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Preliminary Study on Plate Girders with Corrugated Webs 

1. Resistance to bending moment 
The bending resistance of a simply supported girder supporting an evenly distributed load is 
simply the minimum axial resistances of the flanges times the distance between the flanges' 
centroids. This is particularly the case in girders with corrugated webs as the web stiffness 
along the beam is very low (a few tenths to a few hundredths of that of a flat steel web) due 
to "accordion effect". 

1.1 Accordion effect 
To study the accoridion effect and the moment capacity in corrugated web beams, Elamary et 
al., in 2017, conducted an experimental and analytical research. The authors compared the 
flexural capacity of standard steel I-beams (with flat web) and steel beams with corrugated 
webs (CW). Their tests revealed that the flexural capacity of steel beams with corrugated web 
is 10 to 20% lower than that of conventional steel I-beams with flat webs which is expected 
since the corrugated web does not contribute to the bending resistance. Moreover, the authors 
compared the moment capacity of composite concrete-steel beams with flat and with 
corrugated webs. The same manner of reduction was observed (Elamary et al., 2017). 

The contribution from the web due to Accordion effect was neglected by Eurocode 
(EN_1993-1-5, 2006) and  many other researchers. However, a recent study performed by 
(Inaam & Upadhyay, 2022) revealed that the contribution from the web could be 
considerable. Based on numerical studies performed by Inaam et al., three essential 
parameters that affect the accordion effect were identified. The slenderness ratio (ℎ௪/𝑡௪), 
enclosing effect (R), ref. Figure 1.8, and outstand ratio (O). If these parameters satisfy the 
conditions presented in Table 1.1, designers can utilize a minimum web participation factor 
of 10% (0.1 𝑡௪) to determine moment resistance for steel trapezoidal corrugated I-girders 
with compact and laterally constrained flanges. 

Table 1.1 Conditions required for web utilization, (Inaam & Upadhyay, 2022) 

 

1.2 Flange buckling resistance and Cross section classification 
The bending resistance of I-girders might be affected by the compression flange local 
buckling if the flange plate is slender. Previous experimental and numerical studies have 
shown that when the compressed flange corresponds to cross-section class 4, the EN1993-1-5 
bending moment resistance often results in resistances on the unsafe side (Jáger et al., 2017a). 
As a result, various design models were established in the past, however there are 
inconsistencies in the previous (current) design models when it comes to the consideration of 
flange width and web clamping effect (Jáger et al., 2017a).  

Jager et al., in 2017, performed an experimental research program to investigate flange 
buckling behavior and bending moment capacity of corrugated web beams and a new model 
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to estimate flange buckling resistance of corrugated web girders was proposed (Jáger et al., 
2017a).  

This section presents and evaluate the model that has been suggested by Jager et al. and 
compare it to the design models given in the current version of  (EN_1993-1-5, 2006) and a 
new model proposed in a draft version of (EN_1993-1-5, 2019). 

It's worth mentioning that available models were developed with focus on carbon steel and no 
work could be found for stainless steel material. 

1.2.1 Flange buckling resistance according to (EN_1993-1-5, 2006), current version 

1.2.1.1 Flange buckling resistance for carbon steel  

 

Figure 1.1 Notations used for trapezoidal corrugated web  

When a thin plate's compression stress approaches its critical buckling stress, the plate 
buckles, reducing the effective resisting area. This reduction is proportional to the plate's 
slenderness. 

The slenderness of a thin plate, in general, is defined as a square root of the ratio between 
yielding strength and the critical buckling stress.  

𝜆̅௣ = ට
௙೤

ఙ೎ೝ
  

The critical buckling stress 𝜎௖௥ is a function of plate width, thickness, and the material 
properties (Poisson’s ratio and modulus of elasticity). It can be obtained by the following 
formula: 

𝜎௖௥ = 𝑘ఙ ∗ 𝜎ா    Where   𝜎ா =
గమா

ଵଶ(ଵି௩మ)
ቀ

௧

௕
ቁ

ଶ

 

𝑏 and 𝑡 are the width and the thickness the plate. 

The elastic buckling factor 𝒌𝝈 depends on the plate support conditions (Internal or outstand 
element) and the stress variation along plate width, with lowest value when compression 
stress is uniform along the plate edge. The elastic buckling factor 𝒌𝝈 for flanges in I-girder 
with flat web is set to 0.43 in (EN_1993-1-5, 2006).  

According to (Al-Emrani, 2020), this buckling coefficient is 0.425 assuming three simply 
supported edges and reaches 1.277 having two simply supported edges and one fixed edge, 
see Figure 1.2.   
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Figure 1.2 Buckling coefficient for plates subjected to uniform compression having one edge free and three 
supported (Al-Emrani, 2020) 

The elastic buckling factor 𝒌𝝈 for flanges in I-girders with corrugated webs is given in 

(EN_1993-1-5, 2006) an additional part ቀ
௖౜

௔
ቁ ,ଶ due to the existence of the corrugation, with 

upper limit equal to 0.6.  It is thought that the buckling of the flange could occur in two 
different modes. The first buckling mode is buckling of the largest outstand of the flange. 
This mode is more relevant for webs with deep corrugations. The buckling factor 𝑘ఙ  for this 
mode in given in the “case a” as following: 

a- 𝑘ఙ = 0,43 + ቀ
௖౜

௔
ቁ

ଶ

   𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑎ଵ + 2𝑎ସ  

where  𝑐୤ =
௕೑

ଶ
+

௔య

ଶ
 is the larger flange outstand from the toe of the weld to either free edge 

of the flange, see Figure 1.1. 

Another buckling mode is rotation of the flange around the flange's centerline. This mode is 
more relevant for webs with shallow corrugations. The buckling factor 𝑘ఙ  for this mode is 
given in the “case b” as following: 

b- 𝑘ఙ = 0,6  𝑎𝑛𝑑  𝑏ത =
௕౜

ଶ
 

The most unfavorable situation between case a and b should govern. 

Then the slenderness of the flange plate, is defined as following: 

𝜆̅௣ = ට
௙೤

ఙ೎ೝ
=

௕ത/௧

ଶ଼,ସఌඥ௞഑
   

where 𝜀 = ට
ଶଷହ୑୔ୟ

௙౯
 and  𝑏ത =

௕౜

ଶ
 

The buckling curve for flat and corrugated web is same in Eurocode, presented in Figure 1.3. 
However, the slenderness is different due to different buckling coefficient as illustrated 
above. The reduction factor is defined in sec 4.4 in  (EN_1993-1-5, 2006) as follows: 

𝜌 = 1,0   𝑓𝑜𝑟  𝜆̅௣ ≤ 0,748 

𝜌 =
𝜆̅௣ − 0,188

𝜆̅௣
ଶ

≤ 1,0   𝑓𝑜𝑟  𝜆̅
௣ > 0,748 
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Figure 1.3 Reduction factor, plate buckling EN1993-1-5 (2006) 

1.2.1.2 Flange buckling resistance for stainless steel 
The buckling curve for stainless steel was defined firstly in (EN_1993-1-4, 2006) with 
different curves from that given for carbon steel. Later on, in an amendment of  EN1993-1-4 
(Amedment, 2015), this curve was adjusted to be the same as to carbon steel for outstand 
elements as following: 

𝜌 =
1

𝜆̅௣

−
0,188

𝜆̅௣
ଶ

  but  𝜌 ≤ 1,0 

The elastic buckling factor 𝑘ఙ for corrugated beams was developed in Eurocode for carbon 
steel and has not been updated for stainless steel. Thus, until further studies, the predicted 
capacity due to flange buckling in stainless steel corrugated web girders can be checked with 
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the above-mentioned reduction factor with same elastic buckling coefficient for corrugated 
web beams with carbon steel, but with the specific material coefficients defined in Table 1.2. 

Table 1.2 Design values for material coefficients for carbon steel and stainless steel  

Design values for material coefficients for carbon steel (EN_1993-1-1, 2005) 
Modulus of elasticity 𝐄 E = 210 GPa 

Shear modulus 𝐆 
G =

E

2(1 + v)
≈ 81000N/mmଶ 

Poisson’s ratio in elastic stage 𝐯 v = 0,3 
Coefficient of linear thermal 

coefficient 𝛂 
α = 12 × 10ି଺ perK (for T ≤ 100∘C ) 

Material parameter 
ε = ቈ

235

f୷
቉

଴.ହ

 

Design values for material coefficients for stainless steel (EN_1993-1-4, 2006) 
Modulus of elasticity 𝐄 For ULS calculations: 

E = 200 GPa for austenitic and austenitic-ferritic 
grades in Table 2.1 in (Amedment, 2015) excluding 
grades 1.4539, 1.4529, 1.4547 
E = 195 GPa for austenitic grades 1.4539, 1.4529, 
1.4547 
E = 220 GPa for the ferricic grades in Table 2.1 in 
(Amedment, 2015) 
In the second draft one value for E is given: 
E = 200 GPa (EN_1993-1-4, 2020) 
For SLS calculations: 
The secant modulus of elasticity should be used 
according to section 4.2 in (EN_1993-1-4, 2006) 

Shear modulus 𝐆 
G =

E

2(1 + v)
 

Poisson’s ratio in elastic stage 𝐯 v = 0,3 
Coefficient of linear thermal 

coefficient 𝛂 
The values suggested in the second draft 
(EN_1993-1-4, 2020) are: 
α = 13 × 10ି଺ perK (for T
≤ 100∘C ) for Duplex stainlesss steel 
α = 16 × 10ି଺ perK (for T ≤
100∘C ) for austenitic stainless steel  
α = 10 × 10ି଺ perK (for T

≤ 100∘C ) for ferritic stainless steel 
 

Material parameter In the current version (EN_1993-1-4, 2006): 

ε = ቈ
235

f୷

E

210000
቉

଴.ହ

 

In the second draft (EN_1993-1-4, 2020): 

ε = ቈ
235

f୷
቉

଴.ହ
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Table 1.3 Design values for partial factors for carbon steel and stainless steel 

Design values for partial factors for carbon steel (EN_1993-1-1, 2005) 

Resistance of cross-section whatever the class is 𝜒ெ଴ = 1,00 

Resistance of members to instability assessed by 
member checks 

𝜒ெଵ = 1,00 

Resistance of cross-section in tension to fracture 𝜒ெଶ = 1,25 (1.2 in 
(Transportstyrelsens, 2018)) 

Design values for partial factors for stainless steel (EN_1993-1-4, 2006) 
Resistance of cross-section whatever the class is 𝜒ெ଴ = 1,1 
Resistance of members to instability assessed by 

member checks 
𝜒ெଵ = 1,1 

Resistance of cross-section in tension to fracture 𝜒ெଶ = 1,25 

 

1.2.2 Flange buckling resistance according to (Jáger et al., 2017b) 
In a study made by Jager et al., the authors collected available previous experiments that have 
been conducted to estimate the flange buckling resistance of beams with corrugated webs. In 
addition, a new experimental program was performed to study the effects that web and flange 
thicknesses have on the buckling resistance. The tests were also used to verify numerical 
models which were used to propose a new model for flange buckling resistance of corrugated 
web girders.  

The results suggest that the Eurocode design curve for flange buckling resistance which is 
based on Winter-curve formula is not applicable for girders with corrugated webs. Figure 1.4 
demonstrates that a significant fraction of capacity estimates based on Eurocode are placed 
below the curve. Based on these results, a new model was proposed for calculating the flange 
buckling resistance in beams with corrugated webs.  

 

Figure 1.4 GMNIA results compared to the design curve given in EN1993-1-5 (Jáger et al., 2017b) 

Imperfection sensitivity in flange buckling resistance, (Jáger et al., 2017b) 
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Fabrication tolerances for steel elements are set by EN1090-2. However, corrugated web 
beams are not covered in this standard. Annex C in Eurocode EN1993-1-5(2006) proposes a 
larger magnitude for equivalent geometric imperfection than the fabrication tolerances, thus 
covering the effect of residual stresses and geometric imperfections at the same time. The 

proposed value for flange subject to twist equals to 
௖௙

ହ଴
, see Figure 1.5. However, this proposal 

is not specific to corrugated web girders (EN_1993-1-5, 2006). 

 

Figure 1.5 Modelling equivalent geometric imperfection EN1993-1-5(2006) 

To investigate on the applicability of using 
௖௙

ହ଴
 as the imperfection amplitude with the first 

eigen buckling mode as imperfection shape for corrugated web girders, an imperfection 
sensitivity study was performed by Jager et al. (Jáger et al., 2017b). In this study a numerical 
model was developed to estimate the moment capacity of corrugated web girders and the 
results were compared to test results from girders with different cross-section classes. 
Different imperfection amplitudes were studied all with the same shape of imperfection (1st 
mode of buckling). Figure 1.6 illustrates the results from the imperfection sensitivity analysis 
performed on some of the tested girders. It was noticed that the slenderer the flanges are, the 
more sensitive to initial imperfection they become, necessitating a bigger imperfection 
amplitude to achieve capacity less than those observed in the experiments. Moreover, the 
thicker the webs the less the flange sensitivity to initial imperfection (Jáger et al., 2017b).  
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Figure 1.6 Sensitivity analysis for initial imperfection on flange buckling resistance (Jáger et al., 2017b). The 
girders vary in flange slenderness cf/tf and in flange to web thicknesses ratio tf/tw (2.75, 2.70, 1.32, 1.32, 4.85, 

5.11 for 1TP1-1, 1TP1-2, 2TP1-1, 2TP1-2, 3TP1-1, 3TP1-2 respectively). 

The capacities that have been resulted from the numerical model developed in this study 

using first eigen buckling mode with amplitude equal to  
௖௙

ହ଴
 resulted in an average of 0.946 of 

the capacities reported from the experiments. Based on these results, it was concluded that an 

initial imperfection amplitude of  
௖௙

ହ଴
 with first eigen buckling mode as imperfection shape 

gives good approximation for the flange buckling resistance of corrugated web girders in 
comparison with the test data (Jáger et al., 2017b).         

Elastic buckling factor, 𝒌𝝈 (Jáger et al., 2017b) 

The model in Eurocode for flanges in beams with flat web considers two flange buckling 
modes, the normal stress buckling where the web is assumed to provide rigid support to the 
flange and the flange induced buckling where the web buckles. A buckling mode similar to 
the latter was also observed in the experimental program performed by Jager et al. However, 
according to a study performed by Elamary et al., the corrugated web beams exhibit just local 
flange buckling while the flat web beams could show local flange buckling followed by web 
local buckling (Elamary et al., 2017).  

The authors considered various flange to web thickness ratios and it was observed that three 
buckling modes within the flange can occur, dependent on the rigidity of the support that the 
web provides to the flange. The change between fixed and pinned support happens at around 
௧௙

௧௪
= 2.5. The three modes are illustrated in Figure 1.7 and can be differentiated as follows: 

Separated local flange buckling when 
௧௙

௧௪
< 2.5. Figure 1.7, b  

Combined buckling mode when 5 >
௧௙

௧௪
> 2.5. Figure 1.7, d 

Flange induced buckling of the web when 
௧௙

௧௪
≥ 5. Figure 1.7, a 
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Figure 1.7 Flange buckling modes according to Jager et al. experiments (Jáger et al., 2017b) 

The findings of Jager et al. study revealed that EN1993-1-5 for the buckling factor, kσ, needs 
be improved for the following reasons: 

1. It ignores the effect of flange to web connection rigidity, which varies depending on the 

flange to web thickness ratio 
௧೑

௧ೢ
. The numerical study showed that increasing 

௧௙

௧௪
 leads to 

less rigid support from the web meaning a lower buckling factor. (Jáger et al., 2017b) 

2. It doesn't take the true buckling length into account (in the case of  
௕೑

௔య
>2, the buckling 

(a) length could be larger than (𝑎ଵ + 2 ⋅ 𝑎ସ). The numerical study showed that 

increasing 
௖௙

௔
  increases the buckling factor, meaning that the buckling coefficient 

decrease with increasing the buckling length (Jáger et al., 2017b). 
3. It doesn't consider the enclosing effect of the web, R, which specifies the size of the 

flange region cut by the web from the total flange width, see Figure 1.8. The numerical 
study showed that increasing 𝑅  decreases the buckling factor (Jáger et al., 2017b). 

 

Figure 1.8 Enclosing effect R=A1/A2 

A new formula for the buckling factor was suggested by (Jáger et al., 2017b) based on the 
experimental and numerical programs. The new formula considers all previous mentioned 
aspects with upper limit of 1.3 (one end is fixed). It is expressed by the following equation: 

𝑘ఙ = 𝑚𝑖𝑛 ൭1.3, 0.43 ⋅ ቆ2.5 ⋅
𝑡௪

𝑡௙
ቇ

(଴.଺ାோ)

+ ൬
𝑐௙

𝑎ଵ + 2 ⋅ 𝑎ସ
൰

ଶ

൱ 

Reduction buckling factor, 𝝆 according to (Jáger et al., 2017b) 

The design model developed by Jager et al. has been developed considering first buckling 

mode as initial imperfection shape with amplitude equal to  
௖೑

ହ଴
.  

The buckling reduction factor can be calculated as: 
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𝜌௔ = 𝑚𝑖𝑛 ൭1, ቆ14 ⋅ 𝜀 ⋅
𝑡௙

𝑐௙
ቇ

ఉ

൱ 

Factor 𝛽 considers the corrugation configurations and it is defined as follows: 

𝛽 =   5 ⋅ 𝜂 ⋅ 𝑅 ⋅ ൬
1

tan(𝛼)
൰

ఎ

   0.5 ≥  𝛽 ≤ 1 

The enclosing effect is defined as follows: 

𝑅 = ቆ
𝐴ଵ

𝐴ଶ
=

(𝑎ଵ + 𝑎ସ) ⋅ 𝑎ଷ

(𝑎ଵ + 2 ⋅ 𝑎ସ) ⋅ 𝑏௙
ቇ < 0.14

  
 

Factor 𝜂 that consider the flange to web thicknesses ratios is defined as follows: 

𝜂 = 0.45 + 0.06 ⋅
𝑡௙

𝑡௪
 

The larger outstand of the compression flange can be calculated as following: 

𝑐௙ =
𝑏௙ + 𝑎ଷ

2
 

1.2.3 Flange buckling resistance according to (EN_1993-1-5, 2019), new draft 
Same procedure that was used in EN1993-1-5 (2006) for flange buckling resistance in 
corrugated web girder is also suggested in the new draft o Eurocode with change in the 
considered flange outstand from 𝑏௙/2 to 𝑐௙ as illustrated in Figure 1.9. 

 

Figure 1.9 Flange notation, (EN_1993-1-5, 2019) 

Elastic buckling factor, 𝒌𝝈  

The buckling factor should be determined as below: 

𝑘ఙ = max (0.6, 0.43 + ቀ
𝑐௙

𝑎
ቁ

ଶ

)   𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑎ଵ + 2𝑎ସ  

And 𝑐௙ is the larger outstand from the toe of the weld to the free edge, illustrated in Figure 
1.9. 

Reduction buckling factor, 𝝆 
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The reduction factor according to sec 6.4 in (EN_1993-1-5, 2019) 

𝜌 = 1,0   𝑓𝑜𝑟  𝜆̅௣ ≤ 0,748 

 

𝜌 =
𝜆̅௣ − 0,188

𝜆̅௣
ଶ

≤ 1,0   𝑓𝑜𝑟  𝜆̅
௣ > 0,748 

The non-dimensional slenderness is defined as: 

 𝜆̅௣ = ඨ
𝑓௬

𝜎௖௥
=

𝑏ത/𝑡

28,4𝜀ඥ𝑘ఙ

 

Here 𝑏ത is equal to the larger outstand 𝑐௙ as indicated in Figure 1.9 

1.2.4 Discussion and recommendations 
To achieve better understanding of the model proposed by Jager et al., a comparison of this 
model with the flat web model suggested in Eurocode has been conducted. Different values 
of factor β are considered and the results are presented in Figure 1.10. It can be observed that 
for deep corrugations, this model predicts lower flange buckling resistances for corrugated 
web girders than for flat webs. After a specific flange width (with very shallow corrugation 
beta = 0.5), however, the flange in beams with corrugated web will have higher capacity than 
in the flat web beam. 

Moreover, as the corrugation gets deeper, the resistance will drop substantially and that is due 
to increasing the enclosing effect R (increases 𝛽), implying that shallow corrugations provide 
higher capacity.  

 

Figure 1.10 Reduction factor variation with flange width for different β values, Jager model, dimensions 
presented in Table 1.4 with a3 = 200 mm 

Moreover, a plot for reduction factor variation with web thickness (changing 
௧೑

௧ೢ
)  for different 

corrugation depths is also performed and presented in Figure 1.11. It can be observed that 

Deeper 
corrugations 
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increasing the web thickness increases the reduction factor and that attributes to the increase 
in the support rigidity provided by the web.  

 

Figure 1.11 Reduction factor variation with flange width for different web thicknesses, Jager model, dimensions 
presented in Table 1.4 with bf = 1000 mm and a3 = 200 mm 

Furthermore, a comparison between four buckling curves; (EN_1993-1-5, 2006), (Jáger et al., 
2017b), (EN_1993-1-5, 2019) for corrugated web girders, and (EN_1993-1-5, 2006) for flat 
web girders has been performed. 

For these models, the effect of increasing the flange width on the buckling reduction factor 
has been investigated for three corrugation depths. The other dimensions of the studied beam 
are illustrated in Table 1.4.  

Table 1.4 Dimensions of studied girders 

𝒇𝒚𝒇 [MPa] alpha [deg] 𝒂𝟏 [mm] 𝒂𝟑 [mm] 𝒕𝒘 [mm] 𝒕𝒇 [mm] 𝒃𝒇 [mm] 

355 30 190 100, 200, 300 3 45 400 to 2400 

Figure 1.12 present a comparison between the four models considering the buckling factor as 

a maximum of (0.6) and ൬0.43 + ቀ
௖೑

௔
ቁ

ଶ

൰ for Eurocode models. Both versions of Eurocode 

offer very large values for flange buckling resistance, which is owing to the buckling factor 

being set to a maximum of (0.6) and (0.43 + ቀ
௖೑

௔
ቁ

ଶ

). However, with the minimum buckling 

factor, the results will be more reasonable. For this reason, the buckling factor has been 

replaced with minimal value of (0.6) and ൬0.43 + ቀ
௖೑

௔
ቁ

ଶ

൰, and later the comparison is 

repeated. 

Deeper 
corrugations 
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Figure 1.12 EN2006, EN2019, Jager2017 and flat buckling reduction factor variation with bf, a3=100mm, 
maximal kσ  

Figure 1.13 to Figure 1.15 show the repeated comparison. As it can be observed, the current 
Eurocode draft gives more conservative results than the 2006 version. Two types of buckling 
were identified in 2006, one for rotational (torsional) buckling of the flange (restrained by the 
corrugated web) and the other for local flange buckling and flange outstand is set to 𝑏௙/2 . In 

2019 draft, however, the flange outstand is set to 𝑐௙.  

 

Figure 1.13 EN2006, EN2019, Jager2017 and flat buckling reduction factor variation with bf, a3=100mm, 
minimal kσ 
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Figure 1.14 EN2006, EN2019, Jager2017 and flat buckling reduction factor variation with bf, a3=200mm, 
minimal kσ 

 

Figure 1.15 EN2006, EN2019, Jager2017 and flat buckling reduction factor variation with bf, a3=300mm, 
minimal kσ 

Comparing the model proposed by Jager et al. to the Eurocode models, the model proposed 
by Jager et al. gives lower capacities compared to the Eurocode models for small flange 
widths, as seen in Figure 1.13. With increasing flange width, however, this tendency changes. 
In addition, as the corrugation gets deeper, Figure 1.14 and Figure 1.15 , Jager model 
estimate lower capacities than Eurocode versions. 

 



 Chalmers University of Technology | 2022 

 

Figure 1.16 Elastic buckling factor for Jager model and Eurocode model. The considered dimensions are 
presented in Table 1.4. The buckling factor according to Eurocode is considered minimum between case a and 

case b. 

Comparing the flange buckling resistance in a beam with corrugated web to that in a flat web 
beam, it's worth noting the current version of EN1993-1-5 predicts larger flange capacities 
for beams with corrugated webs than for that with flat web while the new draft considers the 
corrugation depth and as the corrugation gets deeper the corrugated web curve become close 
to the flat web. The Jager et al. model predicts that flanges in corrugated web girders will 
buckle more easily than that for flat web girders for small flange slenderness and shallow 
corrugation, see Figure 1.13 and Figure 1.16. And the same manner as in the Eurocode draft, 
for deeper corrugation the capacity is expected to be lower than that for flat web girders even 
for small flange slenderness.  

Another study has been performed in this section. Herein, the moment resistances of several 
earlier performed tests with flange buckling failure were compared to the values predicted by 
the EN2006, EN2019, and Jager 2017 models. Both maximum and minimum buckling 
factors from the new draft are considered in the comparison. Table 1.5 and Figure 1.17 
summaries the tests that were investigated. It can be observed that choosing the maximum 
value for the buckling factor according to the formulation in the EN2019 draft leads to 
unconservative results (test 5 and 6). However, when the buckling factor is set to the 
minimum value, however, we can observe that the EN2019 gives good results in comparison 
to the test results. In some cases, such as the GJ3-2 girder, the Jager model 
gives unconservative results, while in another girder, such as 5TP2-2, it yields relatively 
conservative results. It's worth noting that the reduction factor obtained here is applied to the 
whole flange width, as contrasted to Jager et al. calculations of flange buckling resistance 
according to Eurocode, which calculated the reduction factor for each outstand separately 
before adding them up (Jáger et al., 2017b). 

It can be also noticed from the Table 1.5 that some girders like CB90-6, M09AR, and 
M32BR all models predict same moment capacity and that attributes to the fact that 
slenderness of these girders’ flanges were small and no reduction due to flange buckling is 
noticed. 
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Table 1.5 Previous tests capacities according to EN2006, EN2019, Jager2017 models and test results 

 
Nr. 

Specimen Ref. Test 
results 
[kNm] 

EN2006 
Model 

EN2019 
Model, 
𝒌𝝈.𝒎𝒂𝒙 

EN2019 
Model, 
𝒌𝝈.𝒎𝒊𝒏 

Jager 
Model 

1 CB90-6 Koichi& Masahiro 83.7 79.058 79.058 79.058 79.058 

2 5TP2-2 Kövesdi 321.3 370.9 294.283 278.9 246.968 

3 M09AR Elgaaly et al. 180.9 177.595 177.595 177.595 177.595 

4 M32BR Elgaaly et al. 223.2 231.058 231.058 231.058 231.058 

5 GJ3-2 Li et al. 81 95.507 151.046 86.212 133.118 

6 1TP1-2 Kövesdi 322.7 377.465 377.465 321.56 320.539 

 

Table 1.6 Dimensions of the studied girders  
 

CB90-6 5TP2-2 M09AR M32BR GJ3-2 1TP1-2 

𝒇𝒚𝒇 [MPa] 297 495 289 376 400 495 

𝒇𝒚𝒘 [MPa] 301 392 682 682 524 392 

E [GPa] 200 200 200 200 200 200 

Poisson ratio [-] 0.3 0.3 0.3 0.3 0.3 0.3 

𝒉𝒘 [mm] 319.2 500 304.8 304.8 238.54 500 

𝒕𝒘 [mm] 3.26 5.95 0.607 0.76 2.06 2.93 

𝒃𝒇 [mm] 99.9 248 152.4 152.4 310 249 

𝒕𝒇 [mm] 8.14 7.69 12.7 12.7 5.73 7.92 

𝒂𝟏 [mm] 87 145 19.8 49.8 62 97 

alpha [deg] 43.6 45 50 62.5 50.27 45 

𝒂𝟐 [mm] 87 145 18.53 57.25 50 97 

𝒂𝟒 [mm] 63 102.53 11.91 26.435 31.96 68.6 

𝒂𝟑 [mm] 60 102.53 14.195 50.781 38.45 68.6 

 

 

Figure 1.17 Previous tests capacities according to  (EN_1993-1-5, 2006), (EN_1993-1-5, 2019), (Jáger et al., 
2017b) models and test results 

The last study in this section is a comparison between the buckling factor for carbon steel and 
stainless steel according to the new draft of EN1993-1-5. Herein, same dimensions as 
mentioned above is used. The studied stainless material is Duplex (Austenitic-ferritic steels) 
of grade 1.4162. The flange thickness is 75 𝑚𝑚 > 𝒃𝒇 = 45𝑚𝑚 > 13.5 𝑚𝑚 and the yield strength 
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is 450MPa (Amedment, 2015). The modulus of elasticity is given in section 2.1.3 in 
(EN_1993-1-4, 2006), 𝐸 = 200 𝐺𝑃𝑎 for austenitic-ferritic grades except grades (1.4539, 
1.4529, 1.4547). The buckling reduction factor is defined as following: 

𝜌 =
ଵ

ఒഥ೛
−

଴,ଵ଼଼

ఒഥ೛
మ   but  𝜌 ≤ 1,0  (Amedment, 2015) 

The predicted capacity due to flange buckling is lower in stainless steel due to the difference 

in the material parameter ε. This factor is 𝜀 = ට
ଶଷହ୑୔ୟ

௙౯
  in carbon steel and 𝜀 = ൤

ଶଷହ

௙೤

ா

ଶଵ଴଴଴଴
൨

଴.ହ

  

in stainless steel (Amedment, 2015). Meaning that this factor is smaller for stainless steel 
leading to larger slenderness and higher reduction factor.  

 

Figure 1.18 Reduction flange buckling factor for carbon steel and stainless steel EN1993-1-5(2019 draft) 

The conclusions and recommendations that can be drawn from this study are: 

1. The buckling factor in the new Eurocode draft should be changed from Max to Min. 
2. The reduction factor is applied to the entire flange width in this study and needs to be 

clarified in Eurocode. 
3. EN1993-1-5(2019) with minimal value for buckling factor can be utilized for carbon 

steel trapezoidal corrugated web girders. However, a more thorough investigation 
with various corrugation configurations is desired. 

4. To modify the model of carbon steel or to adapt it for stainless steel, a parametric 
research for stainless steel material is essential. 

1.3 Transverse bending moment, M-V interaction 
Previous experiments have revealed that shear stress in the corrugated web implies a 
transverse bending moment, resulting in extra normal stresses in the flanges. In this kind of 
beams, the moment-shear interaction equation has different character. When the girder is 
subjected to shear and bending moment, the interaction can be taken by reduced bending 
resistance by factor 𝑓  which depends on the flange yield strength and the maximum stress 
coming from shear flow into the flange. (Kövesdi et al., 2016) 

The maximum additional stresses 𝜎௫(𝑀௭)  can be calculated by applying transverse moment 
𝑀௭ based on the shear load. Several researchers have investigated the method of estimating 
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the transverse bending moment and the resulting extra stresses in the flanges. This section 
compiles the Eurocode’ model that accounts for these effects, as well as many of the 
approaches proposed in previous work.   

1.3.1 Transverse bending moment according to (EN_1993-1-5, 2006), current version 

1.3.1.1 Transverse bending moment for carbon steel 
The shear stress path in the junction between the web and the flange in corrugated web beams 
is not straight as that in flat web beams, it follows, however, the corrugation path as shown in 
Figure 1.19. The horizontal shear forces developing at the web-to-flange junction (𝑇ଵ) results 
in moment 𝑀ଵ. In addition, the shear force (𝑇ଶ) results in force (𝐹௬) acts as transverse loads in 

the plane of flanges. These effects (𝑀ଵ, 𝐹௬) resulting in additional normal stresses on the 
flanges.  

 

Figure 1.19 Transverse actions due to shear flow introduction into the flange 

Eurocode considers the effect of this transverse bending moment by reducing the value of 
yield strength of the flange for both tension and compression flanges. The reduction is based 
on the amount of transverse bending stress induced in the flanges from the shear flow 
(EN_1993-1-5, 2006).  

The reduced yield strength of the flange due to transverse moment is defined as follows: 

𝑓୷୤,୰ = 𝑓୷୤∗𝑓୘ 

The reduction factor due to transverse bending is defined as follows: 

𝑓 = 1 − 0,4
ඩ

𝜎௫(𝑀௭)

𝑓௬௙

𝛾ெ଴

 

𝜎௫(𝑀௭)  the normal stress on the flange due to the transverse moment. 

The transverse action due to shear flow in the flanges can be analyzed as shown in Figure 
1.19. The horizontal forces can be determined as following:  

𝑇ଵ =
௏

௛ೢ
𝑎ଵ  and  𝑇ଶ =

௏

௛ೢ
𝑎ଶ 

V is the shear force. 
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Then the transverse moment 𝑀௭ can be obtained from conventional structural analysis of the 
flange as a beam subjected to 𝑇ଵand 𝑇ଶ which can be substituted with the following loads:  

𝐹௬ = 𝑇ଶ ⋅ sin (𝛼) and 𝑀ଵ = 𝑇ଵ ⋅ 𝑎ଷ/2 

According to (B. Johansson, 2007), the maximum transverse bending moment 𝑀௭,௠௔௫ that 
can occur is when the inclined web part intersects the centerline of the flange, see Figure 
1.20. In the absence of detailed analysis, this moment  𝑀௭,௠௔௫ can be expressed as: 

𝑀௭,௠௔௫ =
𝑉

ℎ௪

𝑎ଷ

4
(2𝑎ଵ + 𝑎ସ) 

 

Figure 1.20 Moment distribution in the part of the corrugation cut off the flange due to shear flow, (Baláž & 
Koleková, 2012). Note, 𝑎଴ = 𝑎ଵ  

To note here that a new draft of Eurocode (EN_1993-1-5, 2019) provides a new formula to 
estimate the transverse bending moment as following: 

𝑀௭,௠௔௫ =
𝑉

ℎ௪

𝑎ଷ

2
(2𝑎ଵ + 𝑎ସ) 

The maximum additional normal stress to the flange can then be obtained from: 

𝜎௫(𝑀௭) =
𝑀௭

𝐼௙௭
⋅

𝑏௙

2
 

Where 𝐼௙௭ is the moment of inertia around the strong axis of the flange. 

1.3.1.2 Transverse bending moment for stainless steel 
The design model in Eurocode that consider transverse bending moment in corrugated web 
beams is developed for carbon steel and has not been modified for stainless steel. Therefore, 
the same model is recommended with the relevant partial and material factors that has been 
defined in Table 1.2 and Table 1.3 until further investigations is done. 

1.3.2 Transverse bending moment according to  (Abbas et al., 2007) 
Two different methods were presented by Abbas et al. (Abbas et al., 2007). The first method 
is called Fictious load method. This method was published earlier, and it gives closed form 
solution for transverse bending moment for sinusoidal profiles and profiles with linear folds. 
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This method was investigated by Abbas et al. for various web profiles and it was observed 
that transverse bending moment is related only to the area function of web profile. Thus, a 
simpler method which called the C-factor method was proposed by the authors. 

C-factor method:  

In this method, the transverse moment is to be calculated for sinusoidal corrugation with 
same wavelength and same corrugation depth. See Figure 1.21. Then transfer it to the new 
shape (trapezoidal, rectangular, or triangular) by the C-factor. 

 

Figure 1.21 Web profiles with equal wavelength and corrugation depth (Abbas et al., 2007) 

The notation that is used by the authors for sinusoidal corrugations are illustrated in Figure 
1.22.  

 

Figure 1.22 Notations for Sinusoidal corrugated webs, (Abbas et al., 2007) 

The transverse moment for sinusoidal corrugated web girder under uniformly distributed load 
is defined as follows: 



 Chalmers University of Technology | 2022 

𝑀௧ =
𝑝௒𝐿ଶ𝑒଴

ℎ
൜

1

Πଶ ൣ(1 − 2𝜁)Π𝑐఍ + 2𝑠఍ + (Π𝑐ଵଵ − 2𝑠ஈ + Π)𝜁 − Π൧ൠ 

where 𝜁 = 𝑧/𝐿; Π = 2𝜋𝑛; 𝑐఍ = cos (2𝜋𝑛𝜁); 𝑐ஈ = cos (2𝜋𝑛); 
𝑠఍ = sin (2𝜋𝑛𝜁);  and 𝑠୍୍ = sin (2𝜋𝑛).

 

 

L is the span of the girder 

𝑒଴ = ℎ௥/2 is the amplitude of corrugation  

𝑝௒ is the uniformly distributed load applied on the girder. 

𝑛 is the number of corrugations 

𝑧 is the coordinate in the longitudinal axis 

The total stress from in plane moment and transverse moment can be obtained as following: 

𝜎 =
𝑀௑𝑌

𝐼௑
+

𝑀௧𝑥

𝐼௧
 

The transverse moment can be transferred to another shape by the following equation: 

𝑀௧
ூ

𝑀௧
௃ =

𝐶ூ

𝐶௃
 

Where C-factor can be taken from Table 1.7.  

 

Table 1.7 Area under one half wave and area ratio, C, relative to sinusoidal profile (Abbas et al., 2007) 

 

Fictitious load method: 

 this approach calculates the transverse moment by applying fictitious transverse loads on the 
flange and analyzing the flange under these loads. Figure 1.23 shows an example for simply 
supported beam subjected to concentrated load on mid-span. The fictious applied loads are 
obtained from the geometry of the web profile and the main shear force. 

The load is to be placed alternately on the top flange: 

𝑝௧ =
ଶ

௛
ቂ𝑉௒

ୢ௘

ୢ௭
+ 𝑒

ୢ௏ೊ

ୢ௭
ቃ        Eq.5 (Abbas et al., 2007) 



 Chalmers University of Technology | 2022 

ୢ௘

ୢ௭
  is the change in eccentricity slope. 

ୢ௏ೊ

ୢ௭
  is the change in shear slope. 

In cases where the eccentricity or the shear force is not continuous, a fictious concentrated 
load is to be applied at the point of discontinuity. This load can be calculated as following: 

𝑃௧ =
ଶ

௛
∗ 𝑒 ∗ Δ𝑉௒  when shear force is discontinuous. 

𝑃௧ =
ଶ

௛
∗ Δ𝑒 ∗ 𝑉௒ when eccentricity is discontinuous. 

Δ𝑉௒ is the change in primary shear at the point of discontinuity 

Δ𝑒 is the change in the web eccentricity at the point of discontinuity, i.e., the location of 
applied concentrated load on top flange. 

ℎ is the height of the girder. 

 

Figure 1.23 Top flange fictitious transverse loads 

1.3.3 Transverse bending moment according to (Kövesdi et al., 2016) 
In 2012, Baláž, I. & Koleková (Baláž & Koleková, 2012) have performed analysis of girders 
with trapezoidal corrugated webs and based on the results the authors proposed a simple 
formula to calculate the maximum transverse moment as expressed in the following equation:  

𝑀௭,௠௔௫ =
𝑉

ℎ௪

𝑎ଷ

4
(2𝑎ଵ + 𝑎ସ) 

Later, in 2016, the effects of geometric properties, corrugation geometry, lateral and end 
supports, and different loading conditions were extensively studied by Kövesdi et al. to find 
the most unfavorable case that gives maximum additional normal stress to the flange from the 
shear flow. The maximum transverse moment that obtained in this study was double of what 
has been founded in 2012  (Kövesdi et al., 2016). Therefore, the maximum transverse 
moment was proposed to be calculated using the following equation: 

𝑀௭,௠௔௫ =
𝑉

ℎ௪

𝑎ଷ

2
(2𝑎ଵ + 𝑎ସ)       
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The maximum additional normal stress to the flange can then be obtained as:  

𝜎௫(𝑀௭) =
𝑀௭,௠௔௫

𝐼௙௭
⋅

𝑏௙

2
 

where 𝐼௙௭ is the second moment of area of the flange around the weak axis of the girder. 

Moreover, the effect of lateral supports on the resulting additional stress on the flanges has 
been studied. It was concluded that the lateral supports might have a major effect on the extra 
normal stress distribution. In the case of the studied girder, transverse girders, or purlins, 
which provide lateral support to the girders, can lower the extra normal stresses in the region 
of the lateral supports by 35-40%, and continuous lateral support reduces the additional 
normal stresses by 75%. 

Later, a parametric model based on material and geometric nonlinearity was created by the 
authors to investigate the true influence of shear force on the girder's bending resistance. The 
model was built to simulate both bending and shear failures. The model is validated by 6 
large scale bending test specimens done by Elgaaly et al. and three large scale shear tests. The 
parametric research was then applied on 20 girders: 11 bridge girders, and 9 building 
geometries. The shear and moment resistances were determined first, followed by eight 
calculations for each girder with various shear-moment ratios.  

As indicated by the research, the imperfection shape was set to the first buckling mode with 
equivalent amplitude according to (EN_1993-1-5, 2006). The different failure modes have 
been studied separately. The results for typical bridge girder and typical building girder are 
illustrated in Figure 1.24. It was observed that the moment resistance does not drop even 
when the shear force is close to the girder's shear resistance meaning that the additional 
normal stress in flanges due to shear flow has no effect on ultimate moment capacity of the 
girder. The same conclusion applies for the 20 studied girders, see Figure 1.25. It can be seen 
from Figure 1.25 that when (EN_1993-1-5, 2006) is taken as a reference for moment 
resistance, most cases ends in the conservative side (M/𝑀ோ,ா஼  =1 to 1.2). The highest 
reduction in bending resistance due to the combined M-V loading scenario is 4,7%. The 
observed resistance reduction is not greater than the bending resistance contribution from the 
web or the shear buckling resistance contribution from the flange. It was demonstrated that 
there is no relation between the size of the transverse bending moment and the ultimate 
bending resistance, (Kövesdi et al., 2016). Thus, for ultimate limit state design, the transverse 
bending moment can be neglected. 
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Figure 1.24 Typical M-V interaction behavior (Kövesdi et al., 2016) 

  

1.3.4 Transverse bending moment according to (EN_1993-1-5, 2019), new draft 
This draft of Eurocode suggests that the normal stresses that are induced by the shear force in 
the flange can be neglected for the design with reference to ultimate moment capacity 𝑀ோௗ, 
regardless of the shear utilization ratio. However, these stresses should be considered in 
elastic analysis, e.g., in fatigue design (EN_1993-1-5, 2019).  

An approximated equation for calculation of the transverse bending moment is suggested in 
case of the absence of detailed analysis as following: 

Figure 1.25 Observed M-V interaction behavior using bending and shear resistances calculated 
according to (EN_1993-1-5, 2006) and bending and shear resistances calculated numerically 
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𝑀௭,௠௔௫ =
𝑉

ℎ௪

𝑎ଷ

2
(2𝑎ଵ + 𝑎ସ)   

V is the shear force in the analyzed cross section. 

The shear flow and the approximated transverse moment are illustrated in Figure 1.26. 

 

Figure 1.26 Transverse actions due to shear flow introduction into the flange (EN_1993-1-5, 2019) 

1.3.5 Discussion and recommendations 
It can be observed from the different studies that the transverse moment can have significant 
effect on the normal stress of the flanges for elastic response. The magnitude of additional 
normal stresses depends on the fold length, corrugation depth, the web height, and the girders 
support conditions. However, this effect is negligible in ultimate limit state.  

In addition, the studies mentioned in this section are done on carbon steel. The magnitude of 
the transverse moment is not affected by the material but rather by the girder geometry, end 
supports, lateral supports and loading conditions. This, however, applies for carbon steel 
where it was proven that the effect of transverse bending is negligible in ultimate limit state 
and this attributes to the material plasticity and the stress redistribution. In case of high 
strength steel, on the other hand, the material behavior is different and the effect of transverse 
bending moment might be considerable. Thus, the same conclusion cannot be drawn for 
stainless steel and further investigation is desired. 

1.4 Lateral torsional buckling  
When a load is applied to a beam, it deflects vertically. The beam will also deflect out of the 
loading plane if it lacks sufficient lateral stiffness or lateral support along its length. The load 
that causes this buckling might be much lower than the beam's in-plane load bearing capacity. 
There will be no out-of-plane deformations in an assumed perfectly straight elastic beam until 
the applied moment exceeds the critical value, at which time the beam buckles by deflecting 
laterally and twisting. The applied moment creates a component torque about the deflected 
longitudinal axis, which causes the beam to deflect laterally (Denan et al., 2010). 

The corrugated web girders are found to give higher resistance to lateral torsional buckling 
compared to flat web girders as the corrugation gives substantial transverse bending stiffness. 
This effect becomes stronger as the corrugation gets deeper (Denan et al., 2010).  

The present section summarizes some of the previous findings on lateral torsional buckling 
resistance besides Eurocode design methods. 
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1.4.1 Lateral torsional buckling according to (EN_1993-1-5, 2006), current version 

1.4.1.1 Lateral torsional buckling for carbon steel 
The out of plane buckling is considered in Eurocode by reducing the yielding moment 
capacity with reduction factor χ that is defined from Section 6.3 of EN1993-1-1.  

 

Figure 1.27 Notations used for trapezoidal corrugated web 

The moment capacity for corrugated web girders with respect to lateral torsional buckling can 
be defined as following: 

𝑀௬,ோௗ =
𝑏ଵ𝑡௙ଵ𝜒𝑓௬௙

𝛾ெଵ
൬ℎ௪ +

𝑡௙ଵ + 𝑡௙ଶ

2
൰

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
 compression flange 

 for ௫ழଵ.଴

 

𝑏ଵ, 𝑡௙ଵ, 𝑏ଶ, 𝑡௙ଶ, ℎ௪  are illustrated in Figure 1.27. 

For corrugated web beams, the reduction factor 𝜒 is advised in the same way as it is for flat 
web beams. For flat web beams, Eurocode gives an accurate approach for estimating lateral 
torsional buckling resistance as well as a simplified method that considers the flange as a 
compressed column.  

The exact method, general case 

 This method is defined in Section 6.3.2.2 in (EN_1993-1-1, 2005).  

The reduction factor 𝜒  due to lateral torsional buckling can be determined as follows: 

𝜒୐୘ =
1

Φ୐୘ + ටΦ୐୘
ଶ − 𝜆̅୐୘

ଶ

 but 𝜒୐୘ ≤ 1,0 

where Φ୐୘ = 0,5ൣ1 + 𝛼୐୘൫𝜆̅୐୘ − 0,2൯ + 𝜆̅୐୘
ଶ ൧ 

The relative slenderness is defined as following: 

𝜆̅୐୘ = ඨ
W୷f୷

Mୡ୰
 

The imperfection factor 𝛼୐୘ can be determined from Table 6.3 in (EN_1993-1-1, 2005) and 
the appropriate buckling curve can be taken from Table 6.4 in (EN_1993-1-1, 2005). 

Mୡ୰ is the elastic critical moment for lateral-torsional buckling  
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W୷ is the section modulus 

The simplified method  

This method is given in Section 6.3.2.4 in (EN_1993-1-1, 2005) 

The reduction factor 𝜒 of the equivalent compression flange is determined as follows: 

𝜒 =
1

𝜙 + ቂ𝜙ଶ − 𝜆̅௙
ଶ

ቃ
଴.ହ ≤ 1 

where Φ = 0,5 ቂ1 + 𝛼(𝜆௙̅ − 0,2) + 𝜆̅௙
ଶ

ቃ 

The relative slenderness for equivalent flange is defined as following: 

𝜆̅௙ =
௞೎௅೎

௜೑,೥ఒభ
               Eq. 6.59 (EN_1993-1-1, 2005) 

i୤,୸ is the radius of gyration of equivalent flange plus 1/3 of the compressed part of the web 
around the minor axis of the section. 

i୤,௫ = ඨ
𝐼 ୤୤,௙

Aୣ୤୤,୤ +
1
3

Aୣ୤୤,௪,௖

 

Where 𝜆ଵ = 𝜋ට
ா

௙೤
= 93,9𝜀          𝑎𝑛𝑑     𝜀 = ට

ଶଷହ

୤౯
 

kୡ is the slenderness correction factor for moment distribution between the restraints. It is 
given in Table 6.6 in (EN_1993-1-1, 2005) 

If the slenderness of the compression flange satisfies 𝜆̅௙ ≤ 𝜆̅௖଴
ெ೎,ೃ೏

ெ೤.ಶ೏
  the compression flange 

is not susceptible to lateral torsional buckling,  𝜒 = 1.  

Where M୷.୉ୢ is the design bending moment. 

Mୡ,ୖୢ is moment resistance of the section M௖,ୖୢ = W୷
୤౯

ఊ౉
 with appropriate W୷ ; elastic or 

plastic or effective according to section class of the flange. 

𝜆̅ୡ଴ is the slenderness limit 𝜆̅ୡ଴ = 𝜆̅୐୘⋅଴ + 0,1 

𝜆̅୐୘⋅଴= 0.4 (maximum value)  Section 6.3.2.3, (EN_1993-1-1, 2005)  

The capacity should be magnified by factor k௙௟ with recommended value of  k௙௟ = 1,10 

Curve d should be considered for welded section satisfies 
୦

୲౜
≤ 44𝜀 and curve c for other 

sections 

h is the overall height of the section 

Same model is recommended for corrugated web girders. However, there is no formulation in 
Eurocode to estimate the elastic buckling moment so the simplified method would be more 



 Chalmers University of Technology | 2022 

relevant to be used noting that the web part considered in the equivalent compression flange 
should be disregarded in corrugated web girders due to accordion effect.  

1.4.1.2 Lateral torsional buckling for stainless steel 
For stainless steel only the exact method is provided in Eurocode to estimate lateral torsional 
buckling resistance of stainless-steel girders with flat web. It is defined in section 5.4.3 in 
(EN_1993-1-4, 2006) as following: 

The reduction factor 𝜒  due to lateral torsional buckling can be determined as follows: 

𝜒୐୘ =
1

Φ୐୘ + ටΦ୐୘
ଶ − 𝜆̅୐୘

ଶ

 but 𝜒୐୘ ≤ 1,0 

where Φ୐୘ = 0,5ൣ1 + 𝛼୐୘൫𝜆̅୐୘ − 0,4൯ + 𝜆̅୐୘
ଶ ൧ 

The relative slenderness for equivalent flange is defined as following: 

𝜆̅୐୘ = ඨ
W୷f୷

Mୡ୰
 

Whereas the imperfection factor is recommended as follows: 

𝛼୐୘ = 0.34 for cold formed sections and hollow sections 

𝛼୐୘ = 0.76 for welded open sections and other sections. 

The simplified model in Eurocode to estimate lateral torsional buckling resistance is 
developed only for carbon steel and has not been updated for stainless steel. To use this 
method considering the flange as a column buckle around the minor axis of the girder, 
buckling curve d should be used stainless steel. Refer to Table 5.3 in (Amedment, 2021). 

1.4.2 Lateral torsional buckling according to (Moon et al., 2009) 
The lateral torsional buckling strength of an I-girder with corrugated webs is studied by 
Moon et al. (Moon et al., 2009)  under uniform bending using finite element analysis. Firstly, 
the authors determined the location of shear center for corrugated web girders by moment 
equilibrium because it is essential to calculate the warping constant. The shear center (S) was 
found to be located at distance of 2d from the center of lower and upper flange, see Figure 
1.28. Then it is assumed that the cross section to be composed of series of interconnected 
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plate elements. Each plate of length 𝐿௜௝ and thickness 𝑡௜௝ with two end points (i) and (j). An 
arbitrary path has been chosen to calculate the warping constant, see Figure 1.28.  

 

Figure 1.28 Shear center location and the path used for warping constant calculation (Moon et al., 2009) 

 
The procedure to calculate the elastic buckling moment of corrugated web girders can be 
summarized as following: 

1- Calculate the average corrugation depth: 
 

𝑑ୟ୴୥ =
(ଶ௔ା௕)ௗ೘ೌೣ

ଶ(௔ା௕)
    

The notations are illustrated in Figure 1.29 

 

Figure 1.29 Notations for corrugated web beams used in (Moon et al., 2009) 

2- Determine the normalized unit warping as following:  
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𝑊௡ଵ =
2𝑏௙

ଶℎ௪𝑡௙ + 𝑏௙ℎ௪
ଶ 𝑡௪

8𝑏௙𝑡௙ + 4ℎ௪𝑡௪

𝑊௡ଶ =
2𝑏௙

ଶℎ௪𝑡௙ + 𝑏௙ℎ௪
ଶ 𝑡௪

8𝑏௙𝑡௙ + 4ℎ௪𝑡௪
− ቆ

𝑏௙

4
−

𝑑

2
ቇ ℎ௪

𝑊௡ଷ =
2𝑏௙

ଶℎ௪𝑡௙ + 𝑏௙ℎ௪
ଶ 𝑡௪

8𝑏௙𝑡௙ + 4ℎ௪𝑡௪
− ቆ

𝑏௙

4
+

𝑑

2
ቇ ℎ௪

𝑊௡ସ =
2𝑏௙

ଶℎ௪𝑡௙ + 𝑏௙ℎ௪
ଶ 𝑡௪

8𝑏௙𝑡௙ + 4ℎ௪𝑡௪
−

1

2
𝑏௙ℎ௪

𝑊௡ହ = 𝑊௡ସ

𝑊௡଺ = 𝑊௡ଵ

𝐶௪ =
1

3
∑൫𝑊௡௜

ଶ + 𝑊௡௝𝑊௡௜ + 𝑊௡௝
ଶ ൯𝑡௜௝𝐿௜௝

 

3- Determine the warping constant of corrugated web for all interconnected elements. 
4- Determine the elastic lateral–torsional buckling moment of I-girder with corrugated 

webs as following: 

𝑀୭ୡ୰ =
𝜋

𝐿
ට𝐸𝐼௬,௖௢𝐺௖௢𝐽௖௢ඥ1 + 𝑊ଶ,   𝑊 =

𝜋

𝐿
ඨ

𝐸𝐶௪,௖௢

𝐺௖௢𝐽௖௢
 

The shear modulus of corrugated web plated can be calculated as following: 

𝐺௖௢ =
𝑎 + 𝑏

𝑎 + 𝑐
𝐺 

Where G is the shear modulus of flat plates. 
The pure torsional constant can be defined as follows: 

𝐽௖௢ =
1

3
൫2𝑏௙𝑡௙

ଷ + ℎ௪𝑡௪
ଷ ൯ 

The second moment of area around the weak axis is defined as follows: 

𝐼௬,௖௢ =
𝑡௙𝑏௙

ଷ

6
 

Later this elastic buckling moment is used by the authors to estimate the inelastic lateral-
torsional buckling according to Eurocode as following: 

𝜒௅் =
1

Φ௅் + ඥΦ௅்
ଶ − 𝜆௅்

ଶ
 but 𝜒௅் ⩽ 1 

Φ௅் = 0.5[1 + 𝛼௅்(𝜆௅் − 0.2) + 𝜆௅்
ଶ ] 

𝜆௅் = ඨ
𝑀௉

𝑀୭ୡ୰
 

According to Moon et al. study, the elastic buckling moment for corrugated web is higher 
than for flat web and the difference is more significant with increasing the corrugation depth 
(or corrugation angle), see  Figure 1.30. In other words, for angles less than 45 degrees, where 
most practical cases can be found, there is almost no difference compared to flat web.  
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The pure torsional constant has been proven to be same for corrugated web and for flat web. 
However, for flat webs, the warping constant is lower, and the shear modulus is larger than 
for corrugated webs according the Moon et al. study, see Figure 1.31 

 

Figure 1.30 Variation in Mocr/Mocr, Flat with corrugation angle(Moon et al., 2009). 

 

Figure 1.31 Variation of warping constant Cw,co/Cw,Flat and shear modulus Gco/G with corrugation angle 
(Moon et al., 2009) 

1.4.3 Lateral torsional buckling according to (Nguyen et al., 2011) 
A FEM program was created by Nguyen et al. in 2011 to investigate the moment 
modification factors of I-girder with trapezoidal web corrugations when subjected to a 
concentrated load. Different load positions; On top flange, on shear center and on bottom 
flange, and different end boundary conditions; Simply supported, warping fixed, lateral 
bending fixed and completely fixed, have been studied. See Figure 1.32. 
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Figure 1.32 (a) Position of concentrated load, (b) End restraint conditions (Nguyen et al., 2011). 

It has been proposed that the elastic lateral torsional buckling moment under uniform load 
may be defined for a simply supported I-girder with trapezoidal web corrugations that is 
restricted from lateral deflection and twisting at the supports but free to warp as following: 

𝑀௢௖௥ =
𝜋

𝐿௕
ට𝐸𝐼௬,௖𝐺௖𝐽௖ඥ1 + 𝑊௖

ଶ 

The beam parameter for corrugated beam girders can be calculated as following 

𝑊௖ =
𝜋

𝐿௕
ඨ

𝐸𝐶௪.௖

𝐺௖𝐽௖
 

The pure torsional constant for I-girder with corrugated web is the same for flat web and can 
be calculated as follows 

𝐽௖ =
2𝑏௙𝑡௙

ଷ + ℎ௪𝑡௪
ଷ

3
 

The warping constant for corrugated web girders is defined as following 

𝐶௪,௖ =
ℎ௪

ଶ 𝑡௙𝑏௙൫6𝑡௙𝑏௙
ଷ + 𝑡௪ℎ௪𝑏௙

ଶ + 12𝑑ଶ𝑡௪ℎ௪൯

24൫6𝑡௙𝑏௙ + 𝑡௪ℎ௪൯
 

The shear modulus for corrugated web girders is defined as following 

𝐺௖ =
𝑎 + 𝑏

𝑎 + 𝑐
𝐺 

G is the shear modulus of flat plates 

a is the longitudinal flat fold length 

b is the projection of inclined fold length 
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c is the inclined fold length 

d is the corrugation depth 

This critical buckling moment then should be modified by factor 𝐶௕ which depends on the 
boundary conditions and the concentrated load position. The factor 𝐶௕ can be calculated as 
following: 

𝐶௕,௖ =
஺೎

஻೎
  for load on top flange 

𝐶௕,௖ = 𝐴௖  for load at shear center 

𝐶௕,௖ = 𝐴௖ ∗ 𝐵௖ for load at the bottom flange 

The values for 𝐴௖  & 𝐵௖ can be taken from table.4 in the paper (Nguyen et al., 2011).  

 

1.4.4 Lateral torsional buckling according to  (EN_1993-1-5, 2019), new draft 
This draft, as for the current version, provides two methods to estimate the lateral torsional 
buckling resistance, the exact solution method and the simplified method. The two methods 
were adjusted in this draft and explained in this section.  

The exact solution method 

The out of plane buckling is considered by reducing the yielding moment capacity by 
reduction factor χ that can be defined from section 8.3 of (EN_1993-1-1, 2019).  

The moment capacity with respect to lateral torsional buckling can be defined as following: 

𝑀௬,ோௗ =
𝑏ଵ𝑡௙ଵ𝜒𝑓௬௙

𝛾ெଵ
൬ℎ௪ +

𝑡௙ଵ + 𝑡௙ଶ

2
൰

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
 compression flange 

 for ௫ழଵ.଴

 

The relative slenderness for lateral torsional buckling  𝜆̅୐୘ should be taken as: 

𝜆̅୐୘ = ඨ
𝑀ୖ୩

𝑀ୡ୰
 

𝑀ୡ୰ is the elastic critical moment for lateral torsional buckling 

𝑀ୖ୩ is the characteristic value of the resistance to bending detailed in Section 8.2.2.6 in 
(EN_1993-1-5, 2019) 

𝑀௬,ோ௞ = 𝑊௬𝑓௬

𝑀௭,ோ௞ = 𝑊௭𝑓௬
 

𝑊௬ , 𝑊௭ follow the section class of the flange. See Table 1.8 

Table 1.8 Section properties according to the class of the cross-section, table 8.1 EN1993-1-1, 2019 

Class 𝟏 𝟐 𝟑 𝟒 
Section area 𝑨𝐢 𝐴 𝐴 𝐴 𝐴ୣ୤୤ 
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Section modulus 𝑾𝐲 𝑊୮୪,୷ 𝑊୮୪,୷ 𝑊ୣ୪,୷
ୟ,ୠ 𝑊ୣ୤୤,୷ ୠ 

Section modulus 𝑾𝐳 𝑊୮୪,୸ 𝑊୮୪,୸ 𝑊ୣ୪,୸
ୟ,ୠ 𝑊ୣ୤୤,୸ ୠ 

 

The reduction factor for doubly symmetric I and H sections and fork boundary condition on 
both ends is defined as following 

𝜒୐୘ =
𝑓୑

Φ୐୘ + ටΦ୐୘
ଶ − 𝑓୑𝜆̅୐୘

ଶ

           but          𝜒୐୘ ≤ 1,0 

Where: 

𝜙୐୘ = 0,5 ൥1 + 𝑓୑ ൭ቆ
𝜆̅୐୘

𝜆̅୸

ቇ

ଶ

𝛼୐୘൫𝜆̅୸ − 0,2൯ + 𝜆̅୐୘
ଶ ൱൩ 

 

𝛼୐୘ is the imperfection factor corresponding to the appropriate buckling curve (which differs 
from the previous version of Eurocode) can be taken from Table 8.5 in the new draft 
(EN_1993-1-1, 2019). See Table 1.9. 

Table 1.9 Imperfection factor 𝛼௅்  for lateral torsional buckling of doubly symmetric I- and H-sections, 
(EN_1993-1-1, 2019) 

 

𝑓୑ is factor that accounts for the effect of the bending moment distribution between discrete 
lateral constraints. In cases when the diagrams in Table 8.6 (EN_1993-1-5, 2019) cannot be 
estimated, it can be conservatively assumed as 1. See Table 1.10. 
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   Table 1.10 Moment distribution factor, EN1993-1-1, 2019 

 

𝜆̅୸ is the relative slenderness for weak axis flexural buckling, as defined in 8.3.1.2, with the 
buckling length 𝐿ୡ୰,୞ between the lateral restraints. 

𝜆̅ =
𝐿ୡ୰

𝑖

1

𝜆ଵ
   𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 1,2 𝑎𝑛𝑑 3 

𝜆̅ =
𝐿ୡ୰

𝑖

ට𝐴ୣ୤୤

𝐴

𝜆ଵ
   𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 4 

𝜆ଵ = 𝜋ඨ
𝐸

𝑓୷
= 93,9𝜀 

i is the radius of gyration around the relevant axis considering the gross cross section. 

𝐿ୡ୰  is the buckling length in the considered plane. 

The elastic critical buckling moment 

Eurocode does not provide a formula to calculate the critical buckling moment for corrugated 
web girders. However, the modified version of Linder provide a good estimation of the 
critical buckling moment (EDVARDSSON, 2014). This formulation, suggested by Larsson & 
Persson (LARSSON & PERSSON, 2013), considers the effect of corrugation by additional part  
௖ೢ

ீ
 to the torsional constant of flat web beams instead of additional part  𝑐௪

௅మ

ாగమ  suggested by 

Linder to be added to the warping constant of flat web beams. 

For a laterally unrestrained beam, the critical buckling moment is defined as following:   
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𝑀஼௥ =
𝜋ଶ𝐸𝐼௭

𝐿ଶ
ඨ

𝐼௪

𝐼௭
+

𝐿ଶ

𝜋ଶ𝐸𝐼௭

(𝐺𝐼௧ + 𝑐௪) 

The moment of inertia about the weak axis 𝐼௭, the warping constant 𝐼௪ and the torsion 
constant 𝐼௧ can be calculated using the same expressions as for girders with flat webs. 

The contribution of the web to the moment of inertia around the weak axis can be neglected 
and can be defined as following: 

𝐼௭ = 2 ⋅
𝑡௙𝑏௙

ଷ

12
 

The torsion constant can be calculated according to the following equation: 

𝐼௧ =
1

3
(𝑏௙ଵ𝑡௙ଵ

ଷ + 𝑏௙ଶ𝑡௙ଶ
ଷ + ℎ௪𝑡௪

ଷ ) 

The warping constant for doubly symmetric I-profiles is defined as following: 

𝐼୵ =
𝐼୸(ℎ − 𝑡୤)

ଶ

4
 

The larger torsion constant 𝑐௪ obtained for girders with corrugated webs is attributed to the 
larger critical lateral-torsional buckling moment achieved. The torsion constant can be 
obtained as following: 

𝑐௪ =
(2𝑑)ଶℎ௪

ଶ

8𝑢௫(𝑎 + 𝑏)
 

Where 𝑢௫ =
௛ೢ

ଶீ௔௧ೢ
+

௛ೢ
మ (௔ା௕)య

ଶହ௔మா௕೑௧೑
య 

The notations are illustrated in Figure 1.29. 

The simplified method for beams with restraints in building  

This method is summarized in Section 8.3.2.4 (EN_1993-1-1, 2019). The design buckling 
resistance 𝑀ୠ,ୖୢ can be calculated based on the flexural buckling resistance of the equivalent 

compression flange and should satisfy 
ெుౚ

ெౘ,౎ౚ
≤ 1,0. 

The equivalent compression flange's relative slenderness should be determined as follows: 

 

𝜆̅ୡ,୸ = ට
஺ౙ௙౯

ேౙ౨,ౙ,౰
           Eq.8.85 (EN_1993-1-5, 2019) 

 

𝐴ୡ =

⎩
⎪
⎨

⎪
⎧    𝐴୤ +

1

2
⋅ 𝐴୵     𝑓𝑜𝑟 𝑙𝑜𝑎𝑑 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑙𝑎𝑛𝑔𝑒

𝐴୤ +
1

6
⋅ 𝐴୵                  𝑓𝑜𝑟 𝑙𝑜𝑎𝑑 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑠ℎ𝑒𝑎𝑟 𝑐𝑒𝑛𝑡𝑒𝑟

𝐴୤                    𝑓𝑜𝑟 𝑙𝑜𝑎𝑑 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑙𝑎𝑛𝑔𝑒
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𝐴୤ is the area of compression flange  𝐴୤ = 𝑏୤𝑡୤ 
𝐴୵ is the total area of the web 𝐴୵ = ℎ୵𝑡୵ 
𝑁ୡ୰,ୡ,୸ is elastic critical axial force of the equivalent compression flange for weak axis 
buckling of the section  

𝑁ୡ୰,ୡ,୸ =
𝜋ଶ ⋅ 𝐸 ⋅ 𝐼௖,୸

Lୡ୰
ଶ

 

 
𝐼 ௖,୸ is the moment of inertia around the strong axis of the equivalent compression flange. 
𝐿௖௥ is the length between the lateral restraints. 
The modified relative slenderness of the equivalent compression flange is defined as 
follows: 

𝜆̅௖,୸,୫୭ୢ = 𝑘ୡ ⋅ 𝛽ୡ ⋅ 𝜆̅௖,୸ 
 
Where:  

𝛽௖ =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓
0,06

ℎ
𝑡௙,௠௔௫

ඨ𝜆௖,௭ +
𝑡௙,௠௔௫

𝑡௙,௠௜௡

 but 𝛽௖ ≤ 2 

𝑘ୡ is correction factor for moment distribution. See Table 1.10. 
𝑡௙,௠௔௫ is maximum thickness of top and bottom flange of the section. 

𝑡௙,௠௜௡ is minimum thickness of top and bottom flange of the section. 
The reduction factor due to lateral torsional buckling is defined as follows: 
 

𝜒୐୘ =  
1

𝜙௅் + ቀ𝜙௅்
ଶ − 𝜆̅௖,୸,୫୭ୢ

ଶ
ቁ

଴.ହ 

 

𝜙୐୘ = 0.5 ⋅ ቂ1 + 𝛼௅் ⋅ (𝜆̅௖,୸,୫୭ୢ − 0.2) + 𝜆̅௖,୸,୫୭ୢ
ଶ

ቃ 

 
For 𝛼௅்  buckling curve “c” should be taken for hot rolled sections and curve “d” for 
welded sections. 

1.4.5 Some remarks and conclusions 
The capacity against lateral torsional buckling is related to the elastic critical buckling 
moment. The elastic buckling moment has been studied by several authors and it was found 
that this moment varies depending on the bending moment diagram, boundary conditions, 
load application point and, of course, the geometric dimensions of the girder.  

Regarding the geometric dimensions, it can be concluded from the previous mentioned 
studies that the elastic buckling moment for girders with corrugated webs does not show a 
significant increase (less than 5%) compared to that for flat web when the corrugation angles 
are less than 45 degrees. 

Regarding the effect of lateral supports and load application point, it is concluded these 
factors has considerable effect on lateral torsional buckling resistance. To better understand 
this effect, one girder with different load position applications and different boundary 



 Chalmers University of Technology | 2022 

conditions is analyzed using the model proposed by (Nguyen et al., 2011). The studied 
girder’s dimensions, the boundary condition effect and the load application effect are 
illustrated in Table 1.11, Figure 1.33, and Figure 1.34 respectively.  

It can be seen that the capacity to lateral torsional buckling is largest when the load is applied 
on the tension flange followed by when load is applied at the shear center and the capacity is 
lowest when the load is applied at the compression flange. This considered in the newest 
version of Eurocode in the simple method of equivalent compression flange by the 
considered area 𝐴ୡ in calculation of flange slenderness. The considered area is largest when 
the load applied on compression flange which increase in its turn increase equivalent flange 
relative slenderness.  

Moreover, the lateral supports have considerable effect on the lateral torsional buckling 
resistance according to (Nguyen et al., 2011) and it can be seen that fixing the ends of the 
beam against warping would give considerable increase in terms of lateral torsional buckling 
moment.  

Table 1.11 Dimension of the girder considered 

a1 
[mm] 

a3  
[mm] 

α 
 [degree] 

𝒕𝒘 
[mm] 

 

𝒉𝒘 
[mm] 

 

𝑬 
[GPa] 

𝒃𝒇 
[mm] 

 

𝒕𝒇 
[mm] 

 

𝑳𝒄𝒓 
[m] 

80 43 32 4.2 1421 200 394 29 8 

 

 

Figure 1.33 Elastic critical buckling moment for different boundary conditions, the calculation according to 
(Nguyen, Han et al. 2011) 
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Figure 1.34 Elastic critical buckling moment for different load application position, the calculation according 
to (Nguyen, Han et al. 2011) 

Regarding the inelastic resistance against lateral torsional buckling, Moon et al. conducted as 
study on two beams with two different corrugations. The dimensions of the studied beams are 
presented in Table 1.12. 

Table 1.12 Dimensions o analyzed girders by  (Moon et al., 2009)  

 

The beams were studied for perfect shapes, shape of first buckling mode with imperfection 
amplitude equal to L/1000 and shape of first buckling mode with imperfection amplitude 
equal to L/500. Then the lateral torsional slenderness was varied for each case and the results 
were plotted together with Eurocode buckling curve d, see Figure 1.35.  

It was concluded that the method suggested by Eurocode is applicable and gives conservative 
results (Moon et al., 2009). However, this comparison has been done with curve d only. 
Moreover, the considered imperfection amplitudes (L/1000 and L/500) are less than 
Eurocode recommendation.  
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Figure 1.35 Results of inelastic buckling from FEM, (Moon et al., 2009), 𝑀cr  is calculated according to the 
equation suggested by Moon. 𝑀cr,FEM  is the buckling moment obtained from the analysis (Moon et al., 2009). 

Eurocode recommendation for initial imperfection is given in Section 5.3.4 in (EN_1993-1-1, 
2005). The initial imperfection that accounts for lateral torsional buckling for members in 
bending can be taken equal to: 

k ∗ e଴,ୢ 

Where e଴,ୢ is the initial bow imperfection of the weak axis of the considered profile. This 
factor is given in Table 5.1 in (EN_1993-1-1, 2005), see Table 1.13. The recommended value 
for k is 0.5. For buckling curve d in Eurocode, the initial imperfection should be taken as 

0.5 ∗
୐

ଵ଴଴
=

୐

ଶ଴଴
  for plastic analysis which is much larger that the amplitude considered by 

Moon. 

Table 1.13 Design values for initial local bow imperfection 𝑒଴, L is the member length. 

 

Worth noting here that a new draft of EN1993-1-5 (EN_1993-1-1, 2019) gives different 
recommendations for initial imperfection consideration. According to Section 7.3.3.2 in this 
draft, the initial imperfection that accounts for lateral torsional buckling or members in 
bending can be taken equal to: 

𝑒଴,୐୘ = 𝛽୐୘

𝐿

𝜀
 

Where 𝛽୐୘ is the reference relative bow imperfection for lateral torsional buckling defined in 
Table7.2 in this draft, see Table 1.14. 

𝜀 is the material parameter and 𝐿 is the member length.  
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Table 1.14 Reference relative bow imperfection 𝛽௅் for lateral torsional buckling 

 

Another study regarding inelastic resistance against lateral torsional buckling were performed 
by (EDVARDSSON, 2014) in their master thesis at Chalmers. The authors performed a 
linear buckling analysis to see how restraints on the tension flange of a girder with corrugated 
web affect the lateral-torsional buckling resistance. It was concluded that the critical buckling 
moment may be estimated precisely using Modified Lindner’s approach. This approach is a 
reformulation of the original approach but which adds the effect of corrugation to the torsion 
constant instead of warping constant giving same results as for the original approach 
(EDVARDSSON, 2014). 

Furthermore, a nonlinear finite element analysis has been performed by (EDVARDSSON, 
2014) and the results has been compared to Eurocode. It was concluded that the Eurocode 3 
design model for lateral torsional buckling is conservatively applicable to restrained girders 
with corrugated web as for flat web. 

1.4.6 Recommendations 
It can be observed from the previous sections that the elastic lateral torsional buckling 
moment has been studied by several scholars. However, there is not enough studies on 
corrugated web girders' inelastic capability in terms of lateral torsional buckling. The same 
method as for flat webs is recommended by Eurocode. This appears to be a conservative 
estimation, given that corrugated web girders have been shown to have a higher buckling 
moment.  

Furthermore, all previous research has focused on carbon steel and to propose buckling 
curves for corrugated web girders for carbon steel, a parametric study of inelastic capacity is 
needed. Moreover, a study of this problem for stainless steel are later needed. 

Versions EN1993-1-5, 2005 and EN1993-1-5, 2019 draft provide a simplified method to 
calculate the moment resistance of the equivalent flange considering it as a column with 
buckling length equal to the distance between the lateral supports. This method has been 
modified in the draft of the upcoming version of Eurocode (2019) in many aspects 
summarized as below: 

1- Consideration of the location of load application relative to the shear center.  
2- The section stiffness around the weak axis of the girder is considered by modifying 

the relative slenderness. 
3- The imperfection factor 𝛼௅், considers in the new draft the ratio of section modulus 

around the weak and the strong axes of the girder. 
4- No modification factor (k௙௟=1.1) is considered in 2019. 
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The simplified method of the new draft yields more conservative results compared to the 
method in the current version. This can be explained by the following attributes of the new 
proposed model: 

1. Increase the slenderness by factor (βc). 
2. No magnifying factor (k௙௟). 
1. The considered area from the web can also affect for case of flat web, increase Ac 

would increase slenderness. However, for corrugated webs, the web is disregarded.  

2 Resistance to shear force 
The research on shear buckling resistance of corrugated web beams began in 1969. Numerous 
studies have been conducted. Shear buckling was found to be the most common cause of 
failure for girders with corrugated webs under shear loading. Three shear buckling modes has 
been observed from the previous tests: local, global, and interactive buckling. 

The current edition of Eurocode provides a design model to estimate the shear capacity of 
corrugated web beams. Local and global buckling modes are included separately in this 
model while the interactive buckling mode is not considered. The other researchers, on the 
other hand, were concentrating on describing the interaction between the local and global 
buckling modes in order to predict the shear resistance of corrugated web beams. 

In this section the three shear buckling shapes are presented, followed by a compilation of the 
current edition of the EN1993-1- 5 design model for shear buckling as well as various models 
extracted from the literature. Moreover, the most influential parameters on shear buckling 
resistance, such as the initial imperfection and other geometric parameters, are addressed. 
Furthermore, a comparison between Eurocode design model and several other models has 
been performed based on previous experiments on corrugated web beams of carbon steel. 
Finally, the same comparison is repeated for the tested girders of stainless-steel in the 
SUNLIGHT project.   

2.1 Shear buckling mode shapes 
Shear failure of corrugated web girders may occur in three different shapes; 
local buckling mode where the buckling occurs in one-fold, global buckling 
mode where the buckling extends over many folds extended over the web 
height, and the interactive buckling mode where the buckling extends over few 
folds. The three different modes are illustrated in Figure 2.1. 

 

Figure 2.1 Three different shear buckling modes of trapezoidal corrugated steel webs  (Jian-Guo Nie & Mu-
Xuan Tao, 2013) 
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2.2 Resistance to shear force according to (EN_1993-1-5, 2006), current version 
2.2.1 Resistance to shear force for carbon steel 

 

Figure 2.2 Geometric notations of a. Flat web b. Corrugated web, (Kollár & Kövesdi, 2019) 

The shear buckling resistance of corrugated web girders is defined in Annex D in  (EN_1993-
1-5, 2006) as follows: 

𝑉௕௪,ோௗ =
𝜒௖𝑓௬௪ℎ௪𝑡௪

√3𝛾ெଵ

 

The interactive buckling mode is neglected in Eurocode and the reduction factor is taken as 
minimum between local and global reduction factors as following: 

𝜒௖ = 𝑚𝑖𝑛൫𝜒௖,௟, 𝜒௖,௚൯ 

The local slenderness is defined as follows: 

𝜆̅௖,௟ = ඨ
𝑓௬௪

√3𝜏௖௥,௟

 

The local reduction factor is defined as follows: 

𝜒௖,κ =
1,15

0,9 + 𝜆̅௖,κ

≤ 1,0 

Where global slenderness is calculated as follows: 

𝜆̅௖,௚ = ඨ
𝑓௬௪

𝜏௖௥,௚√3
 

The global reduction factor is defined as follows: 

𝜒ୡ,୥ =
1.5

0.5 + 𝜆̅ୡ,௚
ଶ

≤ 1.0 

Y 

Z 
X 
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The critical local shear stress where isotropic buckling plate theory is used is defined as 
follows: 

𝜏௖௥,κ = 4,83𝐸 ൤
𝑡௪

𝑎௠௔௫
൨

ଶ

 

The critical global shear stress where orthotropic buckling plate theory is used, the plates that 
are assumed to be hinges at the edges, is defined as follows: 

𝜏௖௥,௚ =
32,4

𝑡௪ℎ௪
ଶ ඥ𝐷௫𝐷௭

ଷర  

The longitudinal bending stiffness per unit length is defined as follows: 

𝐷௫ =
𝐸𝑡௪

ଷ

12(1 − 𝑣ଶ)

𝑤

𝑠
 

Where w is the length of one-half wave. 

 s is the unfolded length of one-half wave. 

The transverse bending stiffness per unit length is defined as follows 

𝐷௭ =
𝐸𝐼௭

𝑤
=

𝐸 ⋅ 𝑡௪𝑎ଷ
ଶ

12
⋅

3 ⋅ 𝑎ଵ + 𝑎ଶ

𝑎ଵ + 𝑎ସ
 

𝐼௭  is the second moment of area of one corrugation of length w around Z-axis as illustrated in 
Figure 2.2. 

The buckling curve for shear buckling of corrugated web girders according to Eurocode is 
illustrated in Figure 2.3. 

 

Figure 2.3 Shear Buckling Curves according to EN1993-1-5 

2.2.2 Resistance to shear force for stainless steel 
The design model for the shear strength of corrugated web girders in Eurocode is developed 
for carbon steel and has not been updated to stainless steel. Therefore, the shear capacity of a 
corrugated web girder in stainless steel can be checked based on the above-mentioned model 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,5 1 1,5 2 2,5 3

χ
[-

]

λ [-]

χ_L



 Chalmers University of Technology | 2022 

but with specific material coefficients and partial factors for stainless steel as in Table 1.2 and 
Table 1.3 until further research is done. 

2.3 Resistance to shear force according to (Driver et al., 2006) 
According to (Driver et al., 2006), the stress strain behavior, the residual stresses induced by 
fabrication and geometric imperfections are expected to be different for thin sheets material 
and plate material used in real bridges than that for small scale beams. For that reason, Driver 
et al., in 2006, have performed two large scale tests (G7A and G8A), with similar scale to the 
ones used in real bridges. 

The authors suggested that when the elastic shear buckling stress become larger than 80% of 
shear yield stress, the critical buckling stress can be considered as inelastic buckling and can 
be taken from the following equation (Eq.4 in Figure 2.5):  

(𝜏ୡ୰)୧୬ୣ୪ = ට0.8𝜏௬(𝜏ୡ୰)ୣ୪ ⩽ 𝜏௬         

Where (𝜏ୡ୰)ୣ୪ = ൫𝜏ୡ୰,୐൯
ୣ୪

 in case of local buckling stress and (𝜏ୡ୰)ୣ୪ = ൫𝜏ୡ୰,ୋ൯
ୣ୪

 in case of 

global buckling stress. 

For local buckling, the plate stability theory has been used to predict the local shear buckling 
stress of corrugated web girders. The elastic local buckling stress can be obtained from the 
following equation (Eq.1 in Figure 2.5): 

൫𝜏ୡ୰,௅൯
ୣ୪

= 𝑘௅

𝜋ଶ𝐸

12(1 − 𝜈ଶ)(𝑤/𝑡௪)ଶ
            

𝑘௅ is local shear buckling coefficient that depends on the boundary conditions and fold aspect 

ratio 
௪

௛ೢ
 

𝑤 is maximum fold length 𝑤 = max (𝑏, 𝑐), see Figure 2.4. 
 

 

 

Figure 2.4 Corrugation geometric notations, (Driver et al., 2006) 

For simply support edges, the local buckling coefficient, 𝑘௅ = 5.34 and for fixed edges, 𝑘௅ =

8.98 

For global buckling, the corrugated web can be analyzed as orthotropic flat web with elastic 
buckling coefficient. The elastic global buckling stress is defined as follows: 
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൫𝜏ୡ୰,ீ൯
ୣ୪

= 𝑘ீ

𝐸𝑡௪

ଵ
ଶ 𝑏

ଷ
ଶ

12ℎ௪
ଶ

𝐹(𝛼, 𝛽) 

𝐹(𝛼, 𝛽) is a factor that considers the corrugation geometry, and it is defined as following: 

𝐹(𝛼, 𝛽) = ඨ
(1 + 𝛽) sinଷ 𝛼

𝛽 + cos 𝛼
⋅ ൜

3𝛽 + 1

𝛽ଶ(𝛽 + 1)
ൠ

ଷ
ସ
 

𝛼 is the corrugation angle 

𝛽 is the ratio between the longitudinal fold to the inclined fold  

For simply support edges, the global buckling coefficient is 𝑘ீ = 31.6 and for fixed edges, 
𝑘ீ = 59 

Many previous test results together with the performed tests, where local buckling or yielding 
governed, have been plotted with the proposed equation for inelastic buckling stress and it 
was observed that the shear strength is overestimated by this equation for the webs with low 
slenderness values. See Figure 2.5. Thus, a new formula, Eq.10 in  Figure 2.5, has been 
further suggested by the authors to estimate the shear strength of the girder taking the 
combination of local and global buckling as following: 

𝜏௡ = ඨ
൫𝜏ୡ୰,௅ ⋅ 𝜏ୡ୰,ீ൯

ଶ

𝜏ୡ୰,௅
ଶ + 𝜏ୡ୰,ீ

ଶ  

Where 𝜏ୡ୰,௅ and 𝜏ୡ୰,ீ are being calculated through equation 

(𝜏ୡ୰)୧୬ୣ୪ = ට0.8𝜏௬(𝜏ୡ୰)ୣ୪ ⩽ 𝜏௬ 

 

Figure 2.5 Results of tests where local buckling or yielding governs, (Driver et al., 2006)     

It was also observed by Driver et al. that a significant loss in shear strength is accompanied 
with global buckling. Therefore, the authors recommended to prevent the global buckling by 
satisfying the following equation: 
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ℎ௪

𝑡௪
⩽ 1.91𝜓ඨ

𝐸

𝐹௬
൬

𝑏

𝑡௪
൰

ଵ.ହ

𝐹(𝛼, 𝛽) 

 𝜓 is set to 0.9 to provide safety for the design for global buckling strength 

Then, the nominal shear strength can be determined based on only the local buckling 
according to the following equations:   

𝑖𝑓  𝜆௅ ⩽ 2.586 

𝑉௡ = 0.707 ൬
𝐹௬

√3
൰ ℎ௪𝑡௪ 

If   2.586 < 𝜆௅ ⩽ 3.233 

𝑉௡ = ඨ
1

1 + 0.15𝜆௅
ଶ ൬

𝐹௬

√3
൰ ℎ௪𝑡௪ 

If 𝜆௅ > 3.233 

𝑉௡ = ඨ
1

1 + 0.014𝜆௅
ସ ൬

𝐹௬

√3
൰ ℎ௪𝑡௪ 

Where the normalized local buckling slenderness 

𝜆௅ =
𝑤

𝑡௪

ඨ
𝐹௬

𝐸
 

These equations are applicable when 
௕

௧ೢ
 satisfy this condition: 

𝑏

𝑡௪
⩽ 2.586ඨ

𝐸

𝐹௬
 

b is the width of the longitudinal fold 

Imperfection sensitivity according to (Driver et al., 2006): 

An imperfection sensitivity analysis has also been conducted in this study. Firstly, the first 
buckling mode has been considered as imperfection shape and the amplitude has been taken 
as percentage of the web thickness (from 0% to 100% of  𝑡௪). It was concluded that the shear 
strength decreases with increasing the imperfection amplitude. See Figure 2.6. 
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Figure 2.6 Shear strength variation with imperfection amplitude (Driver et al., 2006) 

Secondly, the imperfection amplitude is kept to 100% of 𝑡௪ while the imperfection shape was 
taken from the various shear buckling modes revealed in the linear elastic buckling study. 
The shear stress capacity was found to rise with the mode number, with the first mode 
providing the most critical condition. 

2.4 Resistance to shear force according to  (Jiho Moon & Byung H. Choi, 2009) 
A new design formula for shear buckling of corrugated web girders has been proposed by 
Moon. To validate the postulated formulae, several experimental studies were carried out 
(M12:M14) and a comparison of shear strength for the testes girders as well as some previous 
tests on shear buckling has been performed. It was concluded that the design shear buckling 
strength may be determined directly, without having to calculate local and global buckling 
separately,  based on a first-order interactive buckling equation (Jiho Moon & Byung H. 
Choi, 2009) 

The design model proposed by Moon et al. is illustrated in Figure 2.7 and can be summarized 
in the following steps: 

1- Determine the shear slenderness  

𝜆௦ = 1.05 ⋅ ඨ
𝜏௬

𝑘ூ ⋅ 𝐸
⋅ ൬

ℎ௪

𝑡௪
൰ 

𝑘ூ is the interactive shear buckling coefficient that can be calculated as: 

 

       𝑘ூ =
30.54

5.34 ⋅ ቀ
𝑎ଷ
𝑡௪

ቁ
ିଵ.ହ

+ 5.72 ⋅ ൬
𝑚𝑎𝑥(𝑎ଵ, 𝑎ଶ)

ℎ௪
൰

ଶ 

2- Calculate the shear strength from the following equations, illustrated also in  Figure 
2.7. The proposed model considers material inelasticity, residual stress, and initial 
imperfections.  
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 if   𝜆௦ ≤ 0.6
𝜏௖௥

𝜏௬
= 1

 if   √2 ≥ 𝜆௦ ≥ 0.6             
𝜏௖௥

𝜏௬
= 1 − 0.614 ⋅ (𝜆௦ − 0.6)

if  √2 < 𝜆௦

𝜏௖௥

𝜏௬
=  

1

𝜆௦
ଶ

 

 

Where 𝜏௖௥ is the shear buckling stress and 𝜏௬ is the shear yield stress. 
 

 

Figure 2.7 Shear buckling curve according to Moon 

It is also recommended by Moon that to maximize the shear buckling strength of corrugated 
web girders, the shear slenderness should be kept less than 0.6 and that can be achieved by 
satisfying the following equation:  

1.10 ቈ
5.34(𝑑/𝑡௪)ିଵ.ହ(ℎ௪/𝑡௪)ଶ + 5.72(𝑤/𝑡௪)ଶ

30.54
቉

𝜏௬

𝐸
≤ 0.36 

2.5 Resistance to shear force according to (Richard Sause & Braxtan, 2011) 
Sause and Braxtan, in 2011, have collected more than 100 test results from previous studies, 
categorized and analyzed based on test specimen parameters. Based on these test results they 
suggested a new equation to determine the ultimate shear strength for bridge girders with 
corrugated webs. The suggested formula doesn’t include the test data where the shear 
strength is controlled by global elastic buckling. Moreover, this formula does not evaluate 
whether the corrugated webs tend to reach yielding as the girder become stocky. It was 
derived theoretically and not verified by previous test data where 𝜆ீ and 𝜆௅ are less than 0.6 
(stocky girders) (Richard Sause & Braxtan, 2011). 

The design model proposed by Sause and Braxtan is illustrated in Figure 2.8 and the 
procedure to estimate the shear buckling strength can be summarized as following: 

The interactive buckling stress is defined as follows: 

𝜏௡,ௌ,ଷ = 𝜏௬ ൭
1

൫𝜆ூ,ଷ൯
଺

+ 2
൱

ଵ/ଷ
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The interactive slenderness 𝜆ூ,ଷ  parameter to be estimated using an interactive order of n = 3 
as follows: 

𝜆ூ,௡ = 𝜆௅𝜆ீ ቆ൬
1

𝜆௅
൰

ଶ௡

+ ൬
1

𝜆ீ
൰

ଶ௡

ቇ

ଵ/ଶ௡

 

The local buckling slenderness is defined as follows: 

𝜆௅ = ඨ
12(1 − 𝑣ଶ)𝜏௬

𝑘௅𝜋ଶ𝐸

𝑤

𝑡௪
 

The global buckling slenderness is defined as follows: 

𝜆ீ = ඨ
12ℎ௪

ଶ 𝜏௬

𝑘ீ𝐹(𝛼, 𝛽)𝐸𝑡௪
଴.ହ𝑏ଵ.ହ

 

The geometric factor is defined as follows: 

𝐹ఈ,ఉ = ඨ
(1 + 𝛽) ⋅ sin (𝛼௖)ଷ

𝛽 + cos (𝛼௖)
⋅ ൬

3 ⋅ 𝛽 + 1

𝛽ଶ ⋅ (𝛽 + 1)
൰

ଷ/ସ

 

𝛽 is the ratio between the longitudinal fold to the inclined fold 

𝛼௖ is the corrugation angle 

 

Figure 2.8 Shear buckling curve according to Sause & Braxtan 

2.6 Resistance to shear force according to (Hassanein & Kharoob, 2013) 
In 2013, Hassanein and Kharoob conducted a numerical parametric study to assess the real 
behavior at the intersection of the corrugated web and the flanges. The juncture was 

considered simple when  
௧೑

௧ೢ
< 3 and fixed when 

௧೑

௧ೢ
> 3.  

The authors performed their parametric study on the following range (same notations as in 
Figure 2.4): 

1. Corrugation depth-to-web thickness ratio (hr/tw); (9.72-29.17). 
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2. Web flat panel width-to-depth ratio (b/hw); (0.135–0.325). 

3. Aspect ratio of the web panel (a/hw); (1.0–2.4). 

4. Web plate slenderness (hw/tw); (56–400). 

5. Flange thickness-to-web thickness ratio (tf/tw). 

The results were compared to many previous design models on shear buckling of corrugated 
web beams. It was revealed that the1st-order interactive buckling strength design model, as 
proposed by Sause and Braxtan (Richard Sause & Braxtan, 2011), is adequate for corrugated 
webs with simple junction, but it is unconservative for corrugated webs with fixed juncture. 
Thus, for the case of a fixed  junction, a new interactive shear buckling strength formula was 
proposed by (Hassanein & Kharoob, 2013) as following: 

The local buckling stress is defined as follows: 

𝜏௖௥.௅ = 𝑘௅ ⋅
𝜋ଶ ⋅ 𝐸

12 ⋅ (1 − 𝜈ଶ)
⋅ ൬

𝑡௪

𝑎௠௔௫
൰

ଶ

 

The local buckling coefficient is defined as follows: 

 𝑘௅ = 5.34 + 4 ⋅ ൬
𝑎௠௔௫

ℎ௪
൰

ଶ

 

The global buckling stress is defined as follows: 

𝜏௖௥.ீ = 𝑘ீ ⋅
𝐷௫

଴.ଶହ ⋅ 𝐷௬
଴.଻ହ

𝑡௪ ⋅ ℎ௪
ଶ

 

The global buckling coefficient is defined as following: 

𝑘ீ = 31.6 

The interactive buckling stress is defined as : 

𝜏௖௥.ூ =
𝜏௖௥⋅௅ ⋅ 𝜏௖௥⋅ீ

(𝜏௖௥.ீ
௡ + 𝜏௖௥.௅

௡)
ଵ
௡

 

Where the interaction of order: 

n = 0.6   where   
௧೑

௧ೢ
> 3 

The interactive slenderness 𝜆ூ,଴.଺  parameter to be estimated using an interactive order of n = 
0.6 as follows: 

𝜆ூ,௡ = 𝜆௅𝜆ீ ቆ൬
1

𝜆௅
൰

ଶ௡

+ ൬
1

𝜆ீ
൰

ଶ௡

ቇ

ଵ/ଶ௡

 

Then the shear buckling resistance is defined as follows: 

𝜏௡ = 𝜏௬ × ൭
1

൫𝜆ூ,଴.଺൯
଺

+ 2
൱

ଵ/ଷ
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Recently, in 2022, (Deng et al., 2022) performed an experimental program on a small-size 
girders with corrugated webs. Moreover, the authors performed a similar parametric study to 
that done by (Hassanein & Kharoob, 2013). However, the studied ranges for the most 
influencing parameters were wider and only fixed juncture is considered. Besides, the flanges 

are kept compact to avoid flange deformation (by satisfying 0.5𝑏௙ /𝑡௙ ≤ 0.38ට
ா

ி೤
 ). The 

considered parameters ranges are: 

 1. Corrugation depth-to-web thickness ratio (hr/tw); (7.5-60). 

2. Web flat panel width-to-depth ratio (b/hw); (0.1-0.33). 

3. Aspect ratio of the web panel (a/hw); (1.08-2.57). 

4. Web plate slenderness (hw/tw); (66.7-500). 

For girders with equal flat and inclined folds, Hassanien and Kharoob's previous model yields 
the best estimate for shear buckling strength, according to this research. The Moon design 
approach, on the other hand, provides a more accurate estimation of capacity for situations 
with different fold lengths  (Deng et al., 2022). 

2.7 Resistance to shear force according to (Leblouba, Barakat, et al., 2017) 
In 2017 Leblouba et al. have published two papers on shear behavior of corrugated web 
girders. In the first paper, “Shear buckling and stress distribution in trapezoidal web 
corrugated steel beams” (Leblouba, Junaid, et al., 2017), they have performed five tests, 
collected around 22 tests from literature, and compared different models for the design 
purpose of shear buckling of corrugated web girders against the tests data. The authors 
concluded that the design model in EN-1993-1-5 is accurate and conservative enough for an 
economic design. See Figure 2.9. 

Furthermore, there has been some disagreement in the literature as to whether corrugated 
beams can approach shear yield strength. It was demonstrated in this work that stocky girders 
with corrugated webs may reach shear yield strength. 

 

Figure 2.9 Shear strength versus slenderness ratio compared with test data (27 tests),  (Leblouba, Junaid, et al., 2017) 

In the second paper “Normalized shear strength of trapezoidal corrugated steel 
webs”,(Leblouba, Barakat, et al., 2017) they considered a larger range on experiments 
(around 125 experiments) and they suggested a new design model for interactive buckling 
based on Richard’s equation which yielded in better results in comparison to the test data 
(only 5.6% of the 125 tests, the ratio 𝜌ெିଵ/𝜌௘ were larger than one).  
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The shear buckling reduction factor according to Leblouba et al. can be defined as follows: 

𝜌ெିଵ =
1

ቆ1 + ቀ
𝜆ூ.ସ

1.58ቁ
ଵ.଺

ቇ

ଵ.ଵହ 

The interactive slenderness 𝜆ூ,ସ  parameter to be estimated using an interactive order of n = 4 
as follows: 

 𝜆ூ,ସ = ට
ఛ೤

ఛ಺,ర
             

  𝜏௬ = 𝐹௬/√3 

ቆ
1

𝜏ூ,௡
ቇ

௡

= ൬
1

𝜏௅
൰

௡

+ ൬
1

𝜏ீ
൰

௡

+ ቆ
1

𝜏௬
ቇ

௡

 

The local buckling stress is defined as following: 

𝜏௅ = 𝑘௅

𝜋ଶ𝐸

12(1 − 𝑣ଶ) ቀ
𝑤
𝑡௪

ቁ
 

𝑘௅ is set to 5.38 for simply supported edges and to 8.98 for clamped edges. 

The global buckling stress is defined as following: 

𝜏ீ = 𝑘ீ

𝐷௫

ଷ
ସ𝐷௬

ଵ
ସ

𝑡௪ℎ௪
ଶ

 

𝑘ீ  is set to 31.6 for simply supported edges and to 59 for clamped edges. 

The longitudinal bending stiffness 𝐷௫ can be obtained from: 

𝐷௫ =
𝐸

𝑏 + 𝑑
ቆ

𝑏𝑡௪(𝑑 ∗ tan (𝜃)ଶ)

4
+

𝑡௪(𝑑 ∗ tan (𝜃)ଷ)

12sin (𝜃)
ቇ 

The transverse bending stiffness 𝐷௬ can be obtained from: 

𝐷௬ =
𝑏 + 𝑑

𝑏 + 𝑑 ∗ sec (𝜃)

𝐸𝑡௪
ଷ

12
 

The dimensional geometric properties 𝑏, 𝑑, 𝜃  are given in Figure 2.10. 
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Figure 2.10 Definitions and geometric properties of a trapezoidal corrugated web (Leblouba et al., 2019) 

 

 

Figure 2.11 Normalized shear strength versus 𝜆ூ,ସ  (Leblouba, Barakat, et al., 2017) 

The results for the proposed model together with the tests data are shown in Figure 2.11. The 
model gives good estimation for shear buckling strength when corrugation angle is larger 
than 22 degrees. 

2.8 Resistance to shear force according to (EN_1993-1-5, 2019), new draft 
In this draft, no adjustments to the existing version's shear resistance model of corrugated 
web girders are suggested. 

2.9 Stress distribution of corrugated web under pure shear according to (Zhang 
et al., 2020) 

In 2020, Zang et al. have studied the stress distribution on corrugated web under shear 
theoretically and verified it by experiment. The rotated stress field theory has been adopted, 
for the first time, to analyze the stresses in corrugated web girders (Zhang et al., 2020). The 
stress state has been summarized in the following three stages: 



 Chalmers University of Technology | 2022 

1. Pre-buckling stage: the web is under pure shear, with shear stresses distributed 
equally throughout the web height as and a direction angle of primary strain of around 
45 degrees. Because there is no vertical or horizontal membrane stress in the web 𝜏 =

𝜎ଵ = |𝜎ଶ|.  
2. Buckling stage: at the time of buckling, the shear stresses and principal stresses attain 

their maximum values   𝜏୳ = 𝜎ଵ,௠௔௫ = |𝜎ଶ|௠௔௫    
3. Post-buckling stage: At the post-buckling stage, stresses redistribute, and the extent of 

redistribution is related to the development of out-of-plane deformation. The shear 
stress that causes critical buckling is lowered to (47-68%) of its nominal value (the 
resistance from the web is no longer present). The principal tensile stresses fall first, 
then rise again when deep creases appear in the body and a frame system (made up of 
flanges, transverse stiffeners, and an inclined tension zone in the web anchored to the 
flanges) resists and transfers the shear stress, see Figure 2.12. Finally, the girder is 
subject to its ultimate failure when plastic hinges develop in the flanges.  

 

Figure 2.12 First principal stress, 500 denotes the web width in mm and 40 denotes the flange width in mm, 
(Zhang et al., 2020).  

Figure 2.13 shows the stress state at the different stages. The "accordion effect" reduces 
the longitudinal stiffness of a corrugated steel web to a few tenths to a few hundredths of 
that of a flat steel web. As a result, no longitudinal membrane stress is expected in the 
corrugated steel web, and the end stiffeners' anchoring force is set to zero 𝜎௛ = 0. 
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Figure 2.13 Stress state in the corrugated web of a beam with stiffeners at the ends only, (Zhang et al., 2020). 

The verification with the test results is illustrated in Error! Reference source not found.. 
The membrane stresses 𝜎௛ = 0 and  𝜎௩ = 0 throughout the test. The out-of-plane 
displacement increases significantly when buckling takes place. Moreover, the orientation of 
principle strain change from 45 to around 35. 

 

Furthermore, Zang et al. used an NLFEA to investigate the behavior of corrugated web 
girders in the post-buckling stage. In the post-buckling stage, the CWGs are stated to exhibit 
residual shear resistance. A frame system created composed of flanges, stiffeners, and an 
inclined tension zone anchored to the flanges resists the shear force at this stage. This residual 
capacity might range between 47% and 145% of the shear buckling load. This proportion is 
determined by two factors: 

1. The bending stiffness of the flanges, the residual shear capacity increases with 
increasing the bending stiffness of the flange (which rises as the flange thickness 
increases). Figure 2.15 illustrates the effect of flange thickness on the residual shear 
resistance.  

2. The web width/height, the residual shear capacity increases with decreasing the web 
width/height ratio (the reason might be that when stiffeners are close (low ratio), the 
anchorage from the stiffeners would increase meaning increase in the frame system 
resistance). Figure 2.15 illustrates the effect of web width/height on the residual shear 
resistance.  

 

Figure 2.14 Deformation and stress states in the corrugated web: (a) shear force in the beam 
section; (b) out-of-plane deformation; (c) stress in the web (d) inclination angle of the principal 

stress. Test performed by (Zhang et al., 2020). 
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Figure 2.15 load mean shear stress/out-of-plane deformation - deflection relation curves and shear buckling 
modes. Note: (1) in the pre-buckling stage (2) in the buckling stage stage (3) in the post-buckling stage (Zhang 

et al., 2020). Different flange thicknesses 20mm & 40mm 

 

Figure 2.16 load mean shear stress/out-of-plane deformation - deflection relation curves and shear buckling 
modes. Note: (1) in the pre-buckling stage (2) in the buckling stage (3) in the post-buckling stage (Zhang et al., 

2020). Different web widths 500mm & 750mm. 

They concluded that three different collapse mechanisms might be distinguished in 
corrugated web girders. See Figure 2.17 .They are categorized based on the previous 
mentioned two factors (web width/height ratio and the bending stiffness of the flanges) as 
following: 

1. Quasi mid-section mechanism: it happens when the flanges are flexible, and the web 
width/ height ratio is large. 

2. Girder mechanism: it happens when the flanges are rigid, and the web width/ height 
ratio is quite low. 

3. Mid-section mechanism: it is a transition between the previous two extreme cases. 
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Figure 2.17 Collapse mechanisms of corrugated steel web beams, (Zhang et al., 2020) 

2.10 Most influencing parameters on shear resistance of corrugated web girders 
In this section the most influencing parameters on shear resistance of corrugated web beams 
are collected from the available literature and summarized in Table 2.1.  

 

Figure 2.18 Corrugated web beams notations 

Table 2.1  Most influencing parameters on shear resistance of corrugated web girders, Notations in Figure 2.18 

Ref. Method Parameter (s) Results 
Driver et 
al.(Driver et al., 
2006) 

Experi
ment + 
FEM 

Imperfection 
amplitude 

Increasing the imperfection amplitude decrease the shear 
buckling strength significantly 

Nie et al. 
(Jian-Guo Nie 
& Mu-Xuan 
Tao, 2013) 

Experi
ment  

1) Shear span, a  
2) corrugation 
Configuration, 
q 

(𝜏௖௥/𝜏௬) relationship is unrelated to the corrugation 
configuration (q) and shear span ratio (a/ℎ௪) 

 FEM 1) Initial 
imperfection 
2) (a/ q) 

In case of yielding strength smaller than buckling strength: the 
ultimate loading capacity decreases significantly with increase 
imperfection at the descending stage, shear buckling occurs 
after yielding. 
In case of yielding strength larger than buckling strength: the 
ultimate loading capacity decreases with increasing 
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imperfection whereas the descending capacity is independent 
on the imperfection. 
The shear capacity is insensitive to initial imperfection when λ 
> 2, 3. However, the shear capacity decreases fast when λ 
between 0,75 and 2,3. In this range there is the largest effect of 
initial imperfection on shear strength. 

  1) b/ℎ௪ 
2) ℎ௥/𝑡௪ 

Increasing b/ℎ௪ change the mode from global to local. 
Increasing ℎ௥/𝑡௪ change the mode from global to local. 
Increasing both parameters together fasten the change of mode 
from global to local. 

  Corrugation 
configuration, q 

The shear capacity is unrelated to the corrugation configuration 
(q) 

  Shear Span The shear capacity is unrelated to shear span ratio 
Kollár 
and Kövesdi 
2018 
(Kollár & 
Kövesdi, 2018) 

Experi
ment 
and 
FEM 

1) Corrugation 
angle effect on 
2) Initial 
imperfection 

The virtual testing and the experiment give good agreement 
with the three angles with maximum difference with angle 60 
deg which was within the tolerance, so initial imperfection is 
not related to the angle and an imperfection amplitude of 
ℎ௪/200 is applicable but needs more research. 

  alpha Shear strength increases with increasing of Alpha 
Hassanein 
et al. 2017 
(Hassanein et al., 
2017) 

FEM 1) 𝑡௪ 
2) ℎ௪ 
3) ℎ௥ 

1) Increasing web thickness and height leads to significant 
increase in yielding region in the Web, thus raises the strength 
of the girders. 
2) Small web thicknesses are more economical. 
3) Smaller web heights have higher post buckling strength. 
4) Smaller ℎ௪ is more efficient. 
5) Increasing corrugation depth (ℎ௥) decrease the possibility of 
PHs (plastic hinges) development which only become visible in 
global shear failure due to increased rigidity of flanges besides 
the higher shear strength that does not result in differential 
deflection between upper and bottom flange to form PHs. 
Increasing ℎ௥ increases shear strength considerably. 

Jongwon Yi, 
Heungbae Gilb 
(et.al., 2008) 

FEM 1) b/ℎ௪ 
2) ℎ௥/𝑡௪ 

1) When b/hw ratio increases, 𝜏௖௥,௚/𝜏௖௥,௟ increase which means 
local buckling (Not mentioned). 
2) When ℎ௥/t ratio increases, 𝜏௖௥,௚/𝜏௖௥,௟  increase which means 
local buckling (Not mentioned). 
3) The elastic buckling analysis results showed that the 
interactive shear buckling mode and strength was not 
influenced by material inelasticity or yielding, but rather by the 
geometry of the corrugated plate. 

Moussa 
Leblouba, 
Samer 
Barakat, 
2019 
(Leblouba et al., 
2019) 

Experi
ment 

1) Shear span, a 
2) ℎ௪ 
3) Corrugation 
angle 

1) Increasing corrugation angle leads to increasing shear 
strength and better usage of material strength and shear 
capacity. 
2) Shear span doesn’t have an effect the shear strength. 

Hassanein 
and Kharoob 
2013 
(Hassanein & 
Kharoob, 2013) 

FEM 1) ℎ௥/𝑡௪ 
2) b/ℎ௪ 
3) a/ℎ௪ 
4) ℎ௪/𝑡௪ 

1) For every web depth, raising the ℎ௥/𝑡௪ ratio reduces the 
critical shear stress (ℎ௪). When the ℎ௥/𝑡௪ ratio approaches 30, 
the critical shear stress for any web depth (ℎ௪) studied is nearly 
the same. 
2) Increasing the b/ℎ௪ ratio (by decreasing ℎ௪) raises the 
critical shear stress linearly. 
3) For any corrugated configuration, increasing the a/ℎ௪ ratio 
(with the same a) The critical shear stress is increased. This 
demonstrates that the square corrugated webs are the most 
critical. However, this situation is incompatible with the real 
corrugated web bridge dimensions. Girders utilized in practice 
where the vertical stiffeners are spaced apart is far larger than 
the depth of the web (ℎ௪). 
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4) For any web thickness, increasing the ℎ௪/𝑡௪ ratio lowers the 
critical shear stress. The crucial value for ℎ௪/𝑡௪ is 150 over 
which the decrease in stress becomes almost constant. 

Moussa 
Leblouba, 
Samer 
Barakat 
and Zaid Al- 
Saadon 
(Leblouba et al., 
2018) 

Experi
ment 
and 
FEM 

1) ℎ௪ 
2) b 
3) 𝑡௪ 

Longitudinal fold b and 𝑡௪ are the most influential, 
followed by ℎ௪, then the rest of the parameters; the modulus of 
elasticity E is noninfluential within the range [190–210] GPa. 

Basinski, Witold 
(Basinski, 2019) 

Experi
ment 

Support 
stiffener 
rigidity 

When reinforced support stiffeners are used, the linear range of 
variations in the shear angle is increased. The shear buckling 
resistance value then rises to 42%. 

2.11 Initial imperfection effect on shear buckling resistance 
The initial imperfection is found to be one of the most effective factors on the girder's shear 
resistance. Apart from the manufacturing process, this imperfection is caused by the welding 
process and the accompanying residual stresses. 

Both the amplitude and the shape of the initial geometric web imperfections play a major role 
in the shear strength and behavior of corrugated web steel girders. 

In a study performed by Sause et al. to evaluate the effect of imperfection amplitude on the 
shear buckling capacity of corrugated web beams, it was revealed that the shear buckling 
capacity can reach yielding shear strength with an imperfection amplitude of up to 10% of 𝑡௪. 
However, increasing the amplitude of the imperfection drastically reduces the shear buckling 
strength. (Sause et al., 2003), see Figure 2.6. 

Considering the size of the panels in the webs of real bridge girders, Hassanein et al. 
indicated that an imperfection magnitude equal to the corrugated web thickness (tw) is 
practical (Hassanein & Kharoob, 2013). 

Kollár and Kövesdi, in 2018, have performed three experiments to verify the virtual 
manufacturing and residual stresses with test results. Then they utilized the virtual 
manufacturing residual stresses as input for virtual testing to determine shear buckling 
resistance. It is concluded the imperfection amplitude suggested by EN 1993-1-5:2006 
(hw/200) to calculate shear buckling strength is applicable, however more research is needed 
(Kollár & Kövesdi, 2018). 

On the other hand, in 2019, Kollár and Kövesdi applied virtual manufacturing techniques to 
simulate the residual stresses and deformation due to the manufacturing process, considering 
different web thicknesses (3mm, 2mm, and 1.2mm), presented that the residual stress in the 
corrugated webs can be neglected and the realistic imperfection amplitude is much smaller 
than hw/200 suggested by EN 1993-1-5:2006. Thus, they suggested a more advanced 
modeling that considers the real initial imperfection (Kollár & Kövesdi, 2019). 

Regarding the imperfection shape, the first buckling mode has been always thought of as an 
imperfection shape in earlier studies. An imperfection sensitivity study that has been 
conducted by Driver et al. has revealed that the first buckling mode shape is the most critical 
imperfection shape for shear buckling resistance (Driver et al., 2006).  
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2.12 Discussion and recommendation 
In this section four design buckling curves for shear buckling resistance of corrugated web 
girders are compared. Several prior shear buckling resistance tests were compared between 
(Jiho Moon & Byung H. Choi, 2009), (EN_1993-1-5, 2019), Leblouba et al. (Leblouba, 
Barakat, et al., 2017) and  (Richard Sause & Braxtan, 2011) design curves. The tests that 
were investigated for carbon steel are summarized in  Table 2.2. As can be observed, in case 
of carbon steel tests, all models deliver conservative results compared to the test results. see 
Figure 2.19. 

Table 2.2 Previous tested girders in carbon steel. References,  A12-305-30 and A12-305-45 (Leblouba, Barakat, 
et al., 2017), Zang test  (Zhang et al., 2020) and G7A  (Driver et al., 2006) 

Tested 
girder 

a1 
[mm] 

a3  
[mm] 

α 
 [deg] 

𝒕𝒘 
[mm] 

 

𝒉𝒘 
[mm] 

 

𝑭𝒚𝒘 
[MPa] 

𝒃𝒇 
[mm] 

 

𝒕𝒇 
[mm] 

 

𝝉𝒆 
[MPa] 

𝝉𝒆/𝝉𝒚 
 

G7A 300 150 36.9 6.3 1500 465 450 50 244 0.91 
A12-305-30 40 20 30 1.2 305 230 150 12 136.07 1.025 
A12-305-45 40 28.284 45 1.2 305 230 150 12 147.26 1.108 

Zang test 340 160 45 6.4 1500 405 250 50 225 0.962 
 

 

Figure 2.19 Previous tests in carbon steel on Eurocode, Moon, Leblouba and Sause design curves. 

Looking at the shear design model in Eurocode, the shear capacity is defined based on the 
minimum between the local and global buckling modes. However, the design models in the 
literature consider interaction between the local and global buckling modes. Refer to Figure 
2.19, although some of the proposed design models (Moon model) provide results closer to 
the test results, there is no indication here or in the studied literature that the Eurocode model 
is unsafe. 

Regarding stainless steel, In SUNLIGHT testing program four girders with different 
geometric parameters of the corrugation were fabricated and tested in three-point bending. 
Lateral restraints were provided to prevent lateral-torsional buckling. The dimensions of the 
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flange plates (250 mm×25) were chosen to eliminate the risk of flange buckling and to ensure 
shear failure occurs in the web before other failure modes. All the girders were made of LDX 
2101 stainless steel delivered by Outokumpu. The girders all had an approximate length of 
4.0 m and height of 1.45 m. Detailed dimensions are presented in Table 2.3. 

In SUNLIGHT-PROJECT, experiments were designed and performed to more accurately 
investigate the shear behavior of girders made of stainless steel and corrugated web plates. 
Four full-scale girders were tested. 3D DIC was used to monitor the initial geometry and 
deformations of the web panel during loading. The applied load, maximum vertical 
deflection, and the strains were all measured. Based on the conducted tests, a finite element 
model was developed and validated. 

The results of tested girders in SUNLIGHT have been compared with the four mentioned 
models. As can be seen from Figure 2.20, the four studied models give quite conservative 
strengths in comparison with the test results.  

Table 2.3 Tested girders in stainless steel. Ref. SUNLIGHT Project 

Speci
men 

a1 
[mm] 

a3  
[mm] 

α 
 [deg] 

𝒕𝒘 
[mm] 

 

𝒉𝒘 
[mm] 

 

𝑭𝒚𝒘 
[MPa] 

𝒃𝒇 
[mm] 

 

𝒕𝒇 
[mm] 

 

Failure 
load 
[kN] 

𝝉𝒖𝒍𝒕 
[MPa] 

𝝉𝒆/𝝉𝒚 
 

1001 170 60 35 4 1450 460 250 25 3188 274.83 1.04 
1002 170 60 45 4 1450 460 250 25 3500 301.73 1.14 
1003 170 100 35 4 1450 460 250 25 3303 284.74 1.07 
1004 170 100 45 4 1350 460 250 25 3202 296.48 1.12 

 

Figure 2.20 Current tests on stainless steel on Eurocode, Moon, Leblouba and Sause design curves. 

To conclude, the shear capacity of corrugated web girders is studied expensively by different 
authors. The ultimate shear capacity of corrugated web girders is stated to be governed by 
buckling load of the web according to many authors like  (Jiho Moon & Byung H. Choi, 
2009) and (Richard Sause & Braxtan, 2011). Zang et al., on the other hand, suggested that the 
flanges can also contribute to the shear resistance and give considerable increase to the shear 
resistance by the frame system that develop after buckling (Zhang et al., 2020). This is 
dependent on the bending stiffness of the flanges and the aspect ratio of the web (NOTE, in 
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real bridge girders the distance between the stiffeners is large and the flanges are too flexible 
to provide this kind of frame action. Thus, the shear resistance is expected to be limited by 
the buckling of the web). Limiting the shear resistance to the web buckling will give 
conservative values (additional capacity can be obtained by stain-hardening). Eurocode 
consider the shear resistance to be the minimum local and global buckling load. Leblouba et 
al. have confirmed that the use of Eurocode design curve will give conservative values for 
local and global buckling (Leblouba, Junaid, et al., 2017). However, they proposed a new 
equation for shear strength (Interaction of order n = 4) based on 125 previous performed tests 
(Leblouba, Barakat, et al., 2017). 

For stainless steel material, two master theses have been performed in CHALMERS by 
(Karlsson, 2018) and (Hlal, 2021). A limited parametric study was conducted. It was concluded 
that using the current design model in EN1993-1-5 yields results on the safe side. Furthermore, 
a new design model was proposed by (Karlsson, 2018) for stainless steel. However, due to the 
sensitivity of shear behavior to initial imperfections, corrugation parameters, and other 
parameters, ref. Table 2.1, evaluating the current design models in Eurocode is not possible 
without extensive parametric studies. After comparing parametric studies and design models, 
the final comment on the current shear design models for corrugated web stainless steel girders 
in Eurocode will be possible. 

3 Resistance to transverse forces (Patch loading) 
Few studies have provided models to estimate the patch loading resistance of corrugated web 
girders, and this the topic is not yet covered in the current Eurocode. However, a suggested 
design model is included in a draft for the coming version of Eurocode.  

Previous research in the field has been exclusively devoted to beams made of carbon steel. 
The patch load capacity of corrugated web beams made of stainless steel has – to the 
knowledge of the author – not been studied. 

This section summarizes some of the previous research on the patch load resistance of beams 
with corrugated webs. The design model provided in a draft of Eurocode (EN_1993-1-5, 
2019) is also presented and examined in view of previous work.  

3.1 Resistance to transverse force according to (EN_1993-1-5, 2006), current 
version 

The current version of Eurocode, EN1993-1-5 (2006), does not include a design model for 
carbon steel or stainless-steel beams with corrugated webs’ resistance to patch loading.   

3.2 Resistance to transverse force according to  (Luo & Edlund, 1996)  
In 1996, Lou and Edlund (Luo & Edlund, 1996) conducted a parametric study using 
nonlinear finite element analysis to determine the ultimate load capacity of trapezoidal 
corrugated web girders under patch loading. Based on this work, an empirical model for 
estimating the patch loading resistance was proposed. The parameters were considered in the 
parametric study and their effect on patch loading capacity of corrugated web beams are the 
following: 

 Material model: the ultimate strength of the studied girders- different web thicknesses 
and different corrugation angles are considered to study the effect of material model 
on patch loading capacity- is found to be roughly 8-12% percent greater with a 
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Ramberg-Osgood strain-hardening model for webs than with an elastic-perfectly 
plastic model. 

 Initial imperfections (local and global): a small global initial imperfection has little 
effect on load-carrying capacity, but a local initial imperfection in the web near the 
load has a significant impact on the load-deflection curve. A small imperfection with 

an amplitude of about half the web thickness (
௧ೢ

ଶ
) was found to reduce the ultimate 

load by around 7%. 
 Corner effects (strain hardening due to cold forming): Cold-forming of corrugation in 

webs causes a local increase in yield stress, i.e., strain-hardening of the material in a 
small region around the corner of the web profile, which is commonly referred to as 
corner-effects. The effect of local increase in yield strength due to stain hardening on 
the ultimate strength was found to be negligible.  

 Loading position, the loading position is studied by applying a knife load on different 
positions, at the center of oblique part, at the center of flat part and at the corner. It 
was concluded that when a knife-load is applied to the center of the oblique part of the 
corrugation, the investigated girder has the greatest ultimate load, whereas when load 
is applied to the center of the flat part of the webs, the girder has the lowest ultimate 
load. 

 Load distribution length: the ultimate load for a girder subjected to a knife-load is 
found to be approximately 40% and 20% lower when the knife-load is substituted 
with a uniformly distributed patch load with lengths of 115.2 mm and 50 mm, 
respectively. 

 variation of geometric parameters, corrugation angle: for angles lower than75 degrees, 
the ultimate strength of a girder grows as the corrugation angle increases, however, 
the ultimate load for corrugation angle of 90 degrees is nearly equal to that for 75 
degrees. 

 variation of geometric parameters, web thickness: the ultimate load increases almost 
proportionally to the web thickness. 

 variation of geometric parameters, flange thickness: the ultimate load increases almost 
proportionally to the flange thickness. 

 Girder length & height: the panel dimensions H and L do not have much effect on the 
ultimate strength for girders with flange thickness 𝑡௙ = 10 𝑚𝑚, except when H is 
extremely small (around 200 mm). 

The design model proposed by Lou and Edlund is illustrated as following: 

The patch loading resistance is defined as following: 

𝐹ோ = 𝛾 ⋅ 𝑡௙ ⋅ 𝑡௪ ⋅ 𝑓௬௪ 

𝛾 = 10.4 ⋅ 𝛾ఈ ⋅ 𝛾௖ 

𝛾ఈ =
𝑎ଵ + 𝑎ଶ

𝑎ଵ + 𝑎ଶ ⋅ cos (𝛼)
 for 

𝑡௙

𝑡௪
≥ 3.82 

𝛾ఈ = 1 for 
𝑡௙

𝑡௪
< 3.82 

𝛾௖ = 1 + ƞ ⋅ 𝑠௦ 
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Where the correction coefficient ƞ is set to 1/240. 

 𝑠௦  is loading length 

3.3 Resistance to transverse force according to (Elgaaly, 1997) 
In 1997, (Elgaaly, 1997), Elgaaly et al. performed a parametric study utilizing FEM to 
propose a simple design model for patch loading capacity based on tests to failure under 
partial compressive edge loading -fork and distributed-. Furthermore, new suggested 
equations for (patch loading & shear) and (patch loading & moment) interactions were 
provided. The parameters that have been considered are: 

 The thickness and yield stress of the web  
 Flange material 
 The corrugation profile. 
 The width of the patch load 
 Three different positions for the load  

a. Over a parallel fold.  
b. Over an inclined fold. 
c. Over the fold line between two folds. 

The findings revealed that there are two main failure modes: 

 Web yielding followed by crippling and vertical bending of the flange into the 
crippled web.   

 Web crippling and Flange collapse mechanism. 

The design model proposed by Elgaaly is illustrated below: 

1- Patch loading resistance due to web crippling is defined as following: 

𝐹ோ = 𝑃௙௟ + 𝑃௪ 

The contribution from the flange can be obtained as: 

𝑃௙௟ =
4 ⋅ 𝑀௣௟,௙

𝑎 −
𝑆ௌ

4

 

Where the distance between two plastic hinges (a) in the flange at the positive and negative 
bending moment is defined as following: 

𝑎 = ቆ
𝑓௬௙ ⋅ 𝑏௙ ⋅ 𝑡௙

ଶ

2 ⋅ 𝑓௬௪ ⋅ 𝑡௪
ቇ

଴.ହ

+
𝑠௦

4
 

The flange plastic moment capacity 𝑀௣௟,௙ is defined as follows: 

𝑀௣௟,௙ =
𝑓௬௙ ⋅ 𝑏௙ ⋅ 𝑡௙

ଶ

4
  

The contribution from the web can be obtained as: 

𝑃௪ = ൫𝐸 ⋅ 𝑓௬௪൯
଴.ହ

𝑡௪
ଶ  
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2- Patch loading resistance due to web yielding 

𝐹ோ = (𝑏 + 𝑏௔) ⋅ 𝑡௪ ⋅ 𝑓௬௪ 

𝑏 =
𝑎ସ + 𝑎ଵ

2
 

𝑏௔ = 𝛼௕ ⋅ 𝑡௙ ⋅ ቆ
𝑓௬௙

𝑓௬௪
ቇ

଴.ହ

 

𝛼௕ = 14 + 3.5𝛽 − 37𝛽ଶ ≥ 5.5 

𝛽 = 𝑎ଷ/𝑏௙ 

3- The ultimate load capacity is taken as the minimum of the two cases (web crippling and 
web yielding) 

3.4 Resistance to transverse force according to  (Kövesdi, 2010) 
In 2010 Kövesdi et al. conducted an experimental program where 12 large scale girders that 
are simply supported were tested. The tests' goal was to determine the patch loading 
resistance of corrugated web girders with a corrugation profile typical for a bridge girder. The 
ultimate loads were determined, and structural behavior and failure modes were investigated 
and explained. A previously developed design method by Braun and Kuhlmann was verified 
and improved based on the test findings. 

The tested girders had the same corrugation configuration, see Figure 3.1, same web 
thickness and same web height. Three different loading lengths were investigated; 90, 200 
and 380 mm so the load was applied on one or more than one-fold. The length of the 
specimens and the thickness of the flange were also varied. 

 

Figure 3.1 Corrugation configuration for the girders tested by Kövesdi et al. (Kövesdi & Dunai, 2011) 

Two different failure modes were observed during the tests: 

Web crippling: web buckling is limited to one-fold when the loading length is small, and the 
buckled shape's wavelength along the web depth is relatively short. If buckling occurs in 
adjacent folds, all buckling waves will have the same direction as shown in “case a” in  
Figure 3.2.  

Local web buckling: for loading length larger than one-fold, more than one-fold will be 
involved in the load bearing. Web buckling occurs in all loaded folds at the same time. As 
seen in “case b” in Figure 3.2 , the buckling zone spreads over more folds and is longer than 
the preceding one. Bucking waves in neighboring folds alternate direction every time in this 
failure condition. 
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Figure 3.2 Observed failure modes, Kövesdi tests 

Furthermore, a parametric study using nonlinear FEM to estimate the resistance of corrugated 
web beams to transverse load was performed by the author. Different parameters were 

considered, loading length, fold ratio 
௔೔

௧ೢ
, web ratio 

௛ೢ

௧ೢ
, corrugation angle and flange width and 

thickness. A third buckling mode, global buckling mode, was observed in the finite element 
simulation, when the fold ratio was small the web ratio became decisive. Global buckling 
mode is main for girders with large web ratio. This mode together with the previous 
mentioned modes are illustrated in Figure 3.3.  

 

Figure 3.3 Different failure modes (Kövesdi, 2010) 

The considered parameters and their effects on patch loading resistance for corrugated web 
beams that have been concluded from this study are: 

 Loading length: It was revealed that increasing the loading length corresponds to a linear 
increase in patch loading resistance regardless the web ratio and other parameters.  

 Fold ratio: if the failure mode is local buckling, increasing the fold ratio 
௔೔

௧ೢ
 reduces the 

load bearing capacity. If the failure mode is global buckling, this has no effect.  

 Web ratio: increasing the web slenderness 
௛ೢ

௧ೢ
  reduces load carrying capacity in the global 

buckling domain; however, if the failure mode is local buckling, this has no effect.  
 Corrugation angle: to evaluate the effect of corrugation angle, the loading length has been 

considered as a multiple of corrugation wavelength to study the effect of changing 
corrugation angle without changing the loading length. It was concluded that as the 
corrugation angle increases, the patch loading resistance increases with the same ratio 
(39% to 45% for angles 20 degrees to 65 degrees) regardless the web or fold ratio.  
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 Flange thickness: increasing the thickness of the flange results in a linear increase in 
patch loading resistance. 

 Flange width: the patch loading resistance is increased with increasing the flange width. 

Furthermore, a modified design model was developed by (Kövesdi, 2010). This proposed 
design method has the same formulation as Braun and Kuhlmann's model, with the exception 
that interactions between shear & transverse force and bending & patch loading were not 
considered. The model by  (Kövesdi, 2010) for patch loading resistance developed firstly for 
centric patch load and was based on the following range of parameters : 

Table 3.1 Parameter range of experimental and numerical investigations,(Kövesdi, 2010)  

Web ratio 𝒉𝒘/𝒕𝒘 𝟐𝟎𝟎 − 𝟑𝟎𝟎 − 𝟒𝟎𝟎 − 𝟓𝟎𝟎 

Fold ratio 𝒂𝒊/𝒕𝒘 2.5 − 25 − 50 − 75 − 100 − 116.7( in all cases 𝑎ଵ = 𝑎ଶ) 

Loading length 𝒔𝒔/𝒉𝒘 0.4 − 0.6 − 0.8 

Corrugation angle 𝜶 15∘ − 30∘ − 45∘ − 65∘ 

Flange thickness 𝒕𝒇 20 − 40 − 60 − 80 − 100mm 

Flange width 𝒃𝒇 150 − 300 − 400 − 500mm 

 

The design model proposed by Kövesdi can be summarized as follows: 

The patch loading resistance when the whole flange width is loaded is defined as: 

𝐹ோ = 2 ⋅ ට𝑛 ⋅ 𝑀௣௟௙ ⋅ 𝑡௪ ⋅ 𝜒 ⋅ 𝑓௬௪ + 𝜒 ⋅ 𝑡௪ ⋅ 𝑓௬௪ ⋅ 𝑠௦ ⋅ 𝑘ఈ 

The reduction factor due to buckling is defined as follows: 

𝜒 = ቐ

1.0, 𝜆̅௣ ≤ 1.273

1.9

𝜆̅௣

−
0.8

𝜆̅௣
ଶ

, 𝜆̅௣ > 1.273
 

Factor n considers how many plastic hinges can develop in the flange. This factor is 

determined by the ratio 
௧೑

௧ೢ
. When 

௧೑

௧ೢ 
< 4 , the entire yield line in the web as well as all four 

plastic hinges in the flange can evolve during the failure mechanism. When the flange is more 

dominant like when  
௧೑

௧ೢ
> 4, the web failure mechanism is activated earlier, and all four 

plastic hinges are unable to develop, resulting in a lower patch loading resistance. This 
decrease in resistance can be factored into the amount of flange plastic hinges that are 
considered as follows: 

𝑛 =

⎩
⎪⎪
⎨

⎪⎪
⎧4,    

𝑡௙

𝑡௪
< 4

3,     4 ≤
𝑡௙

𝑡௪
≤ 7

2,    
𝑡௙

𝑡௪
> 7
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The relative slenderness can be calculated as following: 

𝜆̅௣ = ඨ
𝑓௬௪

𝜎௖௥
 

Elastic buckling stress is determined as follows: 

𝜎௖௥ =
𝑘ఙ ⋅ 𝜋ଶ

12 ⋅ (1 − 𝑣ଶ)
⋅ 𝐸 ⋅ ൬

𝑡௪

𝑎௜
൰

ଶ

 

𝑘ఙ is a constant set to 𝑘ఙ = 1.11 

The factor 𝑘ఈ that consider the effect of corrugation angle  

𝑘ఈ =
𝑎ଵ + 𝑎ଶ

𝑎ଵ + 𝑎ସ
 

𝑎௜ is the loaded fold length or the maximum fold length when there are more than one loaded 
fold. 

𝑀௣௟௙: plastic moment capacity of the flange 

 

 

Figure 3.4 Flange mechanism under patch loading failure 

The author then modified the model to consider the effect of loading width on the patch 
loading resistance as following: 

𝐹ோ
௥௘ௗ = 𝐹ோ ⋅ {1 − 𝑚 ⋅ [𝑎ସ ⋅ (1 − 𝑏) − 𝑠𝑠௔]} 

𝑚: decreasing tendency, this value changes for long and short loading length, ref. Figure 3.5. 

𝑏: shifting ratio of the breaking point, this value changes for long and short loading length 

𝑠𝑠௔: loading width 
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Figure 3.5 Design method development, (Kövesdi, 2010) 

Furthermore, the model is modified to consider the eccentricity of the transverse force by 
applying a reduction on the previous resistance as following: 

𝐹ோ
௥௘ௗଶ = 𝐹ோ

௥௘ௗ ⋅ ቆ1 − 𝑚ଷ ⋅
𝑒

𝑏௙
ቇ 

𝑚ଷ: slope of the resistance decreasing tendency. Refer to Equations (51-55) in (Kövesdi, 
2010). 

𝑒: eccentricity of the applied load. 

𝐹ோ
௥௘ௗ: patch loading resistance reduced to loading width. 

To note here that this model was developed without considering the interaction of bending 
and transverse force. The bending moment could have significant reduction of flange 
contribution in patch loading resistance. 

Imperfection sensitivity for patch loading resistance according to (Kövesdi & Dunai, 2011) 

In 2011, Kövesdi and Dunai performed an imperfection sensitivity analysis to establish an 
FEM-based design model. Nonlinear FEM analyses along with 12 tests were conducted to 
create a set of imperfection shapes and scaling factors that can be used to estimate the patch 
loading resistance of corrugated web girders. Different parameters were considered like the 
position of the applied load (parallel, inclined fold or corner area), the loading length (90–380 
mm), the span (1140–1875 mm), the flange thickness (20–30 mm), and the effect of the 
loading eccentricity. Four imperfection shapes are analyzed, the first critical buckling mode, 
the ultimate shape (The highest point of the load–deflection curve obtained without initial 
imperfections is used to determine the ultimate shape), the sine wave imperfection shape, and 
a modified sine wave imperfection shape are investigated. The analysis showed that the 
relevant scaling factor is the fold length divided by 200 if the first buckling mode or the 
modified sine wave shape is chosen as an equivalent geometric initial imperfection. Referring 
to Figure 3.6, for imperfection amplitude of around (b/200 = 210mm/200 = 1.05mm), the 
predicted capacity will be less than the test results. 
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Figure 3.6 Imperfection sensitivity - asymmetrical case (parallel fold is loaded) (Kövesdi, 2010) 

3.5 Resistance to transverse force according to (EN_1993-1-5, 2019), new draft  
There is no formula in the current Eurocode that covers the patch loading resistance of 
girders with corrugated web. The latest draft of (EN_1993-1-5, 2019), however, provides a 
formula for the problem. The design model proposed in this draft is based on the model 
developed by Kövesdi without considering the contribution from the flange in patch loading 
resistance. The model can be summarized as following: 

The design resistance for corrugated web girders under patch loading can be calculated as 
follows: 

𝐹ோ =
𝜒 ⋅ 𝑘ఈ ⋅ 𝑠௦ ⋅ 𝑡௪ ⋅ 𝑓௬௪

1.20 ⋅ 𝛾ெଵ
 

Factor 𝑘ఈ  that consider the effect of corrugation angle is defined as follows: 

𝑘ఈ =
𝑎ଵ + 𝑎ଶ

𝑎ଵ + 𝑎ସ
 

The reduction factor due to local buckling is determined as: 

𝜒 = ቐ

1.0, 𝜆̅
௣ ≤ 1.27

1.9

𝜆̅௣

−
0.8

𝜆̅௣
ଶ

, 𝜆̅௣ > 1.27
 

The relative slenderness is defined as: 

𝜆̅௣ = ඨ
𝑓௬௪

𝜎௖௥
 

The critical elastic buckling stress can then be calculated from: 

𝜎௖௥ =
𝑘ఙ ⋅ 𝜋ଶ

12 ⋅ (1 − 𝑣ଶ)
⋅ 𝐸 ⋅ ൬

𝑡௪

𝑎௜
൰

ଶ

 

This design formula, however, is applicable only in case of a fold length fulfills the following 
condition: 
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𝑎௜ ≥ ൬
ℎ௪

𝑡௪
+ 260൰ ⋅

𝑡௪

11,5
 

where 𝑎௜ is the loaded fold length. If more folds are loaded, the maximum fold length (𝑎ଵ or 
𝑎ଶ) should be taken. 

𝑘ఙ is a constant set to (𝑘ఙ = 1.11)  

It can be observed that the model disregards the contribution from the flange as it is in the 
case of flat web girders. 

3.6 Resistance to transverse force according to (Inaam & Upadhyay, 2020) 
All the prior studies have been focusing on simply supported girders. The simply supported 
girder, on the other hand, acts as a cantilever at the support points and that becomes most 
critical when there is no stiffener over the support section. Inaam and Upadhay (Inaam & 
Upadhyay, 2020) have investigated the sensitivity of the patch loading capacity to the girder's 
static system in a recent study published in 2020. The considered parameters and the drown 
conclusions are summarized as follows: 

 Patch load eccentricity: in the case of eccentric patch loading, the smaller outstand of 
the parallel fold is more significant and has the greatest loss in patch load capacity 
when compared to the inclined fold.  Due to the three-sided support given by the web 
profile, maximum capacities are obtained for greater outstands of parallel folds at 

eccentricities of  
௘

௕೑
= 0.15 𝑡𝑜 0.25 from the web fold line. See Figure 3.7 and Figure 

3.8. 
 Loading length: the load carrying capacity of a load increases linearly as the loading 

length (𝑠௦) increases, but the curves plateau at greater loading lengths, with no further 
increase. Small loading lengths (𝑠௦) have a typical patch failure that is local in 
character, whereas greater loading lengths have a typical shear failure that occurs in 
the high shear zones towards the supports. 

 Longitudinal to inclined folds ratio: single folds with unequal widths 𝑎ଵ ≠ 𝑎ଶ have 
better load bearing capacities per unit length of corrugation because smaller fold 
widths with lower w/t ratio offer rotational restriction to broader fold widths. Other 
limitations, apart from patch load capacity, may influence the final optimal selection 
of relative fold widths. 
 

 

Figure 3.7 Eccentricity from parallel fold (Inaam & Upadhyay, 2020) 
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Figure 3.8 Patch load resistance variation with eccentricity (Inaam & Upadhyay, 2020) 

The design model for patch loading suggested by Inaam & Upadhyay for cantilever system is 
summarized as the following: 

Patch loading resistance can be determined as follows: 

𝐹ோ = 𝜒ெ ⋅ 𝑡௪ ⋅ 𝑠௦ ⋅ 𝑓௬௪ 

The reduction factor due to buckling is defined as follows: 

𝜒ெ = 0.4718 ⋅ ൤
𝑠௦

2 ⋅ (𝑎ଵ + 𝑎ସ)
൨

ି଴.଻଼଺

 

Where: 

𝑠௦ is the loading length 

This research reveals that changing the static system from simply supported to cantilever 
reduces patch loading resistance by up to 22% in the domain of the current study. 

3.7 Comparison and recommendations 
This section compares four design models for patch loading resistance of corrugated web 
girders. The patch loading resistance of several previous performed tests were compared 
between the Lou& Edlund, EN-draft2019, Elgaaly and Kövesdi models. Figure 3.9 and Table 
3.2 summarize the tests that have been studied. The Kövesdi model, as can be seen, provides 
the closest data to the test results. Edlund, Elgaaly, and EN1993-1-5(2019) give conservative 
results. The loading length differs between the tests, and this parameter is not taken into 
account in the Elgaaly model, resulting in nearly identical capacities for all of the studied 
tests. The web and the flange are considered to withstand the patch load in Edlund, Elgaaly, 
and  Kövesdi model. The proposed model in Eurocode draft (EN1993-1-5(2019)), on the 
other hand, ignores the flange contribution, which results in highly conservative results. It can 
be observed from  Table 3.2 that the contribution of the flange can be much larger than the 
contribution from the web like the Specimen 12 tested by Kövesdi. 

Table 3.2 Previous tests capacities according to Lou& Edlund, EN2019, Elgaaly and Kövesdi models and test 
results 

Specimen Ss 
[mm] 

L 
[mm] 

No. 
[-] 

𝑭𝒆𝒙𝒑 
[kN] 

Kövesdi 
[kN] 

Edlund 
[kN] 

EN1993-1-5,2019 
[kN] 

Elgaaly 
[kN] 
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Kövesdi 

specimen 1, 
inclined 

90 1500 1 754.2 710.370 650.36 170.50 684.45 

Kövesdi 
specimen 2, 

inclined 

200 1500 2 956.48 960.43 867.15 378.88 684.45 

Kövesdi 
specimen 3, 
longitudinal 

90 1875 3 764.75 738.14 650.36 180.93 694.62 

Kövesdi 
specimen 4, 
longitudinal 

200 1875 4 949.02 1003.50 867.15 402.07 694.62 

Kövesdi 
specimen 12, 
corner area 

90 1500 5 772.39 710.370 650.36 170.5 684.45 

 

Table 3.3 Dimensions of the studied girders  
 

Specimen 1, 
Kövesdi 

Specimen 2, 
Kövesdi 

Specimen 3, 
Kövesdi 

Specimen 4, 
Kövesdi 

Specimen 12, 
Kövesdi 

 
inclined inclined longitudinal longitudinal corner 

L [mm] 1500 1500 1875 1875 1500 

𝒉𝒘 [mm] 500 500 500 500 500 

𝒃𝒇 [mm] 225 225 225 225 225 

Ss [mm] 90 200 90 200 90 

𝒂𝟏 [mm] 210 210 210 210 210 

𝒂𝟑 [mm] 145 145 145 145 145 

𝒂𝟐 [mm] 230.4 230.4 230.4 230.4 230.4 

𝒂𝟒 [mm] 165 165 165 165 165 

α [Deg] 39 39 39 39 39 

𝒕𝒇 [mm] 20 20 20 20 20 

𝒕𝒘 [mm] 6 6 6 6 6 

𝒇𝒚𝒘 [MPa] 379 379 379 379 379 

E [GPa] 200 200 200 200 200 

υ [-] 0.3 0.3 0.3 0.3 0.3 
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Figure 3.9 Previous tests capacities according to Lou& Edlund, EN2019, Elgaaly and Kövesdi models and test 
results 

 

Figure 3.10 Patch loading resistance from FE-analysis compared to draft of EN1993-1-5, 2019 
(SÆMUNDSSON, 2021) 

The conclusions and recommendations that can be drawn from this study are: 

 Abundant research has been done on patch loading, and it has been confirmed that the 
flange contributes to the resistance capacity, however the contribution from the flange 
is ignored in the Eurocode draft (EN_1993-1-5, 2019). This needs to be reconsidered. 

 All studies were done on short loading lengths. Nevertheless, the resistance to patch 
loading has not been studied for cases where the loading length spans over many 
waves (such as the case during launching). The shorter loading length might be more 
essential; nonetheless, the design must be optimized to avoid being too conservative. 

 Recently, a master’s thesis work was performed at Chalmers university of technology 
to study the patch loading resistance of corrugated web girders (SÆMUNDSSON, 
2021). See Figure 3.10.  It was demonstrated that the same conclusion regarding the 
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flange contribution to the path loading capacity applies for stainless steel. The 
(EN_1993-1-5, 2019) model yields in so conservative results due to disregarding the 
flange contribution to patch loading resistance. However, none of the preceding 
models provides a reliable estimation for the patch loading resistance of corrugated 
web girders (SÆMUNDSSON, 2021). As a result, the present model in (EN_1993-1-
5, 2019) is recommended to be used until a more feasible model is developed. 
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