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Abstract
One of the main key technology enablers of the next generation of wireless communica-
tions is massive multiple input multiple output (MIMO), in which the number of antennas
at the base station (BS) is scaled up to the order of tens or hundreds. It provides con-
siderable energy and spectral efficiency by spatial multiplexing, which enables serving
multiple user equipments (UEs) on the same time and frequency resource. However, the
deployment of such large-scale systems could be challenging and this thesis is aimed at
studying one of the challenges in the optimal implementation of such systems. More
specifically, we consider a fully digital setup, in which each antenna at the BS is con-
nected to a pair of data converters through a radio-frequency (RF) chain, all located at
the remote radio head (RRH), and there is a limitation on the capacity of the fronthaul
link, which connects the RRH to the baseband unit (BBU), where digital signal process-
ing is performed. The fronthaul capacity limitation calls for a trade-off between some of
the design parameters, including the number of antennas, the resolution of data convert-
ers and the over-sampling ratio. In this thesis, we study the aforementioned trade-off
considering the first two design parameters.

First, we consider a quasi-static scenario, in which the fading coefficients do not change
throughout the transmission of a codeword. The channel state information (CSI) is as-
sumed to be unknown at the BS, and it is acquired through pilot transmission. We
develop a framework based on the mismatched decoding rule to find lower bounds on
the achievable rates. The bi-directional rate at 10% outage probability is selected as the
performance metric to determine the recommended architecture in terms of number of
antennas and the resolution of data converters.

Second, we adapt our framework to a finite blocklength regime, considering a realistic
mm-wave multi-user clustered MIMO channel model and a well suited channel estima-
tion algorithm. We start our derivations by considering random coding union bound
with parameter s (RCUs) and apply approximations to derive the corresponding normal
approximation and further, an easy to compute outage with correction bound. We illus-
trate the accuracy of our approximations, and use the outage with correction bound to
investigate the optimal architecture in terms of the number of antennas and the resolu-
tion of the data converters.

Our result show that at low signal to noise (SNR) regime, we benefit from lowering
the resolution of the data converters and increasing the number of antennas, while at
high SNR for a practical scenario, the optimal architecture could move to 3 or 4 bits of
resolution since we are not in demand of large array gain anymore.

Keywords: massive MIMO, data converters, fronthaul link, outage proba-
bility, random coding union bound with parameter s, normal approximation
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IoT: Internet of Things

FWA: fixed wireless access

MIMO: multiple-input multiple-output

RF: radio frequency

BBU: baseband unit

RRH: remote radio head

BS: base station

UE: user equipment

ADC: analog to digital converter

DAC: digital to analog converter

LMMSE: linear minimum mean square error

SNR: signal to noise ratio

TDD: time division duplex

CSI: channel state information

MU: multi-user

NMSE: normalized mean square error

MF: matched-filtering

ZF: zero-forcing

MMSE: minimum mean square error

MUI: multi-user interference

SINR: signal to interference plus noise ratio

DA-MMSE: distortion-aware minimum mean square error
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CHAPTER 1

Introduction

1.1 Overview
In the modern society, the application of telecommunications is not limited to making
audio/video calls anymore. In fact, the areas in which telecommunications play a role
are far beyond one could have imagined a few decades ago. Its impacts on business,
education, marketing, health such as the recent pandemic, etc., are crucial. The current
networked society demands ubiquitous connectivity and the number of active nodes in
the whole network is scaled by the number of smart gadgets that we want to connect
to the network. With the advancements in Internet of Things (IoT), this need is even
more pronounced. As a comparison, the predicted global mobile data traffic excluding
fixed wireless access (FWA) for 2021 was 51EB/m (exhabytes per month) and the actual
total mobile traffic was estimated 65EB/m at the end of 2021. Furthermore, the total
mobile traffic is predicted to be 288EB/m in 2027 [1]. To realize such a considerable re-
quirement, we need to provide enabling technologies. Fig. 1.1 shows the trend of global
mobile network data traffic and the contribution of 5G, previous generations as well as
FWA.

Wireless communication is an evolving technology, introducing a new generation ap-
proximately every decade. Considering the ever-increasing demands due to new use cases
and requirements, enabling technologies are invented and developed to meet the require-
ments. [2, 3]

Massive multiple-input-multiple-output (MIMO) is one of the key technologies to real-
ize the requirements of 5G and beyond [4,5]. By leveraging a large number of antennas at
the base station (BS) and using finely tuned beamforming techniques, many user equip-
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Chapter 1: Introduction

Figure 1.1: Global mobile network data traffic (EB per month) [1]

ments (UEs) can be served via spatial multiplexing on the same time and frequency
resource. Therefore, noticeable gains in terms of spectral and energy efficiency can be
achieved [26].

Two different architectures have been proposed and studied to realize massive MIMO
networks. Fully digital architectures, in which each antenna is connected to an individual
radio frequency (RF) circuitry containing mixers, power amplifiers, etc., and a pair of
data converters, and hybrid architectures in which with the beamforming is implemented
by combining digital processing and a network of phase shifters. Fully digital architec-
tures yield significant throughput, full flexibility and do not need antenna calibration.
Therefore they are more attractive and in this thesis, we will focus on all-digital archi-
tectures.

Despite the advantages of a fully digital massive MIMO setup, equipping the BS with
a large number of antennas comes with a cost in the implementation. In a conven-
tional setup with high resolution data converters, the total power consumption is large
since high-resolution data converters are power hungry devices [7]. Therefore, using
low-resolution data converters is a key solution to reduce the power consumption. The
drawback of using low-resolution data converters is the nonlinear distortion they cause
to their input signal. The performance of massive MIMO with low-resolution data con-
verters, have been extensively studied in the literature, and it is shown that, despite
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Chapter 1: Introduction

the impairments these nonlinear devices bring about, with the help of enough antennas
and depending on the number of UEs, it is possible to approach the performance of the
infinite-resolution setup by using only a few bit-resolution data converters. [4, 7, 10,11]

Another drawback of a fully digital architecture is related to the capacity limitations
of the fronthaul link. In some deployments, the remote radio head (RRH) containing
the antennas and the RF chains is separated from the baseband unit (BBU). The link
connecting these two units is called the fronthaul link and has a limited capacity. Using
high resolution data converters in the context of massive MIMO and mm-wave commu-
nication can easily end up in few terabytes per second of raw data to be transferred
through this link. Therefore, by lowering the resolution of data converters, it is possible
to limit the required fronthaul data rate.

This thesis is aimed at providing an analytical framework to assess the tradeoff be-
tween different realizations of such systems in terms of number of antennas and resolution
of data converters when there is a constraint on the capacity of the fronthaul link. We
considered practically relevant scenarios to make our analyses close to the reality as much
as possible.

1.2 Thesis Outline
Part I of this thesis is organized as follows. In Chapter 2, data converters are introduced
and an analytical tool to simplify the derivations is reviewed. In Chapter 3, we provide
a review of the quantized multi-user (MU) massive MIMO setup and describe a well-
known channel model that is frequently used in practice in the context of mm-wave
communications. Chapter 4 contains a summary of the appended papers appearing in
Part II.

1.3 Notation
Lowercase and uppercase boldface letters and lowercase letters denote column vectors,
matrices and scalars, respectively. The set of real numbers and complex numbers are
indicated by R and C respectively. For a matrix A, its complex conjugate, transpose,
and Hermitian transpose are denoted A∗, AT, and AH, respectively. The operators E
and diag(B) denotes the mathematical expectation over the specified random variable
and the diagonal elements of a square matrix B. An all-zero vector of dimension N is
denoted by 0N . The complex-valued N -dim circularly-symmetric Gaussian probability
density function with zero mean and covariance K is shown by CN (0N , K). The real
and imaginary parts of a signal are indicated by ℜ(.) and ℑ(.).
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CHAPTER 2

Data Converters

In a practical communication system, data converters are required to convert signals from
analog to digital domain and vise versa. More specifically, in uplink, ADCs are used to
convert the received analog signal at the base station to digital signal so that the data
can be processed digitally at the base-band unit. In downlink, DACs are leveraged to
convert the digital signal to analog signal so that it can be transmitted on the wireless
channel. In this thesis, the users are assumed to be equipped with infinite-resolution data
converters, and the BS is assumed to be equipped with low-resolution data converters.
The power consumption of data converters scales exponentially with their resolution [7].
Data converters are non-linear devices that cause irreversible distortion to the input signal
which is increased by lowering the resolution. In this chapter, we review a mathematical
tool that is used to linearlize the effect of data converters, which facilitates the derivations.
Moreover, we review a phenomenon called stochastic resonance that happens in the case
of single-bit resolution data converters at high signal to noise ratio (SNR).

2.1 Linearization using Bussgang Theorem
As mentioned earlier, data converters are non-linear devices. In this thesis, uniform,
symmetric, mid-rise quantizers are considered. Considering the input to be r ∈ R, the
quantizer signal Q(r) is given by

y = Q(r) =


∆
2 (1 − 2Q) if r < − ∆

2 2Q

∆⌊ r
∆ ⌋ + ∆

2 if − ∆
2 2Q < r < ∆

2 2Q

∆
2 (2Q − 1) if r ≥ ∆

2 2Q.

(2.1)
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Chapter 2: Data Converters

Here, Q and ∆ are the resolution and step size of the quantizer respectively. To keep the
notation compact, the quantization labels are represented by the set L = {l0, ..., lL−1}
where L = 2Q denotes the number of quantization levels and the quantization thresholds
are characterized by the set T = {τ0, ..., τL} where τ0 = −∞ and τL = +∞. We consider
complex random vector by taking z ∈ Cn to be the input and a pair of quantizers each
for the real and the imaginary part, separately. In order to linearize the input/output
relation, we can write the quantized signal as the summation of the linear minimum mean
square error (LMMSE) estimate of the input plus an uncorrelated distortion. In case of
z being Gaussian distributed, it is possible to use a mathematical tool called Bussgang
theorem [23] and the LMMSE takes a simple form as below.

Theorem 1: The cross-correlation of two Gaussian signals, when one of them has
undergone a non-linear transformation, is the same as the cross-correlation of them before
the non-linear transformation except for a scaling factor called Bussgang gain.

As a result of Bussgang theorem, we can write the linearized input/output relation of
y = Q(z), where z ∼ CN (0, Cz) as below:

y = Gz + d, (2.2)

G = E
[
Q(z)zH]E [zzH]−1 = CyzC−1

z .

Here, Cyz = E[yzH] denotes the covariance between y and z. The distortion d is a non-
Gaussian and zero-mean random vector uncorrelated to both z and y. The covariance
matrix of d turns out to be useful in further analyses related to achievable rates. For the
case of mid-rise quantizer function (2.1), the Bussgang matrix is given by [4, 10]

G = ∆√
π

diag(Cz)−1/2
L−1∑
i=1

exp
(

−∆2

2 (i − L/2)2diag(Cz)−1
)

. (2.3)

2.2 Covariance Matrix of Distortion
According to (2.2), the covariance matrix of distortion has the following form:

Cd = E
[
(y − Gz)(y − Gz)H] = Cy − GCzG. (2.4)

Note that since G is a real diagonal matrix, GH = G. To evaluate Cd, we need to find
the covariance of the quantized signal y. It holds that

[Cy]p,q = E[ypy∗
q ] = 2

(
E[yR

p yR
q ] + jE[yI

pyR
q ]
)

, p, q = 1, .., n. (2.5)
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Chapter 2: Data Converters

where yR
p = ℜ{yp} and yI

p = ℑ{yp}. For the case of p = q, E[yI
pyR

q ] = 0, therefore, the
(p, p) elements of Cy can be derived as [14]

[Cy]p,p = 2E[yR
p yR

p ] = 2
L−1∑
i=0

li
2P[yR

p = li] (2.6)

= 2
L−1∑
i=0

l2
i P[τi ≤ zR

p < τi+1] (2.7)

= 2
L−1∑
i=0

li
2
(

Φ
(√

2τi+1

σp

)
− Φ

(√
2τi

σp

))
(2.8)

= ∆2

2 (L − 1)2 − 4∆2
L−1∑
i=1

(
i − L

2

)
Φ
(√

2
σp

(
i − L

2

))
. (2.9)

Here, σp = [Cz]1/2
p,p and Φ(x) =

√
1/2π

∫ x

−∞ e−t2/2dt is the cumulative distribution func-
tion of the standard normal random variable. There is no closed-form expression for the
off-diagonal elements of Cy available for Q > 1. For the case of 1-bit data converters,
the covariance matrix can be expressed in closed-form using the arcsine law as below [15]

Cy = 2
π

[
arcsin

(
diag(Cz)− 1

2 Czdiag(Cz)− 1
2

)]
. (2.10)

For Q > 1, there are approximations proposed in the literature such as the diagonal
approximation [14]. This approximation is based on the observation that the diagonal
elements of Cy can be computed exactly [14]. By modeling the distortion caused by
quantizers as a white process, the off-diagonal elements of distortion matrix are assumed
to be zero. Therefore, Cd can be approximated as below

Cdiag
d = diag (Cy) − Gdiag (Cz) GH (2.11)

= ∆2

2 (L − 1)2In − 4∆2
L−1∑
i=1

(i − L/2) Φ
(√

2 (i − L/2) diag (Cz)−1/2
)

.

In Chapter 3, some numerical results to show the accuracy of the diagonal approximation
are illustrated.

2.3 Stochastic Resonance and Dithering for 1-Bit ADCs
Single-bit resolution ADCs are in fact comparators, and they do not preserve the am-
plitude information of the input signal, meaning that the outputs of Q(r) and Q(αr),
α > 0 are the same in case of 1-bit quantizers. Now suppose that noisy observations
are available to be quantized. For low and medium signal SNR values, the additive
noise turns out to be useful since it changes the output of the quantization. Therefore,

9



Chapter 2: Data Converters

in case of having multiple noisy observations of the desired signal, we can recover the
amplitude of the desired signal to some extent. This phenomenon is called stochastic
resonance [16,34]. In the case of high SNR, this phenomenon does not happen anymore,
since the additive noise term can be neglected and does not contribute to the output
of the quantization. Therefore, 1-bit ADCs suffer from loss of amplitude information in
high SNR. In such a case, it is possible to add more noise to synthetically reduce the
SNR operating point. This process is called dithering and is being used to improve the
performance of 1-bit data converters [18, 19]. For this reason, we have used dithering at
high SNR regime in Paper B.

10



CHAPTER 3

Multi-user Massive MIMO

The purpose of this chapter is to take a look at how lower bounds on the uplink and
downlink achievable rates are derived in an all-digital low-resolution multi-user (MU)
massive MIMO setup. In this thesis, a single cell is considered in which a BS with B

antennas communicates with U ≪ B single antenna UEs on the same time and frequency
resource with the help of spatial multiplexing as shown in Fig 3.1. The antennas at the
BS are connected to a pair of data converters that quantize the real and imaginary parts
of the input signal separately. The wireless channel is denoted by HB×U and is modeled
as a block-fading channel, i.e., it remains constant throughout the transmission of a
codeword.

In practice, the BS and UEs do not have the knowledge of the channel state information
(CSI) and the channel needs to be estimated. We assume that the system operates in
time division duplex (TDD) mode, meaning that the uplink and downlink operate on
the same frequencies but in different time intervals. With this assumption, the estimated
channel on the uplink can be used in the downlink as well. In this chapter, in order to put
our focus on derivations of the lower bounds on the achievable rates, the BS and UEs are
assumed to have the full knowledge of CSI. This assumption is relaxed in Paper A and
B. Moreover, we discuss the derivations of commonly used ergodic capacity in this thesis,
while we switch to the outage capacity in Paper A and B which is more appropriate for
the case of short packet transmission. Finally, we illustrate the lower bounds on the
achievable rates using the channel model that was used in Paper B.

11



Chapter 3: Multi-user Massive MIMO

Figure 3.1: A single cell scenario in which a B-antenna BS serves U UEs on the same time and frequency
resource.

3.1 Uplink Transmission
In the uplink, U UEs transmit signals to the BS. The received signal yul ∈ CB at the BS
at time instant k can be written as

yul
k =

√
ρulHsul

k + nul
k , (3.1)

where nul
k ∼ CN (0B , IB) is the additive noise and the transmit signal vector is sul

k =
[sul

k,1, ..., sul
k,U ] ∈ CU . The signals sul

k,u, u = 1, ..., U are drawn independently from CN (0, 1)
and ρul is the uplink SNR. The received signal yul

k passes through an automatic gain
controller circuit (AGC) and a pair of Q-bit quantizers at each antenna. The purpose
of the AGC circuit is to set the dynamic range of the input signal to the quantizer such
that the probability of overload does not exceed a certain range. The resultant quantized
signal is

rul
k = Q(A(

√
ρulHsul

k + nul
k )), (3.2)

where A models the AGC circuit and Q(.) is the quantizer function given in (2.1).
Following the derivations of Bussgang linearization in Section 2.1, (3.2) can be written
as

rul
k = GulA(

√
ρulHsul

k + nul
k ) + dul

k , (3.3)

12



Chapter 3: Multi-user Massive MIMO

Here, Gul is the Bussgang matrix (2.3) and dul is a non-Gaussian quantization noise
that is uncorrelated to yul and its covariance Cul

d can be found by arcsine law in case of
Q = 1 or approximated for Q > 1 as explained in Section 2.2, in which the covariance of
the input to the quantizer zul

k = Ayul
k is Cul

z = ACul
y A.

In this thesis, we make use of sub-optimal linear processing at the BS because of its
simplicity. In case of large number of BS antennas, linear processing turns out to be near
optimal under favorable propagation [4], [20]. The idea of linear processing in uplink is
to find a matrix W which we refer to as the combiner matrix, and multiply it by the
received signal such that an estimate of each users’s stream is obtained, as below

ŝul
k = WHrul

k = WH
(

GulA(
√

ρulHsul
k + nul

k ) + dul
k

)
. (3.4)

The ergodic sum-rate is lower bounded by

Rul
sum = EH

[
U∑

u=1
log(1 + γul

u )
]

, (3.5)

where γul
u is the received signal to noise plus distortion plus interference ratio (SINDR)

at the uth UE, given by

γul
u = ρul|wH

u GulAhu|2

ρul∑
v ̸=u |wH

u GulAhv|2 + wH
u Cul

d wu + ||AGulwu||2
(3.6)

This lower bound is found by treating the residual multi-user interference (MUI) and the
quantization noise as an independent Gaussian noise to reflect the worst-case scenario [22,
App B] and is achieved by Gaussian signaling.

Three well-known linear combiners are matched-filtering (MF), zero-forcing (ZF) and
minimum mean square error (MMSE). The idea of MF is to maximize the per-user SNR,
and its main drawback is that it does not consider MUI. Therefore, the performance
of MF combiner is satisfactory at low SNR regime whereas it does not perform well at
high SNR regime. ZF combiner on the other hand, eliminates the MUI by putting nulls
in the directions of the non-intended users, but it does not take into account AWGN.
Therefore, it works well at high SNR regime and poorly at low SNR regime because of
noise enhancement. The purpose of the MMSE combiner is to minimize the mean-square
error between the estimate ŝ and s. It also maximizes the received SINR, therefore it
outperforms ZF and MF combiners. The classical MF, ZF and MMSE combiners do not
take into account the effect of quantization distortion. In [22] and [6], distortion-aware
(DA) version of MMSE combiner has been introduced which maximizes the received
SINDR. The ZF, MF and DA-MMSE combiners are defined as below.

W =

GulAH for MF,(
GulAH

) ((
GulAH

)H GulAH
)−1

for ZF,

13
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and for DA-MMSE combiner we have [6]

wu =

ρul

∑
v ̸=u

GulAhv

(
GulAhv

)H

+ GulA(GulA)H + Cul
d

−1

(3.7)

×
(
ρulGulAhu

)
, (3.8)

where wu, u = 1, ..., U are columns of the combiner matrix W. In Paper B, we proceed
with DA-MMSE combiner.

3.2 Downlink Transmission
The U -dimensional discrete-time received signal at time instant k at U UEs can be
written as

ydl
k = HTαQ

(
zdl

k

)
+ ndl

k , (3.9)

where Q(.) denotes the quantizer function given in (2.1). The vector ndl
k ∼ CN (0U , IU )

represents the AWGN at the UEs’ side and the transmit signal is shown by zdl
k . The

factor α is a power-normalization factor to satisfy the transmit power constraint of ρdl

which is set by treating the input to the quantizer as a complex Gaussian random variable
as below

α =
√

ρdl/2√∑L−1
i=0 l2

i

(
Q(

√
2τi) − Q(

√
2τi+1)

) . (3.10)

Here, Q(x) =
√

1/2π
∫∞

x
e−t2/2dt denotes the Q-function. Similar to the uplink, we

use linear processing for downlink as well. The signals intended to UEs are shown by
sdl

k = [sdl
1,k, ..., sdl

U,k] ∈ CU where E[|sdl
u,k|2] = 1 for u = 1, . . . , U are mapped to zdl

k to be
transmitted through the downlink channel HT using the precoding matrix P as below

zdl
k = Psdl

k . (3.11)

The purpose of using precoders is to form the (unquantized) transmitted signal zdl
k such

that no heavy processing is required at UE sides to obtain a soft estimate ŝdl
k . Three

conventional precoders are ZF, MF and MMSE. These precoders are dual versions of
the corresponding combiners with the same objectives and properties. Assuming a non-
quantized setup, these precoders are formulated as below

P =


βH∗ for MF,
βH∗ (HTH∗)−1 for ZF,

βH∗
(

HTH∗ + U
ρdl IU

)−1
for MMSE.

14
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Here, the factor β is chosen such that E[||Psdl
k ||2] = B.

Similar to the uplink case, using Bussgang linearization (2.2), (3.9) can be written as

ydl
k = HTGdl (Psdl

k

)
+ HTddl

k + ndl
k . (3.12)

Here, Gdl is the Bussgang matrix (2.3) and ddl
k is a non-Gaussian quantization distortion

uncorrelated with sdl
k and its covariance matrix Cdl

d can be computed in closed-form for
the case of Q = 1 using arcsine law or approximated for higher resolutions of quantizers
according to Section 2.2, where the covariance of the input to the quantizer is Cdl

z = PPH.
Assuming that the uth UE has access to its effective channel gain

(
[HTGdlP]u,u

)
, it

can estimate its intended stream as ŝdl
u,k =

(
[HTGdlP]u,u

)−1
ydl

u,k.
Similar to the uplink, the ergodic sum-rate can be lower bounded by

Rdl
sum = EH

[
U∑

u=1
log(1 + γdl

u )
]

, (3.13)

where γdl
u is the received SINDR at the uth UE, given by

γdl
u = |hT

u Gdlpu|2∑
v ̸=u |hT

u Gdlpv|2 + hT
u Cdl

d h∗
u + 1

(3.14)

The performance of the combiners/precoders mentioned in above will be compared in
the following section.

3.3 Channel Model
In this subsection, we review the channel model that we used in Paper B. This channel
model will be used to provide simulation results of this chapter. Our focus is on mm-wave
propagation in which, the wireless channel is sparse in angular domain, meaning that
the behavior of the channel can be represented by the superposition of a small number
of paths. A widely-used channel model which is well suited to the sparse characteristic
of the mm-wave wireless channels is the clustered channel model [24–26]. In this channel
model, Ncl clusters of scatterers are considered in which each cluster contributes to
Nray of propagation paths. The discrete-time narrow-band multi-user channel impulse
response of uplink is H = [h1, h2, ..., hU ] ∈ CB×U where hu can be written as

hu =
√

1
NclNray

Ncl∑
n=1

Nray∑
m=1

αu
n,ma(θu

n,m). (3.15)

Here, the fading coefficients αu
n,m are i.i.d. complex random variables drawn from

CN (0, σ2
u) in which σ2

u corresponds to the pathloss that the uth UE experiences, a(θu
n,m)

is the array response vector of the ULA at the BS in far field in the form of

a(θu
n,m) =

[
1, e−j2πθu

n,m , ..., e−j2π(B−1)θu
n,m

]T
, (3.16)
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Figure 3.2: Diagonal approximation accuracy for different quantization resolution. The number of
antennas

where θu
n,m = d sin(ϕu

n,m)/λ, d is the antenna spacing, ϕu
n,m is the angle of arrival (AOA)

or spatial angle measured from the boresight of the ULA and λ is the wavelength. In the
simulation results of this chapter, we consider Ncl = 2 and Nray = 4. The pathloss model
is chosen as 10 log10 σ2(u) = −72 − 29.2 log(du)[dB]. Shadowing has not been considered
in this work. This pathloss model is valid at carrier frequency f = 28 GHz [31]. In
the next subsection, the performance of the aformentioned combiners and precoders are
illustrated using the clustered channel model.

3.4 Simulation Results

3.4.1 Accuracy of the Diagonal Approximation
In Fig. 3.2, the performance of diagonal approximation for different number of bits, Q,
is illustrated as the normalized mean square error (NMSE) between the simulated Cd
and Cdiag

d . An uplink scenario is considered with clustered channel model according to
Section 3.3. The number of antennas is set to B = 64, and U = 8 UEs are considered.
It can be observed that the performance of diagonal approximation is rather poor for
single-bit quantization case and improves for larger Q. In the remainder of the thesis,
we use arcsine law for Q = 1 and diagonal approximation for Q > 2.

3.4.2 Study of the Uplink and Downlink Sum Rates
Fig. 3.3 shows the uplink and downlink sum rates for the case of B = 64 and Q =
1. Three basic combiners and precoders discussed in Section 3.1 and Section 3.2 are
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Figure 3.3: Uplink and downlink ergodic sum rate vs transmit power, B = 64 and Q = 1

considered. As mentioned before, MMSE precoder and DA-MMSE combiner outperform
MF and ZF precoder/combiner. Moreover, at low transmit power, the performance of MF
approaches that of MMSE/DA-MMSE because of low amount of MUI. At high transmit
power, the performance of ZF approaches that of MMSE/DA-MMSE, where AWGN is
not dominant anymore.
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CHAPTER 4

Summaries of the Appended Papers

In this section, we provide a summary of the two appended papers.

[A] "All-Digital Massive MIMO Uplink and Downlink Rates under a Fron-
thaul Constraint"

In this paper, we characterize the rate achievable in a bidirectional quasi-static link
where several UEs communicate with a massive MIMO BS. In the considered setup, the
BS operates in full-digital mode, the physical size of the antenna array is limited, and
there exists a rate constraint on the fronthaul interface connecting the (possibly remote)
radio head to the digital baseband processing unit. Our analysis enables us to determine
the optimal resolution of the analog-to digital and digital-to-analog converters as well
as the optimal number of active antenna elements to be used in order to maximize the
transmission rate on the bidirectional link, for a given constraint on the outage probability
and on the fronthaul rate. We investigate both the case in which perfect channel-state
information is available, and the case in which channel-state information is acquired
through pilot transmission, and is, hence, imperfect. For the second case, we present a
novel rate expression that relies on the generalized mutual-information framework.

[B] "Performance of Quantized Massive MIMO with Fronthaul Rate Con-
straint over Quasi-Static"

In this paper, we provide a rigorous framework for characterizing and numerically
evaluating the error probability achievable in the uplink and downlink of a quantized
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MU-MIMO system in a mm-wave quasi-static scenario where the fading channel does
not change across the finite-length transmitted codewords, and only imperfect CSI is
available at the BS and at the UEs. Moreover, we clarify why standard signal to interfer-
ence and noise ratio expressions based on ergodic analyses cannot be used in this scenario.
We use this framework to study an all-digital massive MIMO system with a fronthaul
rate constraint and investigate how the performance in such a system depends on the
number of BS antennas and the precision of the analog-to-digital and digital-to-analog
converters (ADCs and DACs) and discuss how this trade-off is influenced by the accu-
racy of the achievable CSI. We adopt a realistic channel model that captures the sparse
scattering properties of mm-wave channels, and use an algorithm based on generalized
approximate message passing (GAMP), which is able to estimate the channel via uplink
pilot transmission, despite the nonlinearity introduced by the finite-precision ADCs. The
estimated channel coefficients are used to compute the precoding and combining matri-
ces and to perform mismatched scaled nearest-neighbor decoding. Our non-asymptotic
framework captures the cost, in terms of the spectral efficiency, of pilot transmissions -
an overhead that the outage capacity, the classic asymptotic metric used in this scenario,
cannot capture. We present extensive numerical results that validate the accuracy of the
proposed framework and allow us to characterize the optimal number of antennas and
the optimal resolutions of the converters, for a given fronthaul rate constraint, to be used
in different power regimes and under different CSI assumptions.
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