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a b s t r a c t   

The automation system of the future will consist of an increasing amount of complex resources, such as 
collaborative robots and/or autonomously roaming robots for material handling. To control these devices in 
an environment shared with human operators require state of the art computer perception and motion 
planning algorithms to be used as part of the automation system. This new type of intelligent automation 
system, where intelligent machines and learning algorithms are replacing more traditional automation 
solutions, requires new methods and workflows to keep up with the increase in complexity. This paper 
presents an interactive and iterative framework for solving some of these new challenges. The framework 
supports model-based control system preparation performed simultaneously to preparation of 3D geo
metries, positioning of robots, and tool design. The workflow enables an interactive preparation process, 
where new resources and constraints can be added to a live (real or simulated) automation system and 
control system failures can be analyzed in familiar tools for virtual preparation. Additionally, the paper 
describes how the integrated preparation process was applied to reconfiguring an industrial use case that 
includes a collaborative robot working side by side with a human operator, smart tools, and a vision system 
for localizing both work objects and tools. 

© 2022 
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Introduction 

Current trends in industrial automation for automotive final as
sembly aim for re-configurable and self-balancing production systems 
that can handle rapid changes, unpredictable demands, production 
disturbances, product diversity, etc. 

Collaborative robots [1] are often seen as one enabler to reach 
this flexibility, and many research initiatives in academia and in
dustry have tried to introduce them for automation of final assembly 
tasks [2–4]. Despite their relative advantages, namely that they are 
sometimes cheaper and easier to program and teach [4] compared to 
conventional industrial robots, they are mostly deployed as robots 
“without fences” for co-active tasks [5]. 

Current collaborative robot installations are in most cases not as 
flexible, robust or scalable as required by many tasks in manual 
assembly. Combined with a lack of industrial preparation processes 
for these types of systems, new methods and technologies must be 
developed to better support the imminent industrial challenges [6]. 

To get the most out of collaborative robots, they need to be paired 
with additional capabilities to perceive their environment, in order 
to know where products and operators are located [7,8]. The re
sulting automation system needs to handle very dynamic environ
ments, which leads to increased complexity also for the control 
system(s). 

To tackle this, many have approached automated planning as a 
solution [9–11]. By using automated planning, the control system 
can itself take decisions on when to take certain actions in order to 
achieve a goal (for example, producing a product). This means that 
traditional preparation work, such as optimizing robot programs off- 
line, can no longer be performed with the expectation that these 
programs will run uninterrupted. The control system may take other 
decisions due to external events. Careful preparation is still required 
though, as moving to a completely flexible control system based on 
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automated planning may perform tasks in arbitrary order and in 
difficult to predict ways. 

For preparation of traditional (i.e. fenced) industrial automation 
systems, virtual commissioning (VC) is commonly used as a valida
tion tool. With virtual commissioning, an automation system’s 
control system can be virtually wired up to a number of simulated 
resources, physics engines, and material simulators [12]. This allows 
for testing and validation to be performed in a virtual environment, 
which can increase the efficiency of the commissioning of a new or 
updated control system. These tests can also be formalized as 
model-based testing [13]. Traditionally, this process is done as a final 
validation step, but it has been argued that this process can be 
performed even before the control system is finished [14], especially 
when coupled with model-based control engineering [15]. In [15], a 
framework called Integrated virtual preparation and commissioning 
(IVPC) is introduced, where a model of the control system is used in 
order to generate sequences of operations that can be executed in a 
simulation environment that supports VC. This was extended to 
support a closed loop model-based control system in [16], where 
control was managed over an OPC UA connection. While an in
tegrated approach for the design of a production station has been 
researched before (e.g. [17–19]), the aim of IVPC is to include also 
control engineering into an iterative approach to automation system 
design. 

However, with tasks such as robot programming being replaced 
by online algorithms, performing VC in the traditional sense be
comes also an integration challenge, due to all software involved. In  
[11,20], the model-based control system of [16] was extended to 
incorporate the Robot Operating System (ROS) as a middleware for 
facilitating these softwares. Coupled with a physics engine, for ex
ample Gazebo [21], ROS-based systems are also well suited for va
lidation via simulation. 

In Fig. 1, the IVPC activities are highlighted in the middle box. In 
this paper we look specifically at the combination of preparation 
work for robot motions with a control system based on automated 
planning. We apply a model-based control design combined with 
state of the art virtual preparation of robot motions, and virtually 
validate the result using simulation. The model-based control 
system design is supported by the open source software Sequence 
Planner [11] (SP). SP is a model-based framework for control of ROS- 
based (see Section 3.1) automation systems, which tries to handle 
complexity by formal reasoning. It uses online planning to auto
matically try to reach the currently active goals, which enable flex
ible error recovery [22]. Additionally, it relies on formal synthesis for 
safely composing reusable components [20]. This allows for con
straint-based modeling approach, where an initially free system is 
constrained by formal specifications to only perform safe actions. 
These constraints can be changed online, which allows for flexibility 
as well as quick iterations during preparation. Combined with VC, 
the model-based control framework can be used to solve some of the 
engineering challenges in incorporating human-robot collaboration 

in final assembly. The intelligent control system based on SP be
comes an enabler for IVPC in that the system can be created in an 
iterative fashion. Simulation and testing is performed continuously 
using simulated resources which are ROS components. 

Contribution 

When preparing the control logic for automation systems like the 
one in the use-case, where the resources, including the control 
system, are more or less autonomous, it is difficult to anticipate all 
different behaviors that can arise when the system tries to fulfill its 
current goals. The main contribution and focus of this paper is to 
demonstrate how to interactively, and iteratively, solve some of the 
engineering challenges in a virtual environment. 

Applying the IVPC framework, we show how the combination of 
a state of the art software for virtual preparation of robot motion and 
product geometries with the SP control framework enables a truly 
interactive workflow for automation system preparation. In this 
framework, the virtual environment and the logic of the control 
system can be continuously updated and validated. 

We describe an application where a collaborative robot, with the 
help of an operator, should perform various assembly tasks on a 
diesel engine. Neither the position of the robot, nor the autonomous 
guided vehicle carrying the engine (see Fig. 2), is static, which makes 
it difficult to apply traditional off-line programming of the robots. 
Additionally, the control system must be able to react properly to the 
actions performed by the operator, who is allowed to intervene 
freely. 

To support multiple types of robots with dynamic work object 
positions, the Robot Optimization Module of the IPS [23] is used. The 
Robot Optimization Module of IPS contains algorithms for motion 
planning and sequence optimization, enabling fast commissioning of 
industrial robots. We have developed a simple integration of IPS into 
ROS, which makes it possible to compute high quality robot paths 
online. The online motion planner can be constrained during 

Fig. 1. Integrated virtual preparation and commissioning (IVPC).  

Fig. 2. Experimental setup of collaborative robot assembly station.  
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preparation to disallow paths which are deemed not suitable (e.g. 
unnecessarily complicated paths). 

Outline 

Section 3, briefly introduces the notation and the workings of SP 
and IPS. Section 4.2, describes the proposed workflow. Then a case 
study that highlights the interactive nature of the work is presented 
in Section 4, with examples of details added to make the automation 
system work given in Section 5. The paper ends with some con
cluding remarks in Section 6. 

Related work 

Since the type of automation system presented in this paper is a 
concept of a future automation, the standard methodologies for 
preparation do not apply. Especially when introducing intelligent 
control that supports decision taking in an online fashion. In the 
robotics community, several approaches that could support a similar 
interactive preparation work flow exist. For example, the framework 
ROSPlan [24] that uses PDDL-based models for automated task 
planning and dispatching, SkiROS [25] that simplifies the planning 
with the use of a skill-based ontology, MaestROB [26] that adds 
natural language processing and machine learning to teach robots 
new skills that are executed using ontology based planning, eTaSL/ 
eTC [27] that defines a constraint-based task specification language 
for both discrete and continuous control tasks, and CoSTAR [28] that 
uses Behavior Trees to define complex tasks, combined with a novel 
way of defining computer perception pipelines. Applications that use 
planning of robot skills have seen successful experimentation in 
industrial settings [9,10]. 

However, these systems have been mainly robot-oriented (in 
contrast to automation-oriented) and often focus on a single robot. 
On the production side, research on how to design collaborative 
stations have also been researched before (e.g. [17–19]), but this 
body of research does not generally take flexible planning from the 
control system into the perspective. 

The IVPC framework built around SP and IPS provides a combi
nation of both high-level robotic tasks with more “traditional au
tomation” tasks – both low-level execution and state management of 
a variety of different devices and offline preparation of geometry and 
motion planning. 

Preliminaries 

This section briefly introduces the different tools and frameworks 
used throughout the work. Specifically it covers: using ROS as an 
integration layer, preparation and planning of robot motions in IPS, 
and finally the model based control framework SP. 

ROS 

In order to ease integration and development of different types of 
online algorithms for sensing, planning, and control of hardware, 
various platforms have emerged as middleware solutions. One that 
stands out is the Robot Operating System (ROS) [29]. In the current 
version of ROS (ROS2 [30]), the communication architecture is based 
on the Data Distribution Service (DDS) [31] to enable large scale 
distributed systems to be built on top of it. ROS2 systems are com
posed of a set of nodes communicating by sending typed messages 
over named topics using a publish/subscribe mechanism. The use of 
standardized message types enables a quick and semi-standardized 
way to introduce new drivers and algorithms to a system. For ex
ample, any robot that publishes its joint values in a certain way can 
use MoveIt! [32], which builds on the Open Motion Planning Library  
[33] that provides a multitude of state of the art motion planning 

algorithms. ROS also gives easy access to a large amount of driver 
software, which makes it easy to move from simulation to reality. 
Since all communication is based on publish/subscribe, it is possible 
to run systems where some nodes are simulations and some control 
real hardware. 

IPS 

IPS is a software tool that implements algorithms for virtual 
product realization [23]. It includes software modules for different 
applications ranging from cable simulation to robot optimization, 
etc. The IPS Robot Optimization Module, used in this paper, contains 
a toolbox of algorithms for automatic off-line programming of in
dustrial robots. It allows virtual preparation by supporting kinematic 
modeling, virtual geometry preparation for large meshes and point 
clouds as well as algorithms for motion planning and robot motion 
sequence optimization. 

IPS contains a deterministic motion planner for industrial robots 
that is inspired by probabilistic methods for motion planning such as 
Rapidly-Exploring Random Trees (RRT) [34] and Probabilistic 
Roadmap Methods (PRM) [35]. The robot motion sequence optimi
zation determines the order in which a set of planning targets 
should be executed by the robot in a collision-free and cycle-time 
minimal manner. This is done by formulating the problem as a 
Generalized Traveling Salesman problem that is iteratively solved to 
minimize the cycle-time, similar to the method proposed in [36]. 

Sequence Planner 

SP is a model-based framework for control of intelligent auto
mation systems. To ease modeling and control, SP uses formal 
models together with online planning to reach the current goal of 
the automation system. It is an open source software and available 
on github [37]. 

SP is based on models of resources in terms of their state, with 
non-deterministic guarded actions (transitions) that can transition 
the system between these states. Transitions exist in three kinds: 
controllable, automatic, and effect. Controllable and automatic tran
sitions are taken by SP, while effect transitions are used to model the 
environment. The resource models are composed and constrained by 
formal specifications which automatically remove undesired states. 
See Fig. 3 for an overview of how an automation system in SP is 
structured. SP is based on planning in two levels: first with the op
eration planner to determine which operations should be run, then 
with the transition planner to determine exactly how resources 
should perform the operations. 

SP uses a state based control design, where resources con
tinuously receive goal states from SP, and continuously update 
measured states, which are inputs to SP. For example, consider a 
simple indicator light, it may have a goal state ∈ {off, on} and a 
measured state with the same domain. Contrary, a robot may have a 
complex goal state that includes a frame to reach in space, perhaps 
with additional active constraints such as speed or joint limits. SP 
models the resources using a formalism with finite domain variables, 
states that are unique valuations of the variables, and non-de
terministic transitions between states. Some definitions to clarify 
follows. 
Definition 1. A transition system (TS) is a tuple 〈S, → , I〉, where S is a 
set of states, → ⊆ S × S is the transition relation and I ⊆ S is the 
nonempty set of initial states. 

Definition 2. A state s ∈ S is a unique valuation of each variable in the 
system. E.g. s = 〈v1, v2, …, vn〉. 

Variables have finite discrete domains, i.e. Boolean or enumera
tion types. 
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The transition relation → define the transitions that modify the 
system state: 
Definition 3. A transition t has a guard g, which is a boolean function 
over a state, g: S → {false, true}, and a set of action functions A where 
a: S → S which updates the valuations of the state variables in a state. 
We often write a transition as g∕A to save space. 

In SP, resources include models of the behavior of the resources 
bundled with ROS nodes as reusable components [20]. The behavior 
models are non-deterministic transition systems that the operations 
navigate using planning to reach their goals. 
Definition 4. A resource i is defined as =r V V V T T T, , , , ,i i

M
i
G

i
E

i
c

i
a

i
e

where Vi
M is a set of measured state variables, Vi

G is a set of goal state 
variables, Vi

E is a set of estimated state variables. Variables are of 
finite domain. The set =V V V Vi i

M
i
G

i
E defines all state variables of 

a resource. The sets Ti
c and Ti

a define controlled and automatic 
transitions respectively. Ti

e is a set of effect transitions describing 
the possible consequences to Vi

M of being in certain states. 

Ti
c , Ti

a, and Ti
e have the same formal semantics, but are separated 

due to their different uses: Controlled transitions Ti
c are taken when 

their guard condition evaluates to true, only if they are also activated 
by the planning system. Automatic transitions Ti

a are always taken 
when their guard condition evaluates to true, regardless of if there 
are any plans active or not. All automatic transitions are taken before 
any controlled transitions can be taken. This ensures that automatic 
transitions can never be delayed by the planner. Effect transitions Ti

e

define how the measured state is updated, and as such they are not 
used during control like the control transitions Ti

c and Ti
a. They are 

important to keep track of however, as they are needed for online 
planning and formal verification algorithms. They are also used to 
know if the plan is correctly followed – if expected effects do not 
occur it can be due to an error. 

As a clarifying example, consider a model of a door resource that 
has a sensor for measuring whether it is opened or closed (c? 

∈ {false, true}, where c? being true means the door is closed), and an 
actuator for opening and closing the door (c! ∈ {false, true}, where c! 

being true activates the actuator that opens the door). 

The nodes in Fig. 4 represent the state combinations of the two 
variables c? and c! and the edges represent transitions that change 
the state. For example “start open (c)" is a controlled transition. 
Regardless of whether its guard is true (c? ∧ c!), it needs to be ac
tivated by the planning system in order to update the state. If the 
transition was automatic, SP would always (immediately) take the 
transition in this state. The two “finish" transitions are effect tran
sitions. As such, they are only part of the formal model and not in
cluded when the system is being executed. 

Given a set of resources, the system is initially allowed to take any 
actions. Resource specifications, are defined as invariants over the 
system state, and constrain the system to avoid unsafe regions 
during execution. The negation of invariant formulas (e.g. the for
bidden states) are extended into larger sets of states using symbolic 
backwards reachability analysis to properly deal with the un
controllability of automatic and effect transitions. The method used 
is described in [38]. 

In addition to the variables defined by the resources, another set 
of variables exist, decision variables. These define the state of the 
system in abstract terms to plan which operations to execute. For 
example, a decision variable could be the abstract state of a parti
cular resource, or the state of a product in the system. Sometimes 
decision variables can be directly measured by resources, in which 
case these measurements are copied into the decision variables, 
usually after undergoing some form of transformation (for example 
discretization). 
Definition 5. An operation j is defined as oj = 〈pj, ej, gj, aj, sj〉, where pj 

is a precondition over the decision variables defining when the 
operation can start, a set of effect actions ej of completing the 
operation, which are actions defined on the decision variables, as 
well as a goal predicate gj defined over the resource variables. aj is a 
set of actions for synchronizing the operation with the resource 
state. Finally, the operation has an associated state variable sj 

∈ {i, e, error}. Throughout the paper, operations are graphically 
depicted as in Fig. 5. 

When the precondition of an operation is satisfied, the operation 
can start. The effect actions are then evaluated against the current 
state, and the difference between the current state and the next state 
is converted into a predicate. This predicate becomes the post-con
dition of the operation. E.g. if the effect of the operation is x ≔ y, and 
y = 5 when the operation starts, then the post-condition (and thus its 
planning goal) becomes x = 5. If the operation needs to update the 
resource state, aj can additionally include actions from a transition 

Fig. 3. The structure of a control system model in SP.  

Fig. 4. Transition system modeling the example door resource.  

Fig. 5. We use this graphical notation to visualize operations. For the operation j, the 
precondition is pj, the effect is ej, the goal is gj and the set of actions is aj. 
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among the resources, in which case gj is also conjuncted with the 
guard of this transition. 
Definition 6. The intention k is defined as ik = 〈pk, gk, ϕk, ak, sk〉, 
where pk is a predicate over (all) the variables in the system, defining 
when the intention starts (automatically), gk is a goal predicate 
defined over the decision variables, ϕk is an optional LTL formula 
over the decision variables, ak are a set of actions that can update 
(all) variables in the system, that are applied when the intention 
finishes, and sk ∈ {i, e, f} is the state of the intention. 

The goals defined by the intentions over the decision variables is 
the way the system is driven forward. The decision variables are 
meant to be allowed to be changed at any time from the outside. It 
can be that they can be changed to a high level state from which the 
goal cannot be reached, in which case replanning occurs auto
matically. Not only does the planner allow SP to be agnostic about 
the current resource state, it also allows for interrupting or canceling 
currently running operations in a safe way – by simply changing the 
goal state, the planning system will find the correct way to instead 
reach the new goal. 

In model checking [39], temporal properties are verified by 
means of state space-exploration based on a set of initial states and a 
set of transitions. The temporal properties are specified in exten
sions to propositional logic such as Computation Tree Logic (CTL) or 
Linear Temporal Logic (LTL) [40]. For example, LTL has temporal 
operators for expressing properties on the next state (○), that some 
formula should always (□) hold, that it should eventually hold (◇), 
and that one formula should hold until another one does (U). For 
example, the formula □(x → ○y) expresses that it is always the case 
that x implies y in the next state. Then an LTL model checking 
problem is to prove that given a set of valid initial states, this for
mula always holds, or if this cannot be proven produce a counter
example. 

By turning the problem around, and having the model checking 
proving that a desired future state is not reachable, one can use the 
counterexample as a plan, which, if followed, will reach that parti
cular state. In contrast to a more simplistic forward search, using 
model checking allows SP to restrict the plans by providing addi
tional temporal specifications that need to hold. 

SP continuously tries to find the shortest path that reaches the 
goal of all currently executing operations. For this nuXmv [41], a well 
known off the shelf model checker, is used. nuXmv supports bounded 
model checking (BMC) [42]. In BMC, the model checking problem is 
reduced to a boolean satisfiability problem with a bounded length in 
the number of discrete “timesteps” from the initial states. One ad
vantage of BMC in this setting is that it produces counterexamples of 
minimal length [42], i.e. the plans will never be longer than ne
cessary. 

Case study 

The application used as a case study in this paper is the result of 
transforming an existing manual assembly station from a truck en
gine final assembly line, shown in Fig. 6, into an intelligent and 
collaborative robot assembly station, shown in Fig. 2. 

Description of assembly station 

Diesel engines are transported to the assembly station on an 
Automated Guided Vehicle (AGV). Material to be mounted on a 
specific engine is loaded by an operator from kitting facades located 
adjacent to the production line. An autonomous mobile platform 
(MiR100) carries the kitted material to be mounted on the engine to 
the collaborative robot assembly station. 

In the station, a robot and an operator work together to mount 
parts on the engine by using different tools suspended from the 

ceiling. A dedicated camera system keeps track of operators, en
suring safe coexistence with machines. The camera system is also 
used for gesture recognition. 

After the MiR100 has arrived with the kitting material, a 
Universal Robots (UR10) robot and the operator collaborate to lift a 
heavy ladder frame on to the engine. After placing the ladder frame 
on the engine, the operator informs the control system with a button 
press on a smartwatch or with a gesture, after which the UR10 
switches tools; the lifting end-effector is replaced with a nutrunner 
for tightening bolts. During this tool change, the operator starts to 
insert 24 bolts that the UR10 will tighten. 

During the tightening of the bolts, the operator can mount three 
oil filters. If the robot finishes the tightening operation first, it leaves 
the nutrunner in a floating position above the engine and waits for 
the operator. When the operator is finished mounting the oil filters, 
the robot attaches a new end-effector for oil filter tightening. During 
that time, the operator attaches two oil transport pipes on the en
gine, and uses the same nutrunner previously used by the robot to 
tighten plates that hold the pipes to the engine. After executing 
these operations, the AGV with the assembled engine, and the empty 
MiR100 both leave the collaborative robot assembly station. 

Application of IVPC to the case study 

Fig. 7 highlights how the IVPC framework was used to inter
actively work on various aspects of the automation system for the 
application described in the previous section. 

The top left box corresponds to IPS in its normal off-line com
missioning usage. This includes positioning geometries, targets and 
tool center points as well as iterating the available off-line robot 
optimization algorithms. The SP model box corresponds to writing 
constraints for the model based control system, for example using 
input from the off-line preparation done in IPS. The SP model can be 
subjected to formal verification via model checking, as shown in the 
bottom box, “formal analysis”. Formal verification is used to prove 
that the system operates according to specifications. But the SP 
model describe only the discrete behavior of the system, and this 
does not capture nuances w.r.t. dynamics and robot motions. 
Additionally, because it is not always trivial to anticipate how certain 
specifications affect the system, there is also a need to validate that 
the specifications are correct [15]. This validation can be performed 
by means of simulation, using SP in its execution mode (i.e. when 
driving the control system). SP controls a number of simulated ROS 
resources for validation via simulation. The top right box represents 
the IPS online motion planner, which is used by the ROS resource for 

Fig. 6. The original manual assembly station.  
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the robot. In the case of a robot motion planning failure, the current 
situation can be inspected with IPS used in its normal off-line mode.  
Section 5 will show a concrete examples of the arrows marked with 
“analysis” as a case study, by highlighting specific parts of the im
plemented automation system. The point of the case study is to 
show how to interactively incorporate new information and iter
ating the design based on what is learned from simulation. 

Technical setup 

For the implementation described in the remainder of the paper, 
three standard consumer PC:s connected over wired Ethernet was 
used. IPS and SP were each run on a separate computer, as was the 
simulated ROS nodes and software for visualizing the state of the 
simulation. Communication between the systems is handled entirely 
over ROS. Real-time aspects are not taken into consideration. 

Preparation of the control system 

To give an understanding of how the model-based control system 
works, this section starts by defining the resources and states used 
for control of a subset of the assembly procedures, specifically pla
cing and tightening the bolts, which can be done both by the op
erator and the robot, locating the position of the engine and the tool, 
as well as performing tool change. 

The resources are all controlled by individual ROS nodes, which 
continuously receive goal states from SP. Resources include the ro
bots, the IPS motion planner, the smart tool, and the camera used for 
localization. In this paper we do not describe the autonomous kitting 
robot, the safety of the system, nor the mounting of the pipes and 
oil-filters. 

The building blocks of the model-based control system are in
tentions and operations. At a high level, we want to express that 
eventually, all the bolts should be tightened. This is the intention 
tighten all bolts. To achieve the goal that all bolts should be tightened, 
operations that control the resources are needed. The intention and 
the operations used are depicted in Fig. 8. 

The next sections (Sections 5.1–5.5) relate to the initial devel
opment of the SP model in Fig. 7. In these steps, the basic logic 
behavior of how the resources interact with each other and the 
products are defined. In Sections 5.6.1–5.8, the upper parts of Fig. 7 
are exemplified. These examples highlight how the interactive 
nature with IPS in the loop is beneficial when developing the formal 
model. 

Resources 

The operations define the low-level actions that need to be taken 
by the resources in the system in terms of goal states. Often op
erations use more than one resource. Consider for example the 
“locate” operations, which use the robot resource and the 3d camera 
resource, or the tighten bolt operations, which use both the robot 
resource and the smart tool resource. Fig. 9 depicts how these op
erations interact with the different resources. The green color 
highlights what is currently executing in each layer. 

Decision variables 

Because control in the framework is based on moving from the 
current state to a particular goal state, some key state variables need 
to be defined. The engine, the ladder frame, the bolts, and the pipes, 
are considered the products of the system. Other important states are 
whether the positions of the engine and the tools are known or not. 
This information is modeled as decision variables. See Table 1 for 
their definitions. 

The decision variables represent the high-level state of the 
system, which is available to the intentions and operations. 

Fig. 7. Schematic of the workflow in the proposed architecture.  

Fig. 8. The intention tighten all bolts together with the operations available to the 
system. 

Fig. 9. The intention tighten all bolts is executing, which results in a sequence of 
operations that each trigger a number of resource transitions in order to reach the 
goal. The green color highlights what is currently executing in each layer. 
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Operations 

The operations are the glue between the resources in the system 
and the product state. Consider for example a bolting operation as 
shown in Fig 10. This operation has as its goal that the tool should 
have registered that the correct torque has been reached 
(tool.tqr) with the robot at bolt position i (bfi): tool.tqr ∧ ro
bot.pos = bfi. The result of reaching this state is bi ≔ tightened. 

The other operations in Fig. 8 are defined in a similar way. For 
example, for the 3d camera, the goal state is simply camera.scan = 
done. Without additional constraint, this allows the robot be in any 
location when performing the 3d scanning, which could result in 
performing the scanning in the wrong locations. Specifications that 
prevent this are added in Section 5.4. 

Constraining the resources 

To ensure that the planner produces the correct outcomes, the 
resources in the automation system can be constrained either by 
providing invariant propositions, or conjuncting the transitions re
sources state machines with additional guard expressions. For ex
ample, the invariant 

=ap bf sa
i

i
1 24

where ap is the position last visited by the robot, bfi, is the target 
frame of the robot above bolt i, and sa is a boolean variable in
dicating that the spinner tool is attached to the robot. This effectively 
forbids the robot from moving to above the bolts without holding 
the spinner tool. 

For the 3d camera, a similar constraint could be written: 

=
=

camera scan camera object

ap rs

( . ( . tool))
( tool )scanposition

where ap is the position last visited by the robot, rs is a predicate for 
“robot still”, “camera.scan” is an I/O that starts the scanning proce
dure and “camera.object” defines which object to perform matching 

against. The implication ensures that this state cannot be reached 
unless the robot is in the correct location and is not moving. 

Intentions 

The intentions define goals over the decision variables. In this 
example, the goal is simple: all bolts should be in the tightened state. 

Table 2 defines the intentions in the system. These define the 
different modes of operation, for example tightening the bolts.  
Section 5.6 will make clear why bolting is separated into two dif
ferent intentions, and what ϕc and ϕr are. 

Constraining operations 

The operations chosen for execution depend on the currently 
active intentions, combined with the currently active specifications. 
Some specifications are known before the preparation work has 
started. Usually these specifications relate to the production process. 
We call these specifications product specifications. For example, the 
ladder frame has a requirement on the order in which the bolts are 
tightened. Other constraints on the operations relate to more prac
tical aspects. For example, in order to even start tightening the bolts, 
the system must be confident in its location measurement for the 
engine. I.e. engine_scanned must be true. This can be expressed as 
a simple precondition on the bolting operations. Having the planner 
in the loop means that a bolting operation could potentially be 
aborted if engine_scanned suddenly becomes false. 

We will exemplify implementing the product specifications using 
the bolts and the ladder frame. 

Sequence specification 
The product specification is that the bolts at the corners of the 

ladder frame should be tightened before the other ones. To simplify 
the formulas below, the corner bolts have been given indices 1–4, 
see Fig. 11. This is a hard requirement that should lead to an error if 
the operator does it in any other way. As such, it is naturally given as 
an invariant proposition over the variables representing the state of 
the bolts. 

= =b tightened b tightened
i

i
j i

j
2 4 1 1 (1) 

For the intention “tighten corner bolts”, ϕc in Table 2 is the constraint 
in (1). 

If there is no reason for the other bolts to be tightened in a 
specific order, there should not be a product specification that re
stricts the system unnecessarily. Such design choices can then be 
done at the later stages of preparation, where more details are 
known about the specific resources in the system – perhaps there 
are physical constraints that in practice produce a certain ordering 
anyway. 

Now, a suitable order for visiting the remaining bolts by the robot 
could be prepared offline using IPS. This ordering can take into ac
count optimization aspects such as execution time, but it could also 
take into account, for example, where the operator is expected to be 
working during assembly, to reduce interference. This is represented 
by the top left “analysis” arrow in Fig. 7. Since the control system is 

Table 1 
Decision variables in the example. n = 1, …, 24.    

Variable Domain  

b_n {not_placed, placed, untightened, tightened} 
engine_present {false, true} 
engine_scanned {false, true} 
tool_scanned {false, true} 
tool_attached {false, true} 

Fig. 10. Operation defining the tightening of bolt i. The low-level goal is that the tool 
should have registered torque reached (tool.tqr) with the robot at bolt position 
i (bfi). 

Table 2 
Intentions describe the main production activities.      

Intention Precondition Postcondition Spec  

Tighten corner bolts 

=
bolt tigthened

i
i

1

4
=

=
bolt tightened

i
i

1

4 ϕc 

Tighten remaining bolts 
=

= =
bolt tigthened bolt tigthened

i
i

i
i

1

4

5

24
=

=
bolt tightened

i
i

5

24 ϕr 
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always available for simulation (bottom right part of Fig. 7), the or
dering suggested by IPS can be applied online to try different sce
narios in a simulated setting, highlighted by the middle “analysis” 
arrow in Fig. 7. 

Suppose for simplicity that the order in which to tighten the 
remaining bolts should simply be to run them in the order of their 
indices (i.e. 5–24). This is a soft requirement; the bolts should be 
tightened in order when possible, but we allow bolts to be tightened 
out of order. This means that it should not be an error for the op
erator to go ahead and tighten a few bolts given the opportunity. 
Likewise, it should not be an error to restart production with a few 
bolts arbitrarily tightened. So this sequence constraint cannot be 
expressed as in (1). 

Priority sequence specification 
For this we introduce a slightly different type of sequence spe

cification, the priority sequence. Since the actions of the operations 
are considered atomic during planning, we can instead ensure that 
the transition between untightened and tightened can only happen 
when the previous bolt in the priority sequence has been tightened. 
This allows freedom for the bolti (for i  >  4) state variables to be in 
the tightened state regardless of the states of the bolts with lower 
indices, but tightening bolts with an index higher than the lowest 
bolt that remains untightened is not allowed. 

As the planning system supports arbitrary LTL expressions, we 
can express this transitioning constraint using the next operator as 
in (2) 

= =

=

b untightened b tightened

b tightened

i
i i

j i
j

6 24

5 1 (2)  

For the intention “tighten remaining bolts”, ϕr in Table 2 is set to 
(2). These two intentions can then be used to handle all bolting as 

done by the robot, while still allowing freedom for the operator to 
tighten bolts. 

Interactively updating specifications 

Consider the case of the bolting again. With the help of virtual 
validation it is possible to investigate how the specification works in 
different circumstances. This highlights the top left “analysis” arrow 
in Fig. 7, where a specific situation is analyzed in IPS and the SP 
model is updated accordingly. 

In Fig. 12, a (virtual) pipe has been placed in such a way that 
bolting is not possible for the robot. When the intention in Fig. 12a is 
active, a planning request is made for the next bolt in the given 
bolting sequence. Since this bolt is not reachable (Fig. 12b), the ur10 
resource goes into an error state (ur10.state = planningError). When 
this happens, suppose the robot should just skip the unreachable 
bolts. The tighten bolt operation is extended with an additional goal 
state: ur10.state = planningError/ bolt ≔ skipped and the 
domain of the decision variable is extended to include skipped. 
Similarly the effect of the intention can be changed to 
bi = tigthened ∨ bi = skipped to instead indicate that the bolts should 
all have been processed (but some may have failed). 

The effects of changing the operation and the domain of the bolt 
variables to also include “skipped” results in a change to the gen
erated planning problem. This means a user can run into this pro
blem, change the desired operation and then continue executing 
with the new underlying model. 

With the updated operations, it is possible to add another in
tention that can be run later in the process, which can tighten any 
remaining bolts. This sequence could be designed to be performed 
either by the operator or the robot. 

Handling a late change request 

Assume that late in the process it is decided that a different type 
of spinner tool also needs to be supported. Because of the reliance on 
robot motion planning, it is very easy to replace the tool as no ad
ditional robot programming needs to be performed. 

The new tool is depicted in Fig. 13b. With it, the system can 
successfully tighten the bolts. However, when executing the locate 
engine operation we get the planning error from the robot resource 
again. Upon inspection, see Fig. 13b, it turns out that the tool would 
collide with the engine upon moving to the “scan engine” location. 

This problem can be fixed, without stopping the simulation, by 
simply updating the scan engine operation to include an additional 
precondition on the attachment state of the tool. When this is done 
and the error state cleared from the intention, the system will au
tomatically leave the tool, scan the engine and pick the tool up again, 
before resuming its current task. This corresponds to the middle 
“analysis” arrow in Fig. 7. Alternatively, an updated target frame for 
the scanning position could be prepared in IPS. It is a routine task to 
check that the position is reachable with both types of tools. 

Fig. 11. Indices and locations of the bolts.  

Fig. 12. Testing robot motion planning with an obstacle.  
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Conclusion 

This paper has shown how an automation system can be effi
ciently prepared using an “online” approach to formal modeling, 
allowing for declarative high level constraints to be written and 
tested on a live simulation. The prerequisites include access to si
mulations of the resources in the system (provided by ROS), access 
to an online motion planner to eliminate robot programming (pro
vided by IPS), and a control system based on constraints and plan
ning (provided by SP). Perhaps the main bottleneck is that formal 
models of the resources behaviors is required in order to use SP for 
safe control – something which is commonly not readily available 
today. However, the formal models describing the resources can be 
reused. This is especially true given that the composition of re
sources is done using specification rather than specific control po
licies implemented on a per-resource basis. This shifts the role of the 
automation engineer from implementing control policies in com
puter code to writing and validating specifications. While writing 
correct specifications is not easy, their correctness can be formally 
proven, as well as interactively validated by running a simulation of 
the system. This allows for an efficient preparation process involving 
iterative verification and validation procedure. Additionally, by em
ploying automated planning as the driver of the system, flexibility 
that would be very difficult to implement using traditional pro
gramming can be achieved. It should be stressed that no program
ming is needed in the approach. This makes it is difficult to compare 
to traditional methods, as a fair comparison would have to involve 
formal verification of the developed automation software. The re
liance on formal methods does pose an upper limit on the number of 
resources that can be included, but in practice we have seen that the 
framework can be applied to most “single station” sized systems 
before needing to break it up into subsystems. The workflow pre
sented illustrates the latest iteration of the framework con
ceptualized in [15]. In addition to the case described in this paper, it 
has been applied to a bin-picking system at a AB Volvo facility in 
Sweden. 

Declaration of Competing Interest 

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared 
to influence the work reported in this paper. 

References 

[1] Bauer, A., Wollherr, D., Buss, M., 2008, Human-robot Collaboration: A Survey. 
International Journal of Humanoid Robotics, 05/01: 47–66. https://doi.org/10. 
1142/S0219843608001303. 

[2] Tsarouchi, P., Matthaiakis, A.-S., Makris, S., Chryssolouris, G., 2017, On a Human- 
robot Collaboration in an Assembly Cell. International Journal of Computer 
Integrated Manufacturing, 30/6: 580–589. 

[3] Fast-Berglund, Å., Palmkvist, F., Nyqvist, P., Ekered, S., Åkerman, M., 2016, 
Evaluating Cobots for Final Assembly. Procedia CIRP, 44:175–180. 

[4] Villani, V., Pini, F., Leali, F., Secchi, C., 2018, Survey on Human-robot 
Collaborationin Industrial Settings: Safety, Intuitive Interfaces and Applications. 
Mechatronics, 55:248–266. 

[5] He, W., Li, Z., Chen, C.L.P., 2017, A Survey of Human-centered Intelligent Robots: 
Issues and Challenges. IEEE/CAA Journal of Automatica Sinica, 4/4: 602–609. 

[6] Hanna, A., Bengtsson, K., Dahl, M., Erős, E., Götvall, P., Ekström, M., 2019, 
Industrial Challenges When Planning and Preparing Collaborative and Intelligent 
Automation Systems for Final Assembly Stations. 2019 24th IEEE International 
Conference on Emerging Technologies and Factory Automation (ETFA), 400–406. 
https://doi.org/10.1109/ETFA.2019.8869014. 

[7] Alterovitz, R., Koenig, S., Likhachev, M., 2016, Robot Planning in the Real World: 
Research Challenges and Opportunities. AI Magazine, 37/2: 76–84. 

[8] Perez, L., Rodriguez, E., Rodriguez, N., Usamentiaga, R., Garcia, D.F., 2016, Robot 
Guidance Using Machinevision Techniques in Industrial Environments: A 
Comparative Review. Sensors, 16/3. https://doi.org/10.3390/s16030335〈http:// 
www.mdpi.com/1424-8220/16/3/335〉. 

[9] Schou, C., Andersen, R.S., Chrysostomou, D., Bøgh, S., Madsen, O., 2018, Skill- 
based Instruction of Collaborative Robots in Industrial Settings. Robotics and 
Computer-Integrated Manufacturing, 53:72–80. 

[10] Krueger, V., Rovida, F., Grossmann, B., Petrick, R., Crosby, M., Charzoule, A., 
Garcia, G.M., Behnke, S., Toscano, C., Veiga, G., 2019, Testing the Vertical and 
Cyber-physical Integration of Cognitive Robots in Manufacturing. Robotics and 
Computer-Integrated Manufacturing, 57:213–229. 

[11] Erös, E., Dahl, M., Hanna, A., Götvall, P.-L., Falkman, P., Bengtsson, K., 2020, 
Development of an Industry 4.0 Demonstrator Using Sequence Planner and ros2. 
in: Robot Operating System (ROS), Springer, pp. 3–29. 

[12] Lee, C.G., Park, S.C., 2014, Survey on the Virtual Commissioning of Manufacturing 
Systems. Journal of Computational Design and Engineering, 1/3: 213–222. 

[13] Khan, A., Falkman, P., Fabian, M., 2019, Testing and Validation of Safety Logic in 
the Virtual Environment. CIRP Journal of Manufacturing Science and Technology, 
26:1–9. https://doi.org/10.1016/j.cirpj.2019.07.002〈http://www.sciencedirect. 
com/science/article/pii/S1755581719300318〉. 

[14] Oppelt, M., Urbas, L., 2014, Integrated Virtual Commissioning an Essential 
Activity in the Automation Engineering Process from Virtual Commissioning to 
Simulation Supported Engineering. IECON 2014 - 40th Annual Conference of the 
IEEE Industrial Electronics Society.  IEEE: 2564–2570. 

[15] Dahl, M., Bengtsson, K., BergagÅrd, P., Fabian, M., Falkman, P., 2016, Integrated 
Virtual Preparation and Commissioning: Supporting Formal Methods During 
Automation Systems Development. IFAC-PapersOnLine, 49/12: 1939–1944. 

[16] Dahl, M., Bengtsson, K., Fabian, M., Falkman, P., 2017, Automatic Modeling and 
Simulation of Robot Program Behavior in Integrated Virtual Preparation and 
Commissioning. Procedia Manufacturing, 11:284–291. 

[17] Michalos, G., Spiliotopoulos, J., Makris, S., Chryssolouris, G., 2018, A Method for 
Planning Human Robot Shared Tasks. CIRP Journal of Manufacturing Science and 
Technology, 22:76–90. https://doi.org/10.1016/j.cirpj.2018.05.003〈http://www. 
sciencedirect.com/science/article/pii/S1755581718300300〉. 

[18] Hagemann, S., Stark, R., 2020, An Optimal Algorithm for the Robotic Assembly 
System Design Problem: An Industrial Case Study. CIRP Journal of Manufacturing 
Science and Technology, 31:500–513. https://doi.org/10.1016/j.cirpj.2020.08. 
002〈http://www.sciencedirect.com/science/article/pii/S1755581720300894〉. 

[19] Papakostas, N., Alexopoulos, K., Kopanakis, A., 2011, Integrating Digital 
Manufacturing and Simulation Tools in the Assembly Design Process: A 
Cooperating Robots Cell Case. CIRP Journal of Manufacturing Science and 
Technology, 4/1: 96–100. https://doi.org/10.1016/j.cirpj.2011.06.016. (special 
Section on Innovative and Cognitive Manufacturing Engineering). 〈http://www. 
sciencedirect.com/science/article/pii/S1755581711000678〉. 

[20] Dahl, M., Erős, E., Hanna, A., Bengtsson, K., Fabian, M., Falkman, P., 2019, Control 
Components for Collaborative and Intelligent Automation Systems. 2019 24th 
IEEE International Conference on Emerging Technologies and Factory 
Automation (ETFA), 378–384. https://doi.org/10.1109/ETFA.2019.8869112. 

[21] Koenig, N., Howard, A., 2004, Design and Use Paradigms for Gazebo, An Open- 
source Multi-robot Simulator. IEEE/RSJ International Conference on Intelligent 
Robots and Systems, Sendai, Japan, 2149–2154. 

[22] Dahl, M., Bengtsson, K., Falkman, P., 2021, Application of the Sequence Planner 
Control Framework to an Intelligent Automation System with a Focus on Error 
Handling. Machines, 9/3: 59. 

[23] Industrial Path Solutions. 〈https://industrialpathsolutions.com/〉. [Accessed 10 
November 2020] (2020). 

[24] Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras, 
N., Hurtós, N., Carrerasa, M., 2015, Rosplan: Planning in the Robot Operating 
System. in: Proceedings of the Twenty-Fifth International Conference on 
International Conference on Automated Planning and Scheduling, ICAPS’15. 
AAAI Press: 333–341. 

Fig. 13. Virtual validation after changing tool type.  
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