
Sequence Planner: A Framework for Control of Intelligent Automation
Systems

Downloaded from: https://research.chalmers.se, 2023-01-21 01:03 UTC

Citation for the original published paper (version of record):
Dahl, M., Erös, E., Bengtsson, K. et al (2022). Sequence Planner: A Framework for Control of
Intelligent Automation Systems. APPLIED SCIENCES-BASEL, 12(11).
http://dx.doi.org/10.3390/app12115433

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

����������
�������

Citation: Dahl, M.; Erős, E.; Bengtsson,

K.; Fabian, M.; Falkman, P. Sequence

Planner: A Framework for Control of

Intelligent Automation Systems.

Appl. Sci. 2022, 12, 5433. https://

doi.org/10.3390/app12115433

Academic Editors: Yujin Lim and

Hideyuki Takahashi

Received: 28 April 2022

Accepted: 25 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Sequence Planner: A Framework for Control of Intelligent
Automation Systems

Martin Dahl * , Endre Erős, Kristofer Bengtsson , Martin Fabian and Petter Falkman

Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
endree@chalmers.se (E.E.); kristofer.bengtsson@chalmers.se (K.B.); fabian@chalmers.se (M.F.);
petter.falkman@chalmers.se (P.F.)
* Correspondence: martin.dahl@chalmers.se

Abstract: This paper presents a framework that tackles the challenges met in the development of
automation systems featuring collaborative robotics and other machines that have some degree
of autonomy. These machines rely on online algorithms for both sensing and acting in order to
achieve a very high level of flexibility. To take advantage of these new machines and algorithms,
control systems must also be increasingly flexible. In this paper, we present a framework for control
of this new class of intelligent automation systems called Sequence Planner (SP), which helps with
control of both traditional automation equipment and machines with autonomy. To aid the complex
task of developing automation control solutions, SP relies on supporting algorithms for control
logic synthesis and online planning. SP has been implemented with plug-in support for the Robot
Operating System (ROS) and applied to an industrial demonstrator. We present our findings on
how SP performed as a control system for this demonstrator, where we show that it is an adequate
approach to implement automation for a highly flexible single station system. As a standardized way
of automating such systems is missing, we hope that our contribution will provide a foundation for
how to develop intelligent automation systems.

Keywords: control systems and applications; industrial mechatronics and robotics; flexible manufac-
turing systems; artificial intelligence; Industry 4.0

1. Introduction

Automated production systems are currently undergoing a transformation. Manually
programmed operations are in the process of being replaced by online algorithms that are
more dynamic and can react to a changing environment [1,2].

Current trends in automation include introducing more collaborative robots [3] and au-
tomated guided vehicles (AGVs), which, together with human operators, can provide more
dynamic automation solutions. However, in order to provide a fully dynamic automation
solution, the automation system needs to be able to both anticipate and react to what the
surrounding environment as well as each subsystem will do next. In this work, this type of
system is denoted as an intelligent automation system. This means that online algorithms for
vision and motion planning need to be part of the automation system. Online algorithms
for computer perception and complex motion tasks, such as grasping, do not have a 100%
success rate today (e.g., [4–6]), and because of this, the use of such algorithms naturally
increases the expected number of unsuccessful operations. Failures need to be handled as
a natural part of controlling the automation system. This adds complexity to the control
system software since more situations need to be handled. New methods and tools will be
required to handle this increased complexity while maintaining high standards in safety
and reliability.

One challenge in developing this type of system is software integration. The Robot
Operating System (ROS) [7] is a set of software libraries for integrating various hardware

Appl. Sci. 2022, 12, 5433. https://doi.org/10.3390/app12115433 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115433
https://doi.org/10.3390/app12115433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8050-5185
https://orcid.org/0000-0002-5290-682X
https://orcid.org/0000-0003-1287-9748
https://doi.org/10.3390/app12115433
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115433?type=check_update&version=1

Appl. Sci. 2022, 12, 5433 2 of 18

drivers and online algorithms. Integration is performed by communicating over a publish/-
subscribe protocol using standardized message types. Using the standardized message
types allows for quick and easy integration of new algorithms and drivers.

In order to handle large distributed networks, ROS leverages the Data Distribution
Service (DDS) [8] communication architecture. While it cannot handle true real-time
communication [9], being built on top of DDS makes it possible to use in real-world
industrial applications [10].

A simulated prototype of an industrial demonstrator, which will be described later
in Section 3, is shown in Figure 1. The figure shows a simulation of a robot in the ROS
vizualization tool RViz. Open source drivers for the robot can be connected to open source
algorithms for robotics motion planning, for example MoveIt! [11], which in turn is built on
top of the Open Motion Planning Library [12], which includes a variety of state-of-the-art
motion planning algorithms. This highlights the composability of an open source software
stack. As the open source libraries mature further, and with a solid communication layer
(DDS), ROS is a good candidate for basing future automation systems on.

Figure 1. A simulation in ROS is visualized in RViz. A virtual robot is moving parts from an
automated kitting robot onto a diesel engine attached to an AGV.

While ROS can give support with regards to integrating different software libraries
and drivers, as well as provide a base layer for communication, challenges remain. One
big challenge is the coordination of different devices, including robotic arms and AGVs,
especially when erratic human behavior needs to be taken into account. In the literature,
several frameworks have been proposed that aim to aid in the composition and execution of
robot actions. One example is ROSPlan [13], which uses PDDL-based models for automated
task planning as well as handling plan execution. Another is SkiROS [14], which is based
on defining an ontology of skills. MaestROB [15] adds natural language processing and ma-
chine learning to teach robots new skills that are executed using ontology-based planning;
CoSTAR [16] is based on Behavior Trees that are used to manually define complex behavior,
combined with a novel way of defining computer perception pipelines; and eTaSL/eTC [17]
defines a task-specification language based on constraints. Applications that use planning
of robot skills have seen successful experimentation in industrial settings [18,19].

However, these systems have been mainly robot-oriented (in contrast to automation-
oriented) and often focus on a single robot. None of them seem suitable for combining both
high-level robotic tasks with more “traditional automation” tasks—low-level execution
and state management of a variety of different devices. This paper presents a control
framework for ROS that aims to aid in controlling multiple interdependent resources. The
resources are modeled independently as components that include formal models of their
behavior [20,21] and are controlled using a low-level planner. In order to ensure safe
execution, constraints derived from safety specifications are added to restrict the planning
system [22]. These constraints are designed to restrict the freedom of the planning system
as little as possible. A high-level planner enables reactivity with regards to volatile system

Appl. Sci. 2022, 12, 5433 3 of 18

state and unpredictability of operators. An additional feature of SP is the natural way to
handle restart and recovery from an error. Contrary to traditional automation solutions
where restart can be quite tricky to manage, error recovery is now a part of the model in
SP. This means that it is the planner’s task to automatically calculate an execution that will
recover the system in a formally correct way [23].

1.1. Contribution

The proposed framework handles the increase in complexity brought by intelligent
automation by off-loading difficult modeling tasks to control logic synthesis algorithms and
the specifics of execution to an online planning system. This paper builds on the previous
publications [10,20,22] and introduces new abstractions: operations and intentions, which
enable hierarchical modeling and planning to make it easier to handle larger systems than
in previous work.

We evaluate SP by applying it to an industrial demonstrator, where SP is used to
control a wide variety of hardware as well as an extensive library of software including
algorithms for real-time motion control. The experimental results of this application
are presented. Previous works have described this application in the context of error
handling [23]; however, this paper instead evaluates the general planning performance as
well as describes in more detail how SP works.

1.2. Outline

Section 2 describes the proposed control framework. Section 3 describes an example
application where the framework has been applied. Then, Section 4 contains experimental
results from applying the framework to the application. Finally, Section 5 contains some
concluding remarks and directions for future work.

2. The Sequence Planner Control Framework

The Sequence Planner (SP) control framework is based on goals. Goals define the states
that it is desired for the automation system to be in. As an example, we can imagine that
a certain part can be either unmounted or mounted. A goal for the automation system
could then be that the part is mounted. In order for the automation system to reach this
particular state, a sequence of actions needs to be performed depending on the state of
the environment. We call this sequence of actions a plan. Due to the dynamic nature of
intelligent automation systems, the environment may be uncertain, for example because
there may be a human operator involved. As such, it must be possible to change plans to
react to the changing environment. This is conducted in SP by continuously replanning to
find a suitable plan.

In order to have a responsive system, replanning needs to be fast. In SP, fast replanning
is accomplished by dividing the work into two levels. Figure 2 shows an overview of the
framework with the two planners to the right. The higher-level operation planner computes
an abstract plan that the lower-level transition planner uses to compute detailed plans, which,
when executed, distributes goal states to the resources that make up the automation system.
The resources are intended to be reusable and are accompanied by a discrete behavior
model that models how the resources can transition between their internal states, which
allow them to be used directly with the planner. The composition of resources is performed
via an abstraction called operation, which links an abstract planning model to detailed
resource states. Additionally, resource specifications are added to ensure that the planner
only takes safe routes to the goals. Intentions define the current goals that the operations
should try to reach under operational specifications such as sequencing and priority choices.

Appl. Sci. 2022, 12, 5433 4 of 18

Intentions

Resources

ROS software drivers
with state based API

Resource
specifications

Operational
specifications

Operation
planner

Transition
planner

G
o
a
l
s

G
o
a
l

s
t
a
t
e
s

Transitions

Transitions
Operations

op1 op2 opn

Operations

Constraints

Goals
Intentions

i1 i2 in

Resources
R1 RnR2

Constraints

Figure 2. Overview of the SP control framework.

2.1. Resources

Devices and software algorithms in the system are modeled as resources, which group
their local state and discrete descriptions of the tasks they can perform. The resource state
is encoded into variables of three kinds: measured state, goal state, and estimated state. The
state of a resource corresponds to messages of specific types on the ROS network. These
message types are generated from the definitions below.

SP models the resources using a formalism with finite domain variables, states that
are unique valuations of the variables, and non-deterministic transitions between states.
The following definitions are provided for clarification.

Definition 1. A transition system (TS) is a tuple 〈S,→, I〉, where S is a set of states,→⊆ S× S
is the transition relation, and I ⊆ S is the nonempty set of initial states.

Definition 2. A state s ∈ S is a unique valuation of each variable in the system, e.g.,
s = 〈v1, v2, . . . , vn〉.

Variables have finite discrete domains, i.e., Boolean or enumeration types.
The transition relation→ defines the transitions that modify the system state:

Definition 3. A transition t has a guard g, which is a Boolean function over a state,
g : S → { f alse, true}, and a set of action functions A where a : S → S, which updates the
valuations of the state variables in a state. We often write a transition as g/A to save space.

Definition 4. A resource i is defined as ri = 〈VM
i , VG

i , VE
i , Tc

i , Ta
i , Te

i 〉 where VM
i is a set of

measured state variables, VC
i is a set of goal state variables, and VE

i is a set of estimated state
variables. Variables are of finite domain. The set Vi = VM

i ∪VG
i ∪VE

i defines all state variables of
a resource. The sets Tc

i and Ta
i define controlled and automatic transitions, respectively. Te

i is a set
of effect transitions describing the possible consequences to VM

i of being in certain states.

Tc
i , Ta

i , and Te
i have the same formal semantics, but are separated due to their different uses:

Controlled transitions Tc
i are taken when their guard condition is evaluated to be true,

only if they are also activated by the planning system.

Appl. Sci. 2022, 12, 5433 5 of 18

Automatic transitions Ta
i are always taken when their guard condition is evaluated to

be true, regardless of if there are any active plans or not. All automatic transitions are taken
before any controlled transitions can be taken. This ensures that automatic transitions can
never be delayed by the planner.

Effect transitions Te
i define how the measured state is updated, and as such, they are not

used during control such as for the control transitions Tc
i and Ta

i . They are important to keep
track of, however, as they are needed for online planning and formal verification algorithms.
They are also used to determine if the plan is correctly followed—if the expected effects do
not occur, it can be due to an error.

Consider the case of a door with two binary sensors: one for detecting whether it is
open, and one for detecting whether it is closed. The door can be opened and closed by
the control system, but not moved to an arbitrary position. The measured state for this
door resource would be two Boolean variables, closed: c? and opened: o? (to ease notation
in the coming sections, we use a notation in which measured state variables are denoted
with a subscript “?”, goal state variables are denoted with a subscript “!”, and estimated
state variables are denoted with a hat—see Table 1). To control the door, a goal state variable
model is introduced: gs! ∈ {closed, opened}.

Table 1. Notation for the three different types of a resource state variable v.

v? measured state variables

v! goal state variables

v̂ estimated state variables

A resource d modeling the door as a component can then be defined as rd = 〈{c?, o?},
{gs}, ∅, . . . 〉. Note that Ve

d = ∅. This is the ideal case because it means all local states of this
resource can be measured. We will come back to the transitions of the resource model soon.

From rd, with some additional metadata such as data types and topic names, ROS
message definitions can be automatically generated. Listing 1 shows the generated message
definitions for the door, which define the interface to the door node. It is also possible
to generate a template for an ROS node that can be used to connect either directly to
the sensors (e.g., reading I/O:s) or listen to some already existing node, in which case a
translation may need to be performed (perhaps the door is already publishing sensor data
on the network) [10].

Listing 1. ROS message definitions for messages on the topics from and to the door.

ROS topic: /door/measured
bool closed # => c?

ROS topic: /door/goal
bool close # => c!

It is natural to define when to take certain actions in terms of what state a resource is
currently in. To ease both modeling and online monitoring, resources can contain predicates
over their state variables. These predicates can be used in the guard expressions of the
transitions. For example, one such predicate could be doorIsClosing : c! ∧ ¬c?. Figure 3
shows the states and transitions of the resource that relate to opening the door, where
doorIsClosing is true in the bottom left state. The transitions have descriptive names which
also denote their type: controlled transitions have an appended (c), automatic transitions
have an appended (a), and effect transitions have an appended (e). There is no notion of an
initial state—the planner is always called with the current state of the resources.

Appl. Sci. 2022, 12, 5433 6 of 18

c?
c!

c?
¬c!

¬c?
¬c!

¬c?
c!

start open (c)

finish open (e)

start close (c)

finish close (e)

Figure 3. Transition system modeling the door resource.

The resource and ability defined, combined with the corresponding ROS2 node(s),
makes up a well isolated and reusable component. However, at this point, it cannot do
anything useful other than being used for manual or open loop control. One also needs
to be able to model interaction between resources, for example between the door resource
and a lock resource. Interactions are modeled using operations and resource specifications.

2.2. Operations

In addition to the variables defined by the resources, another set of variables exists:
decision variables. These define the state of the system in abstract terms for scheduling and
planning which operations to execute. For example, a decision variable could be the abstract
state of a particular resource, or the state of a product in the system. Sometimes decision
variables can be directly measured by resources, in which case these measurements are
copied into the decision variables, usually after undergoing some form of transformation
(for example discretization). The resources and decision variables make up a global state
transition system.

Definition 5. An operation j is defined as oj = 〈pj, ej, gj, aj, sj〉, where pj is a precondition over
the decision variables defining when the operation can start; ej is a set of actions completing the
operation, which are actions that modify the decision variables; and gj is a goal predicate defined
over the resource variables. aj is a set of actions for synchronizing the operation with the resource
state. Finally, the operation has an associated state variable sj ∈ {i, e, error}. Throughout the paper,
operations are graphically depicted as in Figure 4.

operation

precondition

effect

low level goal / action

Figure 4. We use this graphical notation to visualize operations. For the operation j, the precondition
is pj, the effect is ej, the goal is gj, and the set of actions is aj. Sometimes the low-level goal is omitted.

When the precondition of an operation is satisfied, the operation can start. The effect
actions are then evaluated against the current state, and the difference between the current
state and the next state is converted into a predicate. This predicate becomes the post-
condition of the operation; e.g., if the precondition is x 6= y and the action is x := y, then
the post-condition (and thus its planning goal) becomes the valuation of y at the time of
starting the operation.

To enable the planning system to reach the goals of the operation j, an automatic
transition from the low-level goal predicate of the operation (gj) is added to the global TS.
See Figure 5, where q0, . . ., qi represent different states from which states in the set defined
by gj can be reached, and pj is the set of states reachable from gj after taking the transition
which updates the decision variables according to the effect ej.

Appl. Sci. 2022, 12, 5433 7 of 18

q0

q1

qi

gj pj

Figure 5. Execution of operation oj. The operation is active until pj has been reached, which is
reached after updating the decision variable(s) after having visited the low-level goal gj.

Encoding the operation effects as automatic transitions ensures that the effects will
take place even if the goal state was reached without the planner. In other words, it means
that if the resources are put into a state which satisfies pj for some operation oj, the decision
variables are updated automatically. This is especially useful after an error scenario, where
there may not be a clear view of which operations should currently be active, but it is
known which state the operator desires the system to be in, or when the system state is
modified manually.

To exemplify operations, we now revisit the door example. Recall that we would
like to add a locking mechanism to our door. Instead of going back and rewriting the
door resource and generated node, we would like to compose the door with an existing
“lock” resource. The lock has two goal variables, l! ∈ { f alse, true} and u! ∈ { f alse, true},
requesting whether it should be locked or unlocked. The lock does not have a sensor, and
therefore the state of it must be estimated. To keep track of whether it is locked or not, the
resource includes an estimated state variable l̂ ∈ {unknown, f alse, true}. The lock can be
locked even though it is already locked, to put it in a known state, which also applies to
unlocking. This means that we must encode events using our goal states.

The resource lock defining the door can then be defined as rlock = 〈∅, {l!, u!}, {l̂}, . . . 〉.
Figure 6 shows the transition system of the lock resource.

l̂ = u

l̂ = f l̂ = t

unlock (c) lock (c)

lock (c)

unlock (c)

Figure 6. Transition system modeling the lock resource. The domain of l̂ is abbreviated so that
unknown is u, f alse is f , and true is t. The valuations of l! and u! are not illustrated.

If it is important that the door is sometimes locked, a decision variable describing
that the door is locked (in contrast to only the lock being locked) is introduced: dl (“door
locked”), together with an operation which locks it. As it does not make sense to lock the
door while it is open, the operation LockDoor (ol) defines c? ∧ l̂ as its goal state (gl). That
is, it uses state from both the door resource and the lock resource. The precondition of the
operation (pl) is ¬dl, the action is dl := true.

Essentially, it is the automatic transition created, which updates the decision variable,
that models the interaction between the two resources. It enables the planner to try to reach
dl, which means that it has to visit the state c? ∧ l̂. Additionally, the automatic transition
ensures that if the door is closed and locked manually, the decision variable in the control
system will be updated automatically.

Depending on the starting state, executing the operation will have different conse-
quences. Figure 7 shows three possible (well-behaved) plans that can arise from executing
the operation.

Appl. Sci. 2022, 12, 5433 8 of 18

LockDoor

¬dl

dl

1. lock.unlock
2. door.close
3. lock.lock

LockDoor

¬dl

dl

1. door.close
2. lock.lock LockDoor

¬dl

dl

1. lock.lock

Figure 7. Three different plans arising from starting the LockDoor operation in different starting
states. In the left-most case, the door is initially opened and the lock is locked. In the middle case, the
door is initially opened and the lock is unlocked. To the right, the door is initially closed and the lock
is unlocked.

With the decision variable and the operation defined, it is now possible to track
whether the door is locked, which requires the door and the lock to coordinate their actions
(closing and locking). However, nothing prevents the planner from locking the lock and
then closing the door, or opening the door while the lock is locked—something which is
obviously “bad” behavior.

2.3. Resource Specifications

Formal specifications can be used to ensure that the resources can never do something
“bad”. In order to be able to work with individual resources, as well as isolating the
complexities that arise from their different interactions, modeling can rely on using global
specifications. By keeping specifications as part of the model, there are fewer points of
change, which makes for faster and less error-prone development compared to changing
the predicates manually, a time-consuming and difficult task.

SP has no notion of implicit dynamics or memory, i.e., all memory states need to be
explicitly modeled using the estimated variables. Often, the decision variables are enough
to act as memory, however (they are treated the same as estimated variables). This means
that the state of the system is solely defined in terms of the valuations of the variables in
the system. In order to constrain the system, it is desired to eliminate all states that violate
certain specifications.

In SP, specifications can be entered as invariant formulas over the system variables
that make up the system state. Due to the way automatic transitions (which should always
be taken) and effect transitions (which can happen non-deterministically) are defined, these
invariant formulas need to be expanded to cover a larger set of states, due to the fact that
the system can move uncontrollably between these states.

To do this, the negation of an invariant formula (i.e., the forbidden states) is extended
into larger sets of states using symbolic backwards reachability analysis [22]. After expand-
ing these regions, the symbolic representation is minimized using the espresso heuristic [24]
and converted back to a propositional formula that is provided to the planner.

In the door example, we can specify that it should not be possible for the door to close
when the lock is locked. If we use the named predicate doorIsClosing defined earlier, this
can be expressed as doorIsClosing =⇒ l̂ = f alse, i.e., whenever the door is closing, the
lock is (known to be) unlocked.

In this case, the result of such a specification will be that the system cannot execute
gs! := opened when l̂ 6= unlocked and cannot execute l! := true when gs! 6= opened.

Similarly, but more simply, a specification can ensure that it should not be possible
to open the door when it is locked, mirroring the physical reality. In this case, the use of
synthesis is clearly more of a modeling convenience since adding an “is unlocked” term to
the enabled predicate is easy. However, having it in a specification keeps the interaction
between resources in one place. A specification that forbids the door to be closed when
l̂ = unknown can be added in the same way. Modeling this uncertainty is conducted so
that the system can operate to some degree even in the unknown state, which ensures that
a restart after errors can be performed using the control system rather than following a
fixed procedure for putting things in a known state.

Appl. Sci. 2022, 12, 5433 9 of 18

2.4. Intentions

While the operations define interactions between resources via goal states and how
they relate to the decision variables, intentions model how to make the system do something
useful. As an example, we will be using the door with the lock to secure a room where two
autonomous roaming robots charge their batteries. The position of the robots is modeled
as decision variables r1 ∈ outside, inside and r2 ∈ outside, inside, where inside refers to
being inside the room with the door. To define a task that locks both AGVs in the room, an
intention is used. An intention defines a goal over the decision variables. In this case, we
define a goal g as: g := (dl ∧ r1 = inside ∧ r2 = inside).

Definition 6. The intention k is defined as ik = 〈pk, gk, φk, ak, sk〉, where pk is a predicate over (all)
the variables in the system, defining when the intention starts (automatically); gk is a goal predicate
defined over the decision variables; φk is an optional LTL formula over the decision variables; ak is a
set of actions that can update (all) variables in the system, which are applied when the intention
finishes; and sk ∈ {i, e, f } is the state of the intention.

The intentions are free to change the state of the system (ak) in arbitrary ways upon
finishing, in order to be able to create hard-coded state machines for deciding when each
intention should be active. As the intentions exist on a high abstraction level, these state
machines are generally quite small and can be managed manually. The planning problem
can be constrained using the LTL formula φk, which allows for specifying, for example,
sequencing constraints. We will come back to LTL in Section 2.6.

Now, we would like to “wire up” the goal g we defined above to a button that calls
the AGVs home. The button is a resource that has a measured state variable b?. We create
an intention i: 〈si = i ∧ b?, g, φi, si := i, i〉, i.e., it has a precondition that triggers on itself
being in the initial state and the button being pressed, g is the goal predicate, it has an LTL
formula φi (defined later), it has a single action which resets the intention upon finishing
(to be able to activate it immediately again), and its state is initially i.

It is easy to see how another operation for opening the door could be written, together
with a similar intention, which could be wired up to a button b2?. What happens when both
buttons are pressed simultaneously? Since it is not possible to reach both locked and open
at the same time, one of the intentions will fail. This is easily avoided by adding guard
expressions to the intentions that forbids them from activating at the same time.

The operation abstraction eliminates the need for reasoning about individual resource
states. Details about whether the lock is initially locked or not, or whether the door is
opened or closed or somewhere in between, can be kept out of the programming of the
intentions. These details are instead off-loaded to the planning system.

2.5. Transition Runner

The transition runner (top part in Figure 8) keeps track of the current state of all
resource states, decision variables, operations, and intentions. The transition runner contin-
uously applies transitions which update the system state, reacting to any changes to the
incoming state from the ROS nodes on the network. The transition runner operates solely
in terms of taking any available transitions. This includes both controlled transitions and
automatic transitions.

A transition can be taken when its guard expression is evaluated to be true in the current
state, after which the action functions update the state. In order to distribute the goals to the
resources, the state variables that relate to such goals are published on appropriate ROS topics.

Every time a new plan is calculated, controlled transitions are supplemented with addi-
tional guard expressions, which define the order of execution and the external state changes
that the transition has to wait for. As the planner will never allow any forbidden states to
be reached, operations and intentions that are active based on their state can sometimes
randomly be changed, in order to abort an active intention or a running operation.

Appl. Sci. 2022, 12, 5433 10 of 18

Transition planner

Resource state (ROS)

Transition runner

Generate NuSMV
BMC problem

Generate NuSMV
BMC problem

Solve BMC problem
incrementally

Reorder transitions

Solve BMC problem
incrementally

Solve BMC problem
with length X

Cache result when
computed (async)

Cache result

Apply operation
packing heuristic

Convert new plan to
guard conditions

Solve BMC problem
with length Y

Solve BMC problem
with length Z

Run solver in parallell, one process per CPU core (4 here)

TP goals
changed or
cannot be
reached?

OP goals
changed or
cannot be
reached?

no

yes

yes

no

Plan
cached?

Convert new plan to
guard conditions

yesPlan
cached?

Resource goals (ROS)

Done

yes

Use best solution available
after a finite time

no

Done

no

Operation planner

Automatic transitions

Controlled transitions

Compute current goals

Figure 8. Overview of the planning system in SP.

2.6. Operation Planner

The operation planner (right part of Figure 8) is used to find a sequence of operations
that should reach the goals of any currently active intentions. Currently, the planning
engine in SP is based on nuXmv [25], which is a model checker rather than a classical
planner. A model checker can prove temporal properties about a model by exploring
the state space defined by a set of initial states and a set of transitions [26]. Temporal
properties can be written in different ways, for example Computation Tree Logic (CTL) or
Linear Temporal Logic (LTL) [27], which are both extensions to propositional logic. Such
extensions include operators for expressing properties on past or future states. LTL has
operators for the next state (operator X) that some formula should always (G) hold, that it
should eventually hold (F), and that one formula should hold until another one does (U).
For example, the formula G (x → Xy) expresses that it is always the case that x implies y in
the next state. In bounded model checking (BMC) [28], a reduction to Boolean satisfiability
is performed with an upper bound on the number of transitions from the initial state that
can be included. This allows for fast Boolean satisfiability (SAT) solvers to be used to find
counterexamples.

By letting the model checker try to prove that a future (desired) state is not reachable, a
counterexample, if found, can be used as a plan. This allows for the use of LTL specification
that needs to be true for the duration of the plan.

Consider the example of locking the door to secure the AGVs again. If both AGVs
are outside the room, we want to give priority to r1 to enter the room first. However, if
r2 is already in the room, it should not be forced to move out of the room just so r1 can
enter first. We can express this operational specification using LTL in terms of the decision
variables: r2 = outside ∧ Xr2 = inside =⇒ r1 = inside. The specification models with r2
transitioning from outside to inside imply that r1 is already inside.

Appl. Sci. 2022, 12, 5433 11 of 18

As seen in Figure 8, the transition runner continuously checks whether the goals of the
currently executing intentions are reachable. This is performed by simulating the current
plan against the current state. If the goals cannot be reached, or if the goals have changed,
a new operation plan needs to be computed. A cache of plans is checked to see if this
particular plan has already been computed before. If no plan is cached, a new BMC problem
is generated, where the initial state is the current state of the system.

A generated BMC problem and a minimal length counterexample for the example
with the door and two robots can be seen in Listing 2. It includes the decision variables
dl, r1, r2, and a transition relation which is generated from the operation definitions based
on pj and ej for operation j. The IVAR:s keep track of which transitions are taken in each
step. An initial state is provided based on the current state of the automation system. Lastly,
the goal is expressed as an LTL specification, where the LTL operator U is used to specify
that the formula φi should hold until the goal is reached. The counterexample is a trace of
which transitions were taken in order to violate the LTL specification (recall that the BMC
problem is inverted).

Listing 2. To the left: generated BMC problem for the problem of the door and the two robots. To the
right: counterexample which can be used as a plan.

MODULE main
VAR

dl : boolean;
r1 : {outside,inside};
r2 : {outside,inside};

IVAR
lock_door : boolean;
r1_go_in : boolean;
r2_go_in : boolean;

TRANS
lock_door & !dl & next(dl) = TRUE &

next(r1) = r1 & next(r2) = r2 |
r1_go_in & !dl & r1 = outside & next(r1) = inside &

next(dl) = dl & next(r2) = r2 |
r2_go_in & !dl & r2 = outside & next(r2) = inside &

next(dl) = dl & next(r1) = r1;

ASSIGN
init(dl) := FALSE;
init(r1) := outside;
init(r2) := outside;

LTLSPEC ! (((r2 = outside & X(r2 = inside)) -> r1 = inside) U
(dl & r1 = inside & r2 = inside));

Trace Type: Counterexample
-> State: 1.1 <-

dl = FALSE
r1 = outside
r2 = outside

-> Input: 1.2 <-
lock_door = FALSE
r1_go_in = TRUE
r2_go_in = FALSE

-> State: 1.2 <-
r1 = inside

-> Input: 1.3 <-
r1_go_in = FALSE
r2_go_in = TRUE

-> State: 1.3 <-
r2 = inside

-> Input: 1.4 <-
lock_door = TRUE
r2_go_in = FALSE

-> State: 1.4 <-
dl = TRUE

The standard BMC formulation solves SAT instances of increasing length, correspond-
ing to steps into the future from the initial state. This means that it automatically produces
minimal length counterexamples. However, the SAT solver is usually much faster at find-
ing a satisfying solution than determining that the previous plan lengths in unsatisfiable.
Therefor we apply a variant of the strategy suggested in [29], where the underlying SAT
problem is solved with varying lengths simultaneously (one per CPU-core). This makes
finding an initial plan a lot quicker, but it has the downside that the plan can contain
unnecessary steps. To mitigate this, a heuristic is applied to keep searching for a little
longer after a satisfying solution has been found, in order to minimize the number of
unnecessary steps in the plan. Incrementally finding the minimal length counterexample is
performed asynchronously as a background task and added to the planning cache once
computation has finished.

A downside to using a BMC solver as the planning engine is that the counterexample
trace has a fixed sequential execution ordering—it is a totally ordered plan rather than a
partially ordered plan [30]. A partial order plan can execute some steps in parallel, where
the ordering of actions does not change to final outcome. To enable multiple operations to
start in parallel, ordering among independent operations is removed a as a post-processing

Appl. Sci. 2022, 12, 5433 12 of 18

step in SP. Operations are considered independent if their set of used variables (i.e., the set
of all variables used in the goal predicates, preconditions, and effect actions) is disjoint.

2.7. Transition Planner

In a similar way as the operation planner computes plans that should reach the goals
of the currently active intentions, the transition planner computes plans that should reach
the goal states of the executing operations. The transition planner continuously compares
its current plan to the system state to see if the plan is still valid. Whenever the goals
change, or if they can no longer be reached with the current plan, a new plan is computed.
An overview of the transition planner is shown in the bottom part of Figure 8.

A BMC problem is generated that includes the automatic, controlled, and effect
transitions. The initial state is set at the current state of all resources, estimated states as
well as all decision variables. Further, the BMC problem is constrained by any invariant
formulas (see Section 2.3. Since the operations and decision variables define a hierarchy,
the abstraction needs to be ordered monotonic [31]. This can be handled by forbidding the
transition planner from changing any decision variable that is not in the currently active
goal. This prevents the transition planner from completing operations that the operation
planner did not intend to complete.

The resource models only contain information about which transitions can be taken
from certain states and which are expected to be taken from certain states. Thus, there
is no inherent notion of a “task” that can be considered independent from other tasks.
For this reason, it is not possible to compute a partially ordered plan as is done with the
operation planner. Instead, a strategy which starts activities eagerly is implemented as a
post-processing step. In this strategy, transitions are reordered using a simple algorithm
which, if possible, “bubbles” any transitions that are not effects up to the top of the plan.
We do this with the assumption that controllable transitions usually start things, while
effect transitions usually end things. For example, consider the case of two independent
resources which can perform task a and task b. To start the tasks, an IO is set high a! := true
and b! := true for the respective tasks. The tasks are deemed finished when sensors read
a? = true and b? = true, respectively. Table 2 shows the original plan to the left and the
plan after “bubbling up” the transitions that are not effects to the right. The original plan
will have unnecessary waiting before task b is started.

Table 2. Transition reordering.

step 1 controllable a! step 1 controllable a!
step 2 effect a? step 2 controllable b!
step 3 controllable b! step 3 effect a?
step 4 effect b? step 4 effect b?

The algorithm used to “bubble up” transitions works in the following way: if a
transition is not an effect, it is iteratively swapped with the previous transition as long as
the goal can still be reached by following the totally ordered plan exactly. This is conducted
for all transitions in the plan, starting at the top and working down to the bottom, swapping
order whenever possible.

2.8. Non-Determinism

Because the resources are modeled as non-deterministic transition systems, it is possi-
ble that there are multiple effects from a single state. This is useful to model alternatives.
However, the operation planner does not branch on these but will always “choose” the best
possible outcome whenever there are multiple possible outcomes of an operation. While it
is possible to compute plans that take branching into account, this increases complexity as
the planning problem essentially becomes a controller synthesis problem [32]. In SP, the
strategy is to let the planner decide on the “correct” outcome, and instead replan upon
encountering an unexpected result.

Appl. Sci. 2022, 12, 5433 13 of 18

In order to also capture the non-determinism in the decision variables, “variants” of
operations are allowed, which are copies of the same operation but with different actions
and goal states. When an operation that has a variant is executing, the goal of the transition
planner is set to the disjunction of the operation variants’ goals. For example, consider
a sensor (sens?) that scans the color of a product, determining that the product is either
red or green. An operation “scan” could exist in two variants, one with a goal predicate
sens? = red and an outcome that a decision variable is assigned “red” and one with a goal
predicate sens? = red and the outcome that a decision variable is assigned “green”. The goal
for the transition planner would then be sens? = red∨ sens? = green. When sens? receives
one of the values, the decision variable is updated accordingly. This may trigger replanning
of the operation planner if the “correct” outcome was not achieved.

3. Application to an Industrial Demonstrator

To validate the design, the described framework has been applied to an industrial
demonstrator. This case has been described in previous publications [10,20,22], but an
overview is given here. The demonstrator is located in a manufacturing facility for truck
engines, and it concerns the assembly of several components onto the engine block. The
challenge is in the way that the operator and a collaborative robot have to perform op-
erations. Namely, the operations can be executed either by the robot, the human, or in
a collaborative fashion. An extensive software library, motion planning and vision algo-
rithms, as well as a wide variety of hardware are used to achieve this. A photo of the
assembly system can be seen in Figure 9, where an operator and a collaborative robot place
a cover plate onto the diesel engine.

Figure 9. Collaborative robot assembly station controlled by a network of ROS nodes. Video clip
showing the demonstrator: https://youtu.be/TK1Mb38xiQ8, accessed on 24 May 2022.

To tackle different tasks in the system, it was necessary to dedicate eight computers.
These computers run software for the physical resources of the system such as the Universal
Robots collaborative robot, the Mir100 autonomous mobile platform, the end-effector
docking station, the nutrunner lifting system, the RFID reader and camera system, as well
as the nutrunner tool itself, which can be operated both by the operator and the robot.

When developing this industrial demonstrator, the main focus was on the robustness
aspects of performing a collaborative engine assembly using machines and operators. Even
if important aspects such as operator safety, performance, and real-time constraints were
considered in this work, they were not the main focus while developing this demonstrator. Such
important aspects will be addressed in future work, especially the safety of human operators.

3.1. Human Operator

Some tasks are performed in a coactive fashion, such as lifting a heavy metal plate onto
the diesel engine assisted by the robot, but the human operator should be free to perform
tasks independently of the machines in the system. This means that human behavior takes

 https://youtu.be/TK1Mb38xiQ8

Appl. Sci. 2022, 12, 5433 14 of 18

precedence—the machines should aid the operator and not be a hindrance. The operator is
free to perform its individual tasks without adhering to fixed sequences, if it is not required
to assemble the product correctly.

This requires constant measurements of what the operator is performing, for example
by tracking the position of the human and using smart tools that can sense when the
operator successfully performs tasks. It is the flexibility provided by the planner, or more
specifically, the act of replanning, that enables the operator to act freely. As soon as the
automation system realizes (through continuous forward simulation) that the current goal
cannot be reached—perhaps because the operator has changed something—a new plan
is computed. Additionally, the ability to cancel active intentions (which in turn cancels
operations) means that the automation system can be given new goals in reaction to a
changing environment.

One of the tasks that should be performed at the assembly station is moving an engine
cover plate, called a “ladder frame”, from an autonomous kitting robot onto the engine
and bolting it down. This involves several resources: the UR10 robot, the connector, an
end-effector for lifting the plate, the nutrunner, and a human operator. The UR10 and the
nutrunner are hanging from the ceiling, and the UR10 can attach itself to the nutrunner to
guide it to the pairs of bolts on the ladder fame.

3.2. Resources

The developed system contains a number of different resources, and they are dis-
tributed over several different computers. All communication between the computers
is performed via ROS over DDS. Resources model both physical machines and software
services, e.g., drivers for the UR10 robot, connectors, nutrunners, tools, a motion planning
service based on MoveIt! [11], and a UI for the operator. Since the resources are modeled
independently, they can easily be reused.

3.3. Operations

The automation system has been modeled with 30 different operations, which involve
localization of equipment and products, moving robots, and performing assembly using
the smart tools. Decision variables keep track of whether the position of parts is known,
who is holding the tools, and the state of the products. These can change on external input,
for example, if a human operator is using a smart tool in manual mode.

4. Results

In this section, we describe our findings of applying SP to control the intelligent
automation system described in Section 3. We are interested to know how often new plans
are computed and how quickly this can happen.

4.1. Planning Performance

The planners effectively define a hierarchy. This means that there exists a trade-off
between the “length” of the chosen operations and the number of operations. For instance,
having a decision variable that models the knowledge about which tools are held by the
robot is not necessary. This is because the transition planner will decide and carry out the
necessary resource transitions when the time comes to perform bolting.

However, to ensure reactivity, it is necessary that both planners react quickly. This is
especially true for the transition planner, which contains all the details and as such a huge
number of possible paths, of which we also want the “shortest”—it is crucial not to try to
compute too-long plans.

Another aspect comes when we want to perform optimization instead of planning over
the operations. If the operations have a time associated with them (which can be different
based on the state of the resources when the operation is started), knowledge about whether
a tool change is needed to perform the operation can be of crucial importance.

We provide some preliminary planning benchmarks on the example system. The
transition planning model includes 6 resources and has 84 transitions (of which 30 are

Appl. Sci. 2022, 12, 5433 15 of 18

auto transitions coming from operations), 58 specifications, and 1.02434 × 1022 reachable
states. The operation planning model is orders of magnitudes smaller, with 1.61248 × 109

reachable states and 30 transitions modeling the operations.
The transition and operation planning times, ordered by plan length, are shown in

Figure 10. The plans were computed on a consumer-grade laptop computer, and every
single computed plan is represented by a cross. As it can be seen from Figure 10, the
transitions planner can comfortably plan 15–20 steps ahead, while keeping the system
responsiveness under 1 s. For the most part, though, the system behaves nominally. This
means that even if SP can handle great flexibility, there are few occasions where replanning
is needed.

0 3 4 5 6 7 8 9 1011121314151617181920 22 25
plan length (steps)

500

1000

1500

2000

2500

tim
e

(m
s)

(a) Transition planning times.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18
plan length (steps)

200

400

600

800

1000

1200

1400

tim
e

(m
s)

(b) Operation planning times.

Figure 10. Planning performance. Each cross represent the time to solve a planning problem of a
given length.

4.2. Rate of Plan Computation

The plots in Figure 11 show the rate at which new plans are computed given that
the system starts with empty planning caches. The data were recorded in a simulation
of the system during four assembly cycles (one cycle takes 210 s, depending on how
much the operator does in advance or interferes). In the 16 min data collection period, the
automation system produced 160 unique transition plans, averaging one plan per 6 s, and
35 unique operation plans, averaging one plan per 27 s. The system is left alone in the first
half of the chart, which leads to steadily increasing cache hits for both planners once the
same sequences are being played out again. In the second half, a human operator starts
“interfering” by completing assembly tasks using a smart tool as well as being in the way,
which leads to an increase in the rate of new plans being computed. While this paper does
not go into detail about how SP performs error handling, error situations are handled by
replanning, which is also a factor when it comes to how quickly the number of plans grow.

0 2 4 6 8 10 12 14 16
time (minutes)

20

40

60

80

100

120

140

160

co
m

pu
te

d
pl

an
s

15

20

25

30

35

40

pl
an

 c
ac

he
 h

it
ra

te

(a) Rate of new transition plans.

0 2 4 6 8 10 12 14 16
time (minutes)

0

5

10

15

20

25

30

35

co
m

pu
te

d
pl

an
s

0

5

10

15

20

25

pl
an

 c
ac

he
 h

it
ra

te

(b) Rate of new operation plans.

Figure 11. Rate of new plan computation and caching performance.

Appl. Sci. 2022, 12, 5433 16 of 18

4.3. Plan Complexity

As can be seen in Figure 11a, transition plans are generally between 7 to 18 steps long.
Commonly, plans are comprised of several pairs of control actions coupled with expected
effects, for example giving a command and waiting until the action has finished before
taking the next step in the plan. This means there are around three to nine different actions
in each transition plan (sometimes less when resources expose intermediate states).

By running the system without the operation packing heuristic, only one operation is run
at a time, allowing us to count the number of resources involved in reaching each operation
goal. We find that the number of resources included in an operation plan is between two
and four, with most of the operations using only two resources. It is interesting to note that
there is no operation which only uses a single resource. The large number of operations which
utilize two resources are the ones which use the robot and a tool, for example, to tighten bolts
and oil filters, but there are also situations where a resource that is not actively involved in
an operation needs to move to a certain state during completion due to a specification. The
operations that involve more resources include, for example, calling a robot motion planning
service, and setting IOs for the connector attached to the robot.

5. Conclusions

This paper introduced Sequence Planner (SP) as a framework to model and control
intelligent automation systems. The control framework has been implemented with support
for ROS and applied to an industrial demonstrator.

The focus in SP is to assume control of the internal state machines of the individual
resources. This allows the complex task of coordinating many resources to be handled by
the transition planner, even though there are complex interdependencies between resources.
Resources can be made highly reusable by applying the proposed combination of resource
specifications and operations as the main modeling concept.

Achieving a good result, however, requires that the modeling task be performed
to a high standard. Modeling errors will be found and used as loop-holes by the tran-
sition planner. The requirements of a well-modeled system indicate that there need to
be guarantees about what can and cannot happen. Writing, testing, and then trusting
the written specifications make formal verification and virtual validation crucial tools
during development.

We have found that the operations as defined in SP are a natural way to define a hierachical
model, in contrast to PPDL-based planning systems such as ROSPlan, where Hierarchical
Task Networks (HTNs) [33] need to be defined. However, due to the differences in modeling
language, no direct comparison has yet been made between the two difference systems.

Naturally, a system that relies on formal methods and online planning has an upper
limit to the complexity of the model. State space explosion is an issue, both for verification
and for efficient planning. As we can observe in Section 4, planning times go up to around
1–2 s for the longer plans. This implies that the proposed framework cannot handle much
larger systems than presented in Section 3. However, as long as the complexity of a single
station is not too high, the framework should be applicable. Additionally, new state-of-the-
art planners and model checkers can be utilized to increase the raw performance.

Future work will involve learning a distribution of the duration of the operations
(which naturally fluctuate depending on the state of the resources), which can be used by
the operation planner to find time-optimal plans. Additionally, an investigation should be
made on how the operation planner can take into account non-deterministic effects. This
could reduce the need for replanning and allow more time to instead be spent computing a
high-quality plan.

Sequence Planner is open source software and can be found at http://github.com/
sequenceplanner/sp (accessed on 24 May 2022).

Author Contributions: Conceptualization, M.D., E.E., K.B. and P.F.; methodology, M.D., E.E., K.B.
and P.F.; software, M.D., E.E. and K.B.; writing—original draft preparation, M.D.; writing—review

http://github.com/sequenceplanner/sp
http://github.com/sequenceplanner/sp

Appl. Sci. 2022, 12, 5433 17 of 18

and editing, K.B., M.F. and P.F.; supervision, K.B., M.F. and P.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This work has been supported by UNIFICATION, Vinnova, Produktion 2030 and UNI-
CORN, Vinnova, Effektiva och uppkopplade transportsystem. The Sequence Planner software has
been supported by ROSIN—ROS-Industrial Quality-Assured Robot Software Components, European
Union’s Horizon 2020 grant agreement No. 732287.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alterovitz, R.; Koenig, S.; Likhachev, M. Robot Planning in the Real World: Research Challenges and Opportunities. AI Mag.

2016, 37, 76–84. [CrossRef]
2. Perez, L.; Rodriguez, E.; Rodriguez, N.; Usamentiaga, R.; Garcia, D.F. Robot Guidance Using Machine Vision Techniques in

Industrial Environments: A Comparative Review. Sensors 2016, 16, 335. [CrossRef] [PubMed]
3. Bauer, A.; Wollherr, D.; Buss, M. Human-Robot Collaboration: A Survey. Int. J. Humanoid Robot. 2008, 5, 47–66. [CrossRef]
4. Solowjow, E.; Ugalde, I.; Shahapurkar, Y.; Aparicio, J.; Mahler, J.; Satish, V.; Goldberg, K.; Claussen, H. Industrial Robot Grasping

with Deep Learning using a Programmable Logic Controller (PLC). arXiv 2020, arXiv:2004.10251.
5. Morrison, D.; Corke, P.; Leitner, J. Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 2020, 39, 183–201.

[CrossRef]
6. James, S.; Wohlhart, P.; Kalakrishnan, M.; Kalashnikov, D.; Irpan, A.; Ibarz, J.; Levine, S.; Hadsell, R.; Bousmalis, K. Sim-to-real

via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12627–12637.

7. Quigley, M.; Faust, J.; Foote, T.; Leibs, J. ROS: An open-source Robot Operating System. ICRA Workshop Open Source Softw. 2009, 3, 5.
8. Pardo-Castellote, G. OMG Data-Distribution Service: Architectural overview. In Proceedings of the 23rd International Conference

on Distributed Computing Systems Workshops, Providence, RI, USA, 19–22 May 2003; pp. 200–206. [CrossRef]
9. Fischer, H.; Vulliez, M.; Laguillaumie, P.; Vulliez, P.; Gazeau, J.P. RTRobMultiAxisControl: A Framework for Real-Time Multiaxis

and Multirobot Control. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1205–1217. [CrossRef]
10. Erős, E.; Dahl, M.; Hanna, A.; Götvall, P.L.; Falkman, P.; Bengtsson, K. Development of an Industry 4.0 Demonstrator Using

Sequence Planner and ROS2. In Robot Operating System (ROS); Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–29.
11. S, ucan, I.A.; Chitta, S. MoveIt! 2018. Available online: http://moveit.ros.org (accessed on 26 February 2019).
12. S, ucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom. Mag. 2012, 19, 72–82. [CrossRef]
13. Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Carreraa, A.; Palomeras, N.; Hurtós, N.; Carrerasa, M. ROSPlan:

Planning in the Robot Operating System. In Proceedings of the 25th International Conference on International Conference
on Automated Planning and Scheduling, ICAPS’15, Jerusalem, Israel, 7–11 June 2015; AAAI Press: Palo Alto, CA, USA, 2015;
pp. 333–341.

14. Rovida, F.; Crosby, M.; Holz, D.; Polydoros, A.S.; Großmann, B.; Petrick, R.P.A.; Krüger, V. SkiROS—A Skill-Based Robot Control
Platform on Top of ROS. In Robot Operating System (ROS): The Complete Reference; Koubaa, A., Ed.; Springer International
Publishing: Cham, Switzerland, 2017; Volume 2, pp. 121–160. [CrossRef]

15. Munawar, A.; De Magistris, G.; Pham, T.; Kimura, D.; Tatsubori, M.; Moriyama, T.; Tachibana, R.; Booch, G. MaestROB: A
Robotics Framework for Integrated Orchestration of Low-Level Control and High-Level Reasoning. In Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 527–534. [CrossRef]

16. Paxton, C.; Hundt, A.; Jonathan, F.; Guerin, K.; Hager, G.D. CoSTAR: Instructing collaborative robots with behavior trees and
vision. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June
2017; pp. 564–571. [CrossRef]

17. Aertbeliën, E.; De Schutter, J. eTaSL/eTC: A constraint-based task specification language and robot controller using expression
graphs. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
14–18 September 2014; pp. 1540–1546. [CrossRef]

18. Schou, C.; Andersen, R.S.; Chrysostomou, D.; Bøgh, S.; Madsen, O. Skill-based instruction of collaborative robots in industrial
settings. Robot.-Comput.-Integr. Manuf. 2018, 53, 72–80. [CrossRef]

19. Krueger, V.; Rovida, F.; Grossmann, B.; Petrick, R.; Crosby, M.; Charzoule, A.; Garcia, G.M.; Behnke, S.; Toscano, C.; Veiga, G.
Testing the vertical and cyber-physical integration of cognitive robots in manufacturing. Robot.-Comput.-Integr. Manuf. 2019,
57, 213–229. [CrossRef]

20. Dahl, M.; Erős, E.; Hanna, A.; Bengtsson, K.; Fabian, M.; Falkman, P. Control components for Collaborative and Intelligent
Automation Systems. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 378–384. [CrossRef]

http://doi.org/10.1609/aimag.v37i2.2651
http://dx.doi.org/10.3390/s16030335
http://www.ncbi.nlm.nih.gov/pubmed/26959030
http://dx.doi.org/10.1142/S0219843608001303
http://dx.doi.org/10.1177/0278364919859066
http://dx.doi.org/10.1109/ICDCSW.2003.1203555
http://dx.doi.org/10.1109/TASE.2018.2889813
http://moveit.ros.org
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1007/978-3-319-54927-9_4
http://dx.doi.org/10.1109/ICRA.2018.8462870
http://dx.doi.org/10.1109/ICRA.2017.7989070
http://dx.doi.org/10.1109/IROS.2014.6942760
http://dx.doi.org/10.1016/j.rcim.2018.03.008
http://dx.doi.org/10.1016/j.rcim.2018.11.011
http://dx.doi.org/10.1109/ETFA.2019.8869112

Appl. Sci. 2022, 12, 5433 18 of 18

21. Vyatkin, V.; Hanisch, H.M.; Pang, C.; Yang, C.H. Closed-loop modeling in future automation system engineering and validation.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2008, 39, 17–28. [CrossRef]

22. Dahl, M.; Bengtsson, K.; Fabian, M.; Falkman, P. Guard extraction for modeling and control of a collaborative assembly station.
In Proceedings of the IFAC Workshop on Discrete Event Systems, WODES, Rio de Janeiro, Brazil, 11–13 November 2020.

23. Dahl, M.; Bengtsson, K.; Falkman, P. Application of the sequence planner control framework to an intelligent automation system
with a focus on error handling. Machines 2021, 9, 59. [CrossRef]

24. Brayton, R.K.; Hachtel, G.D.; McMullen, C.; Sangiovanni-Vincentelli, A. Logic Minimization Algorithms for VLSI Synthesis; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 1984; Volume 2.

25. Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.; Micheli, A.; Mover, S.; Roveri, M.; Tonetta, S. The nuXmv
Symbolic Model Checker. In Proceedings of the CAV, Vienna, Austria, 18–22 July 2014; pp. 334–342.

26. Grumberg, O.; Clarke, E.; Peled, D. Model checking. In International Conference on Foundations of Software Technology and Theoretical
Computer Science; Springer: Berlin/Heidelberg, Germany, 1999.

27. Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), Providence, RI, USA, 30 September–31 October 1977; pp. 46–57.

28. Biere, A.; Cimatti, A.; Clarke, E.; Zhu, Y. Symbolic model checking without BDDs. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Amsterdam, The Netherlands, 22–28 March 1999; Springer:
Berlin/Heidelberg, Germany, 1999; pp. 193–207.

29. Rintanen, J.; Heljanko, K.; Niemelä, I. Planning as satisfiability: Parallel plans and algorithms for plan search. Artif. Intell. 2006,
170, 1031–1080. [CrossRef]

30. Weld, D.S. An introduction to least commitment planning. AI Mag. 1994, 15, 27.
31. Knoblock, C.A.; Tenenberg, J.D.; Yang, Q. Characterizing Abstraction Hierarchies for Planning. In Proceedings of the Ninth

National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19 July 1991; pp. 692–697.
32. D’Ippolito, N.; Rodriguez, N.; Sardina, S. Fully observable non-deterministic planning as assumption-based reactive synthesis. J.

Artif. Intell. Res. 2018, 61, 593–621. [CrossRef]
33. Georgievski, I.; Aiello, M. HTN planning: Overview, comparison, and beyond. Artif. Intell. 2015, 222, 124–156. [CrossRef]

http://dx.doi.org/10.1109/TSMCC.2008.2005785
http://dx.doi.org/10.3390/machines9030059
http://dx.doi.org/10.1016/j.artint.2006.08.002
http://dx.doi.org/10.1613/jair.5562
http://dx.doi.org/10.1016/j.artint.2015.02.002

	Introduction
	Contribution
	Outline

	The Sequence Planner Control Framework
	Resources
	Operations
	Resource Specifications
	Intentions
	Transition Runner
	Operation Planner
	Transition Planner
	Non-Determinism

	Application to an Industrial Demonstrator
	Human Operator
	Resources
	Operations

	Results
	Planning Performance
	Rate of Plan Computation
	Plan Complexity

	Conclusions
	References

