
Interactive formal specification for efficient preparation of intelligent
automation systems

Downloaded from: https://research.chalmers.se, 2022-11-19 13:44 UTC

Citation for the original published paper (version of record):
Dahl, M., Larsen, C., Erös, E. et al (2022). Interactive formal specification for efficient preparation of
intelligent automation systems. CIRP Journal of Manufacturing Science and Technology, 38:
129-138. http://dx.doi.org/10.1016/j.cirpj.2022.04.013

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Contents lists available at ScienceDirect

CIRP Journal of Manufacturing Science and Technology

journal homepage: www.elsevier.com/locate/cirpj

Interactive formal specification for efficient preparation of intelligent
automation systems☆

Martin Dahla,⁎, Christian Larsenb, Endre Erosa, Kristofer Bengtssona, Martin Fabiana,
Petter Falkmana

a Chalmers University of Technology, Department of Electrical Engineering, Division of Systems and Control, Gothenburg, Sweden
b Fraunhofer-Chalmers Centre, Gothenburg, Sweden

a r t i c l e i n f o

Available online xxxx

Keywords:
Virtual engineering
Virtual preparation
Artificial intelligence
Control architectures and programming
Factory automation
Collaborative robotics

a b s t r a c t

The automation system of the future will consist of an increasing amount of complex resources, such as
collaborative robots and/or autonomously roaming robots for material handling. To control these devices in
an environment shared with human operators require state of the art computer perception and motion
planning algorithms to be used as part of the automation system. This new type of intelligent automation
system, where intelligent machines and learning algorithms are replacing more traditional automation
solutions, requires new methods and workflows to keep up with the increase in complexity. This paper
presents an interactive and iterative framework for solving some of these new challenges. The framework
supports model-based control system preparation performed simultaneously to preparation of 3D geo
metries, positioning of robots, and tool design. The workflow enables an interactive preparation process,
where new resources and constraints can be added to a live (real or simulated) automation system and
control system failures can be analyzed in familiar tools for virtual preparation. Additionally, the paper
describes how the integrated preparation process was applied to reconfiguring an industrial use case that
includes a collaborative robot working side by side with a human operator, smart tools, and a vision system
for localizing both work objects and tools.

© 2022
CC_BY_4.0

Introduction

Current trends in industrial automation for automotive final as
sembly aim for re-configurable and self-balancing production systems
that can handle rapid changes, unpredictable demands, production
disturbances, product diversity, etc.

Collaborative robots [1] are often seen as one enabler to reach
this flexibility, and many research initiatives in academia and in
dustry have tried to introduce them for automation of final assembly
tasks [2–4]. Despite their relative advantages, namely that they are
sometimes cheaper and easier to program and teach [4] compared to
conventional industrial robots, they are mostly deployed as robots
“without fences” for co-active tasks [5].

Current collaborative robot installations are in most cases not as
flexible, robust or scalable as required by many tasks in manual
assembly. Combined with a lack of industrial preparation processes
for these types of systems, new methods and technologies must be
developed to better support the imminent industrial challenges [6].

To get the most out of collaborative robots, they need to be paired
with additional capabilities to perceive their environment, in order
to know where products and operators are located [7,8]. The re
sulting automation system needs to handle very dynamic environ
ments, which leads to increased complexity also for the control
system(s).

To tackle this, many have approached automated planning as a
solution [9–11]. By using automated planning, the control system
can itself take decisions on when to take certain actions in order to
achieve a goal (for example, producing a product). This means that
traditional preparation work, such as optimizing robot programs off-
line, can no longer be performed with the expectation that these
programs will run uninterrupted. The control system may take other
decisions due to external events. Careful preparation is still required
though, as moving to a completely flexible control system based on

https://doi.org/10.1016/j.cirpj.2022.04.013
1755-5817/© 2022
CC_BY_4.0

☆ This work has been supported by UNIFICATION, Vinnova, Produktion 2030 and
UNICORN, Vinnova, Effektiva och uppkopplade transportsystem.

]]]]
]]]]]]

⁎ Corresponding author.
E-mail addresses: martin.dahl@chalmers.se (M. Dahl),

christian.larsen@fcc.chalmers.se (C. Larsen), endree@chalmers.se (E. Erős),
kristofer.bengtsson@chalmers.se (K. Bengtsson), fabian@chalmers.se (M. Fabian),
petter.falkman@chalmers.se (P. Falkman).

CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

http://www.sciencedirect.com/science/journal/17555817
www.elsevier.com/locate/cirpj
https://doi.org/10.1016/j.cirpj.2022.04.013
https://doi.org/10.1016/j.cirpj.2022.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirpj.2022.04.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirpj.2022.04.013&domain=pdf
mailto:martin.dahl@chalmers.se
mailto:christian.larsen@fcc.chalmers.se
mailto:endree@chalmers.se
mailto:kristofer.bengtsson@chalmers.se
mailto:fabian@chalmers.se
mailto:petter.falkman@chalmers.se
https://doi.org/10.1016/j.cirpj.2022.04.013

automated planning may perform tasks in arbitrary order and in
difficult to predict ways.

For preparation of traditional (i.e. fenced) industrial automation
systems, virtual commissioning (VC) is commonly used as a valida
tion tool. With virtual commissioning, an automation system’s
control system can be virtually wired up to a number of simulated
resources, physics engines, and material simulators [12]. This allows
for testing and validation to be performed in a virtual environment,
which can increase the efficiency of the commissioning of a new or
updated control system. These tests can also be formalized as
model-based testing [13]. Traditionally, this process is done as a final
validation step, but it has been argued that this process can be
performed even before the control system is finished [14], especially
when coupled with model-based control engineering [15]. In [15], a
framework called Integrated virtual preparation and commissioning
(IVPC) is introduced, where a model of the control system is used in
order to generate sequences of operations that can be executed in a
simulation environment that supports VC. This was extended to
support a closed loop model-based control system in [16], where
control was managed over an OPC UA connection. While an in
tegrated approach for the design of a production station has been
researched before (e.g. [17–19]), the aim of IVPC is to include also
control engineering into an iterative approach to automation system
design.

However, with tasks such as robot programming being replaced
by online algorithms, performing VC in the traditional sense be
comes also an integration challenge, due to all software involved. In
[11,20], the model-based control system of [16] was extended to
incorporate the Robot Operating System (ROS) as a middleware for
facilitating these softwares. Coupled with a physics engine, for ex
ample Gazebo [21], ROS-based systems are also well suited for va
lidation via simulation.

In Fig. 1, the IVPC activities are highlighted in the middle box. In
this paper we look specifically at the combination of preparation
work for robot motions with a control system based on automated
planning. We apply a model-based control design combined with
state of the art virtual preparation of robot motions, and virtually
validate the result using simulation. The model-based control
system design is supported by the open source software Sequence
Planner [11] (SP). SP is a model-based framework for control of ROS-
based (see Section 3.1) automation systems, which tries to handle
complexity by formal reasoning. It uses online planning to auto
matically try to reach the currently active goals, which enable flex
ible error recovery [22]. Additionally, it relies on formal synthesis for
safely composing reusable components [20]. This allows for con
straint-based modeling approach, where an initially free system is
constrained by formal specifications to only perform safe actions.
These constraints can be changed online, which allows for flexibility
as well as quick iterations during preparation. Combined with VC,
the model-based control framework can be used to solve some of the
engineering challenges in incorporating human-robot collaboration

in final assembly. The intelligent control system based on SP be
comes an enabler for IVPC in that the system can be created in an
iterative fashion. Simulation and testing is performed continuously
using simulated resources which are ROS components.

Contribution

When preparing the control logic for automation systems like the
one in the use-case, where the resources, including the control
system, are more or less autonomous, it is difficult to anticipate all
different behaviors that can arise when the system tries to fulfill its
current goals. The main contribution and focus of this paper is to
demonstrate how to interactively, and iteratively, solve some of the
engineering challenges in a virtual environment.

Applying the IVPC framework, we show how the combination of
a state of the art software for virtual preparation of robot motion and
product geometries with the SP control framework enables a truly
interactive workflow for automation system preparation. In this
framework, the virtual environment and the logic of the control
system can be continuously updated and validated.

We describe an application where a collaborative robot, with the
help of an operator, should perform various assembly tasks on a
diesel engine. Neither the position of the robot, nor the autonomous
guided vehicle carrying the engine (see Fig. 2), is static, which makes
it difficult to apply traditional off-line programming of the robots.
Additionally, the control system must be able to react properly to the
actions performed by the operator, who is allowed to intervene
freely.

To support multiple types of robots with dynamic work object
positions, the Robot Optimization Module of the IPS [23] is used. The
Robot Optimization Module of IPS contains algorithms for motion
planning and sequence optimization, enabling fast commissioning of
industrial robots. We have developed a simple integration of IPS into
ROS, which makes it possible to compute high quality robot paths
online. The online motion planner can be constrained during

Fig. 1. Integrated virtual preparation and commissioning (IVPC).

Fig. 2. Experimental setup of collaborative robot assembly station.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

130

preparation to disallow paths which are deemed not suitable (e.g.
unnecessarily complicated paths).

Outline

Section 3, briefly introduces the notation and the workings of SP
and IPS. Section 4.2, describes the proposed workflow. Then a case
study that highlights the interactive nature of the work is presented
in Section 4, with examples of details added to make the automation
system work given in Section 5. The paper ends with some con
cluding remarks in Section 6.

Related work

Since the type of automation system presented in this paper is a
concept of a future automation, the standard methodologies for
preparation do not apply. Especially when introducing intelligent
control that supports decision taking in an online fashion. In the
robotics community, several approaches that could support a similar
interactive preparation work flow exist. For example, the framework
ROSPlan [24] that uses PDDL-based models for automated task
planning and dispatching, SkiROS [25] that simplifies the planning
with the use of a skill-based ontology, MaestROB [26] that adds
natural language processing and machine learning to teach robots
new skills that are executed using ontology based planning, eTaSL/
eTC [27] that defines a constraint-based task specification language
for both discrete and continuous control tasks, and CoSTAR [28] that
uses Behavior Trees to define complex tasks, combined with a novel
way of defining computer perception pipelines. Applications that use
planning of robot skills have seen successful experimentation in
industrial settings [9,10].

However, these systems have been mainly robot-oriented (in
contrast to automation-oriented) and often focus on a single robot.
On the production side, research on how to design collaborative
stations have also been researched before (e.g. [17–19]), but this
body of research does not generally take flexible planning from the
control system into the perspective.

The IVPC framework built around SP and IPS provides a combi
nation of both high-level robotic tasks with more “traditional au
tomation” tasks – both low-level execution and state management of
a variety of different devices and offline preparation of geometry and
motion planning.

Preliminaries

This section briefly introduces the different tools and frameworks
used throughout the work. Specifically it covers: using ROS as an
integration layer, preparation and planning of robot motions in IPS,
and finally the model based control framework SP.

ROS

In order to ease integration and development of different types of
online algorithms for sensing, planning, and control of hardware,
various platforms have emerged as middleware solutions. One that
stands out is the Robot Operating System (ROS) [29]. In the current
version of ROS (ROS2 [30]), the communication architecture is based
on the Data Distribution Service (DDS) [31] to enable large scale
distributed systems to be built on top of it. ROS2 systems are com
posed of a set of nodes communicating by sending typed messages
over named topics using a publish/subscribe mechanism. The use of
standardized message types enables a quick and semi-standardized
way to introduce new drivers and algorithms to a system. For ex
ample, any robot that publishes its joint values in a certain way can
use MoveIt! [32], which builds on the Open Motion Planning Library
[33] that provides a multitude of state of the art motion planning

algorithms. ROS also gives easy access to a large amount of driver
software, which makes it easy to move from simulation to reality.
Since all communication is based on publish/subscribe, it is possible
to run systems where some nodes are simulations and some control
real hardware.

IPS

IPS is a software tool that implements algorithms for virtual
product realization [23]. It includes software modules for different
applications ranging from cable simulation to robot optimization,
etc. The IPS Robot Optimization Module, used in this paper, contains
a toolbox of algorithms for automatic off-line programming of in
dustrial robots. It allows virtual preparation by supporting kinematic
modeling, virtual geometry preparation for large meshes and point
clouds as well as algorithms for motion planning and robot motion
sequence optimization.

IPS contains a deterministic motion planner for industrial robots
that is inspired by probabilistic methods for motion planning such as
Rapidly-Exploring Random Trees (RRT) [34] and Probabilistic
Roadmap Methods (PRM) [35]. The robot motion sequence optimi
zation determines the order in which a set of planning targets
should be executed by the robot in a collision-free and cycle-time
minimal manner. This is done by formulating the problem as a
Generalized Traveling Salesman problem that is iteratively solved to
minimize the cycle-time, similar to the method proposed in [36].

Sequence Planner

SP is a model-based framework for control of intelligent auto
mation systems. To ease modeling and control, SP uses formal
models together with online planning to reach the current goal of
the automation system. It is an open source software and available
on github [37].

SP is based on models of resources in terms of their state, with
non-deterministic guarded actions (transitions) that can transition
the system between these states. Transitions exist in three kinds:
controllable, automatic, and effect. Controllable and automatic tran
sitions are taken by SP, while effect transitions are used to model the
environment. The resource models are composed and constrained by
formal specifications which automatically remove undesired states.
See Fig. 3 for an overview of how an automation system in SP is
structured. SP is based on planning in two levels: first with the op
eration planner to determine which operations should be run, then
with the transition planner to determine exactly how resources
should perform the operations.

SP uses a state based control design, where resources con
tinuously receive goal states from SP, and continuously update
measured states, which are inputs to SP. For example, consider a
simple indicator light, it may have a goal state ∈ {off, on} and a
measured state with the same domain. Contrary, a robot may have a
complex goal state that includes a frame to reach in space, perhaps
with additional active constraints such as speed or joint limits. SP
models the resources using a formalism with finite domain variables,
states that are unique valuations of the variables, and non-de
terministic transitions between states. Some definitions to clarify
follows.
Definition 1. A transition system (TS) is a tuple 〈S, → , I〉, where S is a
set of states, → ⊆ S × S is the transition relation and I ⊆ S is the
nonempty set of initial states.

Definition 2. A state s ∈ S is a unique valuation of each variable in the
system. E.g. s = 〈v1, v2, …, vn〉.

Variables have finite discrete domains, i.e. Boolean or enumera
tion types.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

131

The transition relation → define the transitions that modify the
system state:
Definition 3. A transition t has a guard g, which is a boolean function
over a state, g: S → {false, true}, and a set of action functions A where
a: S → S which updates the valuations of the state variables in a state.
We often write a transition as g∕A to save space.

In SP, resources include models of the behavior of the resources
bundled with ROS nodes as reusable components [20]. The behavior
models are non-deterministic transition systems that the operations
navigate using planning to reach their goals.
Definition 4. A resource i is defined as =r V V V T T T, , , , ,i i

M
i
G

i
E

i
c

i
a

i
e

where Vi
M is a set of measured state variables, Vi

G is a set of goal state
variables, Vi

E is a set of estimated state variables. Variables are of
finite domain. The set =V V V Vi i

M
i
G

i
E defines all state variables of

a resource. The sets Ti
c and Ti

a define controlled and automatic
transitions respectively. Ti

e is a set of effect transitions describing
the possible consequences to Vi

M of being in certain states.

Ti
c , Ti

a, and Ti
e have the same formal semantics, but are separated

due to their different uses: Controlled transitions Ti
c are taken when

their guard condition evaluates to true, only if they are also activated
by the planning system. Automatic transitions Ti

a are always taken
when their guard condition evaluates to true, regardless of if there
are any plans active or not. All automatic transitions are taken before
any controlled transitions can be taken. This ensures that automatic
transitions can never be delayed by the planner. Effect transitions Ti

e

define how the measured state is updated, and as such they are not
used during control like the control transitions Ti

c and Ti
a. They are

important to keep track of however, as they are needed for online
planning and formal verification algorithms. They are also used to
know if the plan is correctly followed – if expected effects do not
occur it can be due to an error.

As a clarifying example, consider a model of a door resource that
has a sensor for measuring whether it is opened or closed (c?

∈ {false, true}, where c? being true means the door is closed), and an
actuator for opening and closing the door (c! ∈ {false, true}, where c!

being true activates the actuator that opens the door).

The nodes in Fig. 4 represent the state combinations of the two
variables c? and c! and the edges represent transitions that change
the state. For example “start open (c)" is a controlled transition.
Regardless of whether its guard is true (c? ∧ c!), it needs to be ac
tivated by the planning system in order to update the state. If the
transition was automatic, SP would always (immediately) take the
transition in this state. The two “finish" transitions are effect tran
sitions. As such, they are only part of the formal model and not in
cluded when the system is being executed.

Given a set of resources, the system is initially allowed to take any
actions. Resource specifications, are defined as invariants over the
system state, and constrain the system to avoid unsafe regions
during execution. The negation of invariant formulas (e.g. the for
bidden states) are extended into larger sets of states using symbolic
backwards reachability analysis to properly deal with the un
controllability of automatic and effect transitions. The method used
is described in [38].

In addition to the variables defined by the resources, another set
of variables exist, decision variables. These define the state of the
system in abstract terms to plan which operations to execute. For
example, a decision variable could be the abstract state of a parti
cular resource, or the state of a product in the system. Sometimes
decision variables can be directly measured by resources, in which
case these measurements are copied into the decision variables,
usually after undergoing some form of transformation (for example
discretization).
Definition 5. An operation j is defined as oj = 〈pj, ej, gj, aj, sj〉, where pj

is a precondition over the decision variables defining when the
operation can start, a set of effect actions ej of completing the
operation, which are actions defined on the decision variables, as
well as a goal predicate gj defined over the resource variables. aj is a
set of actions for synchronizing the operation with the resource
state. Finally, the operation has an associated state variable sj

∈ {i, e, error}. Throughout the paper, operations are graphically
depicted as in Fig. 5.

When the precondition of an operation is satisfied, the operation
can start. The effect actions are then evaluated against the current
state, and the difference between the current state and the next state
is converted into a predicate. This predicate becomes the post-con
dition of the operation. E.g. if the effect of the operation is x ≔ y, and
y = 5 when the operation starts, then the post-condition (and thus its
planning goal) becomes x = 5. If the operation needs to update the
resource state, aj can additionally include actions from a transition

Fig. 3. The structure of a control system model in SP.

Fig. 4. Transition system modeling the example door resource.

Fig. 5. We use this graphical notation to visualize operations. For the operation j, the
precondition is pj, the effect is ej, the goal is gj and the set of actions is aj.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

132

among the resources, in which case gj is also conjuncted with the
guard of this transition.
Definition 6. The intention k is defined as ik = 〈pk, gk, ϕk, ak, sk〉,
where pk is a predicate over (all) the variables in the system, defining
when the intention starts (automatically), gk is a goal predicate
defined over the decision variables, ϕk is an optional LTL formula
over the decision variables, ak are a set of actions that can update
(all) variables in the system, that are applied when the intention
finishes, and sk ∈ {i, e, f} is the state of the intention.

The goals defined by the intentions over the decision variables is
the way the system is driven forward. The decision variables are
meant to be allowed to be changed at any time from the outside. It
can be that they can be changed to a high level state from which the
goal cannot be reached, in which case replanning occurs auto
matically. Not only does the planner allow SP to be agnostic about
the current resource state, it also allows for interrupting or canceling
currently running operations in a safe way – by simply changing the
goal state, the planning system will find the correct way to instead
reach the new goal.

In model checking [39], temporal properties are verified by
means of state space-exploration based on a set of initial states and a
set of transitions. The temporal properties are specified in exten
sions to propositional logic such as Computation Tree Logic (CTL) or
Linear Temporal Logic (LTL) [40]. For example, LTL has temporal
operators for expressing properties on the next state (○), that some
formula should always (□) hold, that it should eventually hold (◇),
and that one formula should hold until another one does (U). For
example, the formula □(x → ○y) expresses that it is always the case
that x implies y in the next state. Then an LTL model checking
problem is to prove that given a set of valid initial states, this for
mula always holds, or if this cannot be proven produce a counter
example.

By turning the problem around, and having the model checking
proving that a desired future state is not reachable, one can use the
counterexample as a plan, which, if followed, will reach that parti
cular state. In contrast to a more simplistic forward search, using
model checking allows SP to restrict the plans by providing addi
tional temporal specifications that need to hold.

SP continuously tries to find the shortest path that reaches the
goal of all currently executing operations. For this nuXmv [41], a well
known off the shelf model checker, is used. nuXmv supports bounded
model checking (BMC) [42]. In BMC, the model checking problem is
reduced to a boolean satisfiability problem with a bounded length in
the number of discrete “timesteps” from the initial states. One ad
vantage of BMC in this setting is that it produces counterexamples of
minimal length [42], i.e. the plans will never be longer than ne
cessary.

Case study

The application used as a case study in this paper is the result of
transforming an existing manual assembly station from a truck en
gine final assembly line, shown in Fig. 6, into an intelligent and
collaborative robot assembly station, shown in Fig. 2.

Description of assembly station

Diesel engines are transported to the assembly station on an
Automated Guided Vehicle (AGV). Material to be mounted on a
specific engine is loaded by an operator from kitting facades located
adjacent to the production line. An autonomous mobile platform
(MiR100) carries the kitted material to be mounted on the engine to
the collaborative robot assembly station.

In the station, a robot and an operator work together to mount
parts on the engine by using different tools suspended from the

ceiling. A dedicated camera system keeps track of operators, en
suring safe coexistence with machines. The camera system is also
used for gesture recognition.

After the MiR100 has arrived with the kitting material, a
Universal Robots (UR10) robot and the operator collaborate to lift a
heavy ladder frame on to the engine. After placing the ladder frame
on the engine, the operator informs the control system with a button
press on a smartwatch or with a gesture, after which the UR10
switches tools; the lifting end-effector is replaced with a nutrunner
for tightening bolts. During this tool change, the operator starts to
insert 24 bolts that the UR10 will tighten.

During the tightening of the bolts, the operator can mount three
oil filters. If the robot finishes the tightening operation first, it leaves
the nutrunner in a floating position above the engine and waits for
the operator. When the operator is finished mounting the oil filters,
the robot attaches a new end-effector for oil filter tightening. During
that time, the operator attaches two oil transport pipes on the en
gine, and uses the same nutrunner previously used by the robot to
tighten plates that hold the pipes to the engine. After executing
these operations, the AGV with the assembled engine, and the empty
MiR100 both leave the collaborative robot assembly station.

Application of IVPC to the case study

Fig. 7 highlights how the IVPC framework was used to inter
actively work on various aspects of the automation system for the
application described in the previous section.

The top left box corresponds to IPS in its normal off-line com
missioning usage. This includes positioning geometries, targets and
tool center points as well as iterating the available off-line robot
optimization algorithms. The SP model box corresponds to writing
constraints for the model based control system, for example using
input from the off-line preparation done in IPS. The SP model can be
subjected to formal verification via model checking, as shown in the
bottom box, “formal analysis”. Formal verification is used to prove
that the system operates according to specifications. But the SP
model describe only the discrete behavior of the system, and this
does not capture nuances w.r.t. dynamics and robot motions.
Additionally, because it is not always trivial to anticipate how certain
specifications affect the system, there is also a need to validate that
the specifications are correct [15]. This validation can be performed
by means of simulation, using SP in its execution mode (i.e. when
driving the control system). SP controls a number of simulated ROS
resources for validation via simulation. The top right box represents
the IPS online motion planner, which is used by the ROS resource for

Fig. 6. The original manual assembly station.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

133

the robot. In the case of a robot motion planning failure, the current
situation can be inspected with IPS used in its normal off-line mode.
Section 5 will show a concrete examples of the arrows marked with
“analysis” as a case study, by highlighting specific parts of the im
plemented automation system. The point of the case study is to
show how to interactively incorporate new information and iter
ating the design based on what is learned from simulation.

Technical setup

For the implementation described in the remainder of the paper,
three standard consumer PC:s connected over wired Ethernet was
used. IPS and SP were each run on a separate computer, as was the
simulated ROS nodes and software for visualizing the state of the
simulation. Communication between the systems is handled entirely
over ROS. Real-time aspects are not taken into consideration.

Preparation of the control system

To give an understanding of how the model-based control system
works, this section starts by defining the resources and states used
for control of a subset of the assembly procedures, specifically pla
cing and tightening the bolts, which can be done both by the op
erator and the robot, locating the position of the engine and the tool,
as well as performing tool change.

The resources are all controlled by individual ROS nodes, which
continuously receive goal states from SP. Resources include the ro
bots, the IPS motion planner, the smart tool, and the camera used for
localization. In this paper we do not describe the autonomous kitting
robot, the safety of the system, nor the mounting of the pipes and
oil-filters.

The building blocks of the model-based control system are in
tentions and operations. At a high level, we want to express that
eventually, all the bolts should be tightened. This is the intention
tighten all bolts. To achieve the goal that all bolts should be tightened,
operations that control the resources are needed. The intention and
the operations used are depicted in Fig. 8.

The next sections (Sections 5.1–5.5) relate to the initial devel
opment of the SP model in Fig. 7. In these steps, the basic logic
behavior of how the resources interact with each other and the
products are defined. In Sections 5.6.1–5.8, the upper parts of Fig. 7
are exemplified. These examples highlight how the interactive
nature with IPS in the loop is beneficial when developing the formal
model.

Resources

The operations define the low-level actions that need to be taken
by the resources in the system in terms of goal states. Often op
erations use more than one resource. Consider for example the
“locate” operations, which use the robot resource and the 3d camera
resource, or the tighten bolt operations, which use both the robot
resource and the smart tool resource. Fig. 9 depicts how these op
erations interact with the different resources. The green color
highlights what is currently executing in each layer.

Decision variables

Because control in the framework is based on moving from the
current state to a particular goal state, some key state variables need
to be defined. The engine, the ladder frame, the bolts, and the pipes,
are considered the products of the system. Other important states are
whether the positions of the engine and the tools are known or not.
This information is modeled as decision variables. See Table 1 for
their definitions.

The decision variables represent the high-level state of the
system, which is available to the intentions and operations.

Fig. 7. Schematic of the workflow in the proposed architecture.

Fig. 8. The intention tighten all bolts together with the operations available to the
system.

Fig. 9. The intention tighten all bolts is executing, which results in a sequence of
operations that each trigger a number of resource transitions in order to reach the
goal. The green color highlights what is currently executing in each layer.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

134

Operations

The operations are the glue between the resources in the system
and the product state. Consider for example a bolting operation as
shown in Fig 10. This operation has as its goal that the tool should
have registered that the correct torque has been reached
(tool.tqr) with the robot at bolt position i (bfi): tool.tqr ∧ ro
bot.pos = bfi. The result of reaching this state is bi ≔ tightened.

The other operations in Fig. 8 are defined in a similar way. For
example, for the 3d camera, the goal state is simply camera.scan =
done. Without additional constraint, this allows the robot be in any
location when performing the 3d scanning, which could result in
performing the scanning in the wrong locations. Specifications that
prevent this are added in Section 5.4.

Constraining the resources

To ensure that the planner produces the correct outcomes, the
resources in the automation system can be constrained either by
providing invariant propositions, or conjuncting the transitions re
sources state machines with additional guard expressions. For ex
ample, the invariant

=ap bf sa
i

i
1 24

where ap is the position last visited by the robot, bfi, is the target
frame of the robot above bolt i, and sa is a boolean variable in
dicating that the spinner tool is attached to the robot. This effectively
forbids the robot from moving to above the bolts without holding
the spinner tool.

For the 3d camera, a similar constraint could be written:

=
=

camera scan camera object

ap rs

(. (. tool))
(tool)scanposition

where ap is the position last visited by the robot, rs is a predicate for
“robot still”, “camera.scan” is an I/O that starts the scanning proce
dure and “camera.object” defines which object to perform matching

against. The implication ensures that this state cannot be reached
unless the robot is in the correct location and is not moving.

Intentions

The intentions define goals over the decision variables. In this
example, the goal is simple: all bolts should be in the tightened state.

Table 2 defines the intentions in the system. These define the
different modes of operation, for example tightening the bolts.
Section 5.6 will make clear why bolting is separated into two dif
ferent intentions, and what ϕc and ϕr are.

Constraining operations

The operations chosen for execution depend on the currently
active intentions, combined with the currently active specifications.
Some specifications are known before the preparation work has
started. Usually these specifications relate to the production process.
We call these specifications product specifications. For example, the
ladder frame has a requirement on the order in which the bolts are
tightened. Other constraints on the operations relate to more prac
tical aspects. For example, in order to even start tightening the bolts,
the system must be confident in its location measurement for the
engine. I.e. engine_scanned must be true. This can be expressed as
a simple precondition on the bolting operations. Having the planner
in the loop means that a bolting operation could potentially be
aborted if engine_scanned suddenly becomes false.

We will exemplify implementing the product specifications using
the bolts and the ladder frame.

Sequence specification
The product specification is that the bolts at the corners of the

ladder frame should be tightened before the other ones. To simplify
the formulas below, the corner bolts have been given indices 1–4,
see Fig. 11. This is a hard requirement that should lead to an error if
the operator does it in any other way. As such, it is naturally given as
an invariant proposition over the variables representing the state of
the bolts.

= =b tightened b tightened
i

i
j i

j
2 4 1 1 (1)

For the intention “tighten corner bolts”, ϕc in Table 2 is the constraint
in (1).

If there is no reason for the other bolts to be tightened in a
specific order, there should not be a product specification that re
stricts the system unnecessarily. Such design choices can then be
done at the later stages of preparation, where more details are
known about the specific resources in the system – perhaps there
are physical constraints that in practice produce a certain ordering
anyway.

Now, a suitable order for visiting the remaining bolts by the robot
could be prepared offline using IPS. This ordering can take into ac
count optimization aspects such as execution time, but it could also
take into account, for example, where the operator is expected to be
working during assembly, to reduce interference. This is represented
by the top left “analysis” arrow in Fig. 7. Since the control system is

Table 1
Decision variables in the example. n = 1, …, 24.

Variable Domain

b_n {not_placed, placed, untightened, tightened}
engine_present {false, true}
engine_scanned {false, true}
tool_scanned {false, true}
tool_attached {false, true}

Fig. 10. Operation defining the tightening of bolt i. The low-level goal is that the tool
should have registered torque reached (tool.tqr) with the robot at bolt position
i (bfi).

Table 2
Intentions describe the main production activities.

Intention Precondition Postcondition Spec

Tighten corner bolts

=
bolt tigthened

i
i

1

4
=

=
bolt tightened

i
i

1

4 ϕc

Tighten remaining bolts
=

= =
bolt tigthened bolt tigthened

i
i

i
i

1

4

5

24
=

=
bolt tightened

i
i

5

24 ϕr

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

135

always available for simulation (bottom right part of Fig. 7), the or
dering suggested by IPS can be applied online to try different sce
narios in a simulated setting, highlighted by the middle “analysis”
arrow in Fig. 7.

Suppose for simplicity that the order in which to tighten the
remaining bolts should simply be to run them in the order of their
indices (i.e. 5–24). This is a soft requirement; the bolts should be
tightened in order when possible, but we allow bolts to be tightened
out of order. This means that it should not be an error for the op
erator to go ahead and tighten a few bolts given the opportunity.
Likewise, it should not be an error to restart production with a few
bolts arbitrarily tightened. So this sequence constraint cannot be
expressed as in (1).

Priority sequence specification
For this we introduce a slightly different type of sequence spe

cification, the priority sequence. Since the actions of the operations
are considered atomic during planning, we can instead ensure that
the transition between untightened and tightened can only happen
when the previous bolt in the priority sequence has been tightened.
This allows freedom for the bolti (for i > 4) state variables to be in
the tightened state regardless of the states of the bolts with lower
indices, but tightening bolts with an index higher than the lowest
bolt that remains untightened is not allowed.

As the planning system supports arbitrary LTL expressions, we
can express this transitioning constraint using the next operator as
in (2)

= =

=

b untightened b tightened

b tightened

i
i i

j i
j

6 24

5 1 (2)

For the intention “tighten remaining bolts”, ϕr in Table 2 is set to
(2). These two intentions can then be used to handle all bolting as

done by the robot, while still allowing freedom for the operator to
tighten bolts.

Interactively updating specifications

Consider the case of the bolting again. With the help of virtual
validation it is possible to investigate how the specification works in
different circumstances. This highlights the top left “analysis” arrow
in Fig. 7, where a specific situation is analyzed in IPS and the SP
model is updated accordingly.

In Fig. 12, a (virtual) pipe has been placed in such a way that
bolting is not possible for the robot. When the intention in Fig. 12a is
active, a planning request is made for the next bolt in the given
bolting sequence. Since this bolt is not reachable (Fig. 12b), the ur10
resource goes into an error state (ur10.state = planningError). When
this happens, suppose the robot should just skip the unreachable
bolts. The tighten bolt operation is extended with an additional goal
state: ur10.state = planningError/ bolt ≔ skipped and the
domain of the decision variable is extended to include skipped.
Similarly the effect of the intention can be changed to
bi = tigthened ∨ bi = skipped to instead indicate that the bolts should
all have been processed (but some may have failed).

The effects of changing the operation and the domain of the bolt
variables to also include “skipped” results in a change to the gen
erated planning problem. This means a user can run into this pro
blem, change the desired operation and then continue executing
with the new underlying model.

With the updated operations, it is possible to add another in
tention that can be run later in the process, which can tighten any
remaining bolts. This sequence could be designed to be performed
either by the operator or the robot.

Handling a late change request

Assume that late in the process it is decided that a different type
of spinner tool also needs to be supported. Because of the reliance on
robot motion planning, it is very easy to replace the tool as no ad
ditional robot programming needs to be performed.

The new tool is depicted in Fig. 13b. With it, the system can
successfully tighten the bolts. However, when executing the locate
engine operation we get the planning error from the robot resource
again. Upon inspection, see Fig. 13b, it turns out that the tool would
collide with the engine upon moving to the “scan engine” location.

This problem can be fixed, without stopping the simulation, by
simply updating the scan engine operation to include an additional
precondition on the attachment state of the tool. When this is done
and the error state cleared from the intention, the system will au
tomatically leave the tool, scan the engine and pick the tool up again,
before resuming its current task. This corresponds to the middle
“analysis” arrow in Fig. 7. Alternatively, an updated target frame for
the scanning position could be prepared in IPS. It is a routine task to
check that the position is reachable with both types of tools.

Fig. 11. Indices and locations of the bolts.

Fig. 12. Testing robot motion planning with an obstacle.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

136

Conclusion

This paper has shown how an automation system can be effi
ciently prepared using an “online” approach to formal modeling,
allowing for declarative high level constraints to be written and
tested on a live simulation. The prerequisites include access to si
mulations of the resources in the system (provided by ROS), access
to an online motion planner to eliminate robot programming (pro
vided by IPS), and a control system based on constraints and plan
ning (provided by SP). Perhaps the main bottleneck is that formal
models of the resources behaviors is required in order to use SP for
safe control – something which is commonly not readily available
today. However, the formal models describing the resources can be
reused. This is especially true given that the composition of re
sources is done using specification rather than specific control po
licies implemented on a per-resource basis. This shifts the role of the
automation engineer from implementing control policies in com
puter code to writing and validating specifications. While writing
correct specifications is not easy, their correctness can be formally
proven, as well as interactively validated by running a simulation of
the system. This allows for an efficient preparation process involving
iterative verification and validation procedure. Additionally, by em
ploying automated planning as the driver of the system, flexibility
that would be very difficult to implement using traditional pro
gramming can be achieved. It should be stressed that no program
ming is needed in the approach. This makes it is difficult to compare
to traditional methods, as a fair comparison would have to involve
formal verification of the developed automation software. The re
liance on formal methods does pose an upper limit on the number of
resources that can be included, but in practice we have seen that the
framework can be applied to most “single station” sized systems
before needing to break it up into subsystems. The workflow pre
sented illustrates the latest iteration of the framework con
ceptualized in [15]. In addition to the case described in this paper, it
has been applied to a bin-picking system at a AB Volvo facility in
Sweden.

Declaration of Competing Interest

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Bauer, A., Wollherr, D., Buss, M., 2008, Human-robot Collaboration: A Survey.
International Journal of Humanoid Robotics, 05/01: 47–66. https://doi.org/10.
1142/S0219843608001303.

[2] Tsarouchi, P., Matthaiakis, A.-S., Makris, S., Chryssolouris, G., 2017, On a Human-
robot Collaboration in an Assembly Cell. International Journal of Computer
Integrated Manufacturing, 30/6: 580–589.

[3] Fast-Berglund, Å., Palmkvist, F., Nyqvist, P., Ekered, S., Åkerman, M., 2016,
Evaluating Cobots for Final Assembly. Procedia CIRP, 44:175–180.

[4] Villani, V., Pini, F., Leali, F., Secchi, C., 2018, Survey on Human-robot
Collaborationin Industrial Settings: Safety, Intuitive Interfaces and Applications.
Mechatronics, 55:248–266.

[5] He, W., Li, Z., Chen, C.L.P., 2017, A Survey of Human-centered Intelligent Robots:
Issues and Challenges. IEEE/CAA Journal of Automatica Sinica, 4/4: 602–609.

[6] Hanna, A., Bengtsson, K., Dahl, M., Erős, E., Götvall, P., Ekström, M., 2019,
Industrial Challenges When Planning and Preparing Collaborative and Intelligent
Automation Systems for Final Assembly Stations. 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 400–406.
https://doi.org/10.1109/ETFA.2019.8869014.

[7] Alterovitz, R., Koenig, S., Likhachev, M., 2016, Robot Planning in the Real World:
Research Challenges and Opportunities. AI Magazine, 37/2: 76–84.

[8] Perez, L., Rodriguez, E., Rodriguez, N., Usamentiaga, R., Garcia, D.F., 2016, Robot
Guidance Using Machinevision Techniques in Industrial Environments: A
Comparative Review. Sensors, 16/3. https://doi.org/10.3390/s16030335〈http://
www.mdpi.com/1424-8220/16/3/335〉.

[9] Schou, C., Andersen, R.S., Chrysostomou, D., Bøgh, S., Madsen, O., 2018, Skill-
based Instruction of Collaborative Robots in Industrial Settings. Robotics and
Computer-Integrated Manufacturing, 53:72–80.

[10] Krueger, V., Rovida, F., Grossmann, B., Petrick, R., Crosby, M., Charzoule, A.,
Garcia, G.M., Behnke, S., Toscano, C., Veiga, G., 2019, Testing the Vertical and
Cyber-physical Integration of Cognitive Robots in Manufacturing. Robotics and
Computer-Integrated Manufacturing, 57:213–229.

[11] Erös, E., Dahl, M., Hanna, A., Götvall, P.-L., Falkman, P., Bengtsson, K., 2020,
Development of an Industry 4.0 Demonstrator Using Sequence Planner and ros2.
in: Robot Operating System (ROS), Springer, pp. 3–29.

[12] Lee, C.G., Park, S.C., 2014, Survey on the Virtual Commissioning of Manufacturing
Systems. Journal of Computational Design and Engineering, 1/3: 213–222.

[13] Khan, A., Falkman, P., Fabian, M., 2019, Testing and Validation of Safety Logic in
the Virtual Environment. CIRP Journal of Manufacturing Science and Technology,
26:1–9. https://doi.org/10.1016/j.cirpj.2019.07.002〈http://www.sciencedirect.
com/science/article/pii/S1755581719300318〉.

[14] Oppelt, M., Urbas, L., 2014, Integrated Virtual Commissioning an Essential
Activity in the Automation Engineering Process from Virtual Commissioning to
Simulation Supported Engineering. IECON 2014 - 40th Annual Conference of the
IEEE Industrial Electronics Society. IEEE: 2564–2570.

[15] Dahl, M., Bengtsson, K., BergagÅrd, P., Fabian, M., Falkman, P., 2016, Integrated
Virtual Preparation and Commissioning: Supporting Formal Methods During
Automation Systems Development. IFAC-PapersOnLine, 49/12: 1939–1944.

[16] Dahl, M., Bengtsson, K., Fabian, M., Falkman, P., 2017, Automatic Modeling and
Simulation of Robot Program Behavior in Integrated Virtual Preparation and
Commissioning. Procedia Manufacturing, 11:284–291.

[17] Michalos, G., Spiliotopoulos, J., Makris, S., Chryssolouris, G., 2018, A Method for
Planning Human Robot Shared Tasks. CIRP Journal of Manufacturing Science and
Technology, 22:76–90. https://doi.org/10.1016/j.cirpj.2018.05.003〈http://www.
sciencedirect.com/science/article/pii/S1755581718300300〉.

[18] Hagemann, S., Stark, R., 2020, An Optimal Algorithm for the Robotic Assembly
System Design Problem: An Industrial Case Study. CIRP Journal of Manufacturing
Science and Technology, 31:500–513. https://doi.org/10.1016/j.cirpj.2020.08.
002〈http://www.sciencedirect.com/science/article/pii/S1755581720300894〉.

[19] Papakostas, N., Alexopoulos, K., Kopanakis, A., 2011, Integrating Digital
Manufacturing and Simulation Tools in the Assembly Design Process: A
Cooperating Robots Cell Case. CIRP Journal of Manufacturing Science and
Technology, 4/1: 96–100. https://doi.org/10.1016/j.cirpj.2011.06.016. (special
Section on Innovative and Cognitive Manufacturing Engineering). 〈http://www.
sciencedirect.com/science/article/pii/S1755581711000678〉.

[20] Dahl, M., Erős, E., Hanna, A., Bengtsson, K., Fabian, M., Falkman, P., 2019, Control
Components for Collaborative and Intelligent Automation Systems. 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 378–384. https://doi.org/10.1109/ETFA.2019.8869112.

[21] Koenig, N., Howard, A., 2004, Design and Use Paradigms for Gazebo, An Open-
source Multi-robot Simulator. IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 2149–2154.

[22] Dahl, M., Bengtsson, K., Falkman, P., 2021, Application of the Sequence Planner
Control Framework to an Intelligent Automation System with a Focus on Error
Handling. Machines, 9/3: 59.

[23] Industrial Path Solutions. 〈https://industrialpathsolutions.com/〉. [Accessed 10
November 2020] (2020).

[24] Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras,
N., Hurtós, N., Carrerasa, M., 2015, Rosplan: Planning in the Robot Operating
System. in: Proceedings of the Twenty-Fifth International Conference on
International Conference on Automated Planning and Scheduling, ICAPS’15.
AAAI Press: 333–341.

Fig. 13. Virtual validation after changing tool type.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

137

[25] Rovida, F., Crosby, M., Holz, D., Polydoros, A.S., Großmann, B., Petrick, R.P.A.,
Krüger, V., 2017, SkiROS–A Skill-Based Robot Control Platform on Top of ROS.
Springer International Publishing, Cham: 121–160. https://doi.org/10.1007/978-
3-319-54927-9_4.

[26] Munawar, A., De Magistris, G., Pham, T., Kimura, D., Tatsubori, M., Moriyama, T.,
Tachibana, R., Booch, G., 2018, Maestrob: A Robotics Framework for Integrated
Orchestration of Low-level Control and High-level Reasoning. 2018 IEEE
International Conference on Robotics and Automation (ICRA), 527–534. https://
doi.org/10.1109/ICRA.2018.8462870.

[27] Aertbeliën, E., De Schutter, J., 2014, etasl/etc: A Constraint-based Task
Specification Language and Robot Controller Using Expression Graphs. 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
1540–1546. https://doi.org/10.1109/IROS.2014.6942760.

[28] Paxton, C., Hundt, A., Jonathan, F., Guerin, K., Hager, G.D., 2017, Costar:
Instructing Collaborative Robots with Behavior Trees and Vision. 2017 IEEE
International Conference on Robotics and Automation (ICRA), 564–571. https://
doi.org/10.1109/ICRA.2017.7989070.

[29] Quigley, M., Faust, J., Foote, T., Leibs, J., 2009, Ros: An Open-source Robot
Operating System. ICRA Workshop on Open Source Software, 3/2.

[30] ROS 2. 〈https://index.ros.org/doc/ros2/〉. [Accessed 20 November 2020] (2020).
[31] Pardo-Castellote, G., 2003, Omg Data-distribution Service: Architectural

Overview. 23rd International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings, 200–206. https://doi.org/10.1109/ICDCSW.2003.
1203555.

[32] Şucan, I.A., Chitta, S., 2018, MoveIt!. 〈http://moveit.ros.org〉. [Accessed 26
February 2019].

[33] Şucan, I.A., Moll, M., Kavraki, L.E., 2012, The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19/4: 72–82. https://doi.org/10.1109/MRA.
2012.2205651〈http://ompl.kavrakilab.org〉.

[34] LaValle, S.M., Kuffner Jr, J.J., 2001, Randomized Kinodynamic Planning. The
International Journal of Robotics Research, 20/5: 378–400.

[35] Bohlin, R., Kavraki, L.E., 2000, Path Planning Using Lazy prm. in: Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065), 1, IEEE, pp.
521–528.

[36] Spensieri, D., Carlson, J.S., Ekstedt, F., Bohlin, R., 2015, An Iterative Approach for
Collision Free Routing and Scheduling in Multirobot Stations. IEEE Transactions
on Automation Science and Engineering, 13/2: 950–962.

[37] Sequence Planner. 〈https://github.com/sequenceplanner/sp-rust〉. [Accessed 8
January 2021] (2021).

[38] Dahl, M., Bengtsson, K., Fabian, M., Falkman, P., 2020, Guard Extraction for
Modeling and Control of a Collaborative Assembly Station. IFAC Workshop on
Discrete Event Systems, WODES, Nov. 2020.

[39] Grumberg, O., Clarke, E., Peled, D., 1999, Model Checking.
[40] Pnueli, A., 1977, The Temporal Logic of Programs. 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977). IEEE: 46–57.
[41] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,

S., Roveri, M., Tonetta, S., 2014, The nuXmv Symbolic Model Checker. CAV,
334–342.

[42] Biere, A., Cimatti, A., Clarke, E., Zhu, Y., 1999, Symbolic Model Checking Without
BDDs. International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer: 193–207.

M. Dahl, C. Larsen, E. Erős et al. CIRP Journal of Manufacturing Science and Technology 38 (2022) 129–138

138

	Interactive formal specification for efficient preparation of intelligent automation systems
	Introduction
	Contribution
	Outline

	Related work
	Preliminaries
	ROS
	IPS
	Sequence Planner

	Case study
	Description of assembly station
	Application of IVPC to the case study
	Technical setup

	Preparation of the control system
	Resources
	Decision variables
	Operations
	Constraining the resources
	Intentions
	Constraining operations
	Sequence specification
	Priority sequence specification

	Interactively updating specifications
	Handling a late change request

	Conclusion
	Declaration of Competing Interest
	References

