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(UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville,
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Abstract

We study low-lying zeros of L-functions attached to holomorphic cusp forms of level 1 and
large even weight. In this family, the Katz–Sarnak heuristic with orthogonal symmetry type was
established in the work of Iwaniec, Luo and Sarnak for test functions ϕ satisfying the condition
supp(ϕ̂)⊂ (−2,2). We refine their density result by uncovering lower-order terms that exhibit a
sharp transition when the support of ϕ̂ reaches the point 1. In particular, the first of these terms
involves the quantity ϕ̂(1) which appeared in the previous work of Fouvry–Iwaniec and Rudnick
in symplectic families. Our approach involves a careful analysis of the Petersson formula and
circumvents the assumption of the Generalized Riemann Hypothesis (GRH) for higher-degree
automorphic L-functions. Finally, when supp(ϕ̂)⊂ (−1,1) we obtain an unconditional estimate
which is significantly more precise than the prediction of the L-functions ratios conjecture.

1. Introduction

Katz and Sarnak [13] conjectured that the distribution of low-lying zeros in a familyF of L-functions
is governed by a certain random matrix model G(F) called the symmetry type of F . This symmetry
type has been determined in many families; see for example [3, 8, 12, 16, 21, 29], as well as the
references in [25]. Sarnak et al. [25] recently refined the Katz–Sarnak heuristics and introduced
invariants which allow for a conjectural determination of the symmetry type.

In the current paper we focus on the family of classical holomorphic cusp forms of level 1 and large
even weight k. As in [12, Chapter 10], this will ease the exposition and allow for a more transparent
analysis. For this family, the predictions of Katz and Sarnak were confirmed in the influential work
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of Iwaniec et al. [12] for a certain class of test functions, under the assumption of the Riemann
Hypothesis for Dirichlet L-functions and higher-degree automorphic L-functions. Our main goal is
to refine the Iwaniec–Luo–Sarnak density result by determining lower-order terms up to an arbitrary
negative power of logk.

More precisely, we fix a basis Bk of Hecke eigenforms in the spaceHk of holomorphic cusp forms
of level 1 and even weight k. We normalize so that for every

f(z) =
∞∑
n=1

af(n)n
k−1
2 e2πinz ∈ Bk,

the first coefficient satisfies af(1) = 1. Hence, the Hecke eigenvalues of f are given by λf(n) = af(n)
and for ℜ(s)> 1 the L-function of f takes the form

L(s, f) =
∞∑
n=1

λf(n)
ns

.

This classically extends to an entire function and satisfies a functional equation relating the value at
s to that at 1− s. In the sums over f ∈ Bk to be considered in this paper, we will scale each term with
the harmonic weight

ωf :=
Γ(k− 1)

(4π)k−1(f, f)
,

where

(f, f) :=
∫
SL2(Z)\H

yk−2|f(z)|2dxdy.

Note that k−1−ε ≪ε ωf ≪ε k−1+ε (see [12, Lemma 2.5], [7, p. 164] and [9, Theorem 2]), and
moreover

Ωk :=
∑
f∈Bk

ωf = 1+O(2−k) (1.1)

(takem= n= 1 in Proposition 3.3). The use of these essentially constant weights is standard (see for
instance [12, Chapter 10], [17]). Note that the situation can be drastically different with arithmetic
weights as in [14].

For an even Schwartz test function ϕ, we define the 1-level density

Dk(ϕ;X) :=
1
Ωk

∑
f∈Bk

ωf
∑
γf

ϕ
(
γf
logX
2π

)
,

where γf =−i(ρf− 1
2 ), with ρf running through the non-trivial zeros of L(s, f) (the Riemann

Hypothesis for L(s, f) states that γf ∈ R). Here, X is a parameter which will later be chosen to be
approximately equal to the average conductor of the L-functions L(s, f) in the relevant family of cusp
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forms f (note that the conductor of L(s, f) for f ∈ Bk is equal to k2). This standard choice ensures that
the normalized zeros γf

logX
2π have mean spacing asymptotically equal to 1. Moreover, for h a non-

negative and not identically zero smooth weight function with compact support inR>0, we define the
following averages of the 1-level densities over families of constant sign of the functional equation:
(Note that for any f ∈ Hk, the sign of the functional equation of L(s, f) is given by (−1)

k
2 .)

D±
K,h(ϕ) :=

1
H±(K)

∑
k≡3±1 mod 4

h
(k− 1

K

)
Dk(ϕ;K

2),

where H±(K) :=
∑

k≡3±1 mod 4 h
(
k−1
K

)
. The Katz–Sarnak prediction for this family (see [12],

[25, Conjecture 2 and Section 2.7]) states that

lim
K→∞

D±
K,h(ϕ) =

∫
R
ϕ̂ · Ŵ±, (1.2)

with

Ŵ+(t) = Ŵ(SO(even))(t) = δ0(t)+
η(t)
2

; Ŵ−(t) = Ŵ(SO(odd))(t) = δ0(t)−
η(t)
2

+ 1,

where δ0 is the Dirac distribution, η(t) = 1 for |t|< 1, η(±1) = 1
2 and η(t) = 0 for |t|> 1, and

ϕ̂(ξ) :=
∫
Rϕ(x)e

−2πiξxdx. Under the Riemann Hypothesis for Dirichlet and symmetric square L-

functions, the estimate (1.2) was confirmed in [12, Theorem 1.3] under the condition supp(ϕ̂)⊂
(−2,2). Note also that this work has been extended to families of more general automorphic
L-functions in [26].

We now state our main theorem which, in the case when the level N= 1, refines the estimate in
[12, Theorem 1.3] by weakening its assumptions and obtaining lower-order terms which contain a
phase transition as the support of ϕ̂ reaches 1.

Theorem 1.1 Let ϕ be an even Schwartz test function for which supp(ϕ̂)⊂ (−2,2). Assuming the
Riemann Hypothesis for Dirichlet L-functions, we have the estimate

D±
K,h(ϕ) =

∫
R
ϕ̂ · Ŵ± +

∑
1≤j≤J

Rj,hϕ̂(j−1)(0)± Sj,hϕ̂(j−1)(1)
(logK)j

+Oϕ,h,J

( 1
(logK)J+1

)
, (1.3)

where the constants Rj,h and Sj,h appearing in the lower-order terms only depend on the weight
function h (see 6.9, 6.10 and 6.11).

We deduce Theorem 1.1 from a power-saving formula for the 1-level density (see 6.1), which we
combine with an asymptotic evaluation of the resulting terms (see Theorem 6.6). In [12], Iwaniec,
Luo and Sarnak obtain the main term in Theorem 1.1 assuming the Riemann Hypothesis both for
Dirichlet L-functions and symmetric square L-functions. The first is to evaluate a term appearing
when splitting signs, and the second allows them to bound the contribution from the terms involving
the coefficients λf(p2). However, in [12] they claim that the symmetric square Riemann Hypothesis
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can be removed using the Petersson formula. Applying [12, Corollary 2.2] shows that this is possi-
ble whenever the support of ϕ̂ is contained in (− 5

3 ,
5
3 ). In this paper, we refine [12, Corollary 2.2]

(see Proposition 3.3) in order to achieve the same result with the extended support interval (−2,2).
Our improvement ultimately boils down to a more precise decomposition of the involved ranges
and a careful application of bounds on Bessel functions. The specific estimate that we obtain is the
following:

∑
f∈Bk

ωfλf(m)λf(n) = δ(m,n)+Oε

(
(m,n)

1
2 (mn)

1
4+ε

k
+
k

1
6 (m,n)

1
2

(mn)
1
4−ε

)
(1.4)

(note that in the range mn≤ k2/(4πe)2 the above error term can be replaced by a term with expo-
nential decay in k). In particular, when (m,n) = 1 this estimate is non-trivial in the range k

2
3+ε ≪

mn≪ k4−ε, whereas [12, Corollary 2.2] is nontrivial up to mn≪ k
10
3 −ε.

The terms involving ϕ̂(j)(1) in (1.3) are responsible for a sharp transition at 1 in these orthogonal
families and are analogous to those obtained in symplectic families in [3, 5, 6, 24, 28]. Indeed, in the
family of real Dirichlet characters considered in [5], after applying the explicit formula and treating
the resulting sums over primes by repeatedly using the Poisson summation formula, one obtains
lower-order terms involving ϕ̂(j)(1). This work was inspired by the function field case considered
in [24], in which, using Poisson summation, the 1-level density is turned into an average of the
trace of the Frobenius class in the hyperelliptic ensemble, from which a transition term is isolated
using the explicit formula. Transition terms also surface in predictions coming from the L-function
ratios conjecture [6, 18, 28]; in this case one needs to compute averages of ratios of local factors at
infinity. In the current situation, these terms come from a significantly different source, namely from
a careful analysis of averages of Bessel functions and Kloosterman sums coming from the Petersson
trace formula. In the related situation of families of holomorphic cusp forms in the level aspect, the
first transition term was previously isolated using an integral identity for the Bessel function [18].
Independent of the use of different methods, this seems to indicate that a transition in lower-order
terms should exist whenever the symmetry type of a family is even or odd orthogonal or symplectic.

Interestingly, averaging over all even values of the weight k, we find that

1
H(K)

∑
k≡0 mod 2

h
(k− 1

K

)
Dk(ϕ;K

2) =

∫
R
ϕ̂ · Ŵ+

∑
1≤j≤J

Rj,hϕ̂(j−1)(0)
(logK)j

+Oϕ,h,J

( 1
(logK)J+1

)
,

where Ŵ= Ŵ(O) := 1
2 + δ0 and H(K) := H+(K)+H−(K). Hence, as expected we see that there is

no transition at 1 in this mixed signs family (see also [17, Theorem 1.6]). We should point out that
for similar reasons, there is no transition in mixed sign families of holomorphic cusp forms of fixed
weight and of large level [17, 23].

Remark 1.2 One can explicitly compute the constants Rj,h and Sj,h in Theorem 1.1. In particular, the
first of these are given by

R1,h = S1,h =−γ+

∫∞
0 h · log∫∞

0 h
− log(4π)−

∑
p

logp
p(p− 1)

.
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Constants similar to R1,h have appeared previously in the literature on low-lying zeros; cf., for
example, [23] and the references therein.

We now state our results for test functions whose Fourier transform is supported in the interval
(−1,1). Under this restriction our estimates are substantially more precise. Indeed, we do not need
the GRH assumption, the error term is exponentially small in the weight k, and we do not need the
average over k (we set X= k2 in Dk(ϕ;X)).

Theorem 1.3 Let ϕ be an even Schwartz test function for which supp(ϕ̂)⊂ (−1,1). Then the
(unaveraged) 1-level density satisfies the estimate

Dk(ϕ;k
2) =

1
log(k2)

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit

log(k2)

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit

log(k2)

))
ϕ(t)dt (1.5)

+ 2
∑
p

1
p
ϕ̂
( 2logp
log(k2)

) logp
log(k2)

− ϕ̂(0)
logπ
logk

+O
(
k

3
2 2−k

)
.

Remark 1.4

(1) We emphasize that Theorem 1.3 is unconditional. Moreover, the error term in (1.5) is expo-
nentially small, in particular this is significantly more precise than predictions from the ratios
conjecture [1, 2, 17]. This comes from exponential bounds on the Bessel functions occurring in
the Petersson trace formula (see 3.2).

(2) The Katz–Sarnak main term in this case is given by ϕ̂(0)+ ϕ(0)
2 .One can extract this term from

(1.5) by applying Lemmas 2.2 and 4.1.
(3) The first estimate for Dk(ϕ;k2) was obtained by Iwaniec, Luo and Sarnak [12, Theorem 1.2],

who showed that the Katz–Sarnak prediction holds in this family under the condition supp(ϕ̂)⊂
(−1,1). Their estimate was refined byMiller [17, Lemmas 4.2 and 4.4], who obtained a formula
with the error term Oε(k

σ
2 −

5
6+ε), under the same condition.

The paper is divided as follows. In Sections 2 and 3 we discuss prerequisites, establish (1.4)
and discard higher prime powers in the explicit formula. Section 4 is dedicated to the proof of
Theorem 1.3. Finally, in Section 5 we apply estimates on averages of Bessel functions to isolate
a transition term, which we carefully evaluate in Section 6.

2. Explicit formula

We begin by recalling the explicit formula for holomorphic cusp form L-functions in the case where
the level equals 1.
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Lemma 2.1 Let ϕ be an even Schwartz test function whose Fourier transform has compact support.
We have the formula

Dk(ϕ;X) =−2ϕ̂(0)
logπ
logX

+
1

logX

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit
logX

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt (2.1)

− 2
Ωk

∑
f∈Bk

ωf
∑
p,ν

αν
f (p)+βν

f (p)

p
ν
2

ϕ̂
(ν logp
logX

) logp
logX

.

Here, αf(p) and βf(p) are the local coefficients of the L-function

L(s, f) =
∏
p

(
1−

αf(p)
ps

)−1(
1−

βf(p)
ps

)−1
(ℜ(s)> 1);

in particular we have that |αf(p)|= |βf(p)|= 1.

Proof. For f ∈ Bk, the formula [12, (4.11) with a typo corrected] reads

∑
γf

ϕ
(
γf
logX
2π

)
=

1
logX

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit
logX

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt

− 2ϕ̂(0)
logπ
logX

− 2
∑
p,ν

αν
f (p)+βν

f (p)

p
ν
2

ϕ̂
(ν logp
logX

) logp
logX

.

Summing over f ∈ Bk against the weight ωf we obtain the desired formula. □

We now estimate the integral involving the logarithmic derivative of the gamma function in (2.1).

Lemma 2.2 Let ε> 0 and let ϕ be an even Schwartz test function. Then we have the estimate

1
logX

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit
logX

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt= ϕ̂(0)

( log(k2)− log16
logX

)
+Oε(k

−1+ε).
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Proof. Using more terms in the Stirling approximation, the estimate in Lemma 2.2 can be refined to
an asymptotic series in descending powers of k. Applying Stirling’s formula

Γ′

Γ
(z) = logz+O(|z|−1)

in the region ℜ(z)> 0, we see that

1
logX

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit
logX

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt

=
1

logX

∫
R

(
log
(1
4
+
k+ 1
4

+
πit
logX

)
+ log

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt+O(k−1)

=
1

logX

∫ kε

−kε

(
log
(1
4
+
k+ 1
4

+
πit
logX

)
+ log

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt+Oε(k

−1)

=
1

logX

∫ kε

−kε
log
( k2
16

)
ϕ(t)dt+Oε(k

−1+ε).

The result follows from extending the integral to R. □

3. The Petersson trace formula and related estimates

In order to handle the term involving sums over prime powers in (2.1), we will apply the Petersson
trace formula. For m,n ∈ Z and c ∈ N, we define the Kloosterman sum

S(m,n;c) :=
∑

x mod c
(x,c)=1

e
(mx+ nx

c

)
,

where x denotes the multiplicative inverse of x modulo c. We will repeatedly use the classical Weil
bound (see for instance [11, Corollary 11.12])

|S(m,n;c)| ≤ τ(c)(m,n,c)
1
2 c

1
2 .

Lemma 3.1 Let m,n,k ∈ N, with 2 | k. We have the exact formula

∑
f∈Bk

ωfλf(m)λf(n) = δ(m,n)+ 2πik
∑
c≥1

c−1S(m,n,c)Jk−1

(4π√mn
c

)
, (3.1)

where Jk−1 is the Bessel function of order k − 1.

Proof. See [22] or [11, Proposition 14.5]. □

We recall the following bound on the Bessel function.



8 L. DEVIN et al.

Lemma 3.2 Let k ∈ N. We have the bound

Jk−1(x)≪min
( 1
(k− 1)!

( x
2

)k−1
, x−

1
4 (|x− k+ 1|+ k

1
3 )−

1
4

)
.

Proof. See [12, (2.11’) and (2.11”)], which for the range x≥ k2 follows from [27], specifically
equations (1) p.49, (2) p.77, (6) p.78, (1) and (3) p.199, (1) p.202, (4) p.250, (5) p.252, and for the
remaining range follows from [15, Theorem 2]. □

In [12, Corollary 2.2], this bound is shown to imply the estimate∑
f∈Bk

ωfλf(m)λf(n) = δ(m,n)+O
(
k−

5
6 (mn)

1
4 τ3((m,n)) log(2mn)

)
,

which is non-trivial in the range mn≪ k
10
3 −ε. By a more careful decomposition of the sum over c

in (3.1), we establish a more precise estimate which for coprime m and n is non-trivial in the wider
range mn≪ k4−ε.

Proposition 3.3 Let ε> 0, and let m,n,k ∈ N, with 2 | k. We have the estimate

∑
f∈Bk

ωfλf(m)λf(n) = δ(m,n)+Oε

(
(m,n)

1
2 (mn)

1
4+ε

k
+
k

1
6 (m,n)

1
2

(mn)
1
4−ε

)
.

Moreover, in the range mn≤ k2/(4πe)2, we have the exponentially precise estimate

∑
f∈Bk

ωfλf(m)λf(n) = δ(m,n)+O

(
2−k(mn)

1
4 log(2mn)

∏
p|(m,n)

(
1+

3
√
p

))
. (3.2)

Proof. We bound the rightmost term in the statement of Lemma 3.1, by combining the Weil bound
with Lemma 3.2, as follows:

∑
c≥1

c−1S(m,n,c)Jk−1

(4π√mn
c

)
≪

∑
c≤ 4π

√
mn

k−1 − 4π
√
mn

k5/3

c−
1
4 τ(c)

(m,n,c)
1
2

(mn)
1
8

∣∣∣4π√mn
c

− k+ 1
∣∣∣− 1

4

+
∑

4π
√
mn

k−1 − 4π
√
mn

k5/3
<c< 4π

√
mn

k−1 + 4π
√
mn

k5/3

c−
1
4 τ(c)

(m,n,c)
1
2

(mn)
1
8

k−
1
12

+
∑

4π
√
mn

k−1 + 4π
√
mn

k5/3
≤c< 4eπ

√
mn

k

c−
1
4 τ(c)

(m,n,c)
1
2

(mn)
1
8

∣∣∣4π√mn
c

− k+ 1
∣∣∣− 1

4

+
∑

c≥ 4eπ
√
mn

k

(m,n,c)
1
2 τ(c)c−

1
2

1
(k− 1)!

(2π√mn
c

)k−1
= S1 + S2 + S3 + S4.
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We first bound S4. To do so, note that

S4 =
1

(k− 1)!
(2π

√
mn)k−1

∑
d|(m,n)

d
1
2

∑
c≥ 4eπ

√
mn

k
(c,(m,n))=d

τ(c)c−k+ 1
2

≤ 1
(k− 1)!

(2π
√
mn)k−1

∑
d|(m,n)

τ(d)d−k+1
∑

f≥ 4eπ
√
mn

dk
(f,(m,n)/d)=1

τ(f)f−k+ 1
2

≪ 1
(k− 1)!

(2π
√
mn)k−1

( k
4eπ

√
mn

)k− 3
2
log(2mn)

∑
d|(m,n)

τ(d)

d
1
2

≪ 2−k(mn)
1
4 log(2mn)

∏
p|(m,n)

(
1+

3
√
p

)
,

by the bound
∑

ℓ≥1 τ(p
ℓ)p−

ℓ
2 ≤ 3/

√
p which holds for large enough p as well as Stirling’s approx-

imation in the form (k− 1)!∼
√
2π(k− 1)( k−1

e )k−1. Note also that S1,S2 and S3 are all empty
whenever mn≤ k2/(4πe)2 and hence (3.2) follows.

We now assume that mn> k2/(4πe)2. A straightforward computation shows that

S2 ≪ε k
− 1

12 (m,n)
1
2 (mn)−

1
8+ε

∑
4π

√
mn

k−1 − 4π
√
mn

k5/3
<c< 4π

√
mn

k−1 + 4π
√
mn

k5/3

c−
1
4

≪ k−
3
2 (m,n)

1
2 (mn)

1
4+ε + k

1
6 (m,n)

1
2 (mn)−

1
4+ε,

where the second term accounts for the possibility that the sum contains only one term. As for S1,
we compute that

S1 ≪
∑

c≤ 2π
√
mn

k−1

τ(c)
(m,n,c)

1
2

(mn)
1
4

+
∑

2π
√
mn

k−1 <c≤ 4π
√
mn

k−1 − 4π
√
mn

k5/3

τ(c)
(m,n,c)

1
2

(mn)
1
8

∣∣∣4π√mn− c(k− 1)
∣∣∣− 1

4

≪ε
(mn)

1
4 log(2mn)
k

∏
p|(m,n)

(
1+

3
√
p

)
+ k

1
6 (m,n)

1
2 (mn)−

1
4+ε

+
∑

2π
√
mn

k−1 <c≤⌊ 4π
√
mn

k−1 ⌋− 4π
√
mn

k5/3

τ(c)
(m,n,c)

1
2

(mn)
1
8

∣∣∣4π√mn− c(k− 1)
∣∣∣− 1

4
.

Making the change of variables b= ⌊ 4π
√
mn

k−1 ⌋− c, we see that the sum over c is

≪ε (m,n)
1
2 (mn)−

1
8+ε

∑
4π

√
mn

k5/3
≤b< 2π

√
mn

k−1

|b(k− 1)|− 1
4 ≪ k−1(m,n)

1
2 (mn)

1
4+ε.
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In a similar way we see that S3 ≪ε k−1(m,n)
1
2 (mn)

1
4+ε + k

1
6 (m,n)

1
2 (mn)−

1
4+ε, and the proof is

finished. □

In the next lemma, we apply Proposition 3.3 in order to discard higher prime powers in the explicit
formula (2.1).

Lemma 3.4 Assume that k ∈ 2N, X ∈ R≥2 and the even Schwartz test function ϕ are such that Xσ <

k4, where σ :=sup(supp(ϕ̂)). Then we have the following estimate on the 1-level density:

Dk(ϕ;X) = ϕ̂(0)
( log(k2)− log(16π2)

logX

)
+ 2
∑
p

1
p
ϕ̂
(2logp
logX

) logp
logX

− 2
∑
f∈Bk

ωf
∑
p

λf(p)

p
1
2

ϕ̂
( logp
logX

) logp
logX

+Oε

(
X

σ
4 +ε

k
+

1

k
1
3−ε

)
. (3.3)

Assuming the stronger condition Xσ < (k/4πe)2, we have the more precise estimate

Dk(ϕ;X) =
1

logX

∫
R

(
Γ′

Γ

(1
4
+
k+ 1
4

+
πit
logX

)
+

Γ′

Γ

(1
4
+
k− 1
4

+
πit
logX

))
ϕ(t)dt

− 2ϕ̂(0)
logπ
logX

+ 2
∑
p

1
p
ϕ̂
(2logp
logX

) logp
logX

− 2
∑
f∈Bk

ωf
∑
p

λf(p)

p
1
2

ϕ̂
( logp
logX

) logp
logX

+Oε

(k 1
2+ε

2k

)
.

(3.4)

Proof. The goal of this proof is to estimate the terms with p,ν ≥ 2 in (2.1). By the Hecke relations,
the sum of those terms is equal to

− 2
Ωk

∑
f∈Bk

ωf
∑
p,ν≥2

λf(pν)−λf(pν−2)

p
ν
2

ϕ̂
(ν logp
logX

) logp
logX

.

From Proposition 3.3 and (1.1), we see that

− 2
Ωk

∑
f∈Bk

ωf
∑
p,ν≥2

λf(pν)

p
ν
2

ϕ̂
(ν logp
logX

) logp
logX

≪ε 2
−k

∑
p,ν≥2

p≤min(Xσ/ν ,(k/4πe)2/ν)

p−
ν
4 +ε +

∑
p,ν≥2

min(Xσ/ν ,(k/4πe)2/ν)<p≤Xσ/ν

p−
ν
2 +ε
(
k−1p

ν
4 + k

1
6 p−

ν
4
)

≪ε k
1
2+ε2−k+ I[Xσ>(k/4πe)2] ·

(
k−1X

σ
4 +ε + k−

1
3+ε
)
,
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where IP is 1 if P is true and 0 otherwise. Similarly,

2
Ωk

∑
f∈Bk

ωf
∑
p

ν≥3

λf(pν−2)

p
ν
2

ϕ̂
(ν logp
logX

) logp
logX

≪ε 2
−k+ I[Xσ>(k/4πe)2] · k−

1
3+ε.

The only terms left are

2
Ωk

∑
f∈Bk

ωf
∑
p

λf(1)
p

ϕ̂
(2logp
logX

) logp
logX

= 2
∑
p

1
p
ϕ̂
(2logp
logX

) logp
logX

.

We conclude the proof by applying Lemmas 2.1 and 2.2, and (1.1). □

4. 1-Level density: unconditional results

In this section we evaluate the 1-level density Dk(ϕ;X), for test functions satisfying sup(supp(ϕ)) <
1, unconditionally. We begin by asymptotically evaluating the second term on the right-hand side of
(3.3).

Lemma 4.1 Let ϕ be an even Schwartz test function. For any fixed J≥ 1, we have the estimate

2
∑
p

1
p
ϕ̂
(
2
logp
logX

) logp
logX

=
ϕ(0)
2

+
∑
1≤j≤J

cjϕ̂(j−1)(0)
(logX)j

+OJ

( 1
(logX)J+1

)
,

where

c1 := 2+ 2
∫ ∞

1

θ(t)− t
t2

dt

and

cj :=
2j

(j− 2)!

∫ ∞

1
(log t)j−2

( log t
j− 1

− 1
)θ(t)− t

t2
dt

for j≥ 2, with θ(t) :=
∑

p≤t logp.

Proof. Performing summation by parts, we reach the following identity:

2
logX

∑
p

logp
p

ϕ̂
(
2
logp
logX

)
=

2
logX

∫ ∞

1

1
t
ϕ̂
(
2
log t
logX

)
dθ(t)

=
ϕ(0)
2

+
2ϕ̂(0)
logX

− 2
logX

∫ ∞

1

(
2
ϕ̂′(2 log t

logX

)
logX

− ϕ̂
(
2
log t
logX

))θ(t)− t
t2

dt.
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By the prime number theorem in the form θ(t)− t≪ texp(−2c
√
log t), we see that for any 0< ξ < 1,

∫ ∞

Xξ/2

(
2
ϕ̂′(2 log t

logX

)
logX

− ϕ̂
(
2
log t
logX

))θ(t)− t
t2

dt≪ exp
(
− c
√
ξ logX

)
.

Moreover, expanding into Taylor series and applying the prime number theorem, we see that

2ϕ̂(0)
logX

− 2
logX

∫ X
ξ
2

1

(
2
ϕ̂′(2 log t

logX )

logX
− ϕ̂
(
2
log t
logX

))θ(t)− t
t2

dt

=
2ϕ̂(0)
logX

+ 2
∑
0≤j≤J

1
j!

(
ϕ̂(j)(0)− 2

ϕ̂(j+1)(0)
logX

)∫ X
ξ
2

1

(2log t)j

(logX)j+1

θ(t)− t
t2

dt

+OJ

(∫ X
ξ
2

1

(2log t)J+1

(logX)J+2

θ(t)− t
t2

dt

)
=

∑
1≤j≤J+1

cjϕ̂(j−1)(0)
(logX)j

+OJ

( 1
(logX)J+2

+ exp(−c
√
ξ logX)

)
.

The result follows from selecting ξ = (logX)−1+δ for some δ > 0. □

We now set X= k2 and prove Theorem 1.3.

Proof of Theorem 1.3. We apply Proposition 3.3 and obtain that the second prime sum in (3.4) satisfies
the bound

2
∑
f∈Bk

ωf
∑
p

λf(p)

p
1
2

ϕ̂
( logp
log(k2)

) logp
log(k2)

≪ k
3σ
2 2−k.

Now, the desired result follows immediately from Lemma 3.4. □

5. 1-Level density averaged over the weight: extended support

In this section we study the quantities D+
K,h(ϕ) and D−

K,h(ϕ), that is we average the 1-level density
Dk(ϕ;K2) over k≍ K against the weight h( k−1

K ).

Lemma 5.1 ([10, Lemma 5.8], [12, Corollary 8.2]) For h a non-negative smooth function with
compact support in R>0 and for any K≥ 2, we have the estimates

2
∑

k≡0 mod 2

h
(k− 1

K

)
Jk−1(x) = h

( x
K

)
+O

( x
K3

)
;

2
∑

k≡0 mod 2

ikh
(k− 1

K

)
Jk−1(x) =− K√

x
ℑ
(
ζ8e

ixℏ
(K2

2x

))
+O

( x
K4

)
,
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where ζ8 = e2πi/8 and ℏ(x) =
∫∞
0

h(
√
u)√

2πu
eixudu (as noted in [12, p. 102], ℏ(x) is a Schwartz function).

In the next lemma we estimate the total weightH±(K) =
∑

k≡3±1 mod 4 h
(
k−1
K

)
and a related sum.

Lemma 5.2 For h a non-negative smooth function with compact support inR>0 and for any K,N≥ 2,
we have the estimates

H±(K) =
K
∫
R+ h

4
+ON(K

−N)

and

4
∑

k≡3±1 mod 4

h
(k− 1

K

)
logk= K logK

∫
R+

h + K
∫
R+

h · log+
N∑

ℓ=1

(−1)ℓ+1

ℓKℓ−1

∫
R+

t−ℓh(t)dt+ON(K
−N).

Proof. More generally, we will show that for any a mod 4,

∑
k≡a mod 4

h
( k
K

)
=
K
∫
R+ h

4
+ON(K

−N); (5.1)

4
∑

k≡a mod 4

h
( k
K

)
log(k+ 1) = K logK

∫
R+

h + K
∫
R+

h · log+
N∑

ℓ=1

(−1)ℓ+1

ℓKℓ−1

∫
R+

t−ℓh(t)dt+ON(K
−N).

(5.2)
Now, for any b mod 4, Poisson summation gives∑

k∈Z
e
(bk
4

)
h
( k
K

)
= K

∑
k∈Z

ĥ
((
k− b

4

)
K
)
= Kĥ(0)δb=0 +ON(K

−N).

The estimate (5.1) follows by orthogonality of additive characters. Similarly, we see that

∑
k≡a mod 4

h
( k
K

)
log(k+ 1) =

∫
R+ h

(
t
K

)
log(t+ 1)dt

4
+ON(K

−N). (5.3)

Indeed, integration by parts shows that∫
R+

h
( t
K

)
log(t+ 1)e(−ξt)dt≪M

K logK
(|ξ|K)M

.

Finally, the integral on the right-hand side of (5.3) equals

K
∫
R+

h(t) log(Kt+ 1)dt= K logK
∫
R+

h+K
∫
R+

h · log+
N∑

ℓ=1

(−1)ℓ+1

ℓKℓ−1

∫
R+

t−ℓh(t)dt+ON(K
−N),

and (5.2) follows. □
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In the next lemmawe estimate the average of (3.3) over k. In order to do so, we will apply Lemmas
5.1 and 5.2.

Lemma 5.3 Let ϕ be an even Schwartz test function and let h be a non-negative and not identically
zero smooth function with compact support in R>0. Under the condition σ =sup(supp(ϕ̂))< 2 and
for K≥ 2, we have the estimate

D±
K,h(ϕ) = ϕ̂(0)

(
1+

∫
R+ h·log∫

R+ h − log(4π)

logK

)
+ 2
∑
p

1
p
ϕ̂
( 2logp
log(K2)

) logp
log(K2)

∓ π

log(K2)H±(K)

∑
p

logp

p
1
2

ϕ̂
( logp
log(K2)

) ∞∑
c=1

S(p,1;c)
c

h
(4π√p

cK

)
+Oε

(
K

σ
2 −1+ε +K− 1

3+ε
)
.

Proof. From combining Lemma 3.4 with X= K2 and Lemma 5.2, we have that

D±
K,h(ϕ) = ϕ̂(0)

(
1+

∫
R+ h·log∫

R+ h − log(4π)

logK

)
+ 2
∑
p

1
p
ϕ̂
( 2logp
log(K2)

) logp
log(K2)

− 2
H±(K)

∑
k≡3±1 mod 4

h
(k− 1

K

)∑
f∈Bk

ωf
∑
p

λf(p)

p
1
2

ϕ̂
( logp
log(K2)

) logp
log(K2)

+Oε

(
K

σ
2 −1+ε +K− 1

3+ε
)
.

By the Petersson trace formula (Lemma 3.1), the third term is equal to

− 2π
H±(K)

∑
k≡0 mod 2

(ik± 1)h
(k− 1

K

)∑
p

1

p
1
2

ϕ̂
( logp
log(K2)

) logp
log(K2)

∑
c≥1

c−1S(p,1, c)Jk−1

(4π√p
c

)
.

(5.4)

Applying Lemma 5.1, we see that

− 2
H±(K)

∑
k≡0 mod 2

ikh
(k− 1

K

)
Jk−1

(4π√p
c

)
=

Kc
1
2

H±(K)2π
1
2 p

1
4

ℑ
(
ζ8e

i4π
√
p

c ℏ
( K2c
8π

√
p

))
+O

(√p
cK5

)
.

(5.5)

Since p≤ K4−ε, we see by the rapid decay of ℏ that for any A> 1, the first term in this expression is

≪A
c

1
2

p
1
4

(K2c
√
p

)−A
,

and hence by the Weil bound the contribution of this term to (5.4) is

≪A K
A(σ−2)+σ

2 .



LOW-LYING ZEROS IN FAMILIES OF HOLOMORPHIC CUSP FORMS 15

As for the sum of the error terms in (5.5), the contribution is ≪ K2σ−5 (by the Weil bound), which
is an admissible error term. Moreover, applying Lemma 5.1 once more,

− 2
H±(K)

∑
k≡0 mod 2

h
(k− 1

K

)
Jk−1

(4π√p
c

)
=− 1

H±(K)
h
(4π√p

cK

)
+O

(√p
cK4

)
,

resulting in a main term as well as the admissible error term O(K2σ−4) (once more by the Weil
bound). □

We now end this section by evaluating the second sum over primes in Lemma 5.3, under GRH
for Dirichlet L-functions. This term will be responsible for the phase transition at 1 and will be
investigated more closely in Section 6.

Lemma 5.4 Let ϕ be an even Schwartz test function and suppose that σ =sup(supp(ϕ̂))< 2. Let h be
a non-negative smooth function with compact support in R>0 and assume the Riemann Hypothesis
for Dirichlet L-functions. Then for any K≥ 2, we have the estimate

∑
c≥1

1
c

∑
p

logp
p1/2

ϕ̂
( logp
log(K2)

)
S(p,1;c)h

(4π√p
cK

)
= log(K2)

∫ σ

0
Kuϕ̂(u)

∑
c≥1

µ2(c)
cφ(c)

h
(4πKu−1

c

)
du

+O
(
Kσ−1(logK)3

)
, (5.6)

where φ is Euler’s totient function.

Proof. If σ < 1, then for large enough K the left-hand side of (5.6) is identically zero. We may thus
assume that σ ≥ 1. The sum over p equals

∫ ∞

0

1

t
1
2

ϕ̂
( log t
log(K2)

)
h
(4π√t

cK

)
dT(t) =−

∫ ∞

0

(
1

t
1
2

ϕ̂
( log t
log(K2)

)
h
(4π√t

cK

))′

T(t)dt, (5.7)

where, by [12, Lemma 6.1],

T(t) :=
∑
p≤t

S(p,1;c) logp= t
µ2(c)
φ(c)

+O
(
φ(c)t

1
2 (log(ct))2

)
.

Note that our restriction on the support of h implies that c≍
√
t/K, and hence the restriction on the

support of ϕ̂ implies that for square-free values of c and for t≤ K4−ϵ, the main term in this estimate
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is always larger than the error term. The total contribution of the main term in this estimate is given
by

−
∑
c≥1

µ2(c)
cφ(c)

∫ ∞

0

(
1

t
1
2

ϕ̂
( log t
log(K2)

)
h
(4π√t

cK

))′

tdt=
∑
c≥1

µ2(c)
cφ(c)

∫ ∞

0

1

t
1
2

ϕ̂
( log t
log(K2)

)
h
(4π√t

cK

)
dt,

which is equal to the claimed main term by a change of variables. As for the error term, we compute
the derivative in (5.7) and find that the contribution of this term is ≪ Kσ−1(logK)3, finishing the
proof. □

6. Evaluation of the transition term

The goal of this section is to evaluate the integral in Lemma 5.4. This will be done using different
techniques depending on the range of the variable u. To this end, for a,b ∈ R≥0 ∪{∞}, we define

Ia,b :=
π

H±(K)

∫ b

a
Kuϕ̂(u)

∑
c≥1

µ2(c)
cφ(c)

h
(4πKu−1

c

)
du.

Notice that the inner sum is long only when u is larger and far away from 1. By Lemmas 5.3
and 5.4, we see that when σ =sup(supp(ϕ̂))< 2 and under the assumption of GRH for Dirichlet
L-functions,

D±
K,h(ϕ) = ϕ̂(0)

(
1+

∫
R+ h·log∫

R+ h − log(4π)

logK

)
+ 2
∑
p

1
p
ϕ̂
( 2logp
log(K2)

) logp
log(K2)

∓ I0,∞ +Oϵ

(
K

σ
2 −1+ε +K− 1

3+ε
)
. (6.1)

We now move on to evaluating the integral I0,∞. We let δK be a positive parameter which satisfies
δK ≫h 1/ logK. Recall that h is supported in R>0, and hence for K large enough the integrand in
I0,∞ is zero in the interval [0,1− δK). Hence,

I0,∞ = I1−δK,σ,

where, as before, σ =sup(supp(ϕ̂)).

Lemma 6.1 We have the unconditional estimate

∑
c≤x

cµ2(c)
φ(c)

= x+O(x
1
2 ).



LOW-LYING ZEROS IN FAMILIES OF HOLOMORPHIC CUSP FORMS 17

Proof. The error term in Lemma 6.1 can be improved by replacing (6.4) with the stronger estimate
obtained from using [19, Exercise 19, §6.2.1]. We first establish the following estimate for square-
free values of d:

Sd(x) :=
∑
m≤ x

d
(m,d)=1

µ2(m)
m

= C1(d) logx+C2(d)+O
(
x−

1
2 d

1
2

∏
p|d

(
1− p−

1
2
)−1
)
, (6.2)

where

C1(d) :=
1

ζ(2)

∏
p|d

(
1− 1

p+ 1

)
; C2(d) := C1(d)

(
γ− 2

ζ ′

ζ
(2)−

∑
p|d

p logp
p+ 1

)
.

To do so, note that

Sd(x) =
∑
ℓ1|d

λ(ℓ1)

ℓ1
Sℓ1
( x
d

)
,

where λ(n) denotes the Liouville function. Applying this equality iteratively, we reach the identity

Sd(x) =
∑
ℓ1|d
ℓ2|ℓ1
...

ℓk|ℓk−1

λ(ℓ1) · · ·λ(ℓk)
ℓ1 · · ·ℓk

Sℓk
( x
dℓ1 · · ·ℓk−1

)
=
∑
ℓ|d∞

λ(ℓ)

ℓ
S1
( x
dℓ

)
. (6.3)

A summation by parts combined with [20, Theorem 8.25] yields that

S1(x) =
1

ζ(2)

(
logx+ γ− 2

ζ ′

ζ
(2)
)
+O(x−

1
2 ). (6.4)

Indeed, the precise value of the constant is deduced from writing S1(x) = 1
2πi

∫
(1)

ζ(s+1)
ζ(2s+2)

xs

s ds and
shifting the contour of integration to the left. Inserting (6.4) into (6.3), we are left with an error term
which is

≪ d
1
2 x−

1
2

∑
ℓ|d∞

1

ℓ
1
2

= d
1
2 x−

1
2

∏
p|d

∑
α≥0

1

p
α
2
= d

1
2 x−

1
2

∏
p|d

(
1− p−

1
2
)−1

,

and (6.2) follows. The claimed estimate then follows from the convolution identity

∑
c≤x

µ2(c)
φ(c)

=
∑
c≤x

µ2(c)
c

∑
d|c

µ2(d)
φ(d)

=
∑
d≤x

µ2(d)
dφ(d)

∑
m≤ x

d
(m,d)=1

µ2(m)
m

and a straightforward summation by parts. □
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We now evaluate the part of the integral I0,∞ for which u is slightly larger than 1. In this range,
the sum over c is fairly long and we can effectively apply Lemma 6.1.

Lemma 6.2 (The range u> 1+ δK) Let ϕ be an even Schwartz test function and let K≥ 2. Then we
have

I1+δK,∞ =

∫ ∞

1+δK

ϕ̂+O
(
K− δK

2
)
.

Proof. By Lemma 6.1, we have that

S(y) :=
∑
c≤y

cµ2(c)
φ(c)

= y+O(y
1
2 ).

Hence, for u> 1+ δK,∑
c≥1

µ2(c)
cφ(c)

h
(4πKu−1

c

)
=−

∫ ∞

0
S(y)

( 1
y2
h
(4πKu−1

y

))′
dy

=

∫ ∞

0

1
y2
h
(4πKu−1

y

)
dy

+O

(∫ ∞

0

( 1
y3
h
(4πKu−1

y

)
+
Ku−1

y4
h′
(4πKu−1

y

))
y

1
2 dy

)
=

1
4πKu−1

∫ ∞

0
h+O

(
K− 3

2 (u−1)
)
.

The desired estimate follows by integrating over u against Kuϕ̂(u) and applying Lemma 5.2. □

We now evaluate the part of the integral I0,∞ in which u is close to 1. In this range we can expand
ϕ̂(u) into Taylor series around u= 1 and recover the transition terms ϕ̂(j)(1) (see Lemma 6.5). The
resulting integrals are evaluated in Lemma 6.4 by applying the inverse Mellin transform, shifting the
contours of integration and estimating Mellin transforms on the appropriate contours. We recall that
the Mellin transform of a function f : R>0 → C is defined by

Mf(s) :=
∫ ∞

0
xs−1f(x)dx,

whenever this integral converges.

Lemma 6.3 Whenever x ∈ R≥0, j ∈ N,ℜ(s)> 0 and x|s| ≥ 2, we have∫ ∞

x
uje−usdu≪ j!e−ℜ(s)xxj

|s|
,

where the implied constant is absolute.
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Proof. Applying integration by parts, we reach the exact formula∫ ∞

x
uje−usdu=

e−xsxj

s

∑
0≤ℓ≤j

j!
(j− ℓ)!(xs)ℓ

,

from which the lemma immediately follows. □

Lemma 6.4 For j≥ 0, K≥ 2 and 20(logK)−1 ≤ δK ≤ 1
2 , we have the

estimate

∑
c≥1

µ2(c)
φ(c)

∫ KδK

K−δK

(logv)j

c
h
(4πv

c

)
dv=Mh(1)

(δK logK)j+1

4π(j+ 1)
+Cj,h+Oε

(
j!(δK logK)

jKδK(− 1
2+ε)

)
,

where

Cj,h :=
(−1)j

j+ 1
dj+1

(ds)j+1

(
sZ(s)(4π)s−1Mh(1− s)

)∣∣∣∣∣
s=0

(6.5)

with

Z(s) = ζ(s+ 1)
∏
p

(
1+

1
p− 1

( 1
ps+1

− 1
p2s+1

))
.

Proof. Define

fK,j(c) :=
∫ KδK

K−δK

(logv)j

c
h
(4πv

c

)
dv.

By the restriction on the support of h, the function fK,j also has compact support inR>0. We conclude
that its Mellin transform φK,j(s) is entire. Moreover,

φK,j(s) :=
∫ ∞

0
xs−1fK,j(x)dx= (4π)s−1Mh(1− s)

∫ KδK

K−δK

(logv)jvs−1dv

= φ+
K,j(s)+φ−

K,j(s),

where

φ±
K,j(s) =±(4π)s−1Mh(1− s)

∫ K±δK

1
(logv)jvs−1dv

are also entire. For any N≥ 1, applying [4, Lemma 2.1] yields the crude bound

φ±
K,j(s)≪N,j K|s|−N (|ℑ(s)| ≥ 1, |ℜ(s)| ≤ 1). (6.6)
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Now, Mellin inversion gives the formula

fK,j(c) =
1
2πi

∫
( 1
2 )

c−s
(
φ+
K,j(s)+φ−

K,j(s)
)
ds.

Hence, by absolute convergence,

∑
c≥1

µ2(c)
φ(c)

fK,j(c) =
1
2πi

∫
( 1
2 )

Z(s)
(
φ+
K,j(s)+φ−

K,j(s)
)
ds, (6.7)

where

Z(s) :=
∞∑
c=1

µ2(c)
csφ(c)

= ζ(s+ 1)
∏
p

(
1+

1
p− 1

( 1
ps+1

− 1
p2s+1

))
.

Next, by applying Lemma 6.3, we obtain the estimate

φ−
K,j(s) = (4π)s−1Mh(1− s)

(∫ 1

0
(logv)jvs−1dv+O

(
j!(δK logK)

jK−δKℜ(s)
))

(ℜ(s)> 0, |s| ≥ 1
10 ).

Moreover, ∫ 1

0
(logv)jvs−1dv=

(−1)jj!
sj+1

(ℜ(s)> 0).

Hence, by the rapid decay ofMh(1− s) on vertical lines (see [4, Lemma 2.1]), we obtain

1
2πi

∫
( 1
2 )

Z(s)φ−
K,j(s)ds=

(−1)jj!
2πi

∫
( 1
2 )

Z(s)(4π)s−1Mh(1− s)
ds
sj+1

+O
(
j!(δK logK)

jK− δK
2

)
.

As for the first part of the integral in (6.7), by applying (6.6) we can shift the countour to the left
until the line ℜ(s) =− 1

2 + ε and reach the identity

1
2πi

∫
( 1
2 )

Z(s)φ+
K,j(s)ds= (4π)−1Mh(1)

∫ KδK

1
(logv)jv−1dv+

1
2πi

∫
(− 1

2+ε)

Z(s)φ+
K,j(s)ds.

In a similar fashion as before, we see that

φ+
K,j(s) = (4π)s−1Mh(1− s)

(
(−1)j+1j!
sj+1

+O
(
j!(δK logK)

jKδKℜ(s)
))

(ℜ(s)< 0, |s| ≥ 1
10 )

and deduce that

1
2πi

∫
( 1
2 )

Z(s)φ+
K,j(s)ds=Mh(1)

(δK logK)j+1

4π(j+ 1)
+

(−1)j+1j!
2πi

∫
(− 1

2+ε)

Z(s)(4π)s−1Mh(1− s)
ds
sj+1

+Oε

(
j!(δK logK)

jKδK(− 1
2+ε)

)
.
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Putting these estimates together, we conclude that

∑
c≥1

µ2(c)
φ(c)

fK,j(c) =Mh(1)
(δK logK)j+1

4π(j+ 1)
+

(−1)jj!
2πi

(∫
( 1
2 )

−
∫
(− 1

2+ε)

)
Z(s)(4π)s−1Mh(1− s)

ds
sj+1

+Oε

(
j!(δK logK)

jKδK(− 1
2+ε)

)
.

The result follows. □

Lemma 6.5 (The range 1− δK < u< 1+ δK) Let ϕ be an even Schwartz test function. We have, for
K≥ 2 and odd J≥ 1, that

I1−δK,1+δK =

∫ 1+δK

1
ϕ̂+

πK
H±(K)

∑
0≤j≤J

ϕ̂(j)(1)Cj,h
j!(logK)j+1

+Oε,J

(
δJ+2
K +

1
(logK)J+2

+
KδK(− 1

2+ε)

logK

)
,

where the constants Cj,h are defined in (6.5).

Proof. By the definition of I1−δK,1+δK , we need to evaluate the sum

∑
c≥1

µ2(c)
φ(c)

∫ 1+δK

1−δK

Ku

c
ϕ̂(u)h

(4πKu−1

c

)
du=

K
logK

∑
c≥1

µ2(c)
φ(c)

∫ KδK

K−δK

1
c
ϕ̂
( logv
logK

+ 1
)
h
(4πv

c

)
dv.

Expanding into Taylor series and applying Lemma 6.4, this is

= K
∑
0≤j≤J

ϕ̂(j)(1)
j!(logK)j+1

∑
c≥1

µ2(c)
φ(c)

∫ KδK

K−δK

(logv)j

c
h
(4πv

c

)
dv

+Oε,J

(
KδJ+2

K +
K

(logK)J+2
+
K1+δK(− 1

2+ε)

logK

)
.

Note that the error term obtained after the Taylor series expansion contains the expression

∑
c≥1

µ2(c)
φ(c)

∫ KδK

K−δK

c−1| logv|J+1h
(4πv

c

)
dv,

which can be evaluated using Lemma 6.4 whenever J+ 1 is even. Applying Lemma 6.4 once more,
we reach the expression

KMh(1)
4π

∑
0≤j≤J

ϕ̂(j)(1)δj+1
K

(j+ 1)!
+K

∑
0≤j≤J

ϕ̂(j)(1)Cj,h
j!(logK)j+1

+Oε,J

(
KδJ+2

K +
K

(logK)J+2
+
K1+δK(− 1

2+ε)

logK

)
.

Finally, the desired result follows from an application of Lemma 5.2. □
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Collecting the estimates in this section, we reach the following theorem.

Theorem 6.6 Let ϕ be an even Schwartz test function for which supp(ϕ̂)⊂ (−2,2). Assuming the
Riemann Hypothesis for Dirichlet L-functions, for K≥ 2 we have the estimate

D±
K,h(ϕ) = ϕ̂(0)

(
1+

∫ ∞
0 h·log∫ ∞

0 h − log(4π)

logK

)
+

ϕ(0)
2

+
∑
1≤j≤J

cjϕ̂(j−1)(0)
2j(logK)j

∓
∫ ∞

1
ϕ̂±

∑
1≤j≤J

Dj,hϕ̂
(j−1)(1)

(logK)j
+Oε,J

( 1
(logK)J+1

)
,

where the cj are defined in Lemma 4.1, and

Dj,h =− 4π∫
R h · (j− 1)!

Cj−1,h =
4π(−1)j

j!
∫
R+ h

dj

(ds)j

(
sZ(s)(4π)s−1Mh(1− s)

)∣∣∣∣∣
s=0

with

Z(s) = ζ(s+ 1)
∏
p

(
1+

1
p− 1

( 1
ps+1

− 1
p2s+1

))
. (6.8)

Proof. Recall (6.1), which is valid for σ =supp(sup(ϕ̂))< 2:

D±
K,h(ϕ) = ϕ̂(0)

(
1+

∫
R+ h·log∫

R+ h − log(4π)

logK

)
+ 2
∑
p

1
p
ϕ̂
( 2logp
log(K2)

) logp
log(K2)

∓ I0,∞ +Oε

(
K

σ
2 −1+ε +K− 1

3+ε
)
.

We can clearly assume, without loss of generality, that J is odd. The sum over primes is estimated
in Lemma 4.1. Moreover, we recall that for K large enough I0,1−δK = 0 and therefore we have that

I0,∞ = I1−δK,1+δK + I1+δK,∞,

which together with Lemmas 6.2 and 6.5 and the choice δK = 3(J+ 3) log log(K+ 3)/ logK implies
the desired result. □

Proof of Theorem 1.1. The result follows immediately from Theorem 6.6 with

Sj,h = Dj,h =
4π(−1)j

j!
∫
R+ h

dj

(ds)j

(
sZ(s)(4π)s−1Mh(1− s)

)∣∣∣∣∣
s=0

(6.9)

(see 6.8 for the definition of Z(s));

R1,h =

∫
R+ h · log∫

R+ h
− log(4π)+ 1+

∫ ∞

1

θ(t)− t
t2

dt; (6.10)
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and

Rj,h =
1

(j− 2)!

∫ ∞

1
(log t)j−2

( log t
j− 1

− 1
)θ(t)− t

t2
dt (6.11)

for j≥ 2 (note that these constants do not depend on h). □
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