
Ain Shams Engineering Journal 13 (2022) 101577
Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect .com
Electrical Engineering
A novel switched model predictive control of wind turbines using
artificial neural network-Markov chains prediction with load mitigation
https://doi.org/10.1016/j.asej.2021.09.004
2090-4479/� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author: Lecturer in Electrical Engineering Department, UET
Mardan Khyber Pakhtunkhwa 23200

E-mail address: maham@uetmardan.edu.pk (M. Pervez).
Mahum Pervez a,⇑, Tariq Kamal b,c,d, Luis M. Fernández-Ramírez c

aUniversity of Engineering & Technology Mardan, Pakistan
b School of Technology and Innovations, University of Vaasa, Vaasa FI-65101, Finland
cResearch Group in Electrical Technologies for Sustainable and Renewable Energy (PAIDI-TEP-023), Department of Electrical Engineering, University of Cadiz, Higher Polytechnic
School of Algeciras, Cadiz, Spain
dDepartment of Electrical and Electronics Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey

a r t i c l e i n f o
Article history:
Received 26 November 2019
Revised 23 August 2021
Accepted 7 September 2021
Available online 23 September 2021

Keywords:
Model predictive control MPC
Finite control set
Artificial neural networks-Markov chain
ANN-MC
Load mitigation
a b s t r a c t

The existing model predictive control algorithm based on continuous control using quadratic program-
ming is currently one of the most used modern control strategies applied to wind turbines. However,
heavy computational time involved and complexity in implementation are still obstructions in existing
model predictive control algorithm. Owing to this, a new switched model predictive control technique
is developed for the control of wind turbines with the ability to reduce complexity while maintaining bet-
ter efficiency. The proposed technique combines model predictive control operating on finite control set
and artificial intelligence with reinforcement techniques (Markov Chains, MC) to design a new effective
control law which allows to achieve the control objectives in different wind speed zones with minimiza-
tion of computational complexity. The proposed method is compared with the existing model predictive
control algorithm, and it has been found that the proposed algorithm is better in terms of computational
time, load mitigation, and dynamic response. The proposed research is a forward step towards refining
modern control techniques to achieve optimization in nonlinear process control using novel hybrid struc-
tures based on conventional control laws and artificial intelligence.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The current upgrowing energy demands with the aim of fossil
fuels usage minimization, worldwide trend is shifting towards
power production through renewable energy resources [1]. Wind
as a renewable energy source turns out to be one of the largest con-
tributors in the replacement of hydrocarbon fuels for electric
power generation [2]. In 2016, the total electric wind power pro-
duction capacity reached 486,790 MW resulting in improvement
of 12:6% in contrast to the forgoing year and is estimated to reach
up to 817,000 MW till year 2021 [3]. Owing to the higher demand
causing continuous increase in size of wind turbines, new chal-
lenges are emerging in development of wind turbine control
strategies as highlighted by [4]. For large wind turbines, the search
for advance control techniques to offer optimized control having
maximum energy extraction with computational efficiency is still
an ongoing effort [5–8]. In wind turbine control, traditional feed-
back controllers respond to the effects of wind fields when they
have already impacted the wind turbine. Research studies [9–11]
emphasize preview control to be more encouraging towards
improved operational performance especially in multi-MW scale
wind turbines. However, due to strictly following power curve,
excessive stress forces influence wind turbine that may result in
damped modes excitation [12]. At worst, ultimate failures of wind
turbines may result by undamped cyclic fatigue loads of stochastic
nature due to wind turbulence [13]. Studies as [14–16] suggest
that enhancement in load performance of wind turbine can be
attained by usage of preview control for power production and
load mitigation. Therefore preview control is utilized in this
research work for optimal control of wind turbines over the entire
operation region.

For performance enhancement, various advance control algo-
rithms are applied to wind turbines based on linear-quadratic-
Gaussian control (LQG) [17], fuzzy logic control [18,19], nonlinear
control [20,21], maximum power point tracking (MPPT) [22–24],
evolutionary algorithms [25], adaptive control [26,27], sliding
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Nomenclature

MC Markov Chain
MPC Model Predictive Control
LIDAR Light Detection and Ranging
ANN Artificial Neural Networks
ANN-MC Artificial Neural Network-Markov Chain
SMPC Switched Model Predictive Control
NREL National Renewable Energy Laboratory
DOF Degrees Of Freedom
FAST Fatigue Aerodynamics Structures Turbulence
NMPC Nonlinear Model Predictive Control
ANN1 first ANN for primary prediction

TPM Transition Probability Matrix
TP Transitional Probability
FNI Forward Neighbor-hood Index
BNI Backward Neighborhood Index
ANN2 second ANN for final prediction
MLP Multi-Layer Perceptron
MAPE Mean Absolute Percentage Error
TCM Transition Count Matrix
MPE Maximum Percentage Error
QF Quality Function
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mode control [28], H1 control [29] and Model Predictive Control
(MPC) [30–39]. Among these techniques, the most distinct feature
of MPC is ability to explicitly handle the imposed constraints in
optimization problem [40]. Wind turbine operation is intrinsically
constrained having hard limits on generator speed, blade pitch
rates and torque rates [41]. Explicit constraint handling of MPC
becomes particularly beneficial in gusts and shutdown conditions.
Therefore, in this work a new control technique based on MPC is
deployed for effective preview control and explicit constraint
handling.

In recent research, LIDAR (Light Detection and Ranging) is
deployed with MPC for preview control [35,42]. LIDAR for ahead
wind speed measurement has two major limitations. First, LIDAR
is an uncertain device and provides very limited information about
ahead wind speed [43–45]. Second, LIDAR has been in existence
since 1970s but its usage at each turbine plant for preview mea-
surements is hampered by its high cost [4]. Thus in this work, for
a cost efficient solution along with maintaining efficient control,
a new prediction sensor based on a hybrid model is proposed for
preview control using MPC strategy.

Artificial intelligent algorithms being significantly efficient in
very short term predictions (seconds or minutes ahead) [46–48]
can be classified into Artificial Neural Networks (ANN) or fuzzy
logic algorithms. A major limitation of fuzzy logic is its low perfor-
mance in the presence of limited samples as the case of current
scenario where confined samples are accessible through wind sen-
sor i-e anemometer. Thus ANN is preferred in present application.
However, using simple ANN for wind speed predictions create two
major problems; First, ANN alone without a statistical model
requires large number of inputs for both training and usage [49]
for capturing both short and long term dynamics of wind. Second,
twomajor causes to detroit ANN performance are [50] I) Overtrain-
ing caused through feeding large samples for capturing complete
(short and long term) wind dynamics. II) Extrapolation resulted
by estimation beyond experimental data. To eliminate these two
issues, a statistical model is required for capturing long term (min-
utes to hours ahead) wind dynamics. One of the most efficient sta-
tistical techniques based on Markov Chains (MC) is utilized to form
an effective hybrid model named ANN-MC for wind speed predic-
tions forming a new prediction sensor.

A Major limitation of MPC is that it is computation intensive
[34,39,51] due to solving optimization problem online at every
instant. As a solution to this complication, a new control strategy
based on MPC referred as Switched Model Predictive Control
(SMPC) is designed constituting an offline control strategy with a
finite control set applied to wind turbine to reduce computational
effort along with exploiting MPC benefits.

The study uses computational efficient version of MPC that is
SMPC to reduce computational burden. Also for reducing the con-
trol problem complexity, a linearized model of wind turbine is
2

deployed at a given operating point through out the operating
region. The error in prediction and the plant-model mismatch orig-
inating by the above two modifications compromises with the sys-
tem and control accuracy. Various studies [52–56] utilized several
optimization techniques for improving computational complexity
in wide applications. In order to recover with the accuracy loss
while maintaining computational efficiency, ANN-MC is used to
provide optimal benefits of improvement in energy extraction
while maintaining low computational burden on control algorithm
[57]. The same approach has been supported by [57,58] to use pre-
view control with MPC in wind turbine control for improving com-
putational efficiency while maintaining the maximum energy
extraction by control accuracy. Reference [59,60] demonstrates
the use of neural networks in MPC control to obtain computational
and time efficient control algorithms. Various recent studies[61–
63] deployed neural networks in MPC control to obtain optimal
performance.

Therefore, two major contributions are made in this work:

� Development of a new ANN-MC model using efficient training
algorithm compared to [64] based prediction sensor for preview
control to achieve the following targets.
(a) Short term wind speed predictions (for real time

optimization)
(b) Minimization of prediction errors
(c) Cost efficiency in contrast to costly LIDAR
(d) Reduction in computation time

� Proposing a new SMPC strategy consisting of an offline MPC
algorithm for driving the wind turbine [41] over entire opera-
tion region that incorporates the benefits of MPC in preview
control along with reducing computational effort.

The paper is organized as follows: Section 2 describes modeling
of wind turbine. Section 3 presents the ANN-MC prediction sensor
structure and simulated test predictions.To drive the wind turbine,
the proposed controller is presented in Section 4. Results of pro-
posed controller and traditional MPC on wind turbine are com-
pared and analyzed in Section 5. Finally, the conclusions are
drawn in Section 6.
2. Wind turbine modeling

2.1. Aeroelastic model

For simulating wind turbine dynamics a baseline onshore 5 MW
three bladed, variable speed and pitch controlled wind turbine
developed by National Renewable Energy Laboratory (NREL)
reported by [41] is considered. The aeroelastic model of the given
turbine is simulated using FAST [65] with allowed Degrees Of Free-



Table 1
Available DOFs of FAST aeroelastic wind turbine model.

DOFs name Status

First flapwise blade mode on
Second flapwise blade mode on
First edgewise blade mode on
Rotor-teeter off
Drivetrain torsional flexibility on
Generator on
Yaw off
First fore-aft tower bending mode on
Second fore-aft tower bending mode on
First side-to-side tower bending mode on
Second side-to-side tower bending mode on
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dom (DOF) as summarized in Table 1. Since FAST aeroelastic model
does not include actuator dynamics, so their respective models as
defined by (5) are also added.

2.2. Reduced nonlinear model

Complex wind turbine models such as above considered FAST
[65], FLEX5 [66] or BLADED [67] are not feasible to implement in
MPC due to complexity. Here, a simplified model of the above wind
turbine is utilized with model equations based on [30,35]. The non-
linear rotor dynamics having aerodynamic torque Tr and thrust Fr

are:

Tr ¼ 1
2
qpR3V2

r
Cp k; bð Þ

k

Fr ¼ 1
2
qpR2V2

r CT k;bð Þ ð1Þ

where Cp is power coefficient, CT is thrust coefficient, q is the den-
sity of air, R is the rotor radius, k is tip speed ratio, b is the blade
pitch angle and Vr is the relative wind speed given as:

Vr ¼ V � _Yt

with V as average wind speed over rotor disc and _Yt is the tower
fore-aft velocity. The flexible drivetrain dynamics governing drive
shaft torsion hD, rotor speedwr and generator speed wg are modeled
as [30]

hD ¼ hr � hg
n

_wr ¼ Tr

Jr
� Ds

Jr
_hD � Ks

Jr
hD

_wg ¼ � Tg

Jg
þ Ds

Jrn
_hD þ Ks

Jgn
hD ð2Þ

where Tg is generator torque, Jr is the rotor inertia, Jg is the gener-
ator inertia, n is the gearbox ratio, Ds is damping constant and Ks is
torsional stiffness of drive train. hr and hg are rotor and generator
angular displacements respectively. The electrical power output
Pg of generator represented by a nonlinear expression as [35]

Pg ¼ ggTgwg ð3Þ
where gg is the generator’s electromechanical efficiency. The
dynamics of turbine tower seen as 1-mass, 1-spring and 1-
damper system are [35]

Fr ¼ Mt
€Yt þ Dt

_Yt þ KtYt ð4Þ
whereMt;Dt and Kt are tower’s mass, damping and spring constants
respectively. The torque and pitch actuators are modeled as first
order systems [30]
3

_Tg ¼ � 1
sg

Tg þ 1
sg

T�
g

_b ¼ � 1
sp

bþ 1
sp

b� ð5Þ

here sg and sp are the time constants of generator and pitch system
and T�

g ;b
� are reference values for actuators’ output.

2.3. Linearization

The rotor (1) and generator dynamics (3) result in a nonlinear
wind turbine model. Although, various research studies [33,35]
have considered Nonlinear MPC (NMPC) for turbine control which
uses nonlinear models in the prediction. As a result of non-convex
optimization problem, NMPC results in enhanced computational
complexity and time in contrast to linear MPC. In addition, [33]
concludes that NMPC provides minor improvement over linear
MPC in wind turbine control performance. Therefore, a linearized
model is considered for MPC scheme in this study. Linearizing
Eq. (1) and (3) gives:

DTr � @Tr

@wr
jwro

Dwr þ @Tr

@V
jVo

DV þ @Tr

@b
jboDb ð6Þ

where,

@Tr

@wr
jwro

¼ 1
2
qpR4 Vo

ko

@Cp

@k
jko

@Tr

@V
jVo

¼ qpR3 Vo

ko
Cpo � 1

2
qpR4 wro

ko

@Cp

@k
jko

@Tr

@b
jbo ¼

1
2
qpR3 V

2
o

ko

@Cp

@b
jbo

DFr � @Fr

@wr
jwro

Dwr þ @Fr

@V
jVo

DV þ @Fr

@b
jboDb ð7Þ

where,

@Fr

@wr
jwro

¼ 1
2
qpR3Vo

@CT

@k
jko

@Fr

@V
jVo

¼ qpR2VoCTo � 1
2
qpR3wro

@CT

@k
jko

@Fr

@b
jbo ¼

1
2
qpR2V2

o
@CT

@b
jbo

DPg � @Pg

@wg
jwgo

Dwg þ @Pg

@Tg
jTgoDTg ð8Þ

where,

@Pg

@wg
jwgo

¼ ggTgo

@Pg
@Tg

jTgo ¼ ggwgo

D shows perturbation from operating point and subscript �o shows
values of respective quantities at operating point determined by Vo

[67]. Therefore, the linearized model can be represented as:

D _x ¼ A0Dxþ B0Duþ E0DV

Dy ¼ C0Dx: ð9Þ
The system states x, system inputs u and measured outputs y are
given as:
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Dx ¼ Dwr Dwg DhD DYt D _Yt Db DTg

� �T
Du ¼ DT�

g Db�� �T
Dy ¼ Dwr DPg½ �T ð10Þ
For MPC, a discretized system model with sampling period Ts is
obtained using zero order hold method at every time instant k.

x kþ 1½ � ¼ Ax k½ � þ Bu k½ � þ EV k½ � þ dk

y k½ � ¼ Cx k½ � þ ck ð11Þ
where dk and ck are functions of linearization points.

3. Proposed ANN-MC disturbance prediction sensor

For preview control, a new wind speed prediction sensor
deploying a hybrid model based on artificial intelligence (ANN)
and a statistical model (MC) is presented and analyzed. As shown
in Fig. 1, a simple ANN1 structure with least data inputs applied
is used to avoid over-training problem for accurate short term
wind dynamics capture. A second order MC approach encapsulates
relatively longer wind dynamics. For avoiding extrapolation, wind
speed samples covering entire range are drawn to design ANN1 so
that future predictions mostly involve interpolation. Wind speed
data of 120 min duration from wind sensor i-e anemometer is pro-
vided to the hybrid model for design and assessment. bv t þ kjtð Þ is
primary prediction by ANN1 over prediction horizon k and i repre-

sents the ith vector utilized in ANN1. Markov chain by wind sam-
ples generates a second order Transition Probability Matrix
(TPM). Given primary prediction by ANN1, TPM yields correspond-
ing Transitional Probability (TP), Forward Neighborhood Indices
(FNIs) and Backward Neighborhood Indices (BNIs) representing
Fig. 1. Block Diagram of proposed ANN-MC disturbance prediction sensor.

4

next state probability, upper two states’ and lower two states’
probabilities respectively. Outputs from both ANN1 and MC are
used by ANN2 for final prediction.

3.1. ANN1 structure

The comprehensive description about different structures, rele-
vant training algorithms and respective applications of ANN are
detailed in [46–49,68–71]. For primary prediction by ANN1, one
of the fastest artificial intelligence algorithm, Multi-Layer Percep-
tron (MLP) is deployed having a single input, hidden and output
layers. The number of neurons in each layer is selected using sen-
sitivity analysis such that minimized Mean Absolute Percentage
Error (MAPE) can be achieved. Examination results in 10 neurons
in input layer, 5 neurons in hidden layer and 1 neuron in output
layer of ANN1 as shown in Fig. 2. For training ANN1, back-
propagation algorithm is used with 30 training vectors and a learn-
ing rate of 0.25.

3.2. MC design

According to Markov’s approach as utilized in various studies
[72–74], the probability of the upcoming state can be derived from
the previously occurred states. The order of the chain reveals the
number of past steps influencing the upcoming state. Thus as sug-
gested by [72,73] a second order MC is utilized for short term wind
speed predictions in order to keep the statistical characteristics of
wind preserved. For state space generation, wind speed states are
derived with a step difference of 0.1 m/s to obtain higher accuracy
than [72] which reported a limit difference of 1 m/s and [75] hav-
ing limit difference 0.5 m/s in estimation. Given the state space
with k states, corresponding Markov chain is developed with 600
wind speed data samples. Through MC, the Transition Count
Matrix (TCM) is derived as follows [72]

TCM ¼ gi:j;k

h i
k2�k

¼

g1:1;1 g1:1;2 . . . g1:1;k

g1:2;1 g1:2;2 . . . g1:2;k

: : : :

g1:k;1 g1:k;2 . . . g1:k;k

g2:1;1 g2:1;2 . . . g2:1;k

g2:2;1 g2:2;2 . . . g2:2;k

: : : :

gk:k;1 gk:k;2 . . . gk:k;k

2
66666666666664

3
77777777777775

ð12Þ
Fig. 2. Architecture of 3-Layer ANN1.
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where gi:j;k is the count of moving to state k if current state is j and
previous state was i. Based on TCM, second order TPM is derived
giving TPs pi:j;k of all k states [72]

TPM ¼ pi:j;k

� �
k2�k

¼

p1:1;1 p1:1;2 . . . p1:1;k

p1:2;1 p1:2;2 . . . p1:2;k

: : : :

p1:k;1 p1:k;2 . . . p1:k;k

p2:1;1 p2:1;2 . . . p2:1;k

p2:2;1 p2:2;2 . . . p2:2;k

: : : :

pk:k;1 pk:k;2 . . . pk:k;k

2
66666666666664

3
77777777777775

ð13Þ
3.3. ANN2 structure

For final prediction, in order to incorporate benefits of both neu-
ral networks and Markov chains, ANN2 is designed based on MLP.
ANN2 has 6 neurons (primary prediction, two FNIs, two BNIs and
TP) in the input layer, 3 neurons in hidden layer and 1 neuron in
output layer by consideration of least MAPE as illustrated in
Fig. 3. For training by back-propagation algorithm, 10 data vectors
are used with learning rate of 0.25. The complete structure of ANN-
MC and the processes involved in the prediction are depicted in
Fig. 4.
Fig. 4. Flow chart and four stages for design of proposed ANN-MC disturbance
prediction sensor.
3.4. Error performance analysis of proposed prediction sensor

For testing error performance of the wind speed prediction by
the proposed sensor, a turbulent wind field using Turbsim [76] is
generated having mean speed 16 m/s. The mean, standard devia-
tion, minimum and maximum of wind speed data are 16.02 m/s,
0.9184 m/s, 13.5 m/s and 19.4 m/s respectively, as shown by
Fig. 5. As a performance analysis parameter, MAPE is given as [77]

MAPE kð Þ ¼ 1
N

XN
t¼1

j e t þ kjtð Þ
v t þ kð Þ j �100

� �
ð14Þ

where j � j denotes absolute value, k is prediction horizon, N repre-
sents number of predictions, v t þ kjtð Þ is the actual wind speed and
e t þ kjtð Þ is prediction error.
Fig. 3. Architecture of 3-Layer ANN2.
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Maximum Percentage Error (MPE) is also considered as a per-
formance analysis parameter because large MPE may lead to a
wrong control command in turbine control. MPE is defined as [77]

MPE kð Þ ¼ max j e t þ kjtð Þ
v t þ kð Þ j �100

� �
; t ¼ 1 . . .N ð15Þ
3.5. Results of ANN-MC prediction sensor

Proposed sensor is tested on 6200 wind speed samples with 1 s
resolution, a section of which is shown in Fig. 5. For better resolu-
tion fourteen one step-ahead predictions by proposed sensor are
highlighted in Fig. 6.

Results in Table 2 shows superior error performance in terms of
MAPE and MPE of proposed ANN-MC sensor over ANN1 for predic-
tion horizons of 1 s and 10 s.

The lower uncertainty of the proposed sensor can be deduced
from Table 3 where percentage of prediction errors below
�5%;�15% and �30% error margins are shown for both ANN1
and ANN-MC. Suggested sensor highly reduced error for higher
margins.

Concluding from above results, ANN-MC prediction sensor
reduces uncertainty of prediction and prediction errors. The model
is trained offline (takes less than 2 s) and then can be used in online
system for implementation. The final prediction by prediction sen-
sor takes less than a millisecond thus making it feasible for the
given application.



Fig. 5. Samples from stochastic wind speed data.

Fig. 6. Final prediction by ANN-MC prediction sensor versus actual wind speed.
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4. Wind turbine controller design

4.1. Proposed switched model predictive control

4.1.1. Control strategy
The suggested control strategy is based on the idea that a finite

set of feasible control outputs can be considered for driving a wind
turbine plant where a prediction model outputs the behavior of the
other state variables for each switching control state in the finite
control set. For optimal switching control output selection, a qual-
Table 2
Error performance analysis of ANN1 and ANN-MC.

Prediction horizon ANN1

MAPE

t + 1 2.81
t + 10 12.21

6

ity function (QF) is defined. At a given operating point, each
switching control output is evaluated by the defined QF. The out-
put of the proposed controller is switched to the control output
that minimizes the QF. The proposed control is designed in the fol-
lowing steps:

(a) Given the system model, defined by Eq. (11), finite control
sets having feasible switching control outputs are generated
for both actuators.

(b) A model predictor for prediction of controlled variables and
a current state observer to provide the model predictor with
current state estimate.

(c) A quality function is defined for selection of optimal switch-
ing control output within finite control sets at a given oper-
ating point.

The block diagram of the implemented proposed controller is pre-
sented in Fig. 7 whereas the control procedure at each sampling
instant k is described as follows:

(a) The estimated wind speed v̂ k½ � from proposed ANN-MC sen-
sor gives the reference controlled variables

r k½ � ¼ w�
r k½ � P�

g k½ �
h iT

.

(b) A state observer gives current state estimate x̂ kjk½ �.
(c) Model predictor predicts the controlled variables ŷ kþ jjk½ �

over the prediction horizon for each control set Tset
g k½ � and

bset k½ �.
(d) The QF is evaluated for each control set over prediction hori-

zon. The control output sequence giving minimized QF is
obtained among which the first optimal input

u kjk½ � ¼ T�
g k½ � b� k½ �

h iT
is applied to the plant.
ANN-MC

MPE MAPE MPE

19.01 2.03 15.8
36.01 10.9 32.56



Table 3
Error margins and confidence level of ANN1 and ANN-MC.

Error Margin 1 s 10 s

ANN1 ANN-MC ANN1 ANN-MC

�5% 77.21 83.23 26.43 29.06
�15% 99.8 99.01 71.67 74.47
�30% 100 100 97.12 96.81

Fig. 7. Proposed Switched Model Predictive Control.
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4.1.2. Finite control sets generation
In order to reduce the size of control sets, the control objective

is classified into two parts. Below rated wind speed the control
objective is:

minjwr �wopt
r j; minjPg � Popt

g j

s:t Tg 2 0 Trated
g

h i
;b ¼ bopt

n o
where �opt denotes the optimal values of respective quantities at an
operating point. Whereas at above rated wind speed the control
objective is:

minjwr �wrated
r j; minjPg � Prated

g j

s:t Tg ¼ Trated
g ; b 2 bmin bmax

h in o
with �rated shows the rated values of respective quantities. In terms
of motion rates, imposed by the constraints specified by [41] the
permissible actuator actions applied by controller can be summa-
rized as:

_T�
g 2 _Tmin

g
_Tmax
g

h i
; _b� 2 _bmin _bmax

h i
Thus the number of switching control states in torque and pitch

control sets respectively are calculated as:

m ¼
_Tmax
g � _Tmin

g

_TgD
7

n ¼
_bmax � _bmin

_bD

ð16Þ

here �D represents the minimal variation in respective motion rates.

4.1.3. Current state observer
Since all the state variables are not available at the output, so a

current state observer is designed as shown in Fig. 8. Given the
Fig. 8. Current State Observer.
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model (11) at an operating point with the plant’s input u k½ � and
output y k½ � applied, the observer estimates the current state of
the plant x̂ kjk½ � at instant k.
x̂ kjk½ � ¼ x̂ kjk� 1½ � þ K y k½ � � ŷ kjk� 1½ �ð Þ

x̂ kþ 1jk½ � ¼ Ax̂ kjk½ � þ Bu k½ �

ŷ kjk� 1½ � ¼ Cx̂ kjk� 1½ � ð17Þ
The observer gain K is designed using Kalman filtering technique in
[78].

4.1.4. Model predictor
SMPC uses (11) to predict the controlled variables over the pre-

diction horizon Hp. Model predictor deploys predicted wind over
Hp from proposed ANN-MC sensor, which is added as measured
disturbance dm in the prediction model to make accurate estima-
tions. Prediction step is given as:

x
^
kþ jjk½ � ¼ Aj x

^
kjk½ � þ

Xj�1

i¼0

Aj�i�1Bu kþ ijk½ �

þ
Xj�1

i¼0

Aj�i�1Edm kþ ijk½ � y^ kþ jjk½ � ¼ C x
^
kþ jjk½ � ; j ¼ 1 . . .Hp ð18Þ
4.1.5. Quality function
Based on the control objectives, quadratic quality functions

(QFs) are defined in this work. Since the control problem is divided
into two parts each handling one actuator so two QFs are defined
Fig. 9. Wind Power Plant Characteristics in optimal speed tracking region. (a) Wind sp
Generator Power versus time.

8

to fulfill the complete control objective. Given the predicted con-
trolled variables, their respective references, the QF is evaluated
for each switching control output in control sets over prediction
horizon Hp. The sequence minimizing the QF is obtained of which
the first input u k½ � ¼ u kjk½ � is applied to the plant. The QFs, each
incharge of separate actuators are defined as:

QF1 ¼
XkþHp�1

j¼k

y jþ 1jk½ � � r jþ 1jk½ �ð ÞTQe1 y jþ 1jk½ � � r jþ 1jk½ �ð Þ

þ
XkþHp�1

j¼k

DT�
g jjk½ �TRu1DT

�
g jjk½ �

ð19Þ

QF2 ¼
XkþHp�1

j¼k

y jþ 1jk½ � � r jþ 1jk½ �ð ÞTQe2 y jþ 1jk½ � � r jþ 1jk½ �ð Þ

þ
XkþHp�1

j¼k

Db� jjk½ �TRu2Db
� jjk½ �

ð20Þ
where Qe and Ru are weighting matrices.

4.1.6. Constraints
Since the actuator actions are constrained by hardware limita-

tions so their permissible actions and permissible outputs are
taken in account for finite control sets generation such that:

DTmin
g 6 DT�

g jjk½ � 6 DTmax
g and
eed versus time (b) Rotor Speed versus time (c) Generator Torque versus time (d)
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Dbmin 6 Db� jjk½ � 6 Dbmax; j ¼ k . . . kþ Hp � 1

here,

DT�
g k½ � ¼ T�

g k½ � � T�
g k� 1½ �

Db� k½ � ¼ b� k½ � � b� k� 1½ �

Given Ts and actual motion rate limits _bmin; _bmax
n o

and

_Tmin
g ; _Tmax

g

n o
the limits Dbmin;Dbmax

n o
and DTmin

g ;DTmax
g

n o
can be

obtained. The control sets are generated in consideration that the
limitations on controlled variables are also fulfilled:

wr jþ 1jk½ � 6 wrmax ; j ¼ k; kþ 1; . . . ; kþ Hp þ 1
Fig. 10. Wind Power Plant Characteristics in rated speed region. (a) Wind speed versus
Power versus time (e) Blade Pitch versus time.
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Pg jþ 1jk½ � 6 Pgmax

In addition the speed tracking and actuator relevant fatigue
load is also taken into account by adjustment of weighting factors.

5. Simulation results and analysis

5.1. Under ideal wind speed steps

5.1.1. Optimal speed tracking region
The proposed strategy is simulated for ideal wind steps within

lower wind region 4 m= sec to 11 m= sec and the results against
traditional MPC are highlighted in Fig. 9. Comparing the results
of both control strategies for performance parameters Rotor Speed
time (b) Rotor Speed versus time (c) Generator Torque versus time (d) Generator
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wr, Generator Torque Tg and Generator Power Pg, SMPC shows a
faster dynamic response compared to MPC. This shows that due
to faster tracking, SMPC is able to maintain improved tracking of
optimal tip speed ratio kopt ¼ 7:55. Thus SMPC provides better opti-
mal speed tracking compared to MPC in below rated wind speed
region.
Fig. 11. Wind Power Plant Characteristics in rated speed region. (a) Wind speed versus
versus time (e) Generator Power versus time.

Table 4
Specifications of applied Turbsim wind field.

Time step 0.01 s
Grid height 145 m
Grid Width 145 m
Mean wind speed at hub height 16 m/s
Turbulent intensity 80%

10
5.1.2. Rated speed region
In the above rated wind speed region 11 to 25 m= sec both the

controllers are tested with the performance illustrated in Fig. 10.
While both the controllers offer satisfactory performance, SMPC
due to lower computational burden due to finite control set offers
a much faster response and has considerably less transient region.
This property helps the SMPC to effectively maintain the rotor
speed at rated value of wr ¼ 12:1 rpm. This property is specially
effective to better cope with turbulent winds by keeping the power
at optimal value and thus reducing extreme load conditions.
5.2. Under turbulent wind speed

In this section, the effectiveness of SMPC for load reduction due
to preview control provided by ANN-MC predictions is presented.
time (b) Rotor Speed versus time (c) Blade Pitch versus time (d) Generator Torque
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A turbulent wind field having stochastic properties using Turbsim
[76] is generated with specifications highlighted in Table 4. The
resulting turbulent wind speed with ANN-MC predictions per sec-
ond are indicated in Fig. 11. The wind field samples are trained
over 30 training vectors from the wind field and tested over the
portion indicated in Fig. 11. It is analyzed by the control plots of
Fig. 11 that the SMPC due to better estimation by ANN-MC can
reduce rotor speed variations with less pitch activity. This result
provides SMPC special improvement over traditional MPC for bet-
ter control and load reductions in real winds. The ANN-MC reduces
the influence of wind disturbance to rotor speed. Thus the resul-
tant control algorithm successfully improves control over detailed
aeroelastic model of wind turbine with reduced load, improved
computation time and faster dynamic response.

5.3. Reduction of computational time complexity

5.3.1. Training time of prediction model ANN-MC
The training time taken by the disturbance prediction sensor

ANN-MC for various prediction horizons is given below in Table 5.
Thus the time taken by the sensor is less than 2sec for network
training and TPM calculations. The training has been performed
by a conventional PC therefore the process do not required any
special system performance specifications making it optimal for
remote applications.

5.3.2. Overall computational efficiency of the proposed SMPC control
system

After training, the trained model has been used for the distur-
bance predictions in the real time control system process. The
average time taken by ANN-MC for final prediction is up to
0:5msec. The overall efficiency of the proposed control system is
highlighted by defining the following speed performance analysis
parameters to show the overall computational time efficiency of
the system:

AverageSpeedFactor; SFavg ¼
Tavg
� 	

MPC

Tavg
� 	

SMPC

ð21Þ

The average speed factor is the ratio between average time taken by
the online conventional MPC Tavg

� 	
MPC to average time taken by

proposed offline finite control set based SMPC Tavg
� 	

SPMC . This index
demonstrates the computation speed improvement by the pro-
posed algorithm SMPC as compared to conventional MPC on
average.

MinimumSpeedFactor; SFmin ¼ Tmaxð ÞMPC

Tmaxð ÞSMPC
ð22Þ

The minimum speed factor is the ratio between maximum time
consumed by the online conventional MPC Tmaxð ÞMPC to maximum
Table 6
Computation time efficiency of proposed SMPC compared to conventional MPC

Average Speed Factor Minimum Speed Factor
SFavg SFmin

7 3

Table 5
Prediction horizons versus training time for ANN-MC.

Prediction Horizon Time Response (s)

1 s 1:78
10 s 1:98
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time taken by proposed offline finite control set based SMPC
Tmaxð ÞSMPC . This index demonstrates the computation speed
improvement by the proposed algorithm SMPC as compared to con-
ventional MPC in worst case scenario. The overall average and min-
imum speed factors for the conventional MPC and proposed SMPC is
highlighted in Table 6. The indices of SFavg ¼ 7 and SFmin ¼ 3
demonstrates that the proposed control system based on SMPC is
seven times faster on average scale and three times faster in worst
case compared to conventional MPC.
6. Conclusion

This paper presented a new hybrid technique based on modern
control and artificial intelligence techniques to solve wind turbine
control problem to providing faster response with reduced com-
plexity. The control algorithm uses a finite control set to solve opti-
mization problem reducing computational burden as compared to
conventional MPC. The algorithm uses a new ANN-MC sensor for
prediction of wind speed to provide efficient control output.

The observed results comparing traditional MPC with SMPC
provides the following insights:

� In the optimal wind speed tracking region, the proposed control
algorithm shows improved dynamic response due to faster
tracking maintaining optimal tip speed ratio over entire operat-
ing region.

� In the rated speed region, the SMPC due higher computational
efficiency due to finite control set and offline implementation
offers a much faster response and has considerably less tran-
sient region. The improvement provides reduction in extreme
load conditions in dynamic turbulent real time wind fields
and gusts.

� SMPC due to better estimation by ANN-MC was able to reduce
rotor speed variations with relatively lower actuator activity.
The aforementioned improvement provides load mitigation
ability to the wind turbine control. The ANN-MC sufficiently
reduces the influence of wind disturbance to rotor speed.

The proposed control algorithm applied to the field of renew-
able energy promotes the advancement of wind power plant con-
trol techniques ensuring better energy extraction, stable power
production due to faster dynamic response using modern control
working with effective artificial intelligence techniques. The future
work of the study may involve the overall cost analysis to estimate
the total operating costs reduction due to load mitigation and the
predicted profit due to improved energy extraction by the
deployed technique in a wind farm control. The inclusion of the
ability of fault diagnostics in the proposed control algorithm to
improve the system robustness is also worth exploration.
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