
Received May 5, 2021, accepted June 6, 2021, date of publication June 10, 2021, date of current version June 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3088220

Network-Constrained Optimal Scheduling of
Multi-Carrier Residential Energy Systems:
A Chance-Constrained Approach
REZA HABIBIFAR1, HOSSEIN RANJBAR 1,
MIADREZA SHAFIE-KHAH 2, (Senior Member, IEEE),
MEHDI EHSAN 1, AND JOÃO P. S. CATALÃO 3, (Senior Member, IEEE)
1Department of Electrical Engineering, Sharif University of Technology, Tehran 8639, Iran
2School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland
3Faculty of Engineering of the University of Porto (FEUP) and INESC TEC, 4200-465 Porto, Portugal

Corresponding author: Miadreza Shafie-Khah (miadreza.shafiekhah@univaasa.fi)

The work of João P. S. Catalão was supported in part by FEDER through COMPETE 2020, and in part by FCT
under POCI-01-0145-FEDER-029803 (02/SAICT/2017).

ABSTRACT This paper presents a day-ahead scheduling approach for a multi-carrier residential energy
system (MRES) including distributed energy resources (DERs). The main objective of the proposed
scheduling approach is the minimization of the total costs of an MRES consisting of both electricity and gas
energy carriers. The proposed model considers both electrical and natural gas distribution networks, DER
technologies including renewable energy resources, energy storage systems (ESSs), and combined heat and
power. The uncertainties pertinent to the demand and generated power of renewable resources are modeled
using the chance-constrained approach. The proposed model is applied on the IEEE 33-bus distribution
system and 14-node gas network, and the results demonstrate the efficacy of the proposed approach in the
matters of diminishing the total operation costs and enhancing the reliability of the system.

INDEX TERMS Chance-constrained method, combined heat and power, multi-carrier residential energy
systems, thermal load, uncertainty.

NOMENCLATURE
A. SETS AND INDICES

9T Set of time intervals, indexed by t
9N Set of electrical buses, indexed by n,m
9I Set of natural gas nodes, indexed by i, j
9H Set of residential houses, indexed by h
9n
H Set of houses accessible to the heat pumps at

node n.
9n
CHP Set of houses accessible to the heat production

of combined heat and power (CHP) units at
node n.

k Index of sample scenarios in sample average
approximation (SAA) method

iS , nS Indices of gas and electricity upstream network
node, respectively

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuaihu Li .

B. PARAMETERS AND INPUT DATA
λEt , λ

G
t Electricity and natural gas prices at

time t , respectively
1t Scheduling time step
PminCHP,P

max
CHP Minimum andmaximum power produc-

tion of CHP units, respectively
Hmax
CHP Maximum heat production of CHP units

ηCHP Efficiency of CHP units
xA:D, yA:D Corner points of feasible working

region of heat and power output of
CHP units

M Sufficiently large positive number
γHPh , γGFh Identifier of heat pump and gas furnace
ηHPh , ηGFh Efficiency of heat pump and gas

furnace
C in
h ,C

sf
h Heat capacities of house interior and

surface
H in,rad
h,t ,H sf ,rad

h,t House interior and surface heat
radiation
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ζ inh , ζ
sf
h , ζ

ex
h Heat transfer capacities among interior,

surface, and exterior, respectively
T in,minh ,T in,maxh Minimum and maximum of indoor tem-

peratures of house h, respectively
ηES,ch, ηES,dis Charge/discharge efficiency of electric

storage systems

ηGS,in, ηGS,out Input/output efficiency of gas storage
devices

εES,minn , εES,maxn Minimum and maximum state of charge
of electric storage unit at electric node n

ε
GS,min
i , ε

GS,max
i Minimum and maximum stored energy

in gas storage unit at gas node i
PES,maxn Nominal power of electric storage unit

at electric node n
qGS,maxi Nominal power of gas storage unit at gas

node i
PRGn,t Active power generation of renewable

energy sources
PDn,t ,Q

D
n,t The amount of active and reactive

demand at bus n and time t , respectively
Gn−m,Bn−m Conductance and susceptance of branch

between buses n and m, respectively
Pmint ,Pmaxt Minimum and maximum of exchanged

active powers with upstream electricity
network at time t , respectively

Qmint ,Qmaxt The minimum and maximum of
exchanged active powers with
upstream electricity network at time t ,
respectively

Vmin
n ,Vmax

n The minimum and maximum of voltage
magnitude at bus n and time t ,
respectively

Smaxn−m The maximum capacity of line between
electric nodes n and m

φi−j The pipeline constant for the pipeline
between nodes i and j

κi−j The linepack constant for pipelines
Lmini−j ,L

max
i−j Minimum and maximum of linepack

capacity of pipeline between nodes i and
j, respectively

λ
pen
h Penalty price for the heating appliance
αP, αQ, αV , αS Confidence coefficient of chance

constraints

C. PARAMETERS AND INPUT DATA

Pupt , q
in
t The amount of purchased active power

and gas from upstream networks at
time t , respectively

Qupt The amount of exchange reactive power
with upstream grid at time t

PCHPn,t ,H
CHP
n,t Generated electric power and heat by

CHP unit at node n and time t
qCHPi,t Consumed gas by CHP unit at electric

bus n fed from gas node i and time t

PHPh,t , q
GF
h,t Consumption of heat pump and gas

furnace
HD
h,t Household heating power

T inh,t ,T
sf
h,t Household interior and surface

temperature
H ext
h,t Household Heating power comes from

CHP units
εESn,t , ε

GS
i,t The stored energy level in electricity

and gas storage units, respectively
PES,chn,t ,PES,disn,t Electric energy storage charge and dis-

charge powers, respectively
qGS,ini,t , qGS,outi,t Gas storage input and output flow
uESn,t , u

GS
i,t Binary variables for electricity and gas

energy storage systems
Pn−m,t ,Qn−m,t Active and reactive power flow through

line between nodes n and m
Vn,t , θn,t Voltage magnitude and phase angle at

node n and time t
qi−j,t Gas flow through pipeline between

nodes i and j at time t
πi,t gas flow pressure at node i and time t
µi−j,t Auxiliary binary variable
Li−j,t Natural gas linepack of pipeline

between node i and j

I. INTRODUCTION
Multi-carrier energy systems (MCESs) equipped with
high-efficiency technologies have been noted increasingly
around the world due to their operational flexibility to sup-
ply consumers’ demands. MCESs are generally implemented
through energy hubs in which numerous energy carriers as
input ports (e.g., electricity and natural gas) can be con-
verted, stored, and transformed to provide necessary various
types of energy demands such as electricity, heating, cooling,
etc. [1]–[3]. Therefore, MCESs enable the interaction
between electricity and gas networks, as the most important
energy carriers, such that their operation of each network
affects the other one [4]. Hence, the simultaneous scheduling
of these networks (i.e. gas and electricity) is necessary for
optimal operation MCESs.

Several research works have been conducted to
investigate the interaction between natural gas and electric-
ity networks. The authors in [5] investigate the impacts of
natural gas network constraints on the contribution of natural
gas-fired power plants in a day-ahead market without consid-
ering renewable energy resources and system uncertainties.
In another research, [6], the authors investigate the syn-
chronous exploitation of electricity and natural gas systems,
comprising electric vehicles (EVs) and variable renewable
energy sources (VRESs) formulated on a continuous-time
model method. It proposes a stochastic framework to expand
the integration of VRESs into the power system schedul-
ing problem. In [7], a new model is proposed for opti-
mal operation of integrated energy systems considering the
dynamic characteristics and uncertainties of wind resources.
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This paper utilizes the CVaR method to model the uncertain
parameters in the scheduling model of natural gas and elec-
tricity networks. The study in [8] presents optimal day-ahead
scheduling of combined gas and electricity networks with
regard to reciprocal energy flow between these two networks.
In this work, the hourly topology of electricity and gas
networks and the operation of power to gas (P2G) units
are optimized to minimize the total operation costs. In [9],
the security constraint unit commitment (SCUC) problem is
analyzed considering the impacts of the natural gas network’s
constraints ignoring the presence of renewable energies. The
research in [10] investigates the effect of the uncertainty of
natural gas supply for gas generation units along with its
price fluctuations on the contribution of natural gas power
plants and daily operation costs under a two-stage stochastic
scheduling problem, disregarding the existence of renewable
energy resources. However, this study presents a simple and
incomplete model for a natural gas network such that it
neglects the existence of gas pressure limitations and the
non-linear model of natural gas flow transmitted by pipelines.
In another study, [11], a scenario-based SCUC problem is
solved to manage the wind power generation fluctuations in
integrated natural gas and electricity networks. The role of
P2G technology is researched in [12] for optimal operation
of the integrated electricity and natural gas networks. The
optimal scheduling of MCESs in the presence of P2G storage
is investigated in [13] to supply the electrical, thermal, and
gas loads while considering the uncertainties of renewable
energies and electricity price as well as exchange energy with
both electrical and natural gas networks. In [14], the schedul-
ing problem of electricity and gas network coordinators is
studied which considers the natural gas storage systems and
in the absence of renewable energy resources. The authors
in [15] propose a simultaneous optimization problem of
natural gas and electricity systems with regard to renewable
energies and P2G technology. In [16], an interval-based
robust chance-constrained (IBRCC) optimization model is
proposed for assigning demand response programs to effica-
cious buses of the power system considering wind uncertainty
and equipment malfunctions. Reference [17] presents an
optimal scheduling formulation for commitment of natural
gas generation units in a flexible ramp market.

Moreover, the literature on integrated electricity and gas
networks includes research and studies in low and medium
voltage distribution systems. In [18], the optimal schedul-
ing of electrical and natural gas networks via energy hub
platform is investigated which takes advantage of distribu-
tion network reconfiguration ability as a control variable to
solve the optimization problem with the aid of a heuristic
algorithm. Reference [19] presents an optimal scheduling
model for interconnected energy networks with electrical and
thermal loads under a game-theoretical approach. The study
in [20] proposes an energy dispatch method for multi-carrier
energy microgrids in the presence of electricity and gas car-
riers in both islanded and the grid-connected modes. The
presented model is formulated as a mixed integer linear

programming (MILP) problem which minimizes the oper-
ation costs of the microgird while improving the dispatch
flexibility in supplying all types of demands. In [21],
a multi-objective scheduling model is introduced for merged
thermal-natural gas-electrical energy distribution systems to
minimize the total operation costs and power imbalance in
the electrical network. The research in [22] proposes a mixed
integer dynamic approximation scheme to ease the real-time
optimization of interconnected natural gas and electricity net-
works. The study in [23] investigates the optimal scheduling
of MCESs considering wind resources and the uncertainties
associated with load, electricity price, and renewable energy
production to minimize the total operation costs using a
fuzzy-logic approach. In [24], a multi-objective framework
is established for operation of coordinated gas and electri-
cal networks considering dynamic security constraints for
both networks. The study in [25] presents a MILP schedul-
ing formulation to mitigate the negative effects of renew-
able energy fluctuations on the operation of Multi-Energy
Residential Systems. The uncertainties associated with
renewable energy generation and demand variations are han-
dled by chance constrained programming method (CCPM)
based on Normal probability distribution functions (PDF).
In [26], a deterministic MILP model is proposed for optimal
scheduling of multi-energy microgrids considering techni-
cal and economic relations of both electricity and natural
gas systems. The research in [27] proposes a rolling dis-
patch strategy and operational flexibility metric to quan-
tify the ability of multi-energy microgrids equipped with
CHP units to deal with uncertainties. The authors in [28]
present a scenario-based MILP formulation for the optimal
scheduling of multi-energy microgrid systems with inte-
grated electrical and natural gas networks. In [29], a coor-
dinated scheduling model is proposed for optimal operation
of multi-energy microgrids in which the associated hetero-
geneous uncertainties are characterized using a new hybrid
stochastic-interval method. The study in [30] proposes a
mixed-integer second-order cone programming optimization
programming (MISOCP) formulation for optimal operation
of multi-carrier energy microgrids considering coupled elec-
tricity, heating, and natural gas networks. In [31], a determin-
istic schedulingmodel is proposed for an electric-thermal-gas
coupling microgrid considering demand response programs
and consumer satisfaction which is solved by the particle
swarm optimization algorithm.

Table 1 presents a summary of the related research works
and the proposed model. In this table, HSD and RD are
the abbreviations for heat source devices and responsive
loads, respectively. Looking upon the prior research works
regarding this area reveals that power-to-heat and gas-to-heat
concepts in the scheduling problem have not been fully
explored.Moreover, the scheduling problem ofMCESs based
on the natural gas and electricity networks contemplates sim-
ple models for both electricity and gas networks. Besides,
according to Table 1, the optimal scheduling of the integrated
electricity and gas networks, considering thermal load, both
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TABLE 1. Taxonomy of related research works.

electrical and gas storage devices, capturing the steady-state
power and gas flow have been rarely investigated in the
literature. Hence, this paper seeks to investigate the optimal
day-ahead scheduling problem for a multi-carrier residential
energy system (MRES). In this model, the residential system
operator attempts to minimize the cost of purchased energy
from both gas and electricity markets by optimally utilization
of its equipment such as heating boilers, combined heat and
power resources, and the power to gas storage units. The
proposed model introduces a new penalty cost for the MRES
scheduling problem based on air and environmental temper-
atures to consider the response of flexible thermal loads. The
proposed model in this study is formulated as aMixed Integer
None-Linear Programming (MINLP) optimization problem
due to the non-linear AC power flow and gas flow equa-
tions in the electricity and natural gas distribution networks.
This consideration presents a more realistic schedulingmodel
compare to research works that have not considered these
networks (e.g., [19], [20], [23]) or have used a simplified
models (e.g., [22], [28]). Furthermore, the uncertainties asso-
ciated with power production of wind and solar resources
as well as load are modeled using the chance-constrained
approach. Unlike, work in [25] which considers uncertainties
follows the Normal probability distribution functions (PDFs),
the proposed CCPM-based scheduling model in this paper
utilizes the sample average approximation (SAA)method that
can be used for all types of PDFs.

Hence, the main contributions of this paper can be summa-
rized as follows:

• Proposing a more realistic scheduling model based on
the non-linear AC power flow and gas flow in the elec-
tricity and natural gas distribution networks.

• Introducing a new penalty cost for the MRES
scheduling problem based on air and environmental
temperatures.

• Investigating the power-to-heat and gas-to-heat concepts
in the scheduling problem by incorporating heat pumps,
CHP units, and gas furnaces.

• Utilization of the chance-constrained approach for opti-
mal operation of MRES to guarantee the confidence
level of the system.

The rest of the paper is structured as follows. Section II
describes the proposed MRES scheduling model includ-
ing general model description and the mathematical for-
mulation of objective function and constraints associated
with existing resources and both electricity and gas net-
works. The uncertainty characterization and its modeling by
chance-constrained approach along with relevant constraints
are then discussed in section III. The simulation results are
given in section IV. Finally, findings and concluding remarks
are shown in section V.

II. PROBLEM DESCRIPTION
A. MULTI-CARRIER RESIDENTIAL ENERGY
SYSTEM (MRES)
According to world statistics, electricity and gas consumption
comprises nearly 85% of the whole energy utilization across
the globe. Moreover, almost a moiety of the used gas and
electrical energy is utilized for heating purposes in which
the residential buildings make up the most important share
of energy users. Regarding this point, the scheduling of gas
networks must follow the importance of demands, thereby
giving preference to residential customers.

The overall schematic of a MRES is shown in Fig. 1.
As can be viewed, electricity and gas energy carriers supply
the MRES by the means of power and gas distribution grids.
In the MRES, the wind and solar renewable energy resources
besides battery energy storage and purchased power from
up-stream networks are the main sources of electric power
supply, although some part of the electric power is provided
by CHP unit. On the other hand, natural gas not only can
supply residential gas load but also it can be used as a primary
fuel for CHP and Gas Furnace (GF). The generated heat by
the CHP, GF, and Heat Pump can be harnessed to secure the
required thermal demands. The day-ahead operation of the
MRES is managed by the residential energy system operator.
Indeed, the operator has the responsibility to purchase the
required amount of energy and deliver it to various residential
customers by participating in the day-ahead energy market.
However, since the capacity of residential energy systems
is much smaller than other systems like industrial energy
systems, we suppose that the MRES operator is a price taker
market participant.
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FIGURE 1. Schematic of an MRES.

B. PROBLEM FORMULATION
The proposed model aims to find the optimal scheduling
of an MRES comprises from electrical and thermal loads,
CHP units, gas furnace, heat pumps, electric and gas energy
storage systems as well as considering both electricity and
natural gas networks. The general structure of the proposed
model is depicted in Fig. 2 which consists of input data,
objective function, constraints and result output. The objec-
tive function of the model is to minimize the total scheduling
costs including purchased electricity and gas as well as a
penalty cost that will be imposed on the MRES operator in
case of incapability of supplying demand. The penalty cost
in the objective function is determined based on the rolling
penalty function of real-time pricing. According to this
approach, a penalty cost assigns for each residential building
when the flexible loads of each building (e.g., heat sources)
work outside the specified ranges. The constraints of this
model mainly include electricity and gas network equations,
CHP operational constraints, electricity and gas energy stor-
age equations, operational constraints of heat pumps and
gas furnaces devices. The constraints electricity network are
based on AC-power flow equations and the non-linear equa-
tions are utilized for representing the flow of natural gas in the
pipe lines of gas network. The mathematical representation
of the objective function and constraints are provided in the
following subsections.

1) OBJECTIVE FUNCTION
The optimal scheduling of MRES aims to reduce the costs
of purchased energy from gas and electricity networks in
addition to penalty costs that will be imposed on operators
in case of incapability of supplying the demand. Thus, the
objective function of the suggested model is formulated as
follows:

min
∑
t∈9T

(
λEt P

up
t + λ

G
t q

in
t

)
1t + ϑ (1)

FIGURE 2. Structure of the proposed MRES scheduling model.

where the first and second terms represent the cost of pur-
chasing electricity and gas from the upstream electricity and
natural gas networks, respectively. The last term in (1) is
referred to penalty cost if the MRES operator could not pro-
vide the required demand. The proposed MRES scheduling
problem under different types of constraints is related to the
performance of all its constituents, which will be discussed
in the following subsections.

2) CHP UNIT CONSTRAINTS
One of the main components of an MRES is Combined Heat
and Power (CHP) units. The main point in the scheduling of
CHP units is the correlation between electrical and thermal
power, which brings difficultly to find optimal operating
point of these units. The operation region of a CHP unit
is generally a function of a series of constraints such as
minimum and maximum of incoming gas flow, the maximum
generated heat, and so on. Figure 3 demonstrates the opera-
tion zone of a typical CHP unit [32].

According to Fig. 3, the operation region of a CHP unit
located at electric node n ∈ 9N and supplied from gas node
i ∈ 9I can be modeled by the following constraints ∀t ∈ 9T
as:

PCHPn,t −yA −
yA − yB
xA − xB

×

(
HCHP
n,t − xA

)
≤ 0 (2)

PCHPn,t −yB−
yB − yC
xB − xC

×

(
HCHP
n,t − xB

)
≥M

(
ICHPn,t −1

)
(3)

PCHPn,t −yC−
yC − yD
xC − xD

×

(
HCHP
n,t − xC

)
≥M

(
ICHPn,t −1

)
(4)

PminCHPI
CHP
n,t ≤ P

CHP
n,t ≤P

max
CHPI

CHP
n,t

(5)

0 ≤ HCHP
n,t ≤ H

max
CHP

(6)

qCHPi,t = PCHPn,t ×ηCHP (7)

ICHPn,t ∈ {0, 1} (8)
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where (2)–(4) determines the power and heat production
values of the CHP unit at node n based on the CHP operational
region in Fig. 3. The power and heat value of CHP are
limited by the minimum and maximum values as represented
in (5) and (6). The consumed natural gas of the CHP unit at
nth electric node and the ith gas node is calculated in (7) using
the CHP efficency.

FIGURE 3. Performance area of a CHP unit or convex characteristic.

3) HEAT SOURCES OF RESIDENTIAL UNITS
Heating demand comprises a major share of energy con-
sumption at home. Heat pumps and gas furnaces which uses
electricity and natural gas respectively are considered the two
heat sources of home energy systems. The generated heat by
gas furnaces and heat pumps are calculated ∀h ∈ 9H and
t ∈ 9T as follows [25]:

HD
h,t = γ

HP
h .ηHPh .PHPh,t + γ

GF
h .ηGFh .qGFh,t (9)

where first term is related to heat pumps and the second one
is related to gas furnaces. The presence of heating equipment
in a house brings the internal temperature of the house to be
kept in an appropriate range so as to provide the needs of cus-
tomers. As stated in [33], to simulate the indoor temperature
profile we use the linear thermal model ∀t ∈ 9T as follows:

T inh,t − T
in
h,t−1t

1t
=

(
cinh
)−1 [

HD
h,t + H

ext
h,t + H

in,rad
h,t

+ ζ ish

(
T sfh,t − T

in
h,t

)
+ ζ ieh

(
T extt − T

in
h,t

) ]
;

∀h ∈ 9H (10)

T sfh,t − T
sf
h,t−1t

1t
=

(
csfh
)−1 [

H sf ,rad
h,t + ζ ish

(
T inh,t − T

sf
h,t

)
+ ζ seh

(
T extt − T

sf
h,t

) ]
; ∀h ∈ 9H (11)∑

h∈9n
CHP

H ext
h,t = HCHP

n,t (12)

T in,minh ≤ T inh,t ≤ T
in,max
h ; ∀h ∈ 9H (13)

where (10) and (11) calculate temperature inside and on the
floor of the house, respectively. Equation (12) indicates that
the total external heat of the house h connected to bus n
is supplied by the CHP at that bus. Constraint (13) ensures
that the average house temperature should be between the
minimum and maximum possible temperatures.

4) ENERGY STORAGE SYSTEMS
In the presented model, apart from the electric energy stor-
age systems, natural gas storage units are considered, too.
According to the storage capacity, charge and discharge lim-
itations, and also charge and discharge efficiency, the equa-
tions of electrical and natural gas storage units ∀t ∈ 9T can
be shown as follows [34].

εESn,t−ε
ES
n,t−1=

(
PES,chn,t .ηES,ch −

PES,disn,t

ηES,dis

)
1t; ∀n∈9N (14)

εGSi,t −ε
GS
i,t−1 =

(
qGS,ini,t .ηGS,in−

qGS,outi,t

ηGS,out

)
1t; ∀i ∈ 9I (15)

εES,minn ≤ εESn,t ≤ ε
ES,max
n ; ∀n ∈ 9N (16)

ε
GS,min
i ≤ εGSi,t ≤ ε

GS,max
i ; ∀i ∈ 9I (17)

0 ≤ PES,chn,t ≤ uESn,tP
ES,max
n ; ∀n ∈ 9N (18)

0 ≤ PES,disn,t ≤ (1−uESn,t )P
ES,max
n ; ∀n ∈ 9N (19)

0 ≤ qGS,ini,t ≤ uGSi,t q
GS,max
i ; ∀i ∈ 9I (20)

0 ≤ qGS,outi,t ≤ (1− uGSi,t )q
GS,max
i ; ∀i∈9I (21)

uESn,t , u
GS
i,t ∈ {0, 1}; ∀n ∈ 9N , ∀i ∈ 9I (22)

Equations (14) and (15) show the amount of energy
stored in the electric and gas storage units, which are a
function of the amount of charge and discharge power as
well as the heat transfer rates. Equation (16) and (17) limit
the amount of stored energy in electric and gas storage
between the minimum and maximum capacity, respectively.
Constraints (18) and (19) indicate the minimum and max-
imum charge/discharge rates of electric storage, while
equations (20) and (21) demonstrate the minimum and max-
imum input/output rates of gas storage units. Finally, con-
straint (22) emphasizes that both electric and gas storage can
only be in one of charge or discharge operation status.

5) ELECTRICITY GRID CONSTRAINTS
The MRES operators supply the required electricity by par-
ticipating in the day-ahead electricity market using the elec-
tricity distribution networks as well as renewable wind and
solar sources, CHP units, and electrical energy storage sys-
tems. Themathematical representation of electricity grid con-
straints ∀n ∈ 9N and t ∈ 9T is as follows.

PRGn,t + P
CHP
n,t + P

ES,dis
n,t − PES,chn,t − PDn,t

=

∑
h∈9n

H

PHPh,t +
∑
m∈9N

Pn−m,t ; ∀n 6= nS

(23)
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∑
m∈9N

Qn−m,t+QDn,t = 0; ∀n 6= nS (24)

Pupt +P
RG
n,t +P

CHP
n,t +P

ES,dis
n,t −PES,chn,t − PDn,t

=

∑
h∈9n

H

PHPh,t +
∑
m∈9N

Pn−m,t ; ∀n = nS

(25)

Qupt − Q
D
n,t =

∑
m∈9N

Qn−m,t ; ∀n = nS (26)

Pn−m,t = Vn,tVm,t
(
Gn−mcos

(
θn,t − θm,t

)
+Bn−msin

(
θn,t − θm,t

) )
(27)

Qn−m,t = Vn,tVm,t
(
Gn−msin

(
θn,t − θm,t

)
−Bn−mcos

(
θn,t − θm,t

) )
(28)

Pmint ≤ Pupt ≤ P
max
t (29)

Qmint ≤ Qupt ≤ Q
max
t (30)

Vmin
n ≤ Vn,t ≤ Vmax

n (31)

P2n−m,t + Q
2
n−m,t ≤

(
Smaxn−m

)2 (32)

Active and reactive power balances in all electric nodes
of the MRES excluding node nS (point of common cou-
pling (PCC)) are formulated using (23) and (24), respec-
tively. Moreover, the active and reactive power balances for
PCC are formulated as equations (25) and (26), respectively.
In addition, equations (27) and (28) represent the active
and reactive power flows through branches between nodes
(m) and (n) according to the AC load flow model, con-
secutively. Constraints (29) and (30) confine the active and
reactive exchanged power with the upstream grid at each time
interval t . The range of voltage deviation at each node and the
limitation of electric power passed by the line between nodes
(m) and (n) are constrained in (31) and (32), respectively.

6) GAS NETWORK CONSTRAINTS
Natural gas distribution networks are considerably distinct
from electricity networks. The flow of natural gas in gas pipes
is a complex phenomenon that is a function of environmen-
tal conditions, pipe length, diameter, and material. Usually,
the equations under stable conditions are used for modeling
gas network. In [35], a comprehensive review of existing
models is presented for gas networks. The amount of flowing
gas through the gas pipe lines between gas nodes (i) and (j) is
modeled using (33) ∀i, j ∈ 9I and t ∈ 9T as [36]:

qi−j,t = sgn
(
πi,t , πj,t

)
φi−j

√
|π2
i,t − π

2
j,t | (33)

where in (33), sgn(.) is a sign function that is defined using
as:

sgn
(
πi,t , πj,t

)
=

{
1, πi,t ≥ πj,t

−1, πi,t < πj,t
(34)

where φi−j is the pipeline constant that depends on temper-
ature, length, diameter, friction, and gas composition [36].

Constraint (33) is a non-linear equation that includes sign
function and root square, and it can be relaxed by defining
binary variables as [25]:

q2i−j,t ≤ φ
2
i−j

(
π2
i,t − π

2
j,t

)
+M

(
1− µi−j,t

)
(35)

q2i−j,t ≤ Mµi−j,t (36)

πi,t − πj,t ≤ Mµi−j,t (37)

µi−j,t + µj−i,t = 1 (38)

µi−j,t ∈ {0, 1} (39)

where (35) and (36) are the relaxed equations for (33), and
(37)-(39) indicate gas flow direction using binary variables
µi−j,t . Accordingly, (40) and (41) illustrate the gas network
nodal balance equations at the reference point (i = I s) and
other nodes, respectively, and ∀t ∈ 9T . These equations
represent that entire gas flow injection is equivalent to total
gas dissipated at each gas node. However, it should be noted
that the compressor and pressure drop compensation are not
considered in this study due to short pipelines of MRES.

qint + q
GS,out
i,t − qGS,ini,t − qCHPi,t − q

GF
i,t

=

∑
j∈9I

qi−j,t ; ∀i = iS (40)

qGS,outi,t − qGS,ini,t − qCHPi,t − q
GF
i,t

=

∑
j∈9I

qi−j,t ; ∀i ∈ 9I&i 6= iS (41)

In addition, unlike electric distribution systems, the nat-
ural gas production and consumption may not be equal at
the same time. More specifically, natural gas pipelines will
spontaneously perform as gas storage systems, which is gen-
erally denoted as linepack [12]. Constraint (42) calculates the
linepack of pipeline i− j, i.e., Li,j,t , ∀i, j ∈ 9I , t ∈ 9T as:

Li−j,t =
2
3
κi−j

(
πi,t + πj,t −

πi,tπj,t

πi,t + πj,t

)
(42)

where Li−j,t is constrained as [25]:

Lmini−j,t ≤ Li−j,t ≤ L
max
i−j,t (43)

7) PENALTY-BASED FLEXIBLE LOAD
In some cases, the system operator has no choice but to
interrupt the flexible load in order to prevent black-out in
the system. This feature can be achieved from the penalty
function which is considered in the objective function. The
operator makes a contract with flexible consumers to reduce
or interrupt their demand in peak times. When this program
is running, the participating consumers should follow the
instructions. If a consumer exceeds the contract, he should
pay the penalty. This possibility was discussed in [37] which
presents a rolling penalty function for real-time pricing of
microgrids (see [37], [38] for more detail).

To this end, the heat sources in residential buildings can
regulate their energy consumption as long as their properties
do not violate existing constraints, thereby being considered
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as flexible loads. Obviously, heating appliances should have
the lowest energy consumption (i.e., the minimum temper-
ature inside buildings) to minimize the costs, but on the
other hand this matter could have negative impacts on the
customers’ satisfaction. In this condition, the operator must
pay a penalty to compensate this dissatisfaction. The penalty
paid to hth house is shown as ϑh, in which if the house
temperature is less than the threshold value, the value of ϑh
will be greater than zero. It should be mentioned that the
average value of minimum and maximum temperatures is
considered as the threshold value. Hence, the penalty function
could be rewritten as below:

ϑh ≥
∑
t∈9T

(
T in,minh,t + T in,maxh,t

2
− T inh,t

)
, ϑh ≥ 0; ∀h ∈ 9H

(44)

ϑ =
∑
h∈9H

λ
pen
h ϑh (45)

where (44) calculates the amount of penalty to be paid to the
hth house, and (45) determines the total amount of operator
payment to houses.

III. CHANCE-CONSTRAINED BASED FORMULATION
The proposed MRES scheduling model is affected by the
uncertainties caused by renewable energy sources and loads.
To capture these uncertainties, stochastic programming based
on chance-constrained approach is widely employed in the
literature. Thus, the proposed scheduling is formulated using
the chance-constrained method in this section to model the
existing uncertainties. This technique is appropriate for solv-
ing stochastic optimization problems containing random vari-
ables in constraints and sometimes in the objective function.
The mainstay of this approach is the fact that the constraints
with random variables should be fulfilled with a distinc-
tive probability or confidence level [39]. The details of this
approach are provided in [39].

The hourly production of renewable resources and load
demand impose the load balance equations. In other
words, the uncertainties in power production of renew-
able energy sources and loads will affect directly the
injected active power at each bus of the electricity distri-
bution network and also the constraints of AC power flow,
i.e., equations (29)-(32). Therefore, these constraints are
reformulated using the chance-constrained method discussed
in [39] is extended to capture the these uncertainties to satisfy
a predefined confidence-level ∀n,m ∈ 9N and t ∈ 9T as
follows.

prob
{
Pmint ≤ P

up
t ≤ P

max
t
}
≥ 1− αP (46)

prob
{
Qmint ≤ Q

up
t ≤ Q

max
t
}
≥ 1− αQ (47)

prob
{ (
Vmin
n

)2
≤
(
Vn,t

)2
≤
(
Vmax
n

)2 }
≥ 1− αV (48)

prob
{ (
Pn−m,t

)2
+
(
Qn−m,t

)2
≤
(
Smaxn−m

)2 }
≥ 1− αS (49)

The above constraints are generally difficult to solve due
to the need for calculating inverse cumulative distribution

function of uncertainties [39]. As a result, many different
approximation methods were introduced in which among
them the sample average approximation (SAA) method is the
most commonly used one [40]. Indeed, the idea of SAA is
to approximate the actual distribution of random variables
with a set of sample scenarios and add binary variables to
indicate whether the constraints are satisfied or not [40].
Accordingly, constraints (46)-(49) are reformulated as
follows [40]:

Pupt,k − z
P
kM ≤ Pmaxt ; ∀t ∈ 9T , k = 1, 2, . . . ,N (50)

Pupt,k + y
P
kM ≥ Pmint ; ∀t ∈ 9T , k = 1, 2, . . . ,N (51)

1
N

N∑
k=1

zPk + y
P
k ≤ αP (52)

Qupt,k − z
Q
k M ≤ Qmaxt ; ∀t ∈ 9T , k = 1, 2, . . . ,N (53)

Qupt,k + y
Q
k M ≥ Qmint ; ∀t ∈ 9T , k = 1, 2, . . . ,N (54)

1
N

N∑
k=1

zQk + y
Q
k ≤ αQ (55)

(
Vn,t,k

)2
− zVk M ≤

(
Vmax
n

)2
; ∀n ∈ 9N , t ∈ 9T ,

k = 1, 2, . . . ,N (56)(
Vn,t,k

)2
+ yVk M ≤

(
Vmin
n

)2
; ∀n ∈ 9N , t ∈ 9T ,

k = 1, 2, . . . ,N (57)

1
N

N∑
k=1

zVk + y
V
k ≤ αV (58)

(
Pn−m,t,k

)2
+
(
Qn−m,t,k

)2
− zSkM ≤

(
Smaxn−m

)2
;

∀n,m∈9N , t ∈9T ,

k = 1, 2, . . . ,N (59)

1
N

N∑
k=1

zSk ≤ αS (60)

zPk , y
P
k , z

Q
k , y

Q
k , z

V
k , y

V
k , zSk ∈ {0, 1} (61)

where the binary variables in (61) denotes whether asso-
ciated constraints in (46)-(49) are satisfied and M denotes
a acceptably large constant. Note that constraints (23)-(28)
should be updated to consider index k = 1, 2, . . . ,N ,
as well. To obtain more details on SAA method for
solving chance-constrained optimization models, we refer
to [40], [41]. Therefore, the proposed scheduling model of
MRES based on the chance-constrained approach is aMINLP
optimization problem which can be solved using available
solvers.

IV. CASE STUDY
This Section presents the numerical results to investigate
the performance of the proposed scheduling model. In this
regard, after presenting the input data subsection IV-A,
the numerical results and discussions are presented in
subsections IV-B.
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A. DATA
The proposed MRES scheduling model is applied on the
IEEE 33-bus distribution network enhanced by the 14-node
gas distribution network as shown in Fig. 4 [25]. The volt-
age level of the electrical grid is 10 kV and its capacity
is 5 MVA. Each bus (node) of the electrical network has
four residential buildings. Two CHP units are installed in
nodes 3 and 11 of the electrical network, which are fed by
nodes 2 and 9 of the gas network. The parameters related to
different energy resources in both electric and gas network are
shown in Table 2. Other important input parameters including
gas network information, heat sources are given in Table 3.

FIGURE 4. The IEEE 33-bus EDS test system enhanced by 14-bus GDS.

TABLE 2. Resource information available in electrical and gas
distribution networks (EDS and GDS).

TABLE 3. Required input data.

The proposed MINLP optimization problem is imple-
mented in GAMS environment, is solved by the SBB solver,
and validated by BARON. To calculate the uncertainty sam-
ples in SAA method, we assume that the random variables
consist of deterministic forecast values plus random forecast
errors. The forecast error of power production of renewable
sources (PV and wind) and demand symmetrically follow the
Standard Normal Distribution Function with zero Mean and
Standard Deviation of 0.5 for PV and wind units, and 0.2 for
the load. It should be noted that the load changes in each node
are independent of the other nodes.

B. NUMERICAL RESULTS AND ANALYSIS
The proposed method is implemented with regard to the
penalty coefficient λpenh equal to 0.05 $/h◦C for the test
system. Also, simulation results are provided for the confi-
dence level equal to 5%, i.e., α = αP = αQ = αV =

αS = 0.05. The optimal power and heat energies sched-
ules are summarized in Table 4. According to Table 4,
CHP units produce 0.71 MWh power to supply electrical
loads. As previously discussed, the produced heat and elec-
tricity by CHP are coupled. Hence, as CHP generates elec-
tricity, its value of heating energy is 0.45 MWth which is
utilized to supply heating loads. The heat pump and gas
furnace produce 7.43 and 8.16 MWth, respectively, to meet
the remaining thermal loads. Also, the system operator pur-
chases 14.06 MWh electricity from the market. Moreover,
according to Table 4, the total operation cost equals 3028.09 $
where includes $ 12.20 penalty cost, $ 2562.31 for purchasing
power from upstream electricity network, and $ 453.58 for
purchasing gas.

We also provide the optimal daily scheduling results of the
electricity and heat resources as shown in Fig. 5 and Fig. 6.
According to Fig. 5, CHP units operate with the maximum
capacity during hours 10-22 (except hours 16 and 17). Also,
the power purchased from the upstream network is increased
at peak hours. Moreover, CHP units generate thermal energy
based on the feasible region related to the power production.
Also, during off-peak hours for electricity carriers, whenCHP
operates with the minimum capacity, the CHP’s set point is
adjusted in the maximum heating capacity. Heat pump and
gas furnace are committed during first and last hours of the
day as can be seen from Fig. 6.

FIGURE 5. Optimal daily power dispatch of resources.

Furthermore, the proposed formulation is solved for the
different values of the confidence coefficient (α). Figure 7
illustrates the cost of the whole system based on the 1 − α
criteria for different amounts of confidence coefficients.

As can be seen from Fig. 7, the output power of the renew-
able energy sources that is injected to the network will be over
conservative by increasing the value of 1 − α. As a result,
the MRES operator has to make up for this conservatism by
buying more energy from the market, and hence the daily
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TABLE 4. The results of daily costs and the value of electrical and thermal power generated and purchased for λpen
h = 0.05$/h◦C .

FIGURE 6. Optimal daily heat dispatch of resources.

FIGURE 7. Price changes in terms of reliability.

cost will be much higher. By decreasing the value of α or
in other words increasing the level of confidence, the system
operator (SO) obviously will incur more costs, but instead the
SO would be able to supplies its electrical and thermal loads
with more reliability.

The most important point with regard to MRES plan-
ning is the effectiveness of the cost of the thermal load
penalty (λpenh ). The amount of penalty will greatly impact
the scheduling and also the costs of the system. Table 5
compares the total system costs for different values of λpenh .
From the parameters pertinent to the internal temperature of
the house, given in Table 3, the comfort threshold temper-
ature of the home will be equal to (20+24)/2=22 degrees
(as mentioned, the threshold temperature is considered equal
to the average minimum andmaximum internal temperature).
Observe from the Table 5, when λpenh is zero, there is a
significant difference between the mean and the threshold
house temperature (20.97-22). Although in this case the con-
straint (11) is not violated, this strategy cannot be favorable to
the customers. As λpenh increases, the average temperature of
the house increases and reaches the threshold value, which

TABLE 5. The obtained results for the various values of λpen
h .

means that more heat supply sources must be committed.
In other words, the amount of purchased gas and electricity
ought to increase for their operation, which results in a growth
in the total system cost. As can be seen, the penalty cost
decreases when λpenh increases.
Moreover, to investigate the effectiveness of the developed

non-linear MRES scheduling formulation, the results of the
proposed model are compared with the following cases and
are shown in Table 6.

TABLE 6. Simulation outcomes of the proposed model and Cases I and II.

• Case I: Without considering electricity and gas net-
works. In this case, the constraints associated with elec-
tricity and gas distribution networks are relaxed in line
with existing literature (e.g., [19], [20], [23], [27], [29],
[31]), which do not model these networks.

• Case II: The original MRES model that the electricity
and gas networks are linearized using piecewise lin-
earization methods described in [25], [42].

As illustrated in Table 6, the daily energy cost of the
proposed model is higher than that of Cases I and II. Also,
the purchased electricity and gas energy from upstream net-
works to supply demand as well as the penalty cost are higher
when we use the non-linear formulations for both grids. How-
ever, the running time of Cases I and II are significantly lower
than that of the proposed model. Thus, a trade-off between
running time and accuracy of the model is required.

Finally, Table 7 shows the scale of the optimization prob-
lem for the deterministic and chance-constrained models of
the presented test case. In this table, N is the number of
samples for the SAAmethod. According to this table, the size
of the optimization problem for the deterministic approach

86378 VOLUME 9, 2021



R. Habibifar et al.: Network-Constrained Optimal Scheduling of MRESs

TABLE 7. Computational performance of the test case for the
deterministic and chance-constrained models.

when the variation of random variables is not considered is
significantly smaller than the chance-constrained model. The
principal ground of this phenomenon is the number of scenar-
ios to capture the uncertainties. Also, the chance-constrained
ensures the reliable operation of the system which is very
valuable for the operator.

Moreover, Fig. 8 illustrates the impact of the number of
samples (N ) on the optimization performance and computa-
tion time. This figure confirms that increasing the sample size
of SAA results in an increase in the total daily operation cost
and computation time. In general, a larger number of scenar-
ios can capture better the uncertainties in the proposedmodel.
However, it increases the running time of the optimization
problem. Hence, the number of scenarios must be chosen
carefully to achieve a good trade-off between computation
burden and accuracy.

FIGURE 8. Impact of sample size on the total cost and computation time.

V. CONCLUSION
Interconnected multi-carrier electricity and natural gas-based
energy systems have been given much more attention in
recent years. The capability to convert and store energy from
one type of carrier to another type by high-efficient technolo-
gies such as CHP, Heat Pumps, and electric and gas storage
devices, not only help to integrate as many renewable sources
as possible, also con-tributes to the system pliability. In this
paper, day-ahead optimal scheduling for the multi-carrier
residential energy systems equipped with CHP, GF, electric
and gas storage devices, Heat Pumps, and wind and solar
renewable sources was presented. The residential system
operator as a price-taker entity attempts to minimize the cost
of purchasing electricity and gas, in such a way the maxi-
mum heat demand of the system is provided. The proposed
scheduling is modeled by the Chance-constrained program-
ming method with regard to all governing constraints related

to the electrical and gas networks, and also the uncertainties
stem from wind and solar sources, as well as load behavior.
The simulation results have been discussed for the various
amount of confidence factor. The outcomes demonstrated that
the more the coefficient confidence with respect to supplying
demand is, the higher price of purchasing electricity and gas
will be.

The proposedMRES scheduling approach can be extended
to consider an unbalanced distribution network and multiple
contingencies such as line outages or load interruptions as
well as equipment failures due to natural hazards. The model
can also be adapted to include several demand response pro-
grams associated with both electric and thermal loads. These
topics are left for future work.
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