is called mazimal sectorial, or m-a-sectorial for
short, if it is m-accretive.

Each m — accretive (respectively, m — a-sectorial L.r.) A can be represented as follows
[41]: A = Gr(A4s) ® {0, mul A}, where A, is the operator part of A acting on the subspace
Homul A and Gr(4s) = {{f, Asf}, f € dom A, = dom A}. Observe, in particular, that
the case av = 0 corresponds to the class of nonnegative L.r. A > 0.

Let -t<a<pf<mp—-—a<nw IfAisalr.,

W(A)C{zeC: a<argz <},
and A has regular points outside the above sector, then A also will said to be m-sectorial.
Note that
Wi(exp—i(8+a)A) C{C: |argz| < (8 —a)/2} = S((8 — a)/2),
ie., the lr. A, 5 :=exp—i(f+ o)A is m — (8 — «)/2-sectorial. A similar definition can
be given for sectorial sesquilinear forms. A sectorial form a is called closed, see [35] if

lim f, = fand lim a[f, — fin] =0for {f,} C doma
n—oo m,n— oo
= f €doma, lim a[f — f,] =0.
n—oo
There is a one-to-one correspondence between closed sectorial forms 7 with vertex at the
origin and m-sectorial l.r.’s A (the first representation theorem [35]):

dom A = {u € dom7 :3p such that afu,v] = (¢,v)Vv € doma},
A={u,o+ (HSdoma)}.

In what follows the closed sesquilinear form associated with an m-sectorial l.r. A is
denoted by A[,-] and its domain by D[A]. The form A[,-] is the closure of the form [41]

alf,g9] == (f",9) = (Asf,9), {f, '}, {9.9'} € A.

2.2. Linear fractional transformations of sectorial linear relations.

Definition 2.1. [8]. Let a € (0,7/2) and let T be a linear operator in the Hilbert space
H defined on H. If
[|Tsina+icosaly|| <1, (2.4)

then we say that T belongs to the class Cy(«).

The condition (2.4) is equivalent to
2|m (T'f, f)| < tana(||f]]* = |ITfI[*), f € domT. (2.5)

Therefore, if T' € Cy (), then T is a contraction. Due to (2.5) it is natural to consider
selfadjoint contractions in H as operators of the class Cy(0). In view of (2.5) one can
write that Cx(0) = (] Cg(«).
ae(0,m/2)
Analogously, set C(«a) := {2 € C: |zsina + icosa| < 1}. If « = 0, then C(0) = [-1,1].
For a l.r. A consider the following linear fractional transformation (the Cayley trans-
form):

C(A) =T +2(A+ D)7 ={f+ . f = F}:{f. f} e A}. (2.6)
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Clearly, C(C(A)) = A and, moreover, domC(A) =ran (I + A) and ranC(A) =ran (I — A).
The transformation (2.6) establishes a one-to-one correspondence between m — a-sectorial
lLr’s in H and the class Cy(e). In addition, T € Cy(«) if and only if the bounded
operator (I —T*)(I+1T) is a sectorial operator with vertex at the origin and the semiangle

a; see [9]. Note, that properties of operators of the class Cy = U Cu(a) were
a€l0,m/2)
studied in [8, 9].
Let A be an m — a-sectorial L.r. in $). Then the closed sectorial form Afu,v] associated
with A can be described as follows. Let T' = C(A). Then T € Cy and hence the operators
Iy £ T are m-sectorial (bounded) operators. It follows that

Iy + T = (I + Tr)* (I +iG)(I + Tr)*,
where Tr = (T 4+ T™)/2 is the real part of T, G is a bounded selfadjoint operator in the
subspace tan (I + Tr)?, and I is the identity operator in tan (I + Tg) 2.
Proposition 2.2. [3, Proposition 9.5.1], [4, Proposition 2.2]. The closed sectorial form
associated with an m-sectorial l.r. A is given by
D[A] = ran (I + Tg)?,
Afuyv] = =(u,0) +2 (1 +3G) ™M (I + Tr) ™ Hu, (I + Tr) 2o

where (I + Tr)!"2) is the Moore—Penrose pseudo-inverse, and u,v € D[A].

Notice that if ' = C(4) = —I + 2(I + A)~!, then (A+I)~! = 1 (T + 1) and the
resolvents are connected by the following identities

(A= M)t =—1k (I+ TEo (T— }jrif)_l) , A€Ep(A)\ {1},

y 2.7)
— (A_)\[)_lzﬁ(T—f‘I)(I—%) ;A€ p(A)\ {1}

2.3. Operator-valued functions of the class RS(M).

Definition 2.3. [5]. Let 91 be a separable Hilbert space. A B(91)-valued Nevanlinna
function 2 holomorphic on C\ {(—o0, —=1]U[1, +00)} is said to belong to the class RS(M)
(combined Nevanlinna-Schur class) if —I < Q(x) < for z € (—1,1).

If Q € RS(OM) then according to [11, Theorem 5.1, Proposition 5.6] (see also [5])
there exists (up to unitary equivalence) a unique minimal passive selfadjoint system
_J|ID C
|t F|
relation holds:

Q2) = (2) =D+ 20(I — 2F)~'C*, 2 € C\ {(—o00, —1] U1, 4+00)}.

T M, M, R » whose transfer function coincides with Q(z), i.e., the following

p ¢ W M
Moreover, if T'= | -, : @ — @ is the selfadjoint contraction corresponding
c* F Q q

to the system 7, then due to the Schur-Frobenius formula for the resolvent of a block
operator matrix one has

Po(I — 2T) 7'M = (Iop — 2Q,(2)), 2€C\ {(—o00, 1] U1, 400)}.

Note that because 7 is a passive discrete-time system, its transfer function €2, belongs
to the Schur class [12], i.e. ||Q2-(2)|| <1 for all z in the unit disk D.

D C . .. .
o F} 90T, O, ﬁ} is called minimal if

span {F"C*M, n e NU{0}} =M o R

Recall that a selfadjoint passive system 7 =
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The latter is equivalent to the fact that the operator T" acting in $ = MM D K is M-minimal.
It follows from the definition that if Q@ € RS(9M), then strong limit values Q(+£1) exist, see
[9]. Observe, that if Q2 € RS(9M), then because it is a Schur class operator-valued function
and also a Nevanlinna function on the domain C\ {(—o0, —1]U[1,400)} it admits the
following block operator representation for all z € C \ {(—o0, —1] U [1,400)},

ker (I — Q(0)) ker (I — Q(0))

I 0 0 @ =)
Qz)=1(0 =TI 0 |: ker(I+9Q(0)) — ker(I+9(0)) , (2.8)
0 0 wl)| @ ®
Dao) Dao)

where wg belongs to the class RS(Dq(g)) and ker D, o) = {0}.
The class RS(9M) can be characterized also as follows.

Theorem 2.4. [5, Theorem 4.1]. Let Q be an operator-valued Nevanlinna function defined
on the domain C\ {(—oo0,—1]U[1,+00)}. Then the following statements are equivalent:

(i) Q belongs to the class RS(M);
(ii) Q satisfies the inequality

I-Q"(2)Qz) — (1 - |z|2)Im?Q(ZZ) >0, Imz#0; (2.9)
(iii) the kernel
K(zw) = T — O (w)Q(z) — t‘ff; (Q(z) — 0" (w) (2.10)

s nonnegative on the domains
C\{(=00,—-1JU[1,00)}, Imz >0 and C\ {(—o0,—1]U[l,00)}, Imz < 0.

Observe that the operator (z) belongs to the class &m when z € D. More precisely
from (2.9) we get

|Tm z|
1122

2 [Im (Q(2)h, h)| < 2 (||h||2 - \|Q(z)h||2) Vh € M, ¥z € D.

This means that

2|1
O(z) € Cop(a,) where a, = arctan <1|H|IZ||2> , 2 €D. (2.11)
— |z

Let $, &, M, and N be Hilbert spaces. The following well-known result gives a
parametrization of all contractive block operators acting from $ & 9% into K& ® M.

m N

Proposition 2.5. [13, 21, 45]. The operator matrix T = bc D d = @ isa
BFl g ¢

contraction if and only if D € B(O,N) is a contraction and the entries B, C, F take the
form

B=NDp, C=Dp.G, F=-ND*G+ Dy-LDg,

where the operators N € B(Dp,R), G € B(L,Dp+) and L € B(Dg,Dn+) are contrac-
tions. Moreover, the operators N, G, and L are uniquely determined by T .

Remark 2.6. If 1= M and £ = &, then T € B(M @ RK) is a selfadjoint contraction if
andonly if D=D* B=C*, G=N*,L=1L".

All the statements in the next lemma follow from Proposition 2.5 and Remark 2.6.
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D C m m
Lemma 2.7. (1) Let T = | 5, : @ — @& be a selfadjoint contraction with
c* F
R R
entries parameterized as follows
C*=NDp, C=DpN*, F=—-NDN"* + Dn+XDp-~, (2.12)

where N : ®p — R is a contraction and X is a selfadjoint contraction in ® n~. Define

F':=F+ N(I+ D)N* = NN* 4+ Dy-XDy-,
F":=F—N(I - D)N* = —NN* + Dy-XDy-.

Then F', F" are selfadjoint contractions in & such that F' — F" = 2NN*.
(2) Let

B(z) = F +20*(I — 2D)"'C, z€ C\ {(~00,—1]U[l,+00)}.
Then the following identities hold:
F'=B(1):=s— li%rllB(:zc)7 F" = B(-1) := lim B(x).

(2.13)

xzl—1
(8) Define
Y4 (z):=2(I+ D)2 N*(I — 2F)"*NPgy, (I + D)z,
Y _(z):=2( —D)2N*(I — 2F)"*NPgy (I — D)z, (2.14)
z€C\{(—o0,-1]UL,+00)}
Then

(I —%4(2)) " = I+ 2(I + D)2 N*(I — zF") NPy, (I + D)2,
(I + 2_(2)) " = Ion — 2(I = D)2 N*(I — 2zF")"'NPg (I — D)=,
z2€ C\ {(—00,—1]U[1,400)}.

(4) If W(z) =1+ zDN* (I s Fj;) N, then

W(z)"'=1-2DN*(I-2F)"'N, z¢€C\{(~o0,—1]UJl,+00)}.

2.4. The class RS(9) and Stieltjes and inverse Stieltjes families. The next state-
ment is established in [6, Lemma 3.2]. It gives relationships between holomorphic operator-
valued functions from the combined Nevanlinna-Schur class RS (), see Definition 2.3,
and Stieltjes and inverse Stieltjes families of l.r.’s in the Hilbert space 9.

Lemma 2.8. [6] Let 2 € RS(M). Then for all X € C\ Ry,

Q) =-I+2(Iym—Q g) - 2.15)
{(ma (=) G a ()] nem)
is a Stieltjes family and
RO =1-2(Im+2 (1) -
({0 () (o () )i} nem) O

is an tnverse Stieltjes family.
Conversely, if Q(\) is a Stieltjes family (resp., R(X) is an inverse Stieltjes family) in
M, then there exists a function Q € RS(IM) such that (2.15) (resp., (2.16)) holds.
Furthermore, the functions Q in (2.15) and R in (2.16) are connected by R = —Q~*

and thus Q € S(M) if and only if —Q~' € SCH(IM).
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3. SECTORIALNESS OF STIELTJES AND INVERSE STIELTJES FAMILIES
Let Q(\) be a Stieltjes family in 9. Then by Lemma 2.8 there is Q(z) € RS(M) such

that
Q(A):—I+2(I Q(ii))

Clearly mul Q()\) = ker (I — ©(0)) = M & dom Q(—1). Moreover, using (1.1) and (2.8),
we see that Q(\) = Qs(\) @ Qu, where Qo = {0} x ker (I — £2(0)),and Q4(A) is an
operator-valued function from the Stieltjes class S(dom Q(—1)). If {f, f'} € Q()) then
for the quadratic form (f’, f) we use the expressions

QIS = (', f) = (N, ).
Similarly for an inverse Stieltjes family R(A) on 90t the representation (2.16) in Lemma 2.8
and (2.8) show that mul R(\) = ker (I+(0)) = MSdom R(—1) and R(\) = Rs(\) DR,
where Roo = {0} x ker (I + 2(0)), and R4()) is an operator-valued function from the
inverse Stieltjes class SV (dom R(—1)). Moreover, for the quadratic form one has

RNf] = (", f) = (RN, £), ], £} e RW).
Recall that S(«) stands for the sector S(a) ;= {X € C: |arg\| < a}, a € [0,7/2).
Theorem 3.1. Let Q(X\) be a Nevanlinna family in the Hilbert space 9 which is holo-
morphic on C\ Ry. Then the following assertions are equivalent:
(i) Q(A) is a Stieltjes family;
(ii) the following inequality holds

Re Q(N)[f] + Tm | A| IIm Q(A\)[f]] >0, f € dom Q(\), Im A # 0;

(iii) AQ(A) is a Nevanlinna family in 9.
Furthermore, a Stieltjes family Q(\), A € C\ Ry, in the Hilbert space MM admits the

following properties:
If arg \ € [—m,m), then

Re\ < 0= [Im Q\)[f]| < B A Re Q(\)[f] Vf € dom Q(N)
<~ W(Q(N\)) C S(m — |arg A|);

ReA=0=ReQ\)[f] 2 0Vf € dom Q(\) <= Q(\) is an m-accretive l.r.;

{ ImA > 0= W (exp(—i(m — | arg A))/2)Q(N)) € §(T=LareAly,
ReA >0

ImA < 0= W (exp(i(r — |arg A|)/2)Q(N)) C S(Z=L2reAl),
In particular, if € [0,7/2), then
arg\ € [t — 3,7+ ] = W(Q(X)) C S(p),
arg A € [B,m/2] (8 #0) = W(Q(N) C {€ € C:arg¢ € [0,m — 5]},
arg A € [-7/2, =] (B # 0) = W(Q(N)) C {{ € C:argf € [r + f,2n]}.
Proof. First the equivalence of assertions (i) — (iii) is shown.
(i) <= (ii) Denote z = 1, A € C\R,. Then equivalently z € C\ ((—o0, —1] U [1, 00))

and one has | |2 Ro
1—|z 2Re
T Im X # 0. (3.17)

By Lemma 2.8 Q()) is given by the transform (2.15) for some Q € RS(9M), in fact,

Q2) = {(Tx + Q) b, (U(N) — Tam) b} : h €M}, Azzli-
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Therefore, {f, f'} € Q(\) precisely when {g,¢'} == {f + f',f — f} € Q(z). Since
llgll? +1lg’'I? = 4Re (f’, f) and Im (g¢’, g) = 2Im (f’, f) we conclude from Theorem 2.4 that
the inequality (2.9) with {g, ¢’} € Q(z) is equivalent to

Re A
Im A\

Im (f', f)

Since Q(A) is a Nevanlinna family, one has ——=—= > 0. This proves the claim.
m
(i) <= (iii) Let {f, f'} € Q(X\). Then equivalently {f, A\f'} € AQ(\) and

Re (f', f) + Im (f, f) > 0.

Im (Af', f) = Re A Im (f, f) + Im A Re (f', f).

Therefore the inequality in (ii) means that M(\) ;= AQ(\) is dissipative for A € C; and
accumulative for A € C_. Since Q()) is a Nevanlinna family, one has M(\)* = M(})),
A € C\R. Moreover, Q(A) is maximal dissipative for A € C4, i.e., ran (Q(X\) + p) = 9 for
some, equivalently for all, 4 € C4 and (Q(\)+u)~! is holomorphic as a function of A € C.
Then also ran (M(A)+Ap) = Aran (Q(A\)+p) = M and (M(A)+Ap) "L = A7H(Q(A) +pu) 1
is holomorphic at A, when p is chosen such that 0 < argp < m — arg A. One concludes
that M(A\) = AQ()) is a Nevanlinna family if and only if Q(\) satisfies the inequality in
(ii). Hence, the equivalence of (i) — (iii) is shown.

Now the remaining assertions can be easily proved. The statements with Re A < 0 and
Re A = 0 are clear from the inequality in (ii).

Assume that ReA > 0. Since Q(A) and AQ()) are Nevanlinna families one has
Im (Q(AN)f, f) = 0 and Im (A Q(N\)[f]) > 0 for all f € dom Q(\) when Im A > 0. In this
case 0 < arg Q(A)[f] + arg A < 7 or, equivalently,

T —arg A . T —arg \

ST g exp(—i(r — arg N 2@ < TR,

where 0 < arg A < 7/2. Similarly, if ImA < 0 then —7 < arg Q(N\)[f] + arg A < 0 or,
equivalently,

T — |arg A . T — |arg A
ST BEA g (expir — Jarg A2 0 [f]) < T 2B AL
where —7/2 < arg A < 0. This gives the assertions for Re A > 0.
The last three implications concerning the numerical range of Q(\) are clear. O

Theorem 3.2. Let R(\) be a Nevanlinna family in the Hilbert space M which is holo-
morphic on C\ Ry. Then the following assertions are equivalent:

(i) R(A) is an inverse Stieltjes family;
(ii) holds the inequality
Re A

ReR(V(f] ~ 1o ImRO[f] <0

= Re (CRO) + 2 i (“RO)] = 0, f € domR(N), Tm A # 0;

* i

(iii) A™*R(N) is @ Nevanlinna family in 9.

Furthermore, an inverse Stieltjes family R(X), A € C\ Ry, in the Hilbert space 9 admits
the following properties:
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If arg \ € [—m,7), then
ReA < 0= [Im (~ROW)[f))] < B A Re (~R(N)[f]) Vf € domR(\)

< W(=R(N)) C S(m —|arg A|);

ReA=0= Re(—-R(\N)[f]) 2 0Vf € domR(\) <= —R(\) s an m-accretive l.r.;
{ ImA > 0= W (exp(—i(m + |arg A[)/2)R(N\)) € S(Z=L2xEAl),

Re A > 0,

ImA < 0 = W (exp(i(m + |arg A[)/2)R(N)) C S(Z=l2redly,
In particular, if 8 € [0,7/2), then

argA € [r— B, m+ Bl = W(R(\) C{{€C:arg) € [r—f,7+p]},
arg A € [8,7/2] (B #0) = W(R(}N)) C {{ € C:arg¢ € 8,7},
arg A € [-m/2, =] (B #0) = W(R(A)) c {{ € C:arg{ € [-m,—f]}.

Proof. Since the proof is similar to the proof of Theorem 3.1 only the main steps are
pointed out here.

Using formula (2.16) in Lemma 2.8 it is seen that {f, f'} € —R(\) precisely when
{9.9'y = {f + ['.f = f'} € Q(2). Since ||g]]> + [|¢|* = 4Re(f', f) and Im (¢, g) =
—2Im (f’, f) we conclude from Theorem 2.4 and the formula 3.17 that the inequality (2.9)
with {g,¢'} € Q(z) is equivalent to

, Re A ,
Re(f',f) = pos I (1) 20,
ie.,

Re (~R(\)[f]) — % Im (~R(\)[f]) >0, fedomR()\), ImA # 0.

This yields the equivalence (i) <= (ii).
On the other hand, with {f, f'} € R(A) one has {f,A\"1f'} € A"1R(\) and

Im (A1 f, f) =Im (A(f', f)) = ReXIm (f", f) —ImA Re(f', f),
or, equivalently,
Im (AT'"R(N)[f]) = ReAImR(N)[f] —ImAReR(N)[f], f € domR(\), Im\ # 0.

Therefore the inequality in (ii) means that A™1R()) is dissipative for A € C, and
accumulative for A € C_, which then yields the equivalence (ii) <= (iii).
As to the remaining assertions, observe that for Im A > 0 one has 0 < arg R(\)[f] < =
and
0 < arg (\IROV[f]) = arg ROS] — arg A <,
for all f € domR(\) or, equivalently,

—m+arg A <arg(—R(N)[f]) <0. (3.18)
Similarly Im A < 0 one has —m < arg R(A)[f] <0, —7 < arg R(N)[f] —argA <0, and

0 <arg(—R(A)[f]) < 7 —|argAl. (3.19)
All the statements in the second part of the theorem follow from the inequalities in (ii),
(3.18), and (3.19). O

Remark 3.3. For Stieltjes and inverse Stieltjes families another proof of the equivalence
(i) <= (iii) in Theorems 3.1 and 3.2 is given in [6]. For scalar Stieltjes and inverse
Stieltjes functions the corresponding equivalences can be found in [33].

Let Q be a Stieltjes family and let R be an inverse Stieltjes family. Theorem 3.1 and
Theorem 3.2 show that
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(1) for any A = rexp(iv)), ¥ = 7 £ «, where a € [0,7/2), the families Q(\) and
—R(A) are maximal sectorial l.r.’s with vertex at the origin and the semi-angle «;
(2) if A = rexp(iy)), where ¢ € (0,7/2], then

arg(Q)[f]) € [0,m —¢] Vf € dom Q(A) \ {0},
arg(=R(N[g]) € [¢ —m,0] Vg € dom R(A) \ {0};

(3) if A = rexp(itp), where ¢ € [-7/2,0), then

arg(QN)[f]) € [-¢ —m,0] Vf € dom Q(A) \ {0},
arg(—R(N)[g]) € [0,7 + ] Vg € dom R()) \ {0}.

Thus, for an arbitrary A € C\ R there exists a real number ¢, such that exp(igy)Q(A)
(respect. exp(ipx)R(A)) is a maximal sectorial Lr. with vertex at the origin and an acute
semi-angle. Therefore, every Stieltjes family Q(\) and inverse Stieltjes family R(\) on
M determines a unique (in general nondensely defined) closed sectorial form (up to a
rotation) via the closure of

QNI gl = (f9) = (Q:(Nf.9), (£, {9,9'} € QW),
and

RS0l = (1 9) = (RaWNf.g),  {f: £ g 9} € RO,
respectively. By the first representation theorem this leads a one-to-one correspondence
between the closed forms Q(A)[f, g] and the representing Lr.’s Q(\) € S(M), A € C\ R,.
Similarly there is a one-to-one correspondence between the closed forms R(\)[f, g] and
the representing l.r.’s R(\) € g(_l)(ﬁﬁ). In Section 5 we prove that Stieltjes and inverse

Stieltjes holomorphic families of 1.r.’s form holomorphic families of the type (B) in sense
of Kato [35].

4. CONSTRUCTIONS OF STIELTJES AND INVERSE STIELTJES FAMILIES

In this section we give some explicit constructions of Stieltjes and inverse Stieltjes
families. In the first subsection the case of operator functions whose values are bounded
operators on a Hilbert space 91 is considered. These results are used in second subsection
to construct Stieltjes and inverse Stieltjes functions whose values are unbounded operators
or, more generally, l.r.’s in 91. In the last subsection special behavior of these functions
in the unbounded case is pointed out by means of an example. The constructions given
in this section are shown to be of general nature in Section 5.

4.1. Stieltjes/inverse Stieltjes functions with values in B(91).

Proposition 4.1. Let MM and R be Hilbert spaces. Assume that selfadjoint contractions
F', F" in R, and the operator N € B(IM, R) are connected by the relation

F' — F" = 2NN*. (4.20)
Then the following identities hold for all z € C\ {(—o0, —1]U[1,+00)}:

—1
- (Im +22N* (I — 2F) 7! N) = I +2:N* (Ig — 2F") "' N, (4.21)

—1

F 4+ F" - _
) N| =Iyn+zN*(Iz—2zF) "N (4.22)

IngN*<[ﬁZ B

Moreover, the operator-valued function
F/ + F//

-1
- ) N, z€C\{(-oco,~1U[l,+00)},  (4.23)

Qo(z) := zN"* (Iﬁ —z
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belongs to the class RS(OM) and for all z € C\ {(—o0, —1]U[1,400)} one has

(I +9Q0(2) (I —Q0(2)) " = Iop +22N* (Iqg — 2F') "' N,

(Qo(z) = I) (I +Q(2)) " = —Ion + 22N* (I — zF") " N. (4.24)

Proof. From (4.20) it follows that the block operator matrix

0 N* m m
F'+F'\: & — &
2 R R
is a selfadjoint contraction. Therefore, the discrete-time system
0 N*
To = N F'+F"| ;MM R
2

is passive selfadjoint. Its transfer function g is of the form (4.23). In addition Q¢ (0) = 0,
therefore, ||Q0(2)] < |#| for |z] <1, z # £1, and thus Qy € RS(M). Using (4.20), the
identities (4.21) and (4.22) can be verified by straightforward calculations. The equalities
in (4.24) follow from (4.21) and (4.22). O

Remark 4.2. Let D be a selfadjoint contraction in 9. Then due to (4.20) the block
operator matrix
D DpN*
T= F'+ F"
NDp —NDN*+ T
is a selfadjoint contraction in MM & & and 7 = {T;9M, M, K} is a passive selfadjoint
discrete-time system. Using Lemma 2.7, item 4) (with F = —NDN* + (F' 4+ F")/2), one
obtains for the corresponding transfer function €2, the so-called Mdbius representation

(ct. [44])
0, (2) = Q(0) + Dao)0(2) (I + Q20)Q0(2)) ™ Do), 2 € C\{(—00,~1JU[1,00)}.

Proposition 4.3. Let 9 and K be Hilbert spaces.
(1) Assume that F' is a selfadjoint contraction in & and that N' € B(IMM,K). Then
the B(OM)-valued function

14 A 1+A .\
Mo1(N) ::Im—l—Qli—i)\N’* (Iﬁ—li_)\F’> N, XeC\R; (4.25)
belongs to the Stieltjes class if and only if
Ig+F >2N'N'™. (4.26)

(2) Assume that F" is a selfadjoint contraction in & and that N” € B(O, R). Then
the B(9M)-valued function

1+ T+x .\ "
MOQ()\) = —Igm +2 %Nﬁ* <Iﬁ - 1_—’_)\FH> N”, reC \ R (427)
belongs to the inverse Stieltjes class if and only if
Igs—F'">2N"N", (4.28)

(3) Let the selfadjoint contractions F' and F" in & and the operator N € B(IM, &) be
connected by the relation
F'— F" = 2NN™. (4.29)
Then with N' = N” = N one has My € S(M), Moz € S~H(M) and, moreover,
Mop2(A) = —Mm()\)_l forall X € C \ R+.
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In addition, for each A € C\ Ry there are positive constants co1(A), co2(N) such that
the following inequalities hold:

[(Mor(NF, £l = conWIFIP, [(Moz(A)f, ) = coa(NfII? VS € 9. (4.30)

Proof. First observe that if a selfadjoint contraction F’ (respect., F”') in £ and a contrac-
tion N € B(M, R) satisfy the inequality Ig+F’ > 2N N* (respect., [g—F" > 2N N*), then
the contraction F”' := F' —2NN* (respect., F/ = F"" + 2N N*) satisfies Ig — F" > 2NN*
(respect., Ig + F' > 2N N*). Therefore, it is sufficient to prove the statement (3).

Suppose that (4.29) is valid. Then by Proposition 4.1 the function €y given by (4.23)
belongs to the class RS(MM). Using (4.24) it is seen that

= (90 (1)) (1m0 (1))
Mos(N) = (QO(”’\)—Im) (Im+§20(1“)) L AE€C\R,.

Since Qy € RS(M), from Lemma 2.8 one concludes that Moy, is from the Stieltjes class
and M is from the inverse Stieltjes class.

Conversely, the operator-valued function My; is holomorphic on C\ Ry and it is
a Nevanlinna function. Hence it is non-decreasing on (—o0,0). Using the following
well-known relation for nonnegative selfadjoint operator B in a Hilbert space $), cf. [39],

lim ((B — yI)*Ig,g) = {

y10

(4.31)

HB[_%]gHQ, g € ran Bz,

400, geﬁ\ranB%,

it is seen that lim (Mo () f, f) exists for all f € 9 if and only if ran N C ran (F+Ig)?.
xr|—0o0

If this is the case, then

Jim (Mor(2)f, £) = If1° = 201(F + L) TN f|[? vf € .

Hence,

Ilﬁn@ (Mor(z)f, f) >0 forall fedM\{0}

= 2(F +I)UENFI? <||fI[> forall fem\ {0}
s F'+1Ig3>2N'N"*.
For each A € C\ R, one has Mo (\), My (A) € B(OM). If Re A < 0, then by Theorem

3.1 the operator My;(A) is bounded sectorial and has bounded inverse. It follows that
the operators Re Mo1(\), —Re M2(\) are positive definite. Hence for all f € 9

[(Mor(N)f, /)l = b1(A), Re (Mor(N)f, f) = cor (V][ £,

[(Moz(A)f, ) = b2(A), [Re (Moa(A)f, )l = coa(V]I£]1*.

Thus, (4.30) is valid for Re A < 0.

If ReA >0, A ¢ R, then there is ¢ € R such that exp(ip)Mgo(A) is m-sectorial and
m-accretive. Therefore, one can use the same arguments and thus the inequalities in
(4.30) hold for such A, too. 0

Observe that if (4.26) and (4.28) are valid, then it follows from Lemma 2.8, the
representations (2.15), (2.16), (4.31), and the property (2.10) of the functions from the
class RS(9N) that the operator-valued functions of two variables

Mo1(A) + Mo1 (i )+f\\—_ﬂl<M01( ) — Mm(ﬁ)), Apue€C\Ry, p#A
Kor(A, p) =

dM i
2Mo1 () +2%(), p=Xx\AeC\R;
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and
At i i ,
g | Moz(d) = Moz(p) | = Moz(A) = Moa(p), A€ CA\Ry, i # A
_ — [
KOQ(/\MU/) - dM ()\)
2/\%7 2Moa(N), p=X, A€ C\ R,

are nonnegative kernels on the domain C \ Ry ; cf. Theorems 3.1, 3.2.
Using the Cayley transforms A’ = C(F’), A” = C(F"), the expressions (4.25) and
(4.27) for the Nevanlinna families Mg; and Moz can be rewritten as follows

Mor(A) = I + (1 + A)N™ <I+ (1+XN)(A — )\I)1>N/’
Moz(A) = —Ion + (1 + \)N"* (I—i— (14 \)(A” — /\I)_1>N”.

In terms of A’ and A” inequalities (4.26) and (4.28) take the form (I + A’)~t > N'N'*
and

I—(I+A") P> N'N"™ = (I+ (A1)t > N'N",
respectively. In particular, if N = N” = N and the equality
(A +I)'—(A"+1)"' =NN*
holds, then
Moa(A) = =M1 (M) "1 VA € C\ R,

Observe that one can easily prove that the inequality (I + A’)~! > N'N'* is equivalent
to the conditions

ran N' C dom (A')2, [[(A")2 N'f|[2 +[|N'fI]> < |If|* Vf € &
while the inequality (I + (A”)~1)~1 > N”N"* is equivalent to
ran N” C ran (A”)7, [[(A")"ZN"f|* + [N f|[> < ||fI[* Vf € &

Proposition 4.4. Let 9 and R be Hilbert spaces. Assume that Aisa nonnegative
selfadjoint relation in R and V € B(IM, R) is a contraction. Moreover, let F = C(A) =
—Iq+2(Ig + A)~! be the Cayley transform of A. Then the B(IM)-valued function

Qv (V) i=Im+ (L+ NV*(A - M)V

s 5 1+a (4.32)
:DV—FEV Iﬁ_ﬁF V;AEC\RJM
belongs to the Stieltjes class §(£m) Therefore, the operator-valued function
Ray V) == 0Qzy W) =—Im— 1+ NV*AA-Ig)'V
(4.33)

1
=D} + AV (In+ H3F) v, AeC\Ry

belongs to the inverse Stieltjes class S~L(OM). In addition, one has égv (1) = I,
R.&V (—1) = —Iyy.
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The inverse Stieltjes class function _(éﬁv (A\)~! takes the form

o —1
~(Qay W) = —Im+ V" (135 La— (Ia+ F)D.)  (Ie+ F)V )
~ —1 .
= I+ (1+A)V* (A—)\Iﬁ+(1+)\)VV*> V, AeC\R,.
Proof. Define

1 1 ~ _1
N=—Ig+F)2V =Ug+A)"2V.

Since V' is a contraction one has
Iq+ F > 2NN* < (I + A)~! > NN*.
Hence by Proposition 4.3 the operator-valued function

A 1+ A
M0,1()—Im+21+>\]\[*([ —1+)\F> N, XeC\Ry,,

belongs to Stieltjes class S(9M). By substituting the formula for N one obtains
Moi(\) = Iy + 22V (1 - “”\F) (I+F)V
1
— D2 4+ 2 V* (Iﬁ — 1R F) v (4.35)
=Qiy (), A€C\Ry.
On the other hand, (2.7) shows that

1-X 1-X
which yields the first formula in (4.32):

-~ 1 1+ )" -~
(A—/\Iﬁ)_lz (Iﬁ_ + F) (Iﬁ—‘rF), )\Ep(A)7

Qiy W) =Im + (1L + NV (A AV, AeC\R,.

The formulas in (4.33) are obtained directly from (4.32).
It remains to prove (4.34). To see this introduce the operator

G:=F—2NN*=F — (Ia+ F):VV*(Ig+ F)? = (Ia + F): D¥.(Ix + F)? — Iy.

Then G is a selfadjoint contraction. Taking into account that the function z = % maps

the domain C\ R, onto the domain C\ {(—o0, —1]U[1, 00)} an application of the equality
(4.21) with a straightforward calculation leads to
o 1
~(Qzy W)+ Iy = 2 HA N7 ([ _1+)\G) N
1 1 -1

= Ly, +F§( i(IﬁJrF) D%,*(IﬁJrF)f—I«?) (Is+ F)3V

= LR p(], +F%( By Iﬁ+F) D%/*(IQ+F)%>_ (Is+ F)V

= 1B (- B s +F)D}. ) (I + F)V

=LAy (Iq - M(Iﬁ +F)D2.) " (Ia + Qv

=1+ NV (Iﬁ — (14N (Ia + A)*lD%,*> (Is+ A~V

=1+ NV* (2—A1R+(1+A)VV*) V, A€ C\R,,

where we have used the identity P(I — QP)~! = (I — PQ)~!P which holds whenever one
of the inverses exists. O
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Corollary 4.5. Let the functions éﬁv and 7022‘/ be given by (4.32) and (4.33), re-

spectively. Then for each A € C\ Ry there are positive numbers co(N) and do(N\) such

that

‘(ég,v (w,f)‘ > oIS [(Ray WS F)| 2 doIFIP ¥r e m. (4.36)

Corollary 4.6. Let A be a nonnegative selfadjoint relation in & and let V€ B(IM, R) be
a contraction. Let A, be the operator part of A and let P, be the orthogonal projection

onto the subspace R,=Ro mul//l\(: dom A\O) Denote by P, the orthogonal projection in
& onto Tan Ay. Then the B(9N)-valued Stieltjes class function ég v (4.32) takes the form

Qiy W) =Im—V*BY +V* ((I +A,) (A, ~ Mﬁo)—lﬁo) V, A€ C\R;.
The B(9M)-valued inverse Stieltjes function
Risy V) =—Tm— (L NV A — L)'V, A€ C\ Ry
can be rewritten as follows
Risy=—Im+ V' PrV+

Ko

AVPBLV + VA (I + A,) ((ﬁo AL )T - (I + Eo)—l) BV

Proof. From (4.32) for each A € C\ Ry one gets
Qiy (N) = I + (1 + V(A= Ag) "1V
= I+ V" (Po+ P+ (14 N)(A, = M) 'R V = VY
— I~ V*P,V + V* ((Iﬁo v A)A, - AIRO)—lpo) V.
So, we got (4.37).
Next observe that
(Ig =AYV = Ig + MA = M)~ = A,(A, — M ) "' Py + P
= A (A, — AL )"\ P, + P,
This leads to

Riay V) =T — (1L + NV OA — 1) 'V

(4.37)

(4.38)

(4.39)

=~ + (1 )V (Ia + MA = M) ™)V = —Jon + V' PV + AV PV

+ L+ NV A (A, = A )PPV
= I+ V*PLV + A\V* PV

o

+(L+ NV A (I + A)(Ap — N5 )M (I + A) ' P, V
= —Im+V*PV + A\V*PV

+V* Ao(I, + Ao) (Ao = Mz )™ = (I, + A0)7)

[e]

P, V.

O
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Remark 4.7. Given a selfadjoint contraction F' in £ and a contraction V' € B(I, &)

1
one can define the operator N = —(Iz — F)2. By Proposition 4.3 the formula (4.27)

V2
shows that
—1
~ 2 1+ A
Then
-1
~ 2 1+ A
S(Dﬁ)B—MoQ(Ail):D%—FmV* <I_ﬁ+1_)\F> V, Xe C\ R,
and
3 1 ) > 20\
S(m)a—(Moz()\)) =Igm+V (IQ—F)D *_mlﬁ (Iﬁ—F)‘/, )\G(C\R+

So, if F' is replaced by —F' (equivalently A= C(F) is replaced by A1l= C(—F)) in (4.32),
(4.33) and (4.34), then in fact

Qi 1y (N) ==Moe(A), 7033_1)‘, (A) = Mo2(A),

—Qz1y W)= Moea(A)) T VAEC\Ry.

4.2. Stieltjes/inverse Stieltjes functions whose values are unbounded opera-
tors/l.r.’s in B(9). Recall from [35] that: 1) a family V() of closed linear operators or
L.r.’s defined on a domain IT C C, is called holomorphic of the type(A) in I if dom V(A) = D
(does not depend on A € II) and the vector-function V() f is holomorphic on II for each
f € D: 2) afamily V(\), A € II of m-sectorial L.r.’s is called holomorphic of the type(B)
in IT if D[V(X)] = D (domain of the closed associated form does not depend on A € 1)
and V(M)[f, g] is a holomorphic scalar function for every f,g € D.

Proposition 4.8. Let F' be a selfadjoint contraction in the Hilbert space R, let A= C(F)

and let V€ B(IM, R) be a contraction. Let é,&v and 7022 v be given by (4.32) and (4.33).
Assume that Z is a closed (not necessary densely defined) linear operator in 9. Then for
each A € C\ Ry the sesquilinear forms

31,5 (NIfrgl = (égy N Zg) ,

_ o (4.40)
RivzWNf.g]= (R&V (N2f, Zg) , f,g€domZ

are closed and sectorial. Besides, @XVO‘) [f,g] and ﬁgv(/\)[ﬁ g] are holomorphic on
C\ Ry forall f,g € dom Z. The associated l.1.’s @g v.z(A) and ﬁgvz(/\) are given by

dom @27‘/72(/\) = {f € dom Z :éﬁ,v NZf e domZ*},

Qivz(NF = 2" Qi WZS, f € domQ() (4.41)
domR 3y z(A) ={f €domZ: Ro(A)Zf € dom Z*},
RiyzNf=2"Rz, (VESf, f€domR(N).

Thus, @K,V,Z and ﬁﬁ,v,z form holomorphic families of the type (B). Moreover, @sz

is a Stieltjes family, while ﬁﬁvz is an inverse Stieltjes family.
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Proof. The bounded operator-valued function é iv (A) belongs to the Stieltjes class. It
follows that é 1v (M) are bounded sectorial operators for each A € C\R; see Theorem 3.1.

Let us show that the form ég v (M[f, g] with the domain D[ég v (A)] = dom Z is closed
in M. If {f,} C dom Z and

nh_{gofn =f, n)}yilrl)loo ‘ (éﬁ,v N Z(fn = fm), Z2(fa — fm)>‘ =0,

then (4.36) in Corollary 4.5 shows that limy, oo [|Z2(fr — fm)|| = 0. Because Z is a
closed operator, one has

fedomZ, lim Zf,=2Zf.
n—oo

Now the boundedness of é 1y (A) yields

dm (Qay W2 - £ 200~ ) =0, T Q5 (IA] =25, LA
Thus, the sesquilinear form @2 v.z(N)[ ] given by (4.40) is closed in 9. By the first
representation theorem [35], [41] the associated l.r. is given by (4.41).

Similar proof can be given for R3 |, . g

4.3. An example of a special type of Stieltjes/inverse Stieltjes function/family.
Here we construct an example of a Stieltjes/inverse Stieltjes family Q in 9t such that

dom Q(A\) Ndom Q(u) = {0}, VA, i, A # p.

This next example is analogous to [22, Example 4.4], where the existence of Nevanlinna
functions F'(A), A € C\R, whose values are densely defined unbounded operators on a
Hilbert space H such that

dom F(A\) Ndom F(u) = {0}, VYA#u, \,ueC\R,
while the function F'()) is form domain invariant in the sense that the form
1

tpoy(u,v] == P [(F(MNu,v) = (u, F(A\)v)], u,v € dom F(X), (4.42)
is closable and the closure has a constant domain in H.
Example 4.9. Assume 97 is an infinite-dimensional separable Hilbert space. LetA A be
tlle zero-operator in an auxiliary infinite-dimensional Hilbert space &, i.e., dom A = &,
Af =0 for all f € R Then for an arbitrary contraction V'€ B(9, 8) the B(9)-valued
function Qo1 (A, V,A) = Iy + (1 + A)V*(A — AI)~1V takes the form

Q01(0,V,\) = I + (1 + AN)(=A"HV*V = Ly — A+ D)V*V.
The function Qy; (0, V, A) belongs to S(90), on the domain C\ R, and Qo (0, V, —1) = Iy.
Now suppose ran V*V #£ 9, ker V' = {0}. Then the range of the operator V*V is a dense
linear manifold in M. Due to the von Neumann theorem [31] one can find a bounded
nonnegative selfadjoint operator X such that ker X = {0}, ran X Nran V*V = {0}. Set
Z:= X! and let

(N =290 (0,V,)Z =Z (Im— (AN '+ 1)V*V) Z,
dom Q;(A) = {f €dom Z : (Ion — (A '+ 1)V*V) Zf edom Z} ,A € C\ R,.
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Then dom Q1 (A) is dense in i for all A € C\R,. Due to the condition dom ZNran V*V =
{0} we get that dom Q;(\) Ndom Z2 = {0} for all A\ € C\ R;. Let A1, A2 € C\ Ry, A, .
Suppose f € dom Q;(A) Ndom Q(p). Then

(I — A+ D)VV) 2f, (Im — (™" + 1)V*V) Zf € dom Z.
It follows that

(Im = A"+ )VV)Z2f = (Im— (" +1)V*V) Zf €dom Z
= VVZfedmZ < V'VZferanX = Zf=0= f=0.

Thus, dom Q1 (\) Ndom Q1 (1) = {0}. Observe that dom Z2 = dom Q;(—1).

Set Q5(\) := —Q1(A~1). Then Q, € S~1(M) and, clearly, dom Q5(\) N dom Qs () =
{0} for all distinct A\, u € C\ R;.

Arguing similarly, we get that if ran V* Nran Z = {0} (£ is unbounded selfadjoint
operator), then for an arbitrary A the corresponding Stieltjes and inverse Stieltjes families

O\ =2 (Im F(1+NVHA - /\I)—lv) z,
Q(\)=Z (-Izm -1+ Hvr (E— )\‘1]>71 V> Z.

possess the properties

dom Q1 (A\) Ndom Q1 (1) = {0}, dom Q2(A) Ndom Q2() = {0},
forall \,u € C\ Ry, X\ # p.

Form domain invariant Nevanlinna functions have been introduced and studied exten-
sively in [26, 22, 28, 29|, see also [23]. It is interesting to note that in [23, Example 6.7] (or
[29, Example 2.7]) it is shown that there are Stieltjes and inverse Stieltjes functions whose
imaginary parts as defined in (4.42) need not be form domain invariant, while according
to Theorem 5.1 (as proved in the next section) the closed sectorial forms associated with
these functions themselves have a constant domain.

5. CLOSED SESQUILINEAR FORMS ASSOCIATED WITH STIELTJES AND INVERSE
STIELTJES FAMILIES

The next theorem is the main result in this section.

Theorem 5.1. (1) If a family belongs to Stieltjes/inverse Stieltjes class, then it is a
holomorphic family of type (B) in the sense of [35].

(2) Let Q(\) be a Stieltjes family in 9. Then there exist a Hilbert space &, a
nonnegative selfadjoint relation A’ in &, a contraction N' € B(O, &), and a closed
linear operator X in M with dom X = D[Q(—1)] such that (I + A")~1 > N'N’* and for
all u,v € dom &,

Q) [u,v] = (T + (L + AN (I 4+ (1+AN) (A = AI)7Y) N') Xu, Xv).
Therefore there is a contraction V' € B(IMM, &) such that for all A € C\ Ry,

O\ [u,v] = ((Im + 1+ ANVH(A - /\Ig)lV') Xu, Xv), u,v € D[Q(—1)]. (5.43)

(8) Let R(X\) be an inverse Stieltjes family in 9. Then there exist a Hilbert space K,
a nonnegative selfadjoint relation A” in R, a contraction N € B(9M, &), and a closed
linear operator Y in I with domY = D[R(—1)] such that (I + A”)~1 > N"N"* and for
all h,g € dom Y,

ROy g] = (=T + (1+ NN (I + (1+ A)(A” — XI)~1) N") Vh, Vg) .



122 YU. M. ARLINSKIT AND S. HASSI

Therefore there is a contraction V" € B(OM, R") such that for all X € C\ Ry,
RON)[h, g] = <<—Im F (LAY (I — )\(A”)_l)_lV”> Vh, yg>, h,g € DIR(-1)].

(4) If R(\) = —Q(A)~! then one can choose & := f; = Ry and N := N’ = N" such
that

NN* = (I + A1 —(I+ A"~

Proof. First the case of a Stieltjes family Q(\) is considered.
By Lemma 2.8 there is 2(z) € RS(9M) such that

1))
14

Denote z = 5. We proceed by constructing a more explicit representation for I — Q(z)

by rewriting (z
Qz) =D+ 20(I — 2F)"*C*, 2 € C\ {(~00, —1]U[1,+0)},
D C
c* F|’
and the state space K. Then the entries of the selfadjoint contraction
p ¢ M M

T=ler p|m @ 7 @

R R

take the form (2.12). Note that D = Q(0). It follows that for all z € C\ {(—o0,—1] U
(L. +o0)}

) as a transfer function

of a passive selfadjoint system 7 = o, I, ﬁ} with input-output space 9

I-D—2C(I - zF)~1C*
—(I-D)} (1 — 2(I+ D) N*(I — 2F)"'NPy, (I + D)%) (I - D)}
— (1= Q(0))} (I - 24 (2))(I - Q0))2,

where £ (z) = 2(I + D)2 N*(I — 2F) NPy (I + D)2 is defined in (2.14).
Let a selfadjoint contraction F” be defined as in (2.13), i.e.,

F'=NN*+ DnN-XDpy-.

By Lemma 2.7 the bounded inverse (I — ¥, (z))~! for all z € C\ {(—o0,—1] U [1,+00)}
is given by

(I-%4(2)) ' =I+2I+D):N*(I—2F")"'NPg,(I+D)>. (5.45)

Suppose ReA < 0. Then |z] < 1 and €(z) is a contraction, 2(z)* = Q(2), Q(z)

is selfadjoint contraction for all x € (—1,1). Moreover, the operator €2(z) belongs
2|Im z|

arctan -2 see (2.11). Therefore, the bounded
operator I — §2(z) and the Lr. (I — Q(2))~! are m — a.-sectorial. By Proposition 2.2
the domain D[(I — (z))~!] of the closed form associated with (I — €(z))~! coincides
with ran (I — Re Q(z))2. Since I — Re(z) is harmonic function, the Harnack inequalities
yields the equality (see [43]):

to the class Con(c), o

ran (I — ReQ(2))"/2 = ran (I — Q(0))"/2, z € D. (5.46)



STIELTJES AND INVERSE STIELTJES FAMILIES 123

Thus we have the equality D[Q(N\)] = D[Q(-1)], Re A < 0. From the above expressions of
I —Q(z) it follows that the bounded operators I — ¥, (z) and (I — ¥, (z))~! are sectorial
and

(1= Q)1 ) = (=24 () 7 (- Q)7 (T - 0(0)27).
feran(I —Q(z)) = dom Q(N).

Now rewrite

w= (I - Q(0) (I - 2(0)~Ha,

llul > = (I = 2(0))(I = Q(0) 2w, (I - 2(0)21w),

and denote

X = (I+9Q(0)%(I —Q(0)~2
Then it follows from (5.44), (5.45), and Proposition 4.8 that the closed quadratic form
QJ] associated with Q(\) admits the expression

O\ [u] = <<I—2N* (F’— % ) N) XuJ(u) , u € domX =D[Q(—1)].

Let the nonnegative selfadjoint l.r. A’ = —I + 2(I + F')~! be the Cayley transform of
F’. Then N = (A’ + I)~2 V"’ for some contraction V’ € B(9, &) and the expression for
Q(M)[u] can be rewritten as follows

Q) [u] = ((Iom + (L + AV (A" = Xg)"'V') Xu, Xu), u € dom X, ReA < 0.

Thus, Q(N)[,, ] is of the form @K,V,ZO‘)["'] given by (4.40); see also (4.32), (4.35),
Proposition 4.8. Besides, the function Q(A)[f, g] is holomorphic on C\ R, . This means
that Q(A) is a holomorphic family of type (B

By means of the transform R(A\) = —Q (A™!) one concludes that also inverse Stieltjes
families are holomorphic families of type (B). Thus, assertion (1) is proven and we have
representations of Q(\)[u,v], u,v € dom X = D[Q(—1)], in the statement (2).

Similarly, using the representation

= 1 1+ A
RN =—-Q " N)=I-2(I+Q(2)) ", z= T—w AeC\Ry

for the holomorphic inverse Stieltjes family R(A) in 9t and the contraction F” = —NN*+

Dy« XDy, one can prove that R(A) is of type (B), the sesquilinear form R[] admits

representations in the statement (3), and if R(\) = —Q(A\)~!, then the statement (4) is

valid.

This completes the proof. O

Notice that the representations for Q(X) in (1.2), R(A) (1.3), and for the corresponding
closed forms as stated in item (2) of Introduction follow from (5.43) with 2 = X =

(I +9(0))2 (I — Q(0))l-2]

Remark 5.2. Using a slightly different approach another similar type of representation for
the transformed family Q(\) = I—2 (I -Q (%)) o was constructed in [4, Theorem 4.4]
in the case that A belongs to the left open half-place, Re A < 0.

Corollary 5.3. (1) Let Q € S(I). Then the function

At fi

N%MEJ:Q@NJ+Q@NJ+A_Q

(%Mhl—Q@Nﬂ>

is a nonnegative kernel on the domain D[Q(—1)].
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(2) Let R € S~1(9M). Then the function
LOV ) = ROV + R@) ]+ b (R(A)[', 1 =R@I '])

is a nonpositive kernel on the domain D[R(—1)].

The next result, which gives integral representations for bounded operator-valued
Stieltjes and inverse Stieltjes functions, is well known in the scalar case, see [33]. In the
operator-valued case this result can be found in [14, Appendix A6]. Here it is shown how
these integral representations can be derived directly from the corresponding operator
representations in Theorem 5.1.

Theorem 5.4. (1) Every B(9M)-valued Stieltjes function Q admits an integral represen-
tation of the form

d¥o(t
Q) =Tqo +/ t_Q(/\), (5.47)
Ry
where g =T € B(M), T'g > 0, and Xo(t) is a B(IM)-valued non-decreasing function
(dx
on Ry such that Xo(0 and [ # < oo for all f € M.
Ry

(2) Every B(9M)-valued inverse Stieltjes function R admits an integral representation

of the form

1 1
R(\) =T'g + Allg + / (H - t) dYr (1), (5.48)
R
where I'g =T% € BON), I'r <0, IT;, =IIg € B(M), IIx > 0, and Lx(t) is a B(M)-
: , _ (dE= (@) f, f)
valued non-decreasing function on Ry such that ¥r(0) =0 and [ W < oo for
Ry
all f € M.

Proof. (1) By Theorem 5.1 the function Q admits the operator representation
o) = Z* (Lm +(14+ NV (A - Mﬁ)—1v> Z, e C\Ry,

where A is a nonnegative selfadjoint L.r. in some Hilbert space &, V € B, R) is a
contraction and Z € B(9M).
From Corollary 4.6 we get

O(\) = Z*(Ioy — V*B,V)Z + Z*V* ((I + A,)(A, — M5 )—1130) VZ, AeC\R,,

where A is the c operator part of A and P is the orthogonal projection onto the subspace
R, = RO mulA. Let E, (t), t € Ry, be the resolution of identity of the operator part A,
in the subspace K,. Define

t ~ —~ ~ ~

So(t) = [(1+7)d (Z*V*EO(T)POVZ) — dSo(t) = (1 +t)d (Z*V*Eo(t)POVZ) ,
0

To = Z*(Im — V*B,V)Z

This gives (5.47) with
dSo(t)f, -
Po =T% >0, /(Q()ff): B,V Zf|? Vfem.

t+1
Ry
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(2) By Theorem 5.1 and the equalities (4.38) and (4.39) one can write
R(\) = V* <—Imz —(L+AV*(AA"L - Iﬁ)—lv>y
= (VR VRV )y
+y* <V*A\O(Iﬁo + A4,) ((ﬁo — Mg )T - (I + 20)71) P, v> Y, MeC\Rg,
where ]So is the orthogonal projection in K onto mﬁo. Now define
Sr(t) = [y 7(1+1)d (y*V*Eo(T) P, Vy)
— A5 (t) = (1 + t)d <y*v*Eo(t) B, vy> :
'r =Y* (—Igm + V* (Pl + ]%,)V) Y, and lg = Y*V*P} VY.

Then I'r < 0 and Iz > 0 are selfadjoint, and

d(ZR(t)fmf) o
| SR = I B vanE v e

R

This leads to (5.48). O

6. LIMIT VALUES AT —00 AND —0

The next result easily follows from [46, Theorem 3.1, Theorem 3.2], [25, Proposition 6],
[16, Theorem 3.1] but we give an independent proof in the present special situation.

Lemma 6.1. Let H be a Hilbert space and let L(x), x € (a,b) be a function whose values
are bounded nonnegative selfadjoint operators acting on H. Suppose that

(1) L(z) is non-decreasing on (a,b),

(2) L(b) :=s— lig} L(z) exists as a bounded operator,

(3) ran Lz (x) = Ryg is constant for x € (a,b).

Then
e [ L@, fe DL ),
l £ <z>m—{+oo, R (6.49)
lim L1 (2)[f] = L (0)[f], f € Ro € DL~ (b)]. (6.50)

zTb

Proof. By assumption (1) the strong limit value L(a) exists as a bounded operator.
Clearly. L(a) < L(z) < L(b) for each z € (a,b). Hence, ran Lz (a) C Ry C ran Lz (b).
The inverses L~ (z), L~ !(a) and L~!(b) are in general nonnegative selfadjoint l.r.’s The

corresponding closed sesquilinear forms are defined on Ry, ran L%(a), and ran L%(b),
respectively. Since L(z1) < L(z2) if 21 < @2, then L™1(z1) > L™ (z2). In addition
L7Y(a) > L~ Y(z) > L71(b). Let us prove that

:?pb)rl(x)[f] <00 <= feD[L a)] =ranL?(a). (6.51)

If f € D[L™(a)], then L™ (x)[f] < L™ (a)[f] < oo. Conversely, assume that
L™ Y(z)[f] < C forall =€ (a,b) and for some f¢& DL *(z)]=Ro.
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Then there exists a sequence of numbers {z,} C (a,b) such that the sequence of vectors
{gn = Lz (,)f} converges weakly to some vector ¢ € Ry, i.e.,

lim (gn,h) = (p,h) forall heTR,y.
n— oo

L —1
Here L_%(x) = (Lf (m)) is the Moore-Penrose pseudoinverse. Since
lim L(2)h = L()h = lim L= (z)h = L (a)h

for all h, one gets

(f,h) = (L3 (x n)9n, h) =
(gn,L2( Jh) + (gn, (

It follows that f = L2 (a)ep.
Next it is shown that

lim |72 (2)L* (a)h]| = |||, h € Tam L(a).

Since ran L (a) C ran L= (x), one has
o (LA @B )P
gern  (L(z)g,9)
Then for an arbitrary € > 0 there exists g. such that

|(L%(a)h7 9:)
(L(z)ge, ge)

= ||L7% () L2 (a)h].

IL7% (2)L* (a)h|]* — < ||L7%(x) L2 (a)h||*.

Let

C:= sup ||L7=(z)L%(a)h|]*.
z€(a,b)

Then by (6.51) C < co. Since
lim |7 (@) L3 (@)hl* = sup [|L7%(2)L* (@)hP%,

z€(a,b)

we get

(L2 (@)h, gc)I?

C—-e< <C
(L(a)ge: ge
It follows that
Lz (a)h, g)|?
ger  (L(a)g,9)
Thus
lim || L7% (2)L* (a)h||* = [|A||*, h € Tam L(a).

Relation (6.49) is proved. Relation (6.50) can be proved similarly. O

Remark 6.2. If L(z) is non-increasing on (a,b) then L=!(x) is non-decreasing on (a, b)
and (6.49) and (6.50) are replaced by

gi{llL*l(w)[f] = L7 (a)[f], f € Ro € DL (a)],

o [ 'O, f € DL,
lim L 1@)“1—{ +oo,  feRy\ DL b))
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Proposition 6.3. Let Q(\) € S(OM) (respectively € STV (M) ). Then the strong resolvent
limits
s-R-limgq9 Q(x) =: Q(—0), s-R-lim lffn Q(z) =: Q(—o0)
exist and here Q(—0) and Q(—00) are nonnegative (resp., nonpositive) selfadjoint L.r.’s
in M. In addition, for Q(X) € S(IM) one has
lim Q(x)]g] = Q(-0)lgl, g € DIQ(-0)],
i Q(x)lg] = Q(—o0)[gl, g € DIQ(-1)] € D[Q(—00)].

z)]—o00
and for Q(\) € SCV(M) one has

lim Q(z)lg] = Q(-0)lgl, g € DIQ(-1)] € D[Q(-0)],

Ilffn Q(x)[g] = Q(—o0)[g], g € D[Q(—00)].

Proof. Let Q(\) € S(M) and let Q(z) € RS(IM) be as in Lemma 2.8, so that (2.15) holds.
Then the strong non-tangential limit values Q(+£1) exist and are selfadjoint contractions
such that Q(—1) < Q(y) < (1), y € (—1,1). The equality (2.15) shows that

aneori=(-a(123)

and here the values L(y) := I — Q(y) are nonnegative and non-increasing for y € (—1,1).
By Theorem 5.1 D[Q(z)], = < 0, and hence also ran (I — Q(y))2, y € (—1,1), is constant
(cf. (5.46)). Hence it follows from Lemma 6.1 and Remark 6.2, cf. also Proposition 2.2,
that

Q(—0) = s-R-lim 1% Qz) = —T+2(I -Q(1))*

and ITI% Q(x)[g] = Q(—0)[g], g € D[Q(—0)]. Similarly one has

Q(—o0) =s-R- limgclﬁnOO Qx) = —1+2(1 - Q(-1)) !

and lim Q(x){g] = Q(—c0)lgl, g € DIQ(-1)] € D[Q(~o0)].
In the case that Q(A) € S~V (M) one applies formula (2.16) in Lemma 2.8,

e -0 =3 (r+e(153))-

Here the values L(y) := I 4+ Q(y) are nonnegative, non-decreasing for y € (—1,1), and
by Theorem 5.1 the domain D[Q(x)], = < 0, thus also ran (I + Q(y))2, y € (—1,1), is
constant. Now the statements follow from Lemma 6.1 and Proposition 2.2. O

It is possible that Q(1) = I and therefore e.g. for a Stieltjes family one can have
Q(—0) = {0} x Mt; also the inclusion D[Q(—1)] C D[Q(—o0)] can be strict. Consider,
for instance, a Stieltjes function Q(A) = —A"! H, X\ # 0, where H > 0 is an unbounded
selfadjoint operator in the Hilbert space 9 with ker H = {0}. Then Q(—0) = {0} x M
with D[Q 0)] = {0} and Q(—o0) = 0, the zero operator on M, so that D[Q(N)] =
dom H? C D[Q(—o0)] = M.
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