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Vehicle-in-the-loop validation of autonomous cars
A framework for modelling, analysis, and control of test-scenarios
Angel Molina Acosta
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Validation of autonomous cars is a difficult task because of the complexity
that results from the integration of multiple systems and the variety of oper-
ating conditions. To this end, testing with real vehicles is crucial to ensure a
thorough validation of AD cars. However, testing AD vehicles in public roads
is not viable in early stages of the development cycle. An alternative is to
conduct tests in controlled environments, such as proving grounds.

This thesis proposes a framework for modelling, analysis, and control of
tests-scenarios for validation of autonomous cars by exposing the vehicle-
under-test to a traffic scenario at a test track, where mobile test-targets
represent other road users. The framework is suitable for leader-follower,
multi-agent systems where the motion of the followers should be coordinated
with the motion of an externally controlled leader. Scenarios are modelled as
switched systems. The feasibility of the scenario is investigated using back-
ward reachability analysis. A constrained optimal control problem is formu-
lated to control the state of the multi-agent system through a sequence of goal
sets. Simulation results illustrate the usefulness of the framework.

A second contribution in this thesis is a novel method for decentralized
computation of backward reachable sets and robust control invariant sets.
The method is applicable to large-scale systems arising from the interconnec-
tion of multiple subsystems with linear dynamics. Polyhedral constraints and
additive disturbances are considered. Compared to the standard centralized
procedure for computation of control invariant sets, the proposed method is
more efficient for large-scale systems where the coupling among the subsys-
tems is sparse.

Keywords: scenario-based testing, multi-agent systems, backward reach-
ability, Model Predictive Control
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Acronyms

AD: autonomous driving

VUT: vehicle-under-test

LTI: linear time invariant

MPC: model predictive control

RCI: robust control invariant

PLP: parametric linear programming
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CHAPTER 1

Introduction

In recent years the automotive industry and scientific community have in-
vested significant efforts in the development of autonomous driving (AD).
Validation of AD vehicles is a difficult task because of the complexity that
results from the integration of multiple systems and the variety of operating
conditions. Computer simulations can be an efficient approach to validate
functions for AD. However, simulations have a limited fidelity and thus can
not be the only approach to validate AD vehicles. Testing with real vehicles
is crucial to ensure a thorough validation of AD cars.

Due to safety concerns, testing AD vehicles in public roads is not viable in
early stages of the development cycle. An alternative is to conduct tests in
controlled environments, such as proving grounds. Vehicle testing on prov-
ing grounds is currently used to validate Advanced Driver Assistance Systems
(ADAS) such as Autonomous Emergency Braking. The European New Car
Assessment Programme (EuroNCAP) describes in its protocols a series of
tests to evaluate ADAS functions in proving grounds [1]. In such tests, au-
tomated target carriers are used to represent cars, cyclists, or pedestrians
moving around the vehicle under test (VUT). The test-targets are designed to
allow for collisions with the VUT while minimizing damage to the equipment.
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Chapter 1 Introduction

Figure 1.1: Schematic of a vehicle-in-the-loop testing system.

This testing approach falls within the category of vehicle-in-the-loop (VIL)
testing.

In [2] results from surveys among automotive companies reveal that proving
grounds should be prepared to support automated VIL testing for validation
of AD vehicles. EuroNCAP has recently proposed more complex VIL tests to
evaluate the next generation of ADAS functions [3]. Such scenarios require
precise coordination of the test-targets and the vehicle under test (VUT).
Testing systems for such purposes have been developed to a certain extent by
some vehicle manufacturers [4]. Yet some aspects of VIL testing remain to be
solved. For validation of AD functions, the VUT should be allowed to drive
autonomously for it to showcase the AD function being validated. This poses
challenges in terms of safety, test feasibility, and reproducibility.

To address the aforementioned challenges, various companies in the Swedish
automotive industry joined forces in a research project aiming to develop
a novel testing system for proving grounds [5]. The system consists of a
central server that receives measurements of the states of the test-targets and
the VUT (see Fig. 1.1). The server plans and communicates trajectories to
the test-targets. The targets follow the prescribed trajectories, which can be
adjusted by the central server during execution. The VUT drives partially or
fully controlled by its AD functions which introduce uncertainty because the
central server does not have full control over the VUT.
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1.1 Thesis contributions

The VIL testing framework described previously motivates the problem ad-
dressed in this thesis. The problem can be stated as a leader-follower coordi-
nation task, where a set of followers (the test-targets) need to be coordinated
with an autonomous or externally controlled leader (the vehicle-under-test).
The followers should be controlled throughout the stages composing the test-
scenario while satisfying a set of requirements.

To solve such a problem, a systematic methodology is needed to translate a
test scenario into an abstraction that allows for analysis and control synthesis.
Then, the feasibility of the scenario needs to be assessed, i.e. determining if
the control objectives can be achieved despite of limitations on the motion
of test-targets and the uncertainty due to the unknown motion of the VUT.
Finally, if the scenario is deemed feasible, a control strategy should be designed
to execute the scenario and ensure the requirements are satisfied.

This thesis focuses on the development of such analysis and control synthesis
framework. The thesis aims at answering following research questions:

• How test-scenarios consisting of various stages can be modelled?

• How the feasibility of a scenario can be analyzed considering the physical
limits of the test-targets and a partially unknown motion of the VUT?

• How to design a control strategy that coordinates the motion of the
test-targets with the VUT as specified by a test-scenario?

1.1 Thesis contributions
The contributions of this thesis build upon two papers. The first contribution,
presented in Paper A, is a framework for controlling a number of test-targets
in VIL-testing applications. The framework proposes to model a test-scenario
as a switched system. Feasibility of the scenario is analyzed by means of back-
ward reachability analysis. A Model Predictive Control scheme is proposed to
control the test-targets and ensure a correct execution of the scenario despite
the uncertainty introduced by the externally controlled VUT.

The second contribution, presented in detail in Paper B, is a decentralized
method for computation of backward reachable sets and control invariant sets.
The method is intended for large-scale systems that arise from the intercon-
nection of subsystems with linear affine dynamics. Polyhedral constraints
and additive disturbances are considered. For sparsely coupled systems, the
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Chapter 1 Introduction

proposed method can lead to more efficient computations than a centralized
approach. The methods described in Paper B can be integrated into the
framework proposed in Paper A. This integration is beyond the scope of the
thesis.

1.2 Thesis outline
This thesis is structured as follows. Chapter 2 describes an approach to model
test-scenarios in a systematic way using switched systems. Chapter 3 discusses
backward reachability analysis, controllable sets, and control invariant sets.
Chapter 4 provides fundamental concepts on Model Predictive Control and
discusses its application to a finite-time control problem. Chapter 5 summa-
rizes the articles upon which the thesis is based. Chapter 6 contains con-
clusions and suggestions for future work. The papers that contain the main
contributions of this thesis are included in Part II.
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CHAPTER 2

Modelling test-scenarios

This chapter describes the modelling approach chosen to describe a test-
scenario. The adopted models belong to the class of hybrid systems. Hybrid
systems combine discrete and continuous-states and are well-suited to describe
cyber-physical systems: physical systems controlled by digital computers. A
wide variety of hybrid systems have been proposed [6]. This chapter focuses on
switched systems, a type of hybrid system whose discrete-state evolves based
on a switching signal. An example is provided to illustrate how a test-scenario
can be modelled as a switched system.

2.1 Switched systems
The switched systems discussed in this section are based on concepts from [7].
The discussion focuses on switched systems with linear dynamics in discrete-
time. This section provides insight into the modelling approach discussed in
Paper A.

A switched system has a discrete-state q(t) which takes values in a set
Q ∶= {1,⋯, Nq} ⊂ N. Here t ∈ N denotes the sampling instant. The different
values that q(t) can take are referred to as the operating modes of the system.
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Chapter 2 Modelling test-scenarios

The time evolution of q(t) is clarified later in this section.
The continuous-state of the switched system is ξ(t) ∈ Rn and it has dynamics

ξ(t + 1) = Aiξ(t) +Biu(t) +Eiw(t) (2.1a)
i = q(t), (2.1b)

where u(t) ∈ Rm is the continuous control input and w(t) ∈ Rp is an external
disturbance. In (2.1a) the matrices Ai ∈ Rn×n, Bi ∈ Rn×m, and Ei ∈ Rn×p

have superscript i to indicate their dependency on the discrete-state q(t), as
clarified by (2.1b). According to (2.1), the continuous dynamics are described
by a collection of linear systems and the discrete-state q(t) indicates which
linear system is active at a certain sampling instant t. Although examples
with mode-dependent dynamics are not discussed in this thesis the methods
in Paper A are suitable for such dynamics.

Mode-dependent constraints are considered: ξ(t) ∈ Ξi and u(t) ∈ U i should
be satisfied if q(t) = i. The disturbance is assumed to be bounded as w(t) ∈

Wi. Only linear, convex constraints are considered in this work. Thus, for all
i ∈ Q, sets Ξi, U i, and Wi are polyhedral sets defined as the intersection of a
finite number of half-spaces.

The evolution of the discrete-state q(t) is governed by the occurrence of
events. In general, events can be triggered in different ways, for example by
discrete external inputs, timers, or the continuous-state ξ entering a region of
the state-space. This work considers only the case where q(t) switches based
on events associated to the state ξ(t). The dynamics of the state q(t) are
described by the following state-update function

q(t + 1) = fq(q(t), δi(t))

i = q(t),
(2.2)

with binary variables δi(t) ∈ {0, 1}, ∀i ∈ Q, and a function fq ∶ Q×{0, 1} → Q.
In this work the variables δi(t) keep track of when the continuous-state ξ(t)

is inside a specified set, as follows

δi(t) = {
1, if ξ(t) ∈ Ξi

G

0, otherwise,
(2.3)

where the set Ξi
G ∈ Ξi is a convex polyhedron referred to as the goal set for

mode i.
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2.1 Switched systems

For the modelling purposes considered here, the function fq in (2.2) is chosen
as follows:

q(t + 1) = fq(q, δi) = {
q(t) + δi(t), if q(t) ∈ Q ∖Nq

q(t), if q(t) = Nq

with i = q(t)

(2.4)

Expressions (2.3)-(2.4) imply that the discrete-state q(t) increases by 1 when
the continuous-state ξ(t) enters the set Ξi

G. Then q(t) remains constant once
it reaches Nq.

The switched system described previously is suitable to model test-scenarios
consisting of a fixed sequence of stages, a sequence that is known before test
execution. The discrete-state q encodes the current stage of the scenario while
the continuous state ξ collects variables related to the motion of the scenario-
participants. Transitions between stages occur when the state ξ satisfies a
collection of linear inequalities describing the sets Ξi

G which represent a desired
configuration for the participants, for example specific positions and velocities.
The scenario ends when the state ξ enters the set ΞNq

G during stage Nq.
More general hybrid systems have been described in the literature (see [6],

[7]). However, the class of switched systems described in this section is suitable
to represent a wide variety of test-scenarios. As discussed in following chap-
ters, the structure of the switched systems considered here can be exploited
to develop tractable methods for analysis and control.

Illustrative example

This section illustrates how a test-scenario can be modelled as a switched
system. The example is inspired by a test contained in Euro NCAP’s protocol
for assessing an Autonomous Emergency Braking function [1]. Such a function
is designed to slow down or stop the car when a potential collision is detected.
For this test Euro NCAP’s protocol specifies a constant speed for the vehicle-
under-test but the example described next assumes that the VUT is driving
autonomously and thus it autonomously selects its speed profile.

The scenario takes place at a T-junction where the VUT intends to turn
left while a pedestrian (a dummy carried by a moving platform) is crossing
the road (see Fig. 2.1). The overall goal of the scenario is to bring the par-
ticipants close to a collision and evaluate how the VUT reacts. The VUT is
assumed to follow a fixed path when turning at the intersection (red-dashed
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Chapter 2 Modelling test-scenarios

𝑝ଵ
𝑝଴

𝑣଴

𝑣ଵ

𝑝ଵ
𝑝଴

𝑣଴

𝑣ଵ

𝑣଴

𝑣ଵ

Figure 2.1: Schematic of a test-scenario consisting of 3 stages (not to scale).

line). A straight path is assigned to the pedestrian (blue-dashed line). The
position of the VUT and pedestrian along their path are denoted by p0 and
p1, respectively; the velocities along the path are v0 and v1; the accelerations
are a0 and a1. The origin of the reference system is placed at the intersection
of both paths, as shown in the figure.

As depicted in Fig. 2.1, the scenario is divided into three stages, hence a
switched system with discrete-state q(t) ∈ Q = {1, 2, 3} is used. In the first
stage, the VUT and the pedestrian start from standstill and they accelerate up
to a certain speed. In the second stage the VUT approaches the intersection
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2.1 Switched systems

Initial conditions
𝑝଴ 0 = −30
𝑝ଵ 0 = −10

𝑣଴ 0 = 𝑣ଵ 0 = 0

𝑣଴ ∈ [0,5]
𝑎଴ ∈ 2,4

𝑣ଵ ∈ [0,2]
𝑎ଵ ∈ [0.5,1]

𝑣଴ ∈ [4,5]
𝑎଴ ∈ [−2,2]

𝑣ଵ ∈ [1,2]
𝑎ଵ ∈ [−1,1]

1 2 3

Conditions for transition

𝑝଴ ≥ −25
𝑝଴ ∈ [−20,−15]
𝑝ଵ ∈ [−7, −5]

𝑝଴ ∈ [−10,−5]
𝑝ଵ ∈ [−1,1]

start end

Constraints

𝑣଴ ∈ [4,5]
𝑎଴ ∈ [−2,2]

𝑣ଵ ∈ [1,2]
𝑎ଵ ∈ [−1,1]

Disturbance
bounds

Figure 2.2: Specifications for the test-scenario shown in Fig. 2.1. Position, velocity,
and acceleration are given in m, m/s, and m/s2 respectively.

and the pedestrian approaches the pedestrian cross. In the third stage the
pedestrian crosses the road while the VUT drives through the intersection. It
is assumed that a central server monitors the scenario and controls the motion
of the pedestrian while the VUT drives autonomously.

The scenario specifies desired values for the position, velocity, and accel-
eration of the participants during the three stages. Initial conditions and
conditions for transition between stages are also specified. An example of
such specifications is shows in Figure 2.2, where the numerical values were
chosen somewhat arbitrarily, just for illustration purposes.

Transition from q(t) = 1 to q(t) = 2 occurs when the position of the VUT
satisfies p0 ≥ −25, illustrated at the top of Fig. 2.1 with a black line over
the VUT’s path. Then, the transition from q(t) = 2 to q(t) = 3 occurs when
p0 ∈ [−20,−15] and p1 ∈ [−7,−5] are satisfied, which is shown in the middle of
Fig. 2.1 with the red and blue rectangles over the paths. At the end of stage
3, the positions should satisfy p0 ∈ [−10,−5] and p0 ∈ [−1, 1], which represents
a potential collision. No further stages are specified in this example since the
main goal is to bring the participants close to a collision.

The central server must ensure that the stage-dependent constraints over
v1 and a1 are satisfied. Also the conditions for transition should be met to
ensure a correct evolution of the scenario. The values specified for v0 and
a0 are regarded as bounds over a disturbance because these variables are
controlled externally, i.e. by the autonomous functions of the VUT. The

11



Chapter 2 Modelling test-scenarios

a priori unknown speed profile of the VUT makes it challenging (possibly
infeasible) to control the pedestrian and satisfy the conditions for transitions
subject to the constraints over v0 and a0.

To complete the model of the scenario as a switched system, the continuous-
state is chosen as ξ = [p0, p1, v1]

T , the control input is u = a1, and the dis-
turbance w = [v0, a0]

T . Adopting double-integrator dynamics to describe the
evolution of pj(t) and vj(t) as a function of aj(t), with j ∈ {0, 1}, the dynamics
for ξ(t) are:

ξ(t + 1) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 Ts

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ξ(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0.5T 2

s

Ts

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ts 0.5T 2
s

0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

w(t), (2.5)

with Ts the sampling time. Expression (2.5) is a particular case of (2.1) where
matrices Ai, Bi, and Ei remain constant for i = 1,⋯, Nq.

Sets Ξi, U i,Wi, Ξi
G can be easily derived from the specifications in Fig. 2.2.

For example, for mode 1 the admissible state and input sets are respectively
Ξ1 = {ξ ∶ v1 ∈ [0, 2]} and U1 = {u ∶ a1 ∈ [1.5, 2]}; the disturbance set is
W1 = {w ∶ v0 ∈ [0, 5], a0 ∈ [2, 4]}; the goal set is Ξi

G = {ξ ∶ p1 >= −25}.
To ensure a correct execution of a test-scenario modelled as discussed be-

fore, one should solve a sequence of finite-time entry problems. The state
ξ should be controlled to visit the goal sets Ξ1

G,⋯, ΞNq

G , ensuring robustness
with respect to the disturbance, and satisfying mode-dependent state and
input constraints. The problem at hand is stated more formally as follows:

Problem 1: Given a switched system specified by (2.1) and (2.4), design
a control input u(t) such that the continuous state ξ(t) is guaranteed to visit
the goal sets Ξ1

G, Ξ2
G,⋯, ΞNq

G while satisfying the mode-dependent constraints
ξ(t) ∈ Ξq(t) and u(t) ∈ Uq(t), for all possible sequences of the disturbance
w(t) ∈W q(t).

It might be the case that the problem above cannot be solved starting from
certain initial conditions, due to the constraints on the inputs (e.g., the lim-
ited acceleration of the test-targets) and the external disturbance (e.g., the
uncertainty in the speed of the VUT). Hence, investigating the feasibility of
the problem is important before attempting to design a controller. Paper A
describes a method to determine feasible initial conditions using backward
reachability analysis, a topic that is introduced in Chapter 3. To solve Prob-
lem 1, a Model Predictive Control scheme is proposed in Paper A, for which
Chapter 4 provides additional background.
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CHAPTER 3

Backward reachability

This chapter discusses backward reachability for systems with LTI dynamics
in discrete-time subject to linear, convex constraints and bounded additive dis-
turbances. Systems with inputs are considered here rather than autonomous
systems. Backward reachability refers to a property of dynamical systems
that indicates from which initial states a system can be controlled to reach
a desired terminal state. The concepts presented here are the basis for the
method described in Paper A to analyze the feasibility of a test-scenario when
modelled as described in Chapter 2. Backward reachable sets are discussed in
Paper B for the case of interconnected LTI systems.

3.1 Robust controllable sets
Backward reachability for LTI systems is usually discussed in the context
of sets. For a goal set specified in the state-space, backward reachable sets
contain initial states from which the system can reach the goal set. In the
literature, backward reachable sets are also referred to as controllable sets [7].
Controllable sets are useful because they allow to identify states for which a
control objective can be achieved, in finite-time, without violating constraints.

13



Chapter 3 Backward reachability

Although the definitions presented here can be extended to systems with
more general dynamics, only systems with the the following LTI dynamics are
considered in this chapter:

x(t + 1) = Ax(t) +Bu(t) +Ew(t), (3.1)

where t ∈ N is the sampling instant, x(t) ∈ Rn is the state, u(t) ∈ Rm is the
control input, and w(t) ∈ Rp is the disturbance. State and input constraints
are specified via polyhedral sets defined as the intersection of a finite-number of
half-spaces. The constraints are assumed to be provided in H-representation,
short for half-space representation, as follows:

x(t) ∈ X = {x ∈ Rn ∶Hxx ≤ hx} (3.2a)

u(t) ∈ U = {u ∈ Rm ∶Huu ≤ hu} , (3.2b)

where Hx, Hu are matrices and hx, hu are vectors. The sign ≤ should be in-
terpreted element-wise. The size of the matrices and vectors in (3.2) depends
on the number of half-spaces defining the polyhedron and should be compat-
ible with the corresponding state or input vector. Similarly, the disturbance
is assumed to be bounded by a polyhedron:

w(t) ∈ W = {w ∈ Rp ∶Hww ≤ hw} . (3.3)

Having presented the system dynamics and applicable constraints, the no-
tion of robust controllable set is introduced in the following definition.

Definition 1: For a system with dynamics (3.1) subject to (3.2)-(3.3), the
one-step robust controllable set to a goal set S ⊂ Rn is defined as [7]:

Pre(S) = {x ∈ X ∶ ∃u ∈ U s.t. Ax +Bu +Ew ∈ S,∀w ∈ W} . (3.4)

The notation Pre(⋅) is commonly used in the literature on backward reach-
able sets. It denotes the predecessor operator which returns a set containing
all admissible states that can be robustly controlled into the goal set in one
time step by means of an admissible input and for all possible disturbances.

In Paper A, the notion of k-step controllable sets is used. These sets are
obtained by recursive application of the Pre(⋅) operator, which results in sets
that contain admissible states which can be robustly controlled into the goal
set in k steps or less. In Paper B the Pre(⋅) operator is treated in the context
of interconnected LTI systems. The coming section describes a method to
compute robust controllable sets.
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3.1 Robust controllable sets

Computation of robust controllable sets

For the class of systems described previously, controllable sets can be com-
puted exactly. The method described next has been adapted from [7]. First
the projection operation is introduced, which is used later in this section and
discussed further in Section 3.3.

Definition 2: For a set P = {[xT uT ]T ∶ x ∈ Rn, u ∈ Rm} the projection
onto the x-space is

Projx(P) = {x ∈ Rn ∶ ∃u ∈ Rm s.t. [xT uT ]T ∈ P} . (3.5)

For a system (3.1) subject to (3.2)-(3.3) and a goal set S ⊂ Rn, let the set
Φ ⊂ Rn+m be

Φ = {[x
u
] ∈ X × U ∶ Ax +Bu +Ew ∈ S, ∀w ∈ W} , (3.6)

where X × U denotes the Cartesian product. The set Φ contains state-input
pairs for which the system (3.1) evolves into the set S for all possible dis-
turbances. The controllable set (3.4) can be obtained from the set Φ via
projection: Pre(S) = Projx(Φ).

When the sets X , U , W are S are given in H-representation, the set Φ
in (3.6) can be expressed in H-representation too. Let the goal set S be

S = {x ∈ Rn ∶Hsx ≤ hs} (3.7)

with matrix Hs ∈ Rl×n and vector hs ∈ Rl, where l ∈ N is the number of
half-spaces defining S. An H-representation for Φ in (3.6) is

Φ = {[x
u
] ∈ Rn+m ∶HΦ [

x

u
] ≤ hΦ} , (3.8)

with matrix HΦ and vector hΦ as follows:

HΦ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Hx 0
0 Hu

HsA HsB

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, hΦ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

hx

hu

h̃s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.9)

In (3.9) the zero entry denotes a matrix of zeroes with suitable dimensions,
and h̃s ∈ Rl is a vector whose i-th entry is computed as

h̃s
i = min

w∈W
hs

i −Hs
i Ew, (3.10)
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Chapter 3 Backward reachability

where hs
i is the i-th element of hs and Hs

i the i-th row of Hs. The purpose
of h̃s is to account for the disturbance w by tightening the goal set S.

Computing the robust controllable set Pre(S) consists of two steps. First
one obtains the H-representation of the set Φ, which requires linear program-
ming to solve (3.10). Then one computes the projection Projx(Φ). Methods
to compute projection of polyhedra are described in Section 3.3.

3.2 Robust control invariant sets
Invariant sets are a well-studied topic in the control community [8], [9]. This
section focuses on robust control invariant (RCI) sets for the class of systems
considered in Section 3.1. The main feature of RCI sets is their infinite-
time constraint satisfaction property, which is stated formally in the following
definition [7].

Definition 3: For a system (3.1) subject to (3.2)-(3.3), a robust control
invariant set Ω is a set that satisfies x(t) ∈ Ω Ô⇒ ∃u ∈ U such that x(t+ 1) ∈
Ω,∀w ∈ W and ∀t ∈ N.

For a set of admissible states X , the maximal RCI set Ω∞ ⊆ X is the RCI set
that contains all possible RCI sets Ω ⊂ X . Hence, Ω∞ is the largest RCI set
in X . Algorithm 1, adapted from [7], describes a recursive routine to compute
the set Ω∞ ⊆ X using the one-step robust controllable set.

Algorithm 1 Computation of the maximal robust control invariant set.
Input: sets X , U , W and dynamics (3.1)
Output: maximal RCI set Ω∞ ⊆ X

Set Ω0 ← X

Set Ω1 ← Pre(Ω0) ∩Ω0
Set k ← 1
while Ωk ≠ Ωk−1 do

Ωk+1 ← Pre(Ωk) ∩Ωk

k ← k + 1
end while
Set Ω∞ ← Ωk

For systems with linear dynamics and bounded sets X , U , W, Algorithm 1
is guaranteed to converge to the maximal RCI set as k → ∞ [10]. However,

16



3.3 Projection of polyhedra

finite-time termination of the algorithm is not guaranteed in general. It can
be the case that Algorithm 1 returns an empty set Ω∞, which indicates that
the set X does not contain a RCI set.

Paper B discusses the computation of the maximal RCI set for the case
of interconnected systems with LTI dynamics. The paper discusses how Al-
gorithm 1 can be computed in a distributed fashion. A numerical example
is provided there to illustrate the advantage of distributed computation over
centralized computation.

3.3 Projection of polyhedra
As discussed in Section 3.1, the projection of polyhedra, also known as orthog-
onal projection, is an essential operation in the computation of controllable
sets. A dedicated section on the projection operation is deemed necessary be-
cause it has been identified as the main bottleneck in the methods described
in papers A and B. This section describes briefly some methods for projection
and discusses which gave the best results in the context of computation of
controllable sets.

Let the polyhedron P ⊂ Rn+m be

P = {[
x

y
] ∈ Rn+m ∶ x ∈ Rn, y ∈ Rm s.t. H [

x

y
] ≤ h} . (3.11)

The matrix H ∈ Rl×n and vector h ∈ Rl specify a system of l linear inequalities.
The H-representation of a polyhedron might contain redundant inequalities
which are those that can be removed from the description without changing
the polyhedron P.

Turning now to the main topic of this section, the projection of a polyhedron
P onto the x-space is defined as [7]:

Projx(P) = {x ∈ Rn ∶ ∃y ∈ Rm s.t. [xT yT ]T ∈ P} . (3.12)

For a polyhedron in H-representation, the projection operation is equivalent
to eliminating variables from the system of inequalities. In (3.12), the last
m variables are the ones eliminated, but any subset from the n +m variables
could be considered for elimination via projection. The projection operation
has a simple geometric interpretation. Figure 3.1 illustrates the projection of
a polyhedron in R3 onto a space in R2.
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Figure 3.1: Geometric interpretation of the projection operation. A polyhedron
P ⊂ R3 described by 4 inequalities is shown in red. The projection of
P onto the x1 − x2 space is the polyhedron show in blue.

Projection of polyhedra has been studied for several years and various meth-
ods have been developed for such purpose. The oldest method known is
Fourier-Motzkin elimination [11]. It consists of eliminating one variable at
a time from the system of inequalities. The method requires only algebraic
manipulation of the inequalities. However, the method has, in the worst case,
a double-exponential time-complexity dependent on the number of inequalities
and the number of variables to eliminate [12]. Moreover, the method intro-
duces several redundant inequalities which need to be identified and removed,
a process that can also be computationally expensive. Hence, the application
of Fourier-Motzkin elimination is limited to polyhedra in lower dimensions
described by a small number of inequalities.

Another approach to project a polyhedron is based on vertex enumeration,
that is computing all the vertices v ∈ Rn+m on the border of P. The projection
of a point v ∈ Rn+m onto the space Rn is simply given by the first n components
of v (Fig. 3.1 can help to clarify this concept). Hence, the projection of P can
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3.3 Projection of polyhedra

be easily determined from its V-representation but the projection will also be
given in a V-representation. An additional procedure is needed to convert to
H-representation. Algorithms for conversion between H and V representations
and vice-versa have an exponential complexity [7], [13]. Hence, projection via
vertex computation is only suitable for polyhedra in lower dimensions having
a small number of vertices.

In [14] the authors show that the projection of a polyhedron can be ob-
tained from the solution of a parametric linear programming (PLP) problem.
The advantage of their method is that it computes the projection without
redundant inequalities. Other projection methods have been reported in the
literature. For further details, the reader is referred to [12], [14], [15].

The Multi-Parametric Toolbox for MATLAB [16] provides functions for pro-
jection based on the methods described before. The toolbox was used for the
computations involved in the numerical examples in papers A and B, where
polyhedra in dimensions ranging from 6 to 24 were projected onto lower di-
mensions. Fourier-Motzkin elimination had an acceptable performance when
projecting polyhedra described with few inequalities, e.g. up to a hundred.
However, the method based on PLP proved to be faster when dealing with
polyhedra in higher dimensions with hundreds of facets.

The methods proposed in papers A and B, which require projecting polyhe-
dra, are intended for off-line use. Nevertheless, the computational complexity
of the projection operation needs to be addressed before the methods can be
applied to larger problems.
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CHAPTER 4

Model Predictive Control

This chapter presents fundamental concepts on Constrained Optimal Reced-
ing Horizon Control, also known as Model Predictive Control (MPC). MPC is
a well-established control technique based on solving online an optimization
problem with a receding prediction horizon. MPC is ideal for control tasks
that require constraint satisfaction. The purpose of this chapter is to com-
plement the description of the control approach presented in Paper A, where
MPC is used for control of test-scenarios as those described in Chapter 2.

4.1 MPC for linear systems
As indicated in previous chapters, the scope of this thesis is limited to systems
with LTI dynamics subject to linear, convex constraints and additive distur-
bances. MPC is discussed here in the context of systems with the following
dynamics:

x(t + 1) = Ax(t) +Bu(t) +Ew(t) (4.1)

with state and input constraints x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm; a bounded
disturbance w(t) ∈ W ⊂ Rp; and sampling instant t ∈ N. Sets X , U , andW are
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assumed to be polyhedral. When MPC is applied to control the system (4.1),
the input u(t) is determined by solving a constrained optimization problem
with a finite prediction horizon of length N ∈ N. The optimization problem is
as follows [7]:

min
u0,⋯,uN−1

J0(x0,⋯, xN , u0,⋯, uN−1) (4.2a)

subject to xk+1 = Axk +Buk +Ewk, k = 0,⋯, N − 1 (4.2b)
xk ∈ X , uk ∈ U , k = 0,⋯, N − 1 (4.2c)
xN ∈ Xf (4.2d)
x0 = x(t) (4.2e)
wk = w̄(t + k) k = 0,⋯, N − 1. (4.2f)

The expressions in (4.2) are clarified in the following paragraphs. First, an
important distinction is made between predicted state and the current state
of the system. Following the system dynamics in (4.1), x(t) denotes the state
of the system at sampling instant t. On the other hand, in (4.2) xk is a
variable in the optimization problem that corresponds to the k-th predicted
state of the system. Predictions of xk for k = 0,⋯, N − 1 are obtained via the
system dynamics (4.2b), starting from x0 = x(t), applying the input sequence
u0,⋯, uN−1 and predicted disturbances w0,⋯, wN−1. The variables u0,⋯, uN−1
are optimization variables. The state x(t) is assumed to be known at sampling
instant t.

The function J0 in (4.2a) is the cost to be optimized. A convex function is
assumed for J0 which can be a linear or quadratic function of x0,⋯, xN and
u0,⋯, uN−1. With such a choice of cost function, (4.2) is a linear or quadratic
optimization problem that can be solved with standard algorithms for convex
optimization [17]. The function J0 is typically designed to penalize deviations
of the state and input from a desired value or reference trajectory.

State and input constraints are specified in (4.2c). The constraint (4.2d) re-
quires the last predicted state xN to belong to a terminal set Xf . As discussed
later in this chapter, the terminal set Xf can have properties that contribute
to the feasibility of problem (4.2).

According to (4.2f), the predicted disturbance wk is obtained from w̄(t +

k), the latter being a nominal disturbance. It is therefore assumed that a
nominal disturbance sequence w̄(t),⋯, w̄(t +N − 1) ∈ W is available at every
sampling instant t ∈ N. It could be the case that the actual disturbance
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4.1 MPC for linear systems

w(t) does not match the predicted value, i.e. w(t) ≠ w0. This will cause a
mismatch between the predicted state x1 and the actual state x(t + 1), thus
compromising constraint satisfaction. As described later in this chapter, an
additional constraint can be introduced to address this issue.

In receding horizon control, the optimization problem (4.2) is solved at every
sampling instant t, which gives an optimal sequence of inputs: u∗0,⋯, u∗N−1.
The control input applied at instant t is u(t) = u∗0 and the input is held
constant until the next sampling instant. At sampling instant t + 1, the op-
timization problem is solved again using a measurement of the state x(t + 1)
and shifting the prediction horizon.

The MPC scheme described previously is commonly referred to as robust
MPC with open-loop predictions and nominal cost. Other approaches for
robust MPC have been proposed which may provide better performance but
result in more complex optimization problems (see [7] for details).

The stability of MPC is a well-studied topic [18]. Roughly speaking, sta-
bility refers to asymptotically controlling the state of the system towards an
equilibrium point. In Paper A the control problem is not to stabilize the
system towards an equilibrium point, but rather to control the state to en-
ter a goal set in a finite number of steps. Hence, a discussion on stability is
not deemed necessary in this thesis. Instead, an aspect of MPC that is more
relevant for the problem in Paper A is discussed next.

Feasibility of MPC

For the optimization problem in (4.2), feasibility refers to the existence of an
input sequence u0,⋯, uN−1 that allows to satisfy the specified state and input
constraints. If at some instant t the problem is infeasible, then the MPC fails
to assign an input u(t). It is therefore important to investigate for which
states the optimization problem is feasible.

For the problem (4.2) to be feasible at sampling instant t, the state x(t)

should belong to a set of feasible states X0 having the following properties:

X0 ={x0 ∈ Rn ∶ ∃u0,⋯, uN−1 ∈ U s.t. ∀w0,⋯, wN−1 ∈ W,

xk ∈ X for k = 0,⋯, N − 1, xN ∈ Xf ,

where xk+1 = Axk +Buk +Ewk} .

(4.3)

Expression (4.3) was borrowed from [7] and modified to account for the dis-
turbance. The states in X0 can be controlled into Xf in N steps by means of
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an admissible sequence of inputs, while satisfying state constraints, and for all
possible disturbance sequences. The properties of X0 are similar to those of
robust controllable sets discussed in Chapter 3. In fact, the set X0 corresponds
to KN(Xf), the N -step robust controllable set with Xf as goal set. The set
KN(Xf) is defined recursively as follows [7]:

Ki(Xf) = Pre (Ki−1(Xf)) , i = 1,⋯, N (4.4)
K0(Xf) = Xf (4.5)

with Pre(⋅) the predecessor operator defined in (3.4).
At sampling instant t, problem (4.2) is feasible if the state satisfies x(t) ∈

X0 = KN(Xf). If the problem should remain feasible at the next instant t + 1
and for all future instants, then a robust control invariant set Xf is needed [7].
Feasibility of the optimization problem for arbitrarily many sampling instants
is not required for the application discussed in Paper A. The next section
describes a finite-time MPC scheme that is the basis for the control approach
proposed in Paper A.

MPC for finite-time control into a goal set

When solving (4.2) in a receding horizon fashion, a fixed prediction horizon of
length N is used at every iteration. On the other hand, this section describes
a MPC scheme with a varying horizon where the control objective is to enter
a goal set in a finite number of steps rather than stabilization around an
equilibrium. Paper A deals with such a kind of control objective. A control
approach that is similar to the one described here has been proposed in [19].

Robust controllable sets Ki(Xf) as defined in (4.4) are assumed to be known
(for example, computed off-line as described in Chapter 3). The dependency of
the sets Ki on Xf is omitted in the sequel for the sake of brevity. Assuming an
initial condition x(t0) ∈ KN , the control objective is to achieve x(t0+N) ∈ Xf .
To this end, the following optimization problem with varying horizon length
Ni = N−(t−t0) should be solved at sampling instants t = t0, t0+1, ⋯, t0+N−1:
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min
u0,⋯,uNi−1

J0(x0,⋯, xNi , u0,⋯, uNi−1) (4.6a)

subject to xk+1 = Axk +Buk +Ewk, k = 0,⋯, Ni − 1 (4.6b)
xk ∈ X , uk ∈ U , k = 0,⋯, Ni − 1 (4.6c)
x1 ∈ KNi−1 (4.6d)
xNi ∈ Xf (4.6e)
x0 = x(t) (4.6f)
wk = w̄(t + k) k = 0,⋯, Ni − 1. (4.6g)

The problem (4.6) has a prediction horizon that decreases by one for every
subsequent sampling instant. In other words, at t = t0 the horizon has length
N , then at t = t0 + 1 the horizon length is N − 1, and so on.

Constraint (4.6d) requires the predicted state x1 to belong to the next
robust controllable set in the sequence. The purpose of (4.6d) is to make the
state evolve as x(t0 + 1) ∈ KN−1, x(t0 + 2) ∈ KN−2, ⋯, x(t0 +N) ∈ K0. This
concept is illustrated in Figure 4.1.

In (4.6) a nominal disturbance w̄(t) is used to generate disturbance predic-
tions wk. In Paper A, the disturbance is assumed to be measurable so that
w(t) is known at instant t, but future values remain a priori unknown, so
the measured disturbance w(t) is used to generate the nominal disturbance
sequence as w̄(t),⋯, w̄(t +Ni − 1) = w(t).

It could be the case that the actual disturbance w(t) does not match the
predicted value, i.e. w(t) ≠ w0. This can happen in particular when the dis-
turbance w(t) cannot be measured accurately. When w(t) ≠ w0, the predicted
state x1 will not match the true state x(t+1). In that case, constraints might
be violated. For instance x(t + 1) ∉ KNi−1 might happen, which would com-
promise the feasibility of the optimization problem at t + 1. To address this
issue, (4.6d) can be replaced with the following constraint:

[
x0
u0
] ∈ ΦNi (4.7)

with ΦNi = {[
x

u
] ∈ X × U ∶ Ax +Bu +Ew ∈ KNi−1(Xf), ∀w ∈ W} . (4.8)

If (4.7) is satisfied, then x1 = Ax0+Bu0+Ew0 ∈ KNi−1 holds for any predicted
disturbance w0 ∈ W. In turn, the next state will satisfy x(t + 1) = Ax(t) +
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Figure 4.1: Schematic of a finite-time MPC scheme for controlling the state x into
a goal set Xf in N steps. The state is controlled through a sequence
of robust controllable sets KN , ⋯, K1.

Bu(t) +Ew(t) ∈ KNi−1, as long as w(t) ∈ W and even if w(t) ≠ w0. To arrive
at this claim, the fact that x(t) = x0 and u(t) = u∗0 were used.

Recall that an initial condition x(t0) ∈ KN is assumed. The feasibility
of (4.6) at t = t0 is not affected by introducing constraint (4.7). The previous
claim follows from the fact that KNi is the projection of ΦNi onto the x-space
(see Section 3.1 for details on projection). Solving problem (4.6) at instant t0
and applying u(t0) = u∗0 achieves x(t0 + 1) ∈ KN−1. This guarantees feasibility
of the optimization problem at t0 + 1.

The problem discussed in Paper A, stated also in Chapter 2, is to control
the state of the system through a sequence of goal sets. The paper proposes
a control strategy where a sequence of problems of the form (4.6) is solved.
Results from a simulation example are discussed in Paper A to illustrate the
robustness of the control strategy and the constraint-satisfaction properties.
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CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Angel Molina Acosta, Paolo Falcone
Modelling and Control of Test-Scenarios for Validation of Autonomous
Driving Functions
Published in Proceedings of the American Control Conference,
pp. 2943-2948, May 2021.
©2021 IEEE DOI: 10.23919/ACC50511.2021.9483214 .

This paper proposes a framework for modelling, analysis, and control suit-
able for leader-follower, multi-agent systems where the motion of the followers
should be coordinated with the motion of an externally controlled leader. The
motivation behind the framework is to conduct experimental validation of an
autonomous car by exposing it to a traffic scenario at a test track, where mo-
bile test-targets represent other road users.
The paper proposes a modelling approach based on a class of switched sys-
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tems to represent a scenario consisting of a fixed sequence of stages. The
feasibility of the scenario is investigated using backward reachability analysis
to determine sets of feasible states. A constrained optimal control problem is
formulated to control the state of the multi-agent system through a sequence
of goal sets. Simulation results are provided for a scenario where two test-
targets are coordinated around a vehicle-under-test that attempts to conduct
an overtake.
I was responsible for developing the framework, conducting the numerical
simulations, and writing the paper.

5.2 Paper B
Davide Liuzza, Angel Molina Acosta, Paolo Falcone, Luigi Glielmo
Distributed control invariant set: the linear affine case
In preparation for submission to Automatica .

This paper proposes a novel method for distributed computation of control
invariant sets for large-scale systems. The paper considers a network of sub-
systems with linear affine dynamics. The coupling among the subsystems is
due to dynamic dependencies as well as static constraints over their states and
inputs. Linear constraints and bounded additive disturbances are considered.
The advantages of the distributed method are more evident for the case of
sparsely connected networks.
The paper describes an iterative procedure to compute the one-step back-
ward reachable set in a distributed fashion, where the subsystems exchange
with their neighbors information about local dynamics and constraints. The
method provides local backward reachable sets which contain the minimum
amount of information required to reconstruct the reachable set for the cen-
tralized system. The maximal robust control invariant set is obtained in a
distributed fashion by recursive computation of distributed reachable sets.
A numerical example is provided to illustrate the advantages of the proposed
method.
Regarding the content of this paper, I was responsible for designing the nu-
merical example and implementing the algorithms to produce the numerical
results.
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CHAPTER 6

Concluding Remarks and Future Work

This thesis has provided contributions on two topics. The first contribution
is a framework for modelling, analysis, and control of test-scenarios for vali-
dation of autonomous cars. The framework provides concrete answers to the
research questions posed in Chapter 1. A key feature of the framework is
the robustness it provides to an uncertain motion of the autonomous vehicle-
under-test. Although it was conceived for validation of autonomous cars, the
framework can be applied to other problems dealing with robust control of
multi-agent systems.

The second contribution is a novel method for distributed computation
of backward reachable sets for interconnected systems. The method is very
general and can thus find applications in various fields. Moreover, distributed
computation of reachable sets can make the proposed scenario framework
more efficient. Further investigation is needed to identify for what class of
test-scenarios a distributed computation of reachable sets would be beneficial.

The paragraphs below discuss limitations in the methods proposed here.
Suggestions for future work are also provided.

The modelling approach described in Paper A assumes that the motion of
the scenario participants can be described with linear dynamics. For scenarios
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where the participants move along fixed paths, a lower-level path-following
controller can be assumed to guide the motion of the participants. In that
case, linear dynamics might suffice to describe the displacement along the
paths and the framework proposed here can be used as a higher control layer.
However, linear models might not suffice to describe more general cases where
no fixed paths are given. Introducing nonlinear dynamics to the framework
would require complex methods for backward reachability analysis that scale
poorly with the dimension of the system [20]. It is preferable to restrict the
framework to linear models and consider alternatives to account for possible
nonlinear dynamics.

As discussed in Chapter 2 and Paper A, the uncertain motion of the vehicle-
under-test can be described as a disturbance in the system. The feasibility
analysis based on backward reachability is conducted without restrictions on
how fast the disturbance can change between sampling instants. However, the
disturbance is associated to variables such as the VUT’s velocity which has in
reality a limited rate of change. Hence, the feasibility analysis is conservative.
Backward reachable sets for systems with bounds on the rate of change of
the disturbance have been discussed in [21]. Their methods are less conserva-
tive but come with higher computational complexity. Further investigation is
needed to evaluate the advantage of considering a bound on the rate of change
of the disturbance in the reachability analysis.

Turning now to backward reachability, it has been discussed in Chapter 2
that the projection operation is the main source of complexity in the compu-
tation of reachable sets. Both the framework in Paper A and the methods
in Paper B are affected by the complexity of polyhedral projection. A more
efficient method for polyhedral projection is needed. A potential solution is
to approximate the projection operation with simple polyhedra, as suggested
in [15]. Projection of polyhedra in high dimensions remains a difficult problem
that requires further investigation.
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