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Abstract

Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments.
The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes,
such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the
pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimen-
tal data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review
summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dy-
namic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of
cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop
a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient
signalling.
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Introduction
To survive in a constantly changing environment, living organisms
adapt to new conditions by rapidly responding to the multitude
of external stimuli. Once a stimulus is received by the membrane
receptors, the signal is further processed through the cascades of
biochemical reactions leading to specific alterations that may oc-
cur at the level of gene expression, metabolism and growth. In
general, cellular response is mediated by spatial and temporal dy-
namics of signalling networks (Krauss 2006).

Glucose is the preferred energy source that yeast utilize to
maintain cellular homeostasis and well-being. In response to al-
tering glucose concentration in the cellular microenvironment,
three major glucose signalling pathways—AMPK/SNF1, Rgt2/Snf3
and cAMP/PKA—orchestrate glucose transport, metabolism and
overall transcriptional response in order to adapt to new condi-
tions (Kim et al. 2013). Glucose sensing and signalling have been
primarily studied on the budding yeast Saccharomyces cerevisiae,
and overall represent a model paradigm of extracellular stimuli
transduction resulting in appropriate changes in gene expression
(Kim et al. 2013).

The AMP-activated protein kinase (AMPK) is conserved
throughout all eukaryotes and plays the main role in integrating
information about energy source availability and environmental
stress factors in order to induce an adaptive response. The yeast

AMPK/SNF1 signalling pathway regulates energy homeostasis
and is best known for its role in glucose derepression (Celenza and
Carlson 1986). One of the main targets of the Snf1 protein kinase
is the transcriptional repressor Mig1 that controls the expression
of genes essential for the metabolism of carbon sources such
as sucrose, maltose and galactose (Nehlin et al. 1991, Hu et al.
1995, Wu and Trumbly 1998). In brief, upon glucose availability,
Mig1 occupies its target promoters resulting in repression of as-
sociated genes (Devit et al. 1997, Wu and Trumbly 1998). Glucose
limitation causes Snf1 phosphorylation, which in turn results
in Mig1 phosphorylation and translocation to the cytoplasm,
hence gene expression release (Lutfiyya et al. 1998, Smith et al.
1999, Ahuatzi et al. 2007, Shashkova et al. 2017). Although the
SNF1 signalling has been extensively studied experimentally,
and thus well characterized biochemically and genetically, and
the crosstalk with other nutrient pathways has been elucidated
(Shashkova et al. 2015), dynamic aspects of the interplay between
the Snf1–Mig1 signalling components remain unclear.

To understand how complex biological systems integrate and
coordinate the activity of all their elements, it is not sufficient
to study individual components of the system but to take into
account molecular interactions and reaction kinetics. To ad-
dress such challenges, the field of systems biology emerged. It is
an interdisciplinary field that merges experimental data collec-
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tion with mathematical and computational methods. Based on a
holistic approach, mathematical modelling describes how multi-
ple complex regulatory modules and cellular processes are con-
nected, hence providing an invaluable tool to develop hypothe-
ses and test them by computational simulations as well as tar-
geted experiments (Fischer 2008). The Hohmann group was one
of the pioneers in implementing mathematical modelling to de-
scribe complex signalling pathways in S. cerevisiae and, therefore,
to establish the field of yeast systems biology (Krantz et al. 2004,
Klipp et al. 2005, Mustacchi et al. 2006, Krantz et al. 2009, García-
Salcedo et al. 2014, Welkenhuysen et al. 2017).

To study SNF1 signalling, both top-down (Usaite et al. 2009,
Zhang et al. 2010, 2011) and bottom-up systems biology methods
have been developed and implemented, enabling our under-
standing of the functioning of this pathway in more general
and fundamental terms. Here, we review and discuss bottom-up
modelling approaches (Table 1) that have been used to study the
dynamic behaviour of signal transduction pathways with the
specific emphasis on the Snf1-regulated glucose signalling. We
also propose potential ways forward to elucidate the dynamics of
the SNF1 pathway.

Boolean modelling—a tale of two values
To date, a large amount of qualitative data on the SNF1 pathway
are available; however, aggregating these data to predict the path-
way’s response to different stimuli is still challenging. Boolean
models (Fig. 1B) represent a simple yet powerful way to create
a pathway spanning model based on available qualitative state-
ments, such as ‘the Reg1 phosphatase dephosphorylates SNF1’
(Saadatpour et al. 2010, Wang et al. 2012, Saadatpour and Albert
2013). In the past years, three Boolean models have been built on
SNF1 signalling (Christensen et al. 2009, Lubitz et al. 2015, Welken-
huysen et al. 2019).

To predict changes in gene expression, Christensen et al. (2009)
developed the first Boolean model that includes, besides the
SNF1, the Snf3/Rgt2 pathway and the MAL and GAL regulatory
systems. The model was built upon an extensive literature re-
view, and its relatively weak predictive power (accuracy score
of 60% compared with transcriptomic data) strongly suggested
gaps in our understanding of the glucose regulatory network.
Furthermore, the authors highlighted that a Boolean represen-
tation could be inadequate when modelling complex signalling
interactions, such as multiple transcription factors acting on the
same gene.

Building further and exploiting experimental data available
in the literature, Lubitz et al. (2015) performed a comprehen-
sive reconstruction of the entire SNF1 pathway based on 440
papers. Apart from representing an extensive summary, the au-
thors proposed a workflow for signalling network reconstruc-
tion building on an rxncon language structure (Tiger et al. 2012).
This approach showed that without filling the knowledge gaps
with hypothetical components (so-called gap filling), the pro-
posed model could not predict the observed behaviour of the
SNF1 pathway. This suggests the presence of other processes
and reactions, besides the ones included in Lubitz’s and Chris-
tensen’s models, that play an important role in the pathway
regulation.

Welkenhuysen et al. (2019) built a Boolean model to investi-
gate the impact of crosstalk between the SNF1, Snf3/Rgt2 and PKA
pathways. By adding two documented crosstalks, the model could
predict gene expression patterns more accurately compared with
a model without implemented crosstalk. However, the model was

still not fully consistent with the expected behaviour of the SNF1
pathway. Following Lubitz’s approach, the authors used gap fill-
ing to create a testable hypothesis of the missing interactions. In
the end, the addition of four hypothetical phosphatases made the
model consistent with observed data.

Overall, the Boolean approach shows that when we collect
all known interactions within the pathway, the behaviour of
the SNF1 signalling cannot be fully explained. Besides knowl-
edge gaps, the predictive power of these models is limited
by the Boolean formalism (Christensen et al. 2009), which can
be inadequate when modelling complicated reactions or non-
binary scenarios, such as switching between media with differ-
ent glucose concentrations. Furthermore, Boolean models have
a crude time description, which may cause the discrepancy in
the temporal behaviour of the system components (Welken-
huysen et al. 2019), demonstrating why such models are not
suitable for predicting the dynamics of signalling. Taken to-
gether, the Boolean approach imposes the assumption that bio-
logical systems are discrete in nature, which limits the predic-
tive power of such models for a complex network like the SNF1
pathway.

How to then move beyond Boolean modelling? One way is qual-
itative modelling, where system flexibility can be achieved by al-
lowing the components to have various values, such as different
activity levels (Schaub et al. 2007). This can further be coupled with
an asynchronous rule (Garg et al. 2008), where reactions within the
network are allowed to occur on different time scales. The alter-
native approach overcoming the shortcomings of Boolean models
is kinetic dynamic modelling (Klipp and Liebermeister 2006).

Dynamic modelling—a tale of
time-dependent changes
The dynamic of the SNF1 signalling is usually studied with
quantitative time-lapse experiments, such as immunoblotting
and qPCR. A powerful tool to interpret experimental results
in the context of the pathway dynamics is dynamic kinetic
modelling (Fig. 1C) based on the ODEs (Chen et al. 2004, Klipp
et al. 2005, Bachmann et al. 2011). For SNF1 signalling, two
such models have provided insights into the pathway’s dynam-
ics (Kuttykrishnan et al. 2010) and structure (García-Salcedo
et al. 2014).

To unravel the structure of the SNF1 pathway, García-Salcedo
et al. (2014) proposed several hypothetical pathway structures,
which they translated into 24 small dynamic models. Each model
was then fitted to the available data of, for example, Mig1 localisz-
tion and Snf1 phosphorylation. Based on the fit, the models were
then ranked via the Akaike and χ2 model selection criteria. This
systematic approach allowed for the identification of likely path-
way structures, and the best-ranked models predicted that phos-
phatases play a crucial role in regulating SNF1. In addition, the
best model, with a small margin in selection criteria, suggested
that glucose regulates Mig1 solely via Snf1. Since the models were
fitted and subsequently compared based on a limited amount of
data, the authors pointed out that the standard selection criteria,
like Akaike and χ2, do not always select the best from similarly
scoring models (Vrieze 2012).

While García-Salcedo et al. (2014) fitted proposed dynamic mod-
els to data to estimate any unknown kinetic parameters, Kuttykr-
ishnan et al. (2010) mined parameters from the literature to build
a model on the hexose transporters (HXT) gene regulatory layer.
The obtained dynamic model of the HXT gene regulation was then
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Table 1. Existing mechanistic models of the SNF1 pathway, in the order they appear within this review. The columns are the author(s),
model type, cellular pathways included in the model, model size measured by the number of model states/components such as metabo-
lites, proteins, etc. (not counting reactions) and short description of the main aim of the modelling.

Author(s) Model type Included pathways Size Aim

Christensen et al. (2009) Boolean GAL–MAL regulatory
system and
SNF1–Snf3/Rgt2 pathways

Large 72
components

Predict transcriptional responses for
various nutrient conditions and/or
deletion strains

Lubitz et al. (2015) Boolean SNF1 components Largea 52
components

Create a comprehensive
reconstruction of the SNF1 pathway

Welkenhuysen et al. (2019) Boolean SNF1, PKA and Snf3/Rgt2
pathways

Largea 80
components

Investigate the role of crosstalks
between nutrient-sensing pathways

García-Salcedo et al. (2014) Mechanistic ordinary
differential equation
(ODE) model

SNF1 pathway Smallb 8
components

Elucidate how Mig1 and SNF1 are
regulated

Kuttykrishnan et al. (2010) Mechanistic ODE
model

SNF1–Snf3/Rgt2 pathways,
HXT regulatory layer

Medium 24
components

Elucidate the dynamics of how
glucose sensing regulates HXT genes

Welkenhuysen et al. (2017) Mechanistic single-cell
model

SNF1 pathway Small 8
components

Elucidate sources of cell-to-cell
variability in Mig1 localization

Almquist et al. (2015) Mechanistic single-cell
model

SNF1 pathway Small 2
components

Elucidate how Mig1 localization is
regulated upon glucose addition to
starved cells

Persson et al. (2020) Mechanistic single-cell
model

SNF1 pathway Smallb 5
components

Elucidate how the SUC2 gene is
regulated upon long-term glucose
starvation

Persson et al. (2021) Mechanistic single-cell
model

SNF1 pathway Smallb 4
components

Elucidate reactions and sources of
cell-to-cell variability behind Mig1
localization upon fructose addition to
starved cells

Jalihal et al. (2021) Mechanistic ODE
model

SNF1, PKA and TOR
pathways

Medium 30
components

Create a consensus dynamic model of
nutrient sensing in yeast

Österberg et al. (2021) Hybrid model, Boolean
(signalling), FBA
(metabolism)

Carbon and nitrogen
metabolism; the SNF1,
PKA and TOR pathways

Largec 337
components

Elucidate the impact of nutrient
signalling on the metabolism

aNot including the hypothetical components obtained from gap filling.
bWhen the paper includes several models, we refer to the largest.
cCounting the number of components in the signalling module, and the number of metabolites and enzymes in the metabolic module.

coupled with a simplified model of the SNF1–Snf3/Rgt2 pathways.
Since the kinetic parameters for the regulatory layer were ob-
tained from the literature, only a few parameters for the small
SNF1–Snf3/Rgt2 model needed to be estimated. This approach re-
sulted in a model with biologically justifiable kinetic parameters
that accurately predicted the expression of the HXT1–HXT4 genes
for varying glucose levels. Furthermore, the model showed that
HXT4 exhibits an expression pulse after the addition of 0.1% glu-
cose to starved cells, which was then confirmed experimentally.

While dynamic modelling goes beyond the Boolean approach,
there are also some limitations. Typically, the level of details
within the model we can build is defined by the kinetic param-
eters that either have already been reported or can be estimated
based on the published data. However, only a few parameters are
available for the SNF1 pathway, and the amount of the quantita-
tive time-lapse or steady state data for estimation is also limited.
This restricts the level of details of models with reasonably es-
timated parameters we can build, impacting how much we can
learn about SNF1 signalling by comparing models via selection
criteria only. In addition, existing dynamic ODE models of the
SNF1 signalling only describe population averages as they are fit-
ted using aggregated data (e.g. western blots). The dynamic be-
haviour of molecules at the individual level can differ substan-
tially from the ensemble average. To deduce the cell level be-
haviour of the pathway, several studies have employed single-cell
dynamic modelling.

Single-cell dynamic modelling—a tale of
individual cells
To reach a complete understanding of the SNF1 pathway, we
should study it cell by cell. Experimental techniques like single-
cell microscopy can be used to monitor cellular dynamics, for
example, in the context of protein variability between cells over
time. However, the complexity of the SNF1 pathway makes it
challenging to elucidate the dynamics of signalling from exper-
iments. Similarly, determining whether stochastic chemical reac-
tions within the pathway (intrinsic noise) and/or outside signals
like cell cycle state (extrinsic noise) are major sources of cell vari-
ability is non-trivial via experimental approaches (Elowitz et al.
2002, Swain et al. 2002). Single-cell models (Fig. 1D) can be applied
to rationalize single-cell experiments, and they have been used to
study the dynamics (Almquist et al. 2015, Persson et al. 2020) and
sources of cell heterogeneity for the SNF1 pathway (Welkenhuy-
sen et al. 2017, Persson et al. 2021).

Combining microscopy data of Mig1 localization with mecha-
nistic modelling, Welkenhuysen et al. aimed at explaining sources
of cell-to-cell variability (Welkenhuysen et al. 2017). Cell hetero-
geneity was assumed to arise from extrinsic noise and was mod-
elled by letting the kinetic parameters vary between cells. This
is a common approach, as these parameters often relate to ex-
trinsic noise sources like metabolic activity (Zechner et al. 2014).
By analysing how changes in rate parameters affect Mig1 local-
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Figure 1. The three types of mathematical models used to model SNF1 signalling. Demonstration of how the (A) none-faded part in the simplified
description of the SNF1 pathway can be modelled upon a glucose downshift using (B) Boolean, (C) dynamic kinetic and (D) single-cell mechanistic
modelling. Note that the models here are purely demonstrative. (B) A Boolean model is composed of Boolean statements, which can be simulated to
understand how a network moves from one steady state to another. Here, we simulated the model using a synchronous update scheme. (C) A dynamic
mechanistic (ODE) model consists of ordinary differential equations (ODEs) that are based on reaction rates. By solving these ODEs, for a given set of
kinetic parameters ki, the concentrations of species can be simulated over time (right). (D) A single-cell mechanistic model is composed of chemical
reactions. These are simulated using ODEs if intrinsic noise is assumed negligible, else an appropriate stochastic simulator is used (reviewed in
Gillespie 2007). Extrinsic noise is often modelled by letting a subset, or all kinetic rates and initial protein values, vary between cells by following a
probability distribution p(η). By accounting for sources of cell-to-cell variability, a single-cell model simulates the dynamics of an entire cell population
over time (right).

ization, it was suggested that the Mig1 shuttling in and out of
the nucleus is a source of cell heterogeneity. Due to the lack of
experimental data, most kinetic rates were arbitrarily estimated.
However, to base conclusions on such parameters, it is important
that they are accurately estimated, and that the estimation un-
certainty is assessed by likelihood-based statistical methods.

To rationalize microscopy time-lapse data on Mig1 localization
(Almquist et al. 2015) and SUC2 expression (Persson et al. 2020),
Almquist et al. and Persson et al. translated plausible hypotheses

of the SNF1 pathway structure into mechanistic models. By fitting
models to each individual cell within their respective data sets
(50–100 cells were observed per set), it was determined which
hypotheses were capable of describing the observed experimen-
tal dynamics. By constructing minimalistic models, Almquist
et al. showed that delayed positive feedback could explain why
Mig1 re-enters the nucleus after a glucose upshift and that this
feedback is co-regulated with the process regulating Mig1 nuclear
exit. Furthermore, by combining modelling with additional ex-
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periments, Persson et al. showed that the SUC2 expression likely
decreases upon long-term glucose starvation due to a partial
recovery in cellular energy levels, which reduces the activity of
the SNF1 complex.

These two approaches demonstrated how modelling could help
interpret single-cell experiments; however, in both studies, negli-
gible intrinsic noise was assumed. This is often used to facilitate
kinetic parameter estimation, which, however, may cause bias in
such evaluations (Munsky et al. 2018, Wiqvist et al. 2021). To cir-
cumvent this, a Bayesian framework for estimating kinetic param-
eters in models that account for both intrinsic and extrinsic noise
has been recently introduced (Persson et al. 2021).

Using this framework, Persson et al. (2021) studied Mig1 local-
ization upon fructose addition to starved cells. To build four small
but not minimalistic models with interpretable kinetic parame-
ters, the authors included prior information about potential val-
ues into their Bayesian parameter estimation. These models were
then ranked based on their ability to describe Mig1 localization
data for all observed cells, and the best model suggests that Mig1
starts to leave the nucleus 5 min after a fructose upshift due to
metabolism-dependent feedback. Moreover, by analysing the es-
timated kinetic parameters between cells, the authors suggest, in
line with their experiments, that a potential source of cellular het-
erogeneity in Mig1 localization is the activity of hexokinases.

Available single-cell dynamic models are typically small and
sometimes even minimalistic, where most of the biological play-
ers are black-boxed. This is not ideal, as such models often cannot
predict which pathway components are key regulators behind ob-
served data. Indeed, Almquist’s model revealed delayed feedback
but not the specific pathway components regulating it. This can be
circumvented by adding more details to a model. However, as il-
lustrated by Welkenhuysen et al. (2017), this may lead to arbitrary
estimated parameters that cannot be fully interpreted and can
also negatively impact the model’s predictions (Gutenkunst et al.
2007, Chis et al. 2016). To build more detailed models with non-
arbitrarily estimated parameters requires extensive quantitative
single-cell time-course data. However, even if such data sets could
be gathered, methods for estimating kinetic parameters have lim-
itations (reviewed in Loos and Hasenauer 2019). In essence, the
development of methods for both data collection and kinetic pa-
rameter estimation is needed to allow for more detailed single-cell
models.

Even though the single-cell models zoom in to a specific part of
the pathway while black-boxing the surroundings, they can still
reveal sources of cell heterogeneity. Modelling these black boxes
often involves several assumptions that may affect a model’s pre-
dictive power. To ease this approach, we propose to initially con-
struct a pathway-spanning kinetic ODE model of the SNF1 path-
way. More specifically, a large-scale kinetic model can help us un-
derstand the surrounding population average input to the subsys-
tem we are modelling at the cell level. Naturally, the premise of
this methodology is the existence of a kinetic model on the entire
SNF1 pathway.

Thinking big with dynamic models
Most of the models we discussed earlier have focused on a small
part of the SNF pathway, limiting their ability to predict its re-
sponse to previously undescribed scenarios. To fully account for
the dynamic behaviour of the SNF1 pathway, we need a holistic
approach that considers crosstalks with other nutrient pathways.
Addressing all of these, Jalihal et al. (2021) recently developed a
kinetic dynamic model of nutrient signalling in yeast integrating

the SNF1, TOR and PKA pathways. To estimate the kinetic param-
eters, the authors scourged the literature for quantitative time-
lapse and steady state data. The estimated model fits these data,
which noticeably spans across various nutrient conditions. More-
over, it predicts the response of nutrient-sensing regulated tran-
scription factors in deletion strains, such as gcn4�.

However, while around 18 000 sets of kinetic parameters
adequately fit the data, it cannot be distinguished which ones
produce the best predictions. Since different parameter sets
sometimes produce different model dynamics, there are scenar-
ios where model predictions are highly uncertain. To address
this, additional quantitative experimental data are required to
constrain the kinetic parameters, and the proposed Jalihal’s
model can help design these. Relevant experiments are those
where parameter sets yield conflicting predictions, such as
activation of transcription factors in deletion strains. Moreover,
parameter estimation has classically been based on quantitative
data, but recently frameworks that consider qualitative data were
introduced (Mitra et al. 2018).

In addition, a relevant area of model improvement is the time
span. The model currently describes the nutrient network up to 30
min after a nutritional shift; however, there are scenarios where
the long-term response is relevant to study, for example when in-
vestigating the role of nutrient sensing on ageing (Coccetti et al.
2018) or when trying to rewire signalling for metabolic engineer-
ing purposes (Nielsen and Keasling 2016). However, modelling the
long-term response of nutrient signalling is complicated since it is
regulated by feedback that acts via the metabolism (Conrad et al.
2014); hence, an integrated signalling and metabolic model is re-
quired (Jalihal et al. 2021).

Modelling nutrient
sensing + metabolism = profit?
During long-term signalling, SNF1 regulates the metabolism in
several ways, such as by modulating transcription factors or
directly through post-translational modifications (Woods et al.
1994). In turn, the metabolism regulates SNF1 signalling; for
example, ADP binds to and subsequently protects the SNF1
complex from dephosphorylation (Chandrashekarappa et al.
2011). To understand this interplay, Österberg et al. (2021) recently
developed a framework that integrates a Boolean model of
the SNF1, TOR and PKA pathways, with an enzyme constraint
flux balance model of the central carbon metabolism. Within
this hybrid model, the intracellular glucose level is obtained
from the metabolism module and then used as an input to
the nutrient-sensing module. This module then regulates the
transcription factors, which further controls the enzyme levels in
the metabolic module. Overall, this integration of signalling and
metabolism yields improved predictions of the metabolic enzyme
levels compared with previous models and theoretically can be
used to explore long-term signalling.

Due to the inconsistencies in available proteomics data (Arike
et al. 2012, Sánchez et al. 2021), validation of hybrid models
like that of Österberg remains challenging. Moreover, there are
uncertainties in the cellular physiology, growth, metabolism and
dynamic data used to calibrate the model parameters. This is
limiting, as the constrained model used in the metabolic module
can often not be simulated/solved if it tries to match uncertain
data on enzyme activities. One way to allow for the incorporation
of useful but uncertain data is to develop metabolic modelling
frameworks that can, to a certain degree, deviate from measured
enzyme activities. Another hardship is modelling the gene reg-
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ulatory layer because it is not fully understood. The prospects
of gaining enough knowledge to properly model gene regulation
are promising since the amount of available data under various
conditions is increasing, together with improvements in methods
to infer regulatory effects from such data (Wang et al. 2017).

Further, the signalling module in Österberg’s framework is a
Boolean model. To gain more knowledge on how metabolic feed-
back affects nutrient signalling, a fine-grained representation of
the signalling module in the form of a dynamic model is desir-
able. This is because not all metabolic feedback signals are likely
to cause a discrete switch of protein activity.

Outlook
The SNF1 pathway is a central part of the nutrient signalling sys-
tem in S. cerevisiae. Systems biology approaches have been em-
ployed to improve our knowledge about the behaviour of SNF1
signalling and reveal the key gaps in understanding its complex
interactions. To date, numerous types of models have been de-
veloped (Table 1), ranging from a Boolean model to understand
the role of crosstalk to a dynamic model to elucidate the time-
dependent regulation of genes, to single-cell models to reveal
sources of cell heterogeneity. To capture the highly dynamic be-
haviour of the pathway, dynamic models have proven to be par-
ticularly useful, and with recent advances (Jalihal et al. 2021),
the field is moving in a direction to develop a consensus dy-
namic model on the entire SNF1 pathway. Ideally, the aim is to
have a model with non-arbitrary estimated kinetic parameters,
hence non-arbitrary predictive power, which requires high-quality
experimental data. Moreover, we must consider crosstalks with
other nutrient-sensing pathways as well as the interplay between
signalling and metabolism to enable the study of long-term sig-
nalling.

A challenge, but if such a modelling framework can be devel-
oped for yeast, it can, like the yeast cell cycle model (Chen et al.
2004), act as a foundation to reason about the entire pathway’s
behaviour, providing insights into the dynamics of nutrient sig-
nalling and the interplay of signalling with metabolism. Finally,
this approach could potentially be scaled to multicellular organ-
isms to shed light and provide direct clues to underlying mecha-
nisms of multiple chronic and age-related diseases.
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