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ABSTRACT
We present a detailed implementation of five core principles for transparent and acccountable con-
versational AI, namely interpretability, inherent capability to explain, independent data, interactive
learning, and inquisitiveness. This implementation is a dialogue manager called DAISY that serves as
the core part of a conversational agent. We show how DAISY-based agents are trained with human-
machine interaction, a process that also involves suggestions for generalization from the agent itself.
Moreover, these agents are capable to provide a concise and clear explanation of the actions
required to reach a conclusion. Deep neural networks (DNNs) are currently the de facto standard in
conversational AI. We therefore formulate a comparison between DAISY-based agents and two
methods that use DNNs, on two popular data sets involving multi-domain task-oriented dialogue.
Specifically, we provide quantitative results related to entity retrieval and qualitative results in terms
of the type of errors that may occur. The results show that DAISY-based agents achieve superior
precision at the price of lower recall, an outcome that might be preferable in task-oriented settings.
Ultimately, and especially in view of their high degree of interpretability, DAISY-based agents are a
fundamentally different alternative to the currently popular DNN-based methods.

1. Introduction

Conversational artificial intelligence (hereafter: conversa-
tional AI) is a rapidly growing field, with many relevant
applications in health and well-being, education, customer
service, tourism, personal digital assistants, and so on; see,
for instance, the surveys by Laranjo et al. (2018) and Wahde
and Virgolin (2022). In general, conversational AI systems
(also called conversational agents) can be divided into the
two categories of chatbots intended for casual conversation
on everyday topics, and task-oriented agents intended to
provide clear, consistent, and relevant information on spe-
cific topics such as, for example, giving medical advice, han-
dling time table or reservation queries, providing technical
support or other customer service, and so on. In this article,
we focus on task-oriented agents.

Currently, research in conversational AI is to a strong
degree focused on black box models such as deep neural
networks (DNNs). Such systems are used for encoding stat-
istical language models in a manner that makes it possible,
for example, to maintain contextual information even in
long sentences and to produce output that, in many cases, is
indistinguishable from the response that a human would
give (Otter et al., 2021). However, despite the success of
DNNs in conversational AI, there are reasons to be

concerned about their indiscriminate use: While such sys-
tems might be eminently suited e.g., for the task of casual
conversation in chatbots, their black box nature makes them
much less suited for the decision-making (cognitive process-
ing) that underlies the responses given by task-ori-
ented agents.

In fact, the same concerns can be raised for the entire AI
field, beyond conversational AI. Applying black box models
in any situation that involves high-stakes decision-making is
fraught with danger (Rudin, 2019), partly because of the
fundamental opaqueness of the decision-making in such sys-
tems, and partly due to the manner in which they are
trained: Typically, training a black box model requires vast
amounts of data that, in turn, may contain unwanted biases
that are assimilated by the black box during training. In
recent years, and in response to such problems, several
approaches have been suggested for generating more trans-
parent AI-based systems. Those approaches can broadly be
divided into two categories (Barredo Arrieta et al., 2020),
namely explainable AI (xAI) and interpretable AI (IAI).

In xAI, the aim is to provide some form of explanation
of the decisions taken by a black box model, often involving
a secondary model that somehow approximates the black
box. Such considerations have resulted in a plethora of
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approaches for explaining black box decision-making, at dif-
ferent levels and to varying degree. A detailed description of
such approaches will not be given here, but the interested
reader can find more information in a recent review
(Angelov et al., 2021).

By contrast, in IAI, one seeks to circumvent the problem
by avoiding DNNs altogether and instead building decision-
making systems composed of interpretable primitives, such
that the decision-making steps can be described in a
human-understandable manner. It should be noted here that
the nomenclature of these approaches is somewhat confus-
ing, in that some authors use the terms explainable and
interpretable more or less interchangeably, whereas others
(us included) emphasize the difference between inherent
interpretability, on the one hand, and explainability (of black
boxes) on the other (Barredo Arrieta et al., 2020; Linardatos
et al., 2020; Rudin, 2019).

Returning to the specific case of conversational AI, one
may observe that, at present, this field is very strongly domi-
nated by research into black box (DNN) approaches, to such
an extent that neither IAI nor, in fact, xAI are given much
consideration, with a few recent exceptions (Nobani et al.,
2021; Wahde, 2019; Wahde & Virgolin, 2021; Werner, 2020).
This is unfortunate: One may argue that it is, in fact, crucial
that a developer should be able investigate how a conversa-
tional system works, making it possible to identify and cor-
rect errors, and to modify or extend the system as necessary.
Moreover, it is equally important that a user should (perhaps
upon request) be given a clear description of how a conver-
sational system reached a particular conclusion. Alas, none
of those conditions are fulfilled by the currently popular
DNN-based systems, whose near-total opaqueness, combined
with occasional catastrophic failures, make them unsuited for
the types of applications just mentioned, as exemplified in
Section 2. In addition, as briefly mentioned above, DNN-
based conversational systems are generally trained using
processes that requires large corpora of dialogue data, which
can be hard to obtain for specific tasks. Even more import-
antly, the statistical language model encoded by the resulting
DNN may (and often does) incorporate unwanted biases
(e.g., racial or sexist biases) present in the training data.
Once the DNN has been trained it is very hard to detect
such biases a priori, meaning that the resulting system may,

at any time and without warning, give a catastrophically
incorrect output that, in turn, can have very negative effects
on the users of the system (Bender et al., 2021).

Motivated by a desire to overcome the problems just
described, in a recent article we introduced five principles
that, in our view, should permeate any task-oriented conver-
sational AI system, regardless of the specific implementation
used (Wahde & Virgolin, 2021). Those principles, referred
to as “the five Is”are: interpretability and inherent capability
to explain that are meant to ensure transparency and
accountability of a conversational agent during development
and use, respectively; independent data that makes it pos-
sible to replace an agent’s knowledge base without needing
to modify its conversational capabilities, thus allowing re-
use of existing agents; interactive learning and inquisitive-
ness (the latter term here used in the positive sense of the
word, i.e., similar to an eagerness to learn), both of which
provide a novel, transparent approach for training conversa-
tional agents, accessible even to non-experts. The five princi-
ples are described in greater detail in Section 3.

The core component of a task-oriented agent is the dia-
logue manager (hereafter: DM), which has the task of deter-
mining the user’s intent, processing the user’s request or
statement in order to derive the necessary information
required for the response, a process that typically involves
access to the agent’s knowledge base, and then, finally, for-
mulating the output in human-understandable manner.
DMs typically follow the socalled pipeline model (albeit only
implicitly in the case of black box models of the kind
described below), shown in Figure 1. Many DMs were devel-
oped prior to the advent of DNN-based systems, e.g., finite-
state (Jurafsky & Martin, 2009), frame-based (Bobrow et al.,
1977), plan-based (belief-desire-intent) (Allen et al., 2001;
Bohus & Rudnicky, 2009), and agent-based (Blaylock, 2005)
DMs; see also (Jurafsky & Martin, 2009; McTear, 2020;
Wahde & Virgolin, 2021) for a more detailed general
description of DMs and their use. While one may argue that
those systems fulfil some, though by no means all, of the
five principles, e.g., interpretability to some degree, none of
them were explicitly designed with such principles in mind.
The interpretability of, say, frame-based systems (of which
GUS is a prime example; Bobrow et al. (1977)) is more of a
byproduct than a result of deliberate design: When those

Figure 1. The pipeline model, showing the central position of the dialogue manager. In addition, task-oriented agents almost always require a knowledge base,
whereas automated speech recognition and speech synthesis are somewhat peripheral.
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DMs were developed, the various problems associated with
black box models where not relevant, or even known.
However, in the current situation, where the drawbacks of
using black box models have become clear, the need for a
more principled approach has arisen.

In this article, we will introduce, describe, and discuss a
specific implementation of those principles, emphasizing one
principle in particular, namely interactive learning, which
we present as an alternative to the standard dichotomy of
using either handcoding (time-consuming and error prone)
or machine learning (with all the drawbacks listed above,
e.g., incorporation of unwanted, hidden biases in the result-
ing systems). Moreover, we will illustrate how our imple-
mentation provides completely transparent decision-making,
as well as an inherent ability to explain how a given decision
was generated and formulated. Furthermore, our implemen-
tation includes a process by which the agent can suggest
generalizations in order to expand its capabilities.

The outline of the article is as follows: In Section 2 we
present the black box approaches that are currently domi-
nating the field of conversational AI, with the aim of pro-
viding context for Section 3 where the five principles are
briefly described. Then, in Section 4 we provide a descrip-
tion of the DAISY dialogue manager that, prior to this
work, implemented two of the five principles. Next, in
Section 5 we present a novel, improved version of DAISY in
which the remaining three principles are implemented as
well. In Section 6, we first describe the data used during
training and testing, and then provide the results from our
experiments, which were tailored to allow a direct compari-
son with DNN-based approaches that are the current de
facto reference models in the field. Finally, in Section 7 the
results are discussed, and some conclusions are presented.

2. Current trends: Black box models

Because of their widespread use, DNNs are a foremost
example of black box models. Under the right circumstan-
ces, DNNs can work superbly well and, since the early
2010s, deep learning has taken various fields of AI and com-
puter science by storm (Sejnowski, 2018), conversational AI
being no exception.

Vinyals and Le (2015) authored one of the principal works
that sparked the wide adoption and study of deep learning
for conversational AI. In their work, a DNN that was origin-
ally designed for machine translation (Sutskever et al., 2014),
was shown to be able to learn how to participate in a dia-
logue after being trained on sequences of words from a dia-
logue corpus (such as movie subtitles (Tiedemann, 2009)).

In the years since, the most influential innovations in the
field of deep learning for conversational AI have involved
the design of improved DNN architectures, trained on larger
and larger language corpora (Otter et al., 2021; Young et al.,
2018). Important examples of recent DNN-based chatbots
include an (unnamed) chatbot developed at the Montreal
Institute for Learning Algorithms (Serban et al., 2017),
Microsoft’s XiaoIce (Zhou et al., 2020), and Google’s Meena
(Adiwardana et al., 2020). For task-oriented agents, several

studies have explored using DNNs to retrieve and present
the correct information, given the user’s query and the state
of the dialogue (Madotto et al., 2020; Qin et al., 2020; Wen
et al., 2017).

Currently, the most popular type of DNN for natural lan-
guage processing and generation is the transformer, because
of its proficiency at inferring context in the form of long-
range interdependencies between words (Devlin et al., 2019;
Vaswani et al., 2017). OpenAI’s GPT-3 (Brown et al., 2020)
is perhaps the most well-known transformer for conversa-
tional AI and, more generally, natural language generation.
In its largest implementation, GPT-3 uses 175 billion param-
eters, was trained on hundreds of billions of words, and can
produce human-like text or conversations, as well as code
snippets, when prompted opportunely. However, GPT-3 can
incur in both evident failures (e.g., such that the same sen-
tence is generated over and over) and subtle ones where the
answer is formally correct but semantically harmful. For
example, Daws (2020) has tested that, in one case involving
a discussion with a researcher posing as a psychiatric
patient, when prompted with the question “Should I kill
myself?”, GPT-3 blatantly answered “I think you should”.

Ultimately, even though DNNs are remarkable at generat-
ing language that may appear human-like, one should not
forget that this is the byproduct of their excellent capability
to model statistical co-occurrences, and not of any real intel-
ligent understanding of discourse (Bender et al., 2021; Daws,
2020). The drawbacks related to the use of DNNs in task-
oriented agents were described in Section 1. To that list can
be added the fact that, specifically when DNNs are used for
task-oriented agents, the language generation process can
become too deeply entangled with the type of information
that is typically extracted from the knowledge base. This, in
turn, means that changing the knowledge base can cause
language generation to fail (Raghu et al., 2019).

3. Five proposed principles for
conversational agents

In an earlier article (Wahde & Virgolin, 2021), we defined
five key principles that, in our view, should permeate any
conversational agent, regardless of the specific implementa-
tion used. However, in order for the principles to be useful,
they must be implementable in practice. In this article, we
provide a specific implementation, described in Section 4, of
the five principles. A brief outline of the principles will now
follow, but we also refer the reader to our previous work
(Wahde & Virgolin, 2021) for a more detailed description.

The first two principles, interpretability and inherent cap-
ability to explain are intended to ensure transparency and
accountability that, in turn, are crucial for the safe applica-
tion of conversational agents in dialogue and decision-mak-
ing that may affect many people, e.g., in healthcare
applications. Stephanidis et al. (2019) argue that interpret-
ability and explainability are crucial aspects for human-tech-
nology symbiosis, one of the grand challenges they propose
for human-machine interaction. With interpretability, a
developer remains fully in command of the steps required to
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define a conversational agents, whereas the inherent capabil-
ity to explain is central during use, allowing a user to obtain
a simple, clear, and relevant explanation of the agent’s deci-
sion-making. As is illustrated below, by implementing the
cognitive processing of an agent as a sequence of generic,
high-level steps, both principles can be fulfilled.

The third principle, independent data, implies that an
agent’s declarative memory, i.e., its knowledge base, should
be as independent as possible of its procedural memory, i.e.,
its conversational capabilities. By adhering to this principle,
one can avoid the entanglement between declarative and
procedural memory that, at least to some degree, occurs in
black box conversational agents. Keeping the knowledge
base separate from the procedural memory makes it easy to
replace the knowledge base so that a given conversational
agent can be adapted to a new task without much effort
(beyond defining the knowledge base).

The fourth and fifth principles, interactive learning and
inquisitiveness provide a means to train, adjust, or extend
the capabilities of an agent in a natural and transparent
manner, and without the need for collecting and curating
massive amounts of dialogue data. As shown below, the
interactive learning, which is carried out via a natural con-
versation between the agent and a user, is meant to be
accessible even to non-experts, making it possible for any-
one to define or tune a conversational agent. Note that, in
this context, interactive learning refers to a procedure for
enhancing the agent’s capabilities. This should not be con-
fused with approaches, such as the Curiosity Notebook (Lee
et al., 2021), where an agent supports the learning process
of a human user.

The inquisitiveness principle implies that the agent
should display an eagerness to learn: For any new skill
learned, the agent should try to generalize its capabilities by
comparing the new skill to its existing knowledge and then
suggesting (whenever possible) extensions and generaliza-
tions. However, crucially, both the generalizations suggested
by the agent, and the interactive learning in general, should
also be under full control of the human user, so that, by
construction, the agent cannot learn any unwanted skills.

While we believe that these principles are all important
and should be aimed at when designing conversational
agents, it may be the case that, for some end users concerned
with specific applications, some principles may be more
important than others. We elaborate on this in Section 7.

4. The DAISY dialogue manager: Interpretability
and independent data

This section presents DAISY (short for Dialogue
Architecture for Intelligent SYstems), a dialogue manager that
was proposed in an earlier work, where the two principles
of interpretability and independent data were implemented
(Wahde, 2019). DAISY has been substantially improved
since then, hence we provide a detailed description here.

DAISY is used as the core component of a conversational
agent, as illustrated in Figure 1. The input fed to DAISY is
in the form of text, whether typed directly by the user or

obtained from the output of automated speech recognition.
DAISY’s output is also in text format, but can be enhanced
with the use of speech synthesis that converts the text into
speech. The peripheral modalities that handle speech are
sometimes important, but are not parts of DAISY proper.
Thus, in this article, automated speech recognition and
speech synthesis will not be considered further.

DAISY features a long-term memory (LTM) and a work-
ing memory (WM). The WM is empty on start-up and is
then gradually populated with information as the conversa-
tion progresses between the agent and the user. The LTM
consists of two parts: A procedural memory (the “how”)
that houses the agent’s ability to process information, and a
declarative memory (the “what”) that stores the agent’s
knowledge base, in an explicit format described below. This
structure, with clear separation between the procedural and
declarative parts, represents an implementation of the inde-
pendent data principle described above.

The memory of a DAISY-based agent is populated by so-
called memory items of two kinds: (1) Data items that
define the declarative memory and are also used for storing
temporary information in the agent’s WM, and (2) action
items that store the agent procedural capabilities. Action
items, in turn, are of three different kinds: Input items that
define patterns (templates) for identifying user input, cogni-
tive items that handle the cognitive processing that, with
some generosity, can be referred to as thinking involving
deliberation and decision-making, and (3) output items that
simply convey to the user the information generated in the
cognitive processing step. The overall structure of DAISY is
illustrated in Figure 2.

4.1. Data items

In order to describe the data items, it is easiest to provide a
description by means of a specific example involving two
data items as shown in Figure 3. As can be seen in the
example, two data items are defined that give (partial) infor-
mation about France and Paris, as well as their relation.
Every data item is associated with a unique ID (a text
string). Moreover, every data item defines a set of so-called
tag-value pairs. The values are normally (text) strings but
can also be either (i) (pointers to) lists of data items, a fea-
ture that is mostly used for data items in the agent’s WM or
(ii) pointers to the ID of another data item (preceded by the
@ sign; see the example). The tags are always strings, how-
ever. The use of pointers to IDs is optional but may help
identify the correct data item in cases where there might
otherwise be an ambiguity. In this particular case, assuming
that there is only one item named France and one named
Paris, one could (in the data items) replace the value
@L000002 by the string France and the value @L000001 by
the string Paris, for example. Needless to say, a lot more
information could be added (in the form of tag-value units)
to these items. In this example, the population size is given
for France, but not for Paris, and so on. Finally, it should be
noted that a given item may belong to several categories.
For instance, Paris belongs to the category city but also to
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the category capital. In the example, only two data items are
shown. Normally, an agent would contain thousands of data
items, defining the entire knowledge base including, for
example, linguistic information such as the definition of
concepts (e.g., a city or a country, in this case) and (for
example) singular and plural forms (city, cities) etc. Thus,
some parts of the knowledge base (e.g., linguistic informa-
tion) would be applicable across different domains, whereas
others would be domain-specific and, crucially, easily
swapped as needed for the application at hand. For example,

if an agent has been provided with the procedural know-
ledge for answering questions involving, say, a restaurant,
i.e., menu, opening hours, and so on, it is very easy to
replace the knowledge base, i.e., the specific information for
a given restaurant, by a set of data items defining the rele-
vant information for another restaurant. In other words, as
there is no entanglement (beyond the formatting of the data
items) between the procedural and declarative parts of an
agent, DAISY fulfils the independent data principle
described in Section 3.

4.2. Action items

Starting with the input items, they each define one or sev-
eral exact patterns that a user input sentence must match in
order for the agent to identify the input. Given the variabil-
ity of human language, it is rarely, if ever, possible to specify
as patterns all manners in which a given intent may be for-
mulated. Thus, DAISY also allows a generic input pre-

Figure 2. The structure of DAISY: The input items, cognitive items, and output items are denoted I, C, and O, respectively. The (textual) input is first pre-processed,
a step that may involve just an identity mapping or something more sophisticated as in Section 6.3.3. The matching input item (if any), shown in light blue here,
then conveys information to a cognitive item that carries out the cognitive processing and decisionmaking. Next, an output item formulates the output in human-
understandable language, possibly including the information generated in the cognitive processing step. Note that some cognitive items may target different out-
put items depending on the result of their processing. Finally, a post-processing step is carried that, in this article, is a simple identity mapping but, in principle,
can allow the agent to formulate a given output sentence in many different ways, for example using semantic grammars or even DNNs.

Figure 3. Two simple examples of data items, showing the ID of each item, as
well as a set of tag-value pairs.
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processing step, whereby a user’s input statement is mapped
(if possible) to any of the templates in the input items.
Thus, one can say that a specified template in an input
item acts as a sort of semantic attractor, to which many
syntactically different, but semantically equivalent, input
statements can be matched. The exact nature of the pre-
processing step is not defined in DAISY: It could be a
simple identity mapping, or it could involve a more com-
plex structure, for example a semantic grammar (Ward
et al., 1992), or even a DNN. When a more complex pre-
processing step is used, there could also be a prescription
of handling approximate matches, e.g., asking the user for
a clarification (“Did you mean … ”). This issue is further
addressed in Section 7.

The output items also contain a set of patterns used
by the agent to formulate its responses. As mentioned
above, output items merely convey the information gener-
ated in the cognitive processing step, meaning that the
patterns defined in such an item should be semantically
equivalent. In fact, when presenting the output to the
user, a DAISY-based agent will select randomly among
the available patterns in the output item in question, in
order to generate a more lifelike appearance by varying
the output a bit.

However, as in the case of the input processing, it may
be hard to specify (in a set of patterns) the many ways in
which a given output statement can be formulated. Thus,
for the agent’s output, one can apply an output post-
processing step whose exact nature is not defined in DAISY
but, as in the case of the input pre-processing, may range
from a simple identity mapping (as in this article, where the
output is not post-processed at all) to more sophisticated
approaches involving, say, semantic grammars or DNNs.
For example, a DNN can be trained to paraphrase any given
template pattern in order to allow more variability in the
agent’s output.

Now, in this article, as our purpose is to illustrate how
the five principles can be implemented and used, input pre-
preprocessing and output post-processing can be seen as
secondary. However, for the former, in Section 6.3 we inves-
tigate the straightforward use of a DNN for paraphrasing,
i.e., for handling semantically equivalent inputs that may be
formulated in different ways.

4.2.1. Cognitive processing
A central idea in DAISY is the concept of generic cognitive
processing, built from elementary so-called cognitive actions
acting in concert. This processing takes place when an agent,
having identified the user’s input, carries out the deliber-
ation and decision-making required to formulate an output.
A cognitive item contains a set of cognitive actions that, in
turn, each define a small part of the required processing
and, crucially, does so in a completely transparent and easily
human-interpretable manner, thus providing an implemen-
tation of the first principle (interpretability). Moreover, the
cognitive actions are intended to be as generic as possible,
manipulating data items in a completely general manner.
Thus, there are cognitive actions for extracting data items

(from LTM or WM) based on some specific criterion, sort-
ing data items based on a given property (value), extracting
information from data items, comparing properties between
data items, carrying out conditional branching, and so on. A
full list will not be provided here, but several examples are
given below.

Each cognitive action has at least one (sometimes more)
target actions, i.e., a specification of the next cognitive
action to process, once the action under consideration has
completed its work. The cognitive actions have been defined
in a very generic manner, aiming for maximum re-usability.

At this point, the presentation may be helped by a simple
example to illustrate the use of cognitive actions: Consider a
case where the knowledge base contains information (in
data items, as described above) about geography and demo-
graphics (e.g., countries, cities, continents, rivers, and so
on). In this context, a user may, for example, ask the ques-
tion “Which is the largest city in France?” If the agent con-
tains an input item equipped with a pattern that matches
the user’s input, the agent can then proceed to the cognitive
item targeted by the input item. There, the sequence of cog-
nitive actions could be of the form shown in Figure 4. The
first FindAll action searches the agent’s LTM, extracting a
list of (pointers to) data items in the city category and plac-
ing them in WM. The next FindAll action extracts those
data items that pertain to cities in France,1 whereupon the
SortDescending action sorts them in descending order, based
on population size. Then, the GetElement action extracts the
first data item from the list, i.e., the one associated with the
largest city. Finally, the GetValue action extracts the name
(in a variable in WM called name), so that it can be pre-
sented to the user via an output item targeted by the cogni-
tive item that contains the cognitive actions just described.

In the example in Figure 4(a), the cognitive processing is
executed as a linear sequence of actions, such that action k
targets action kþ 1, k¼ 1, … , 4. In other situations the
processing might be more complex, involving (for example)
branching. A simple example is shown in Figure 4(b). Here,
the knowledge base instead consists of information about a
restaurant, e.g., its available dishes, locations, opening hours,
and so on. A user may ask the question “Do you have any
vegetarian dishes?”, in which case the cognitive processing
may proceed as in Figure 4(b). In the final action shown,
two outputs are possible, one indicating a negative response
if the number of vegetarian dishes is 0, and one indicating a
positive response if the number of such dishes is larger than
0. In the former case, the agent would execute a jump (not
shown) to an output item providing a negative response
(e.g., “I’m sorry, we don’t have any”) where as in the latter
case, the agent would jump to an output item giving a posi-
tive response (e.g., “Yes we do”).

5. Extending DAISY

Here, we present an extension of the DAISY version
described above, whereby the three remaining core princi-
ples are implemented as well.
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5.1. Inherent capability to explain

We have extended the cognitive actions so that each such
action also contains a detailed description of the processing
that it carries out. Thus, during operation, a full explanation
of the entire deliberation sequence can easily be made avail-
able by construction, meaning that the requirements of the

second principle (inherent capability to explain) are also ful-
filled: Whenever an agent carries out the processing
sequence defined in a cognitive item, the explanation is
automatically generated. Should the user request an explan-
ation, it is then readily available. A specific example is given
in Figure 5. As can be seen in the figure, once the agent has

Figure 4. Two examples of sequences of cognitive actions. (a) Sequence for processing the question “What is the largest city in France?” (b) Sequence for process-
ing the question “Do you have any vegetarian dishes?”

Figure 5. An illustration of the agent’s inherent capability to explain its reasoning. The specific case shown is the agent’s explanation of how it answers the ques-
tion “Which is the largest city in France?” See also Figure 4.
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answered the question, the user follows up with a request
for an explanation, whereupon the agent provides a step-by-
step explanation, using the built-in explanation for each cog-
nitive action. For example, in the case of the FindAll action,
there are two parameters, the searchTag (e.g., category, as in
the first such action in Figure 4) and the searchValue (e.g.,
city). When the agent carries out its cognitive processing, in
this case finding all data items pertaining to cities, it has all
the required information for generating the explanation
fragment “I retrieved all items in the city category”, and so
on for the other cognitive actions. The full sequence of
explanations, one for each cognitive action, is then slightly
modified by inserting words such as next, then, finally, and
so on, and is then stored in WM, ready for use
upon request.

We remark that, unlike the case for many explainable AI
methods applied to black box models, this form of explan-
ation is not an approximation of the behaviour of the model
(Adadi & Berrada, 2018). Rather, in this article, an explan-
ation refers to an exact verbal enunciation of what cognitive

actions have taken place to reach the answer. This is pos-
sible because the agent is built using high-level operations,
allowing the user to know exactly what computations have
taken place. In other words, this explanation allows the user
to obtain a verbal explanation of the high-level operations
that the agent took to arrive at the answer, without the need
to visualize the entire agent’s logic (as per Figure 2).

5.2. Interactive learning

Given the transparent structure of the cognitive actions, it is
possible to generate the procedural knowledge of an agent
by hand, i.e., by specifying the sequence of cognitive actions,
and their parameters, in an editor that has been developed
for that very purpose. However, just as in the case of the
design (or at least choice) of the architecture and the train-
ing schedule of a DNN-based conversational agent, such
hand-coding requires quite a bit of specialized knowledge,
e.g., a fundamental understanding of the detailed properties
of each relevant cognitive action. While a system developer

Figure 6. Training an agent with interactive learning. During learning, DAISY translates the instructions expressed in natural language by the user into a clear and
interpretable cognitive process to perform the desired task.
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might possess such knowledge, it would be beyond the reach
of most users, for example a restaurant owner wanting to
set up a conversational agent that can provide information
about the restaurant.

Thus, in keeping with the fourth principle from
Section 3, we extend DAISY to feature interactive learning,
which constitutes a third training method beyond the two
methods (hand-coding and machine learning) that require
specialist knowledge. To this end, we equipped DAISY with
a learning handler that is activated by certain key input
phrases, e.g., “Let me teach you something”. Once activated,
the learning handler will then process user input that speci-
fies, in plain, non-technical language, the actions that should
be taken. An example is shown in Figure 6. This is the same
example as in Figure 4 with the important difference that,
here, the agent learns the sequence of cognitive actions in
interaction with the user. As can be seen in Figure 6, having
activated the agent’s learning handler, the user provides a
set of processing steps.

Under the hood, we have equipped each cognitive action
with one or several patterns for processing user input in this
form, in order to select, during learning, the appropriate
action to include in the growing sequence of cognitive
actions. For example, the pattern consider all <x1> in
<x2> triggers the definition of two FindAll actions, one
that finds, and stores in WM, all data items for which cat-
egory equals< x1>, followed by one that extracts (from the
list of data items generated by the previous action) all items
for which the belongsTo equals< x2>. Note the use of
brackets <…> for identifying dynamic information, i.e.,
information tags that can assume different values, as in
slot-filling.

Similarly, the user statement “Sort in falling order on
<x3>” triggers the inclusion of a Sort action, which sorts
the data items (stored in WM as a result of the preceding
action) in descending order based on the value of< x3>.
Once the user has specified the entire sequence required for
the case at hand, the next step is to give a key phrase e.g.,
“Then present the value found” that (i) builds a cognitive
item, including the sequence of cognitive actions defined
earlier, and (ii) triggers the definition of an output item, tar-
geted by the cognitive item and providing the output to the
user, as shown in the red box in Figure 6. In this simple
example, the output was laconic, consisting only of (the con-
tent of) the< name> variable. In other cases, the output
(pattern) may be more complex and verbose; an example of
that kind is shown in Figure 7. Finally, the user provides the
definition of the question that the agent is supposed to
answer, thus triggering the definition of an input item,
shown in blue in Figure 6 with the specified input pattern
and targeting the cognitive item. The agent then transfers
the acquired action items to its procedural memory, exits
the learning handler, and is ready for operation.

With this approach, it becomes possible also for a non-
expert to train a conversational agent, using statements in
plain language. Granted, the human teacher must provide a
step-by-step description of what the agent should do, and
must do so using certain key phrases. However, those key
phrases are generally quite natural, i.e., correspond roughly
to the phrases that would be used when teaching a person
how to carry out a similar deliberation. Moreover, while not
shown in the figure, DAISY does provide some guidance,
for example, informing the user in cases where it does not
understand what was meant.

Figure 7. An example of interactive learning using a subset of MWOZ as the knowledge base. Note the agent’s suggestion for generalizing its capability, at the end
(on the right) of the training sequence.
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5.3. Inquisitiveness: Showing curiosity

Another important property, strongly related to the inter-
active learning described in the previous subsection, is an
agent’s capability to actively seek new knowledge, for
example by trying to generalize. This property, which we
have also implemented in DAISY, constitutes the fifth prin-
ciple from Section 3, namely inquisitiveness. Here, this word
is to be interpreted with its positive connotation, e.g., as in
the case of child showing curiosity and an eagerness to learn
new things. However, one should also keep in mind the
negative meaning of the word inquisitiveness, namely an
annoying, undue propensity to pry: It is important that an
agent’s curiosity should be tempered, and only displayed in
certain situations, e.g., during learning, so as not to annoy
the user. In an actual usage situation, when an agent has
been deployed for example as a restaurant information sys-
tem, DAISY allows this property to be disabled altogether.
In the main example shown in Figure 4 and 6, the agent
learned how to answer a very specific question, namely
“Which is the largest city in France?” Even though that is a
perfectly valid question, it would be very tedious and

inefficient to have to teach the agent similar processes for
every country (in this specific example). However, once a
given teaching sequence has been completed, the agent scans
the newly learned capability in order to check whether it
can propose a generalization. For this particular example, an
illustration is shown in Figure 8. Here, having learned how
to answer the user’s question, the agent searches the relevant
data items (those extracted by the second FindAll action, in
this case), to find that a France is an example of a country.
The agent then scans its knowledge base to discover that it
has knowledge of other countries (assuming that such data
items have been added), for example Italy, Spain, and so on.
The agent then proposes a generalization that, if accepted by
the user who always has the final say, causes the agent to
replace France by the dynamic content< country> in all
places where it is necessary for the generalization to take
effect, i.e., in the input item and in the second FindAll
action, in this particular example. After that, the agent is
then ready to respond to the more general question “Which
is the largest city in <country>?” for any value
of< country> that actually represents a country. Note that,
while not shown in the figures, if the user specifies

Figure 8. Continuing on the example shown in Figure 6, once the agent has learned how to answer the question which is the largest city in France? it realizes that
a generalization might be possible, and therefore asks the user if this is indeed the case.
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something other than a country, e.g., a nonsensical state-
ment such as “What is the largest city in Paris?” or perhaps
a country that the agent does not know about, the agent will
indicate that it cannot answer the question.

6. Experiments

In this section we present experiments carried out to valid-
ate our approach. The experiments were chosen specifically
so as to allow a direct comparison with a common task
associated with DNN-based conversational agents, namely
entity retrieval, i.e., the process of retrieving the relevant
information from a knowledge base, given the user’s input.
First, we introduce the data considered in the experiments.
Next, we present the results of training a DAISY-based
agent with interactive learning (Experiment 1). This experi-
ment illustrates two core principles, namely how such agents
can be taught to process and respond to a set of user
queries, and how it can generalize from what it learns. Next,
as Experiment 2, we frame a comparison between the
trained DAISY-based agents from Experiment 1, on the one
hand, and two black box, DNN-based methods on the other.
In order to make possible a fair and direct comparison with
those methods, we augmented DAISY’s input matching by a
DNN-based input pre-processing step (see also Figure 2), as
explained below.

6.1. Data

We considered two public domain data sets that are com-
monly used to train, validate, and compare DNN-based
approaches. These are the Key-Value Retrieval (KVR) data
set by Eric et al. (2017) also known as In-Car Assistant or
SMD, and the Multi-Domain Wizard-of-Oz 2.1 (MWOZ)
data set by Budzianowski et al. (2018). Both KVR and
MWOZ contain single- and multi-turn task-oriented dia-
logues, and, for each dialogue, a small knowledge base
expressed in a textual representation, quite similar the con-
tent of DAISY’s data items. These data sets are normally

used to train (DNN-based) agents to produce meaningful
answers that contain the right information (extracted from
the knowledge base) given the requests of a user. Each dia-
logue in KVR and MWOZ, along with its respective know-
ledge base, concerns a certain task category. We used the
same task categories considered by Qin et al. (2020). For
KVR, these task categories are: Navigation assistance, wea-
ther forecast, and appointment scheduling; for MWOZ, they
are: Information about hotels, restaurants, and places of
interest. See Table 1 for examples.

To build a DAISY-based agent, we prepared one training
example for each category from KVR and MWOZ, and then
applied interactive learning to those examples (see Section
6.2). Specifically, we chose a random single-turn interaction
(one user request and one respective agent response) from
the training set of the respective data set.2 In order to obtain
a test set limited to the type of interactions suitable for
training a DAISY-based agent, we generated similar versions
of the chosen interaction by: (1) Taking alternative formula-
tions of the user’s request; and (2) Changing the specific
instance of dynamic information (e.g., cheap, moderate, and
expensive for< price>) in the user’s request and the
expected agent’s answer (using the knowledge base). Both
the alternative formulations and the instances of dynamic
information were taken from the training set for the cat-
egory of interest. We took a total of three formulations for
the user’s request and five random instances of dynamic
information per formulation, leading to 15 test samples per
category. In the remainder of this section, we refer to our
versions of KVR and MWOZ by KVR0 and MWOZ0,
respectively. Lastly, we created a simple converter to trans-
late the information from the knowledge bases in the format
of KVR and MWOZ into data items for DAISY (i.e., as in
Figure 3, but without pointers) (Table 2).

6.2. Experiment 1: Training DAISY

DAISY-based agents were trained interactively, as described
in Section 5.2 using a single training example per category

Table 1. Examples of user requests in our data sets KVR0 and MWOZ0 .

Data Category User Requests

KVR’ Navigation Where is the nearest coffee or tea place?
I need to find the shortest route to the hospital
What rest stop are here?

Schedule Tell me the time of today’s meeting
When is the football activity today?
When do I have today’s dinner planned?

Weather What’s the temperature going to be like on Monday in Boston?
What’s the temperature going to be in Menlo Park on Friday?
What is the weather like on Thursday in Cleveland?

MWOZ’ Attraction Can you help me find the Fitzwilliam Museum?
Hello. Can you help me find the address of ADC Theatre?
I am trying to find All Saints Church

Hotel Can you find me a pretty cheap hotel?
I need an expensive hotel
I’m looking for a moderate hotel

Restaurant Can you give me information on a restaurant called Curry Garden?
I am looking for a particular restaurant called the Missing Sock
I’m looking for some info on the Varsity Restaurant

All three request formulations belonging to a given category admit the same answer, except for information relative to
the specific instance of dynamic information in the request, which can be different. Cf. Table 2 for examples of expected
answers for each category. The first request in each category was used to train DAISY via interactive learning.
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and a knowledge base derived from the data described
above. The agent was taught how to process and respond to
questions of the kind shown in Table 1. At the end of train-
ing (for a given query) the agent suggested a generalization
of the request under consideration. Note that two agents
were trained in total, one for KVR0, and one for MWOZ0,
akin to how DF-Net was trained separately on KVR
and MWOZ.

One of the training sequences, involving MWOZ data, is
shown in Figure 7. In this case the agent learns to respond
to an (implicit) question of the form “I’m looking for a
cheap hotel”. After learning the required processing, the
agent also asks whether it may generalize such that it can
answer questions related to any price level, e.g., “I’m looking
for an expensive hotel” as well. Mostly, the agent was trained
using text input and output. However, for the case just men-
tioned, the agent was augmented with peripheral modalities
(automated speech recognition, speech synthesis, and a sim-
ple animated face for embodiment), and an accompanying
video was generated.3 The video illustrates interactive learn-
ing, inquisitiveness, and the agent’s inherent ability to
explain its reasoning.

Once a DAISY-based agent has been trained, it will, by
construction, achieve perfect performance in all cases
where the input conforms to what it has learned.
Moreover, it will also handle all the generalized inputs,
assuming that they were accepted (during training) by the
user; see also Figure 7. However, as mentioned in Section
4.2, the agent will not be able to respond to other inputs,
such as semantically equivalent sentences formulated with
different syntax or, in other words, paraphrasing. This is
where the pre-processing step, shown in Figure 2, comes
in. For the purpose of comparing with black box conversa-
tional systems in the next section, we have here added a
pre-processing step to match arbitrary user requests to the
inputs that the DAISY-based agent has learned; see Section
6.3.3 for an explanation.

6.3. Experiment 2: Comparing with DNNs

We compared DAISY to two recent DNNs: The task-ori-
ented model dynamic fusion network (DF-Net), by Qin
et al. (2020), and GPT-3, by Brown et al. (2020). We com-
pare to DNN-based approaches because they represent the
state-of-the-art in natural language processing, and we frame
our experimental setup according to the typical setup used
to compare DNNs (Madotto et al., 2018; Qin et al., 2020).
This section proceeds with an explanation of the DNNs and
our usage, the setup of an input pre-processing system for
DAISY, the metrics used for evaluations, and the
obtained results.

6.3.1. Df-Net
DF-Net was conceived as a system able to provide informa-
tion to precise queries from examples of dialogues and
information present in the knowledge base. In particular,
DF-Net was shown to outperform several recent DNN-based
task-oriented methods (Madotto et al., 2018; Qin et al.,
2019; Wen et al., 2018; Wu et al., 2019), thanks to its ability
to learn common aspects of task-oriented dialogue from
data regarding different domains.

To use DF-Net, we adopted the best pre-trained model
provided by its authors, and framed our test examples in
KVR0 and MWOZ0 to the format required by DF-Net’s code
base. We remark that our test examples were generated so
as to be withindistribution with respect to the training
examples of DF-Net. We also reproduced the results of DF-
Net on the original KVR and MWOZ data sets.

6.3.2. Gpt-3
GPT-3, as mentioned in Section 2, is a massive language
model capable of generating human-like discourse. In some
cases, when queried appropriately, GPT-3 can produce
answers to a query even if it was not specifically tuned for
that purpose (i.e., in a zero-shot learning setting). This

Table 2. Examples of desired responses in our data sets KVR0, MWOZ0 , for the requests of Table 1, in order.

Data Category Response

KVR’ Navigation Philz is 1 miles away
Palo Alto Medical Foundation is 4 miles away
Four Seasons is 1 miles away

Schedule The meeting is at 7PM
The football activity is at 11AM
The dinner is at 8PM

Weather In Boston on Monday it will be clear skies between 60 F–80F
In Menlo Park on Friday it will be cloudy between 90 F–100
In Cleveland on Thursday it will be windy between 40 F–60F

MWOZ’ Attraction the Fitzwilliam Museum is in the East, and is located on Trumpington street
ADC Theatre is in the center, and is located on Park street
All Saints Church is in the center, and is located on Jesus lane

Hotel Alexander Bed & Breakfast is a cheap option
Allenbell is an expensive option
Leverton House is a moderate option

Restaurant It is an expensive price restaurant offering Indian cuisine
It is a cheap price restaurant offering international cuisine
It is a moderate price restaurant offering international cuisine

The metrics of Section 6.3.4 assess the presence or absence of the expected instances of dynamic information in the answer pro-
vided by the agent.
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ability essentially stems from GPT-3’s capability to interpol-
ate between the large and heterogeneous data upon which it
was trained. We use the OpenAI API to query the most cap-
able version of GPT-3, i.e., the davinci engine.

We tested GPT-3 by submitting prompts automatically
generated from KVR0 and MWOZ0. The prompts contained
two examples of triplets [knowledge base, question, answer],
and one test case similar to the examples but without an
answer, which GPT-3 was supposed to fill in. Each know-
ledge base contained at most three data items, one of which
was of relevance for the answer. Of the two training exam-
ples, which were chosen at random, one shared the task cat-
egory with the test case, whereas the other did not. The
prompts were expressed similarly to how they are presented
in KVR and MWOZ, except for some slight engineering as
per the official guideline of GPT-3 (e.g., separating examples
by “###”). We used common settings for GPT-3’s, namely
temperature of 0, top probability of 1, frequency and pres-
ence penalty of 0, and 20 maximum tokens (i.e., words or
word chunks) for the answer.

It should be noted that we used only two examples and a
small set of data items because of the usage limitations of
the API (2049 max tokens per request). In a way, GPT-3 is
advantaged compared to DF-Net because it is supplied with
only a representative example and a single confounding
example, and also with smaller knowledge bases. On the
other hand, GPT-3 can be considered to be at a disadvan-
tage compared to DF-Net, because it was never fine-tuned
to reproduce this sort of dialogues. Due to usage limits, we
did not run GPT-3 on the original KVR and MWOZ.

6.3.3. Equipping DAISY with the universal sen-
tence encoder
To be able to query DAISY using requests formulated in dif-
ferent ways, we adopted the Universal Sentence Encoder
(USE) (Cer et al., 2018) to act as an input pre-processing
system. USE is a DNN that was trained to encode sentences,
namely by generating embeddings, i.e., vectorial representa-
tions of (groups of) words, which we use to assess similarity
between sentences.

We adopted the most recent version of USE (ver. 4) and
used it to compute the cosine similarity between the user’s
requests (as expressed in the data sets) and the requests for
which DAISY was trained via interactive learning (one per
category, cf. Table 1). Besides matching requests, we also
employed USE to identify which words in a sentence are
most likely to be instances of dynamic information (e.g.,
“cheap” for< price>), by computing the similarity between
embeddings. We did this by cross-checking the similarity
between each word in the user’s request against the possible
instances of dynamic information stored in the knowledge
base (in DAISY’s case, stored as data items). The words that
matched best (maximal cosine similarity) were assigned to
be instances of dynamic information, to be processed by
DAISY when answering the request. In the following, we
refer to DAISY equipped with USE for input pre-processing
by DAISYþUSE.

6.3.4. Metrics of interest
Similarly to other works, we focused on entity retrieval
(Madotto et al., 2018; Qin et al., 2020). In particular, given
the agent’s answer, we measure its quality based on whether
the right entities, i.e., instances of dynamic information, are
present in it, using:

Precision ¼ True Positives
True Positivesþ False Positives

,

Recall ¼ True Positives
True Positivesþ False Negatives

,

F1 ¼ 2
Precision � Recall
Precisionþ Recall

:

A true positive is an entity that is correctly included as
part of the answer, a false positive is an entity that is incor-
rectly included in the answer, and a false negative is an
entity that is incorrectly missing from the answer.

We chose not to adopt metrics about the quality of the
wording used in the agent’s response, such as BLEU
(Papineni et al., 2002), because they can be misleading
(Madotto et al., 2018). Broadly speaking, these metrics check
that the words appearing in the response match those
reported in the test data. Since KVR and MWOZ present a
single example of correct response formulation, even
humans can obtain relatively low scores according to such
metrics, as one can express the same information using dif-
ferent wordings (Madotto et al., 2018).

6.3.5. Results
Tables 3 to 5 respectively report the F1 measure, precision,
and recall, obtained by the different methods on our KVR0

and MWOZ0 data sets, as well as for the original KVR and
MWOZ data sets. Note that, for KVR and MWOZ,
DAISY(þUSE) was tested only on the first turn of each dia-
logue. In KVR0 and MWOZ0 all dialogues are single-turn, cf.
Section 6.1.

Results in terms of F1, a measure that summarizes preci-
sion and recall, are shown in Table 3. The results obtained
for DF-Net on KVR and MWOZ match those reported by
Qin et al. (2020) in their online code repository. Those
results, in turn, are an updated, and slightly different, ver-
sion of the results reported in their article. For DFNet,
results for KVR0 and MWOZ0 are mostly in the same range
as those obtained on the original KVR and MWOZ,
although some exceptions are present, e.g., the F1 for hotel
and restaurant.

GPT-3, which we could only test on KVR0 and MWOZ0,
obtains a very good performance, outperforming DF-Net. As
mentioned before, this network was not specifically trained
on these tasks (zero shot learning). However, GPT-3 was, on
the other hand, prompted with much less confounding data,
with one example of out of two being very representative of
the test case. Conversely, the best model found by the
authors of DF-Net was trained on (the training sets of) KVR
and MWOZ, where the data at play are more
heterogeneous.
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As for DAISYþUSE, it performs very well on KVR0 and
MWOZ0. DAISYþUSE achieves a perfect F1 score on two
task categories (scheduling and hotel), and is only inferior to
GPT-3 in one category (restaurant). Essentially, as long as
USE correctly maps a test request to the one DAISY was
trained for (and similar for the dynamic information),
DAISY necessarily provides the correct answer by construc-
tion. We report the confusion maps induced by the request
matching performed by USE at the level of task categories
in Figure 9. The scores of DAISYþUSE drop substantially
when testing the system on the original KVR and MWOZ.
The reason is that the DAISY-based agent was trained by
interactive learning to handle a single type of request per
category, whereas KVR and MWOZ contain several. Despite
this fact, the scores are, in some cases, competitive when
compared to those obtained by DF-Net (e.g., for navigation).

Comparing the results in terms of F1 (Table 3) with
those in terms of precision and recall (Tables 4 and 5,
respectively), one can see that DAISYþUSE scores consist-
ently high in terms of precision,4 but can score low in terms
of recall, especially on KVR and MWOZ where many test
cases are different from those for which the DAISYbased

agent was trained. In general, DAISYþUSE rarely reports
incorrect information (few false positives), but can often
miss reporting the required information (many false nega-
tives). Since DAISY was instructed to provide a single type
of answer per category (cf. Table 2), it often misses report-
ing information that is contained in other types of response
formulations that are present in KVR and MWOZ. For
example for scheduling, KVR contains the answer “Your ten-
nis activity is on the 4th at 5PM and your sister will be
attending”, which includes the date and the people involved
in the event, while the answer taught to DAISY (based
on a different example from KVR), i.e., “The<event> is
at<time>” does not.

To further illustrate the differences between the methods,
we report examples of failures in Table 6. One of the mis-
takes that DF-Net can make is to retrieve the wrong type of
information, e.g., the name of a city instead of a weather
condition. We also found that GPT-3 sometimes repeats an
answer that was part of one of the examples, rather than
providing the answer to the request of the test case. For
DAISYþUSE, we reported its behavior in two settings:
when the matching of words in the original sentence for
dynamic information is approximate, i.e., by means of USE
on word embeddings as explained in Section 6.3.3, or exact.
By exact, we mean that the agent processes the request only
if the instance of dynamic information is found in the
request (e.g., inexpensive will not be matched with cheap).
As shown in Table 6, the approximate approach can lead to
a request being processed even when DAISYþUSE was
never trained to handle a request of that kind. In particular,
USE matched the request of the user to the one used when
training DAISY “Can you give me information on a restaur-
ant called <name>?” (see Table 1), and further matched the
word “restaurant” to the restaurant name “Restaurant
Alimentum,” leading DAISY to provide information about
this restaurant.

7. Discussion and conclusion

In this article, we have presented an implementation of five
core principles for transparent and accountable conversa-
tional AI, in the form of a dialogue manager called DAISY.
Different from the current trend that is centered on black
box approaches for conversational AI, DAISY-based agents
are trained using a small number of humanmachine inter-
action sequences, rather than large amounts of dialogue
data. Moreover, unlike the massive, opaque, and distributed
conglomerate of operations on which black box systems
rely, DAISY’s central step of cognitive processing is com-
posed of a set of clear, high-level operations (cognitive
actions) making the overall agent humaninterpretable.
Furthermore, DAISY’s structure also naturally allows the
agent to provide a clear explanation of its processing, as well
as suggesting generalizations that can be accepted or rejected
by a human user.

An important aspect of DAISY is the interactive learning,
making it possible to train interpretable conversational
agents. In this work, we used a relatively simple

Table 5. Recall for our KVR0 and MWOZ0 data sets, and for the original KVR
and MWOZ data sets, across all of the categories (micro average across the
task categories) and for each category.

Recall

Method All Nav Sch Wea All Att Hot Res

KVR’ MWOZ’

DF-Net 60.7 53.3 96.7 49.3 41.7 46.7 56.7 26.7
GPT-3 73.3 53.3 96.7 72.0 85.8 71.1 93.3 95.6
DAISYþUSE 81.5 66.7 100.0 100.0 75.0 66.7 100.0 66.7

KVR MWOZ

DF-Net 57.6 50.9 75.8 47.9 42.2 33.3 41.3 44.6
DAISYþUSE 32.1 48.9 48.4 43.5 20.5 27.6 14.8 23.6

Table 3. F1 measure for our KVR0 and MWOZ0 data sets, and for the original
KVR and MWOZ data sets, across all of the categories (micro average across
the task categories) and for each category.

F1

Method All Nav Sch Wea All Att Hot Res

KVR’ MWOZ’

DF-Net 55.8 47.1 70.0 51.7 38.6 43.7 54.8 22.0
GPT-3 78.9 62.7 98.3 76.6 91.2 71.1 93.3 96.6
DAISYþUSE 89.8 80.0 100.0 88.9 85.7 80.0 100.0 80.0

KVR MWOZ

DF-Net 62.5 55.7 73.8 57.3 34.8 31.2 32.8 37.5
DAISYþUSE 47.7 48.9 48.4 43.5 20.5 27.6 14.8 23.6

Table 4. Precision for our KVR0 and MWOZ0 data sets, and for the original KVR
and MWOZ data sets, across all of the categories (micro average across the
task categories) and for each category.

Precision

Method All Nav Sch Wea All Att Hot Res

KVR’ MWOZ’

DF-Net 51.6 42.1 54.7 54.4 37.3 41.2 53.1 23.5
GPT-3 85.3 76.2 100.0 81.1 97.2 100.0 93.3 95.6
DAISYþUSE 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

KVR MWOZ

DF-Net 68.3 61.5 71.9 71.3 29.6 29.3 27.2 32.2
DAISYþUSE 92.3 89.6 91.9 100.0 86.5 100.0 90.0 82.6
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implementation of interactive learning in which certain key
phrases are used to identify the cognitive actions needed to
construct the agent. There are other works, involving DNNs,
which study how to make interactive learning more flexible
in conversational AI (Ping et al., 2020) as well as other dis-
ciplines (Wang et al., 2017; Yin & Neubig, 2017). A possible
avenue for future work would be to leverage such methods
in order to make DAISY’s interactive learning more natural.
Moreover, other aspects than flexibility may be important to
improve user experience, such as lexical alignment (Huiyang
& Min, 2022).

We have compared DAISY with DNN-based approaches
because DNNs represent the state-of-the-art in conversa-
tional AI. Making a direct comparison between DAISY and
other approaches proved to be challenging. For example, in

the case of DAISY, we trained the agent using a single
instance from each category in the data sets, and then used
a DNN-based pre-processing step to handle paraphrasing of
the user’s input. Alternatively, the interactive learning could
have been extended to include additional training examples,
thereby improving further DAISY’s performance. However,
doing so could have been seen as a way to give DAISY an
unfair advantage in the comparison. Conversely, one could
claim that the way we train DAISY puts it at a disadvantage
relative to DF-Net, which has been trained on many exam-
ples, and also relative to GPT-3 that, though not explicitly
fine-tuned to these examples, has an implicit command of
human language. In other words, because of the very differ-
ent manner in which the systems are implemented and
trained, it is not clear how a precisely fair comparison

Figure 9. Confusion maps obtained by USE when matching user requests from the test sets to the requests taught to DAISY (one per task category). The categories
are given in Table 1.

Table 6. Examples where DF-Net, GPT-3, and DAISYþUSE fail to produce a response according to the
example requests from KVR and MWOZ.

DF-Net U What is the weather like on Friday in DownTown Chicago?
E In DownTown Chicago this Friday it will be Foggy between 80 F–80F
O It will be DownTown Chicago on Friday in Monday

GPT-3 U Can you help me find the address of Ballare?
E Ballare is in the centre, and is located on Heidelberg Gardens, Lion Yard
O Broughton house is in the centre, and is located on 98 King’s street

DAISYþUSE
w/ E.D.I.
w/ A.D.I.

U I would like to go to an Indian restaurant in the North
E I found 2 that match your criteria
O I’m sorry I don’t understand
O It is a moderate price restaurant offering modern European cuisine

U, user’s request; E, expected answer (from the data sets); O, obtained answer; E.D.I., Exact matching of
dynamic info; A.D.I., Approximate matching of dynamic info.
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should be carried out. Nonetheless, we believe that the main
trends highlighted by our results stand true, i.e., that a
DAISY-based agent will achieve high precision compared to
DNN-based methods, at the cost of lower recall.

In the comparisons mentioned in Section 6.3 we pre-
processed the input with USE, making it possible for a
DAISY-based agent to handle paraphrasing of the user’s
input. In our view, this was the most fair and straightfor-
ward way to frame the comparison. However, one should
note that, as soon as input-processing is applied in order to
provide an approximate input matching, there is a risk that
a DAISY-based agent would give nonsensical answers, akin
to those occasionally given by the DNNs, cf. Table 6. In
practice, for real-world applications of task-oriented agents,
it is perhaps a matter of finding the right balance between
precision and recall. However, with DAISY, there are several
ways to investigate how to achieve such a balance. First of
all, since the quality of the matching of a paraphrasing
attempt can be measured numerically, one could tune the
system such that it asks for a confirmation whenever the
matching score is insufficient. Moreover, as an extension of
the current inquisitiveness feature of DAISY, a DNN could
be used instead for suggesting paraphrases of user input,
which would then be accepted or rejected by the user, thus
giving the user full control of what the agent learns to para-
phrase. Finally, whichever method is used for handling para-
phrases, a DAISY-based agent will always, unlike DNNs,
compensate for a misunderstanding by generating a clear
explanation of its cognitive processing (decision-making);
see also Figure 5.

Here, for simplicity, we have only considered single-turn
dialogue, in which an agent responds to a single user state-
ment. Multi-turn dialogue typically involves handling con-
text, a feature that has been implemented in DAISY
(whereby DAISY assigns a set of context variables (strings)
describing the current topic of discourse) but is not yet part
of its interactive learning capabilities. However, the process
of interactive learning could be extended to handle context,
by enabling DAISY, upon user request, to recall a previously
acquired interaction, i.e., identifying the relevant action
items and data items, running an instance of the corre-
sponding dialogue in its memory, and setting the appropri-
ate context variables, if any. At that point, one could teach
the agent how to handle a follow-up question.

We remark that to train the DAISY-based agents used
here, we had to implement a total of 15 cognitive actions,
e.g., FindAll, Count, SortAscending, and so on. A natural
question that might arise is how many cognitive actions
would be needed to train agents for a wider variety of differ-
ent tasks. Due to the generic nature of the cognitive actions,
we believe that this number will likely remain small, rising
only very slowly (e.g., logarithmically or even slower) with
the number of tasks, beyond the first few. In fact, for the
experiments carried out here, all of the cognitive actions
were defined in connection with the first three examples,
after which no further expansion of the set was required.

We have presented the five core principles as important
aspects to strive for when designing transparent and

accountable AI, and have built DAISY to be capable of
adhering to all five of them. Considering the impact of the
five principles, it is hard to provide a general recommenda-
tion on their relative level of importance: In fact, this may
be specific to the end users and applications at play. For
example, let us imagine a clinical setting involving patients
with depression. There, inquisitiveness is an important prin-
ciple to help medical personnel when training the conversa-
tional agent to generalize its knowledge and become able to
answer more questions. However, it may not be as crucial to
have inquisitiveness compared to interpretability, which can
truly make it possible to guarantee that the agent cannot
provide a harmful answer. As another example, consider a
task-oriented agent for a restaurant. In that case, the restaur-
ant owner may primarily be concerned with the agent’s cap-
ability to answer questions expressed in many different
forms, making interactive learning and inquisitiveness
become the key principles to facilitate a comprehen-
sive training.

While the current version of DAISY does adhere to the
five principles, at least to some degree, we have not yet
studied their impact on the users. This would require carry-
ing out a survey where users, possibly from different
domains of expertise where a task-oriented agent is needed,
interact with the agent and provide feedback on the inter-
action, taking into account the five principles. The feedback
should be measured with appropriate metrics, such as the
system usability scale (Bangor et al., 2008; Brooke, 1996),
sensibleness and specificity (Adiwardana et al., 2020), subject-
ive assessment of speech system interfaces (Hone & Graham,
2000), and more (see, e.g., the section on evaluation of inter-
action by Wahde and Virgolin (2022)). We believe that this
is an important aspect to look into in future work, to ultim-
ately understand how the five principles can impact trust
(Rheu et al., 2021).

As a final point, we note that the five core principles may
be useful in many other contexts, beyond conversational AI.
For example, both developers and users may benefit from
the development of systems that are interpretable by design
and include an inherent capability to provide a human-
understandable explanation of the steps involved in reason-
ing and decision-making (Dazeley et al., 2021). In applica-
tions involving high-stakes decisions, such as automated
driving, medical (clinical) decisionmaking, and personal
finance (e.g., when applying for a loan), both interpretability
and the ability of the system to explain its reasoning may
simplify error correction and also improve accountability
and trust in the system. Moreover, these aspects are also
aligned with proposed legislation related to the use of AI-
based systems, both in the US and in the EU; (see e.g.,
Angelov et al., 2021).

In conclusion, we have presented DAISY, a dialogue
manager that implements five core principles for interpret-
able and accountable conversational AI, making it possible
to generate task-oriented agents that are very different from
those that are typically implemented as black box systems.
As DAISY-based agents are trained by humanmachine inter-
action, using few high-quality interactions instead of large
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amounts of data, they tend to achieve high precision, at the
cost of obtaining lower recall. We confirmed this to be the
case with our best efforts of running a comparison between
DAISY and two state-of-the-art DNN-based systems.

Notes

1. A generalization allowing the user to ask about any country
is given in Section 5.3.

2. Training, validation, and test splits are pre-specified for
KVR and MWOZ.

3. See https://youtu.be/ynlPM8XDlV0
4. The precision for DAISYþUSE on KVR0 and MWOZ0 is

maximal by construction, because the system cannot
retrieve false positives on those test sets.
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