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A R T I C L E  I N F O   

INDEX TERMS: 
Datacenter network (DCN) 
Neural network (NN) 
Optical interconnect 
Routing and spectrum allocation (RSA) 

A B S T R A C T   

To improve the blocking probability (BP) performance and enhance the resource utilization, a correct decision of 
routing strategy which is most adaptable to the network configuration and traffic dynamics is essential for 
adaptive routing in optical datacenter networks (DCNs). A neural network (NN)-assisted decision-making scheme 
is proposed to find the optimal routing strategy in optical DCNs by predicting the BP performance for various 
candidate routing strategies. The features of an optical DCN architecture (i.e., the rack number N, connection 
degree D, spectral slot number S and optical transceiver number M) and the traffic pattern (i.e., the ratio of 
requests of various capacities R, and the load of arriving request) are used as the input to the NN to estimate the 
optimal routing strategy. A case of two-strategy decision in the transparent optical multi-hop interconnected 
DCN is studied. Three metrics are defined for performance evaluation, which include (a) the ratio of the load 
range with wrong decision over the whole load range of interest (i.e., decision error E), (b) the maximum BP loss 
(BPL) and (c) the resource utilization loss (UL) caused by the wrong decision. Numerical results show that the 
ratio of error-free cases over tested cases always surpasses 83% and the average values of E, BPL and UL are less 
than 3.0%, 4.0% and 1.2%, respectively, which implies the high accuracy of the proposed scheme. The results 
validate the feasibility of the proposed scheme which facilitates the autonomous implementation of adaptive 
routing in optical DCNs.   

1. Introduction 

According to the Cisco forecast, the global data center traffic will 
reach 20.6 Zettabytes by the end of 2021 with a compound annual 
growth rate of 25% [1]. Such a significant traffic growth poses great 
challenges in datacenter networks (DCNs), which calls for research to 
support continuously increasing capacity while satisfying the indis
pensable requirement in power consumption [2,3]. The optical inter
connect has been widely considered as a promising solution for DCNs as 
it can achieve larger capacity and higher power efficiency than its 
electrical counterparts by the researchers and large enterprises [3–6]. 
Various optical interconnects architectures have been proposed to 
explore the above advantages to benefit DCNs [3,7–11]. Nevertheless, 
since the port number of the optical switches in general is much smaller 
than that of the electronic ones, efficient routing schemes become 
essential for optical DCNs to achieve the all-to-all connections with low 

blocking probabilities. In this regard, intensive research efforts have 
been made on the optimization of routing for the arriving requests to 
improve the network performance of optical DCNs [12–15]. Dynamic 
routing for the anycast and unicast traffics in the inter-datacenter optical 
networks has been demonstrated [12,13]. Survivable routing, spectrum 
and waveband assignment strategy in the cloud optical and data center 
networks have been studied in Ref. [14]. Besides the routing methods 
that leverage flexible modulation format conversion and spectrum 
fragmentation in Refs. [12–14], adaptive routing has been proposed to 
improve the utilization of the spectrum and optical transceivers under 
the resource deficiency [15]. With the adaptive routing scheme, the 
blocking probability of optical DCN can be decreased by up to one order 
when compared with the non-adaptive routing schemes [15]. Never
theless, such an advantage of adaptive routing relies on the correct de
cision of the optimal routing strategy which is most adaptable to the 
network configuration and traffic dynamics. Traditionally the optimal 
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routing strategies (e.g., strategies based on specific cost functions [15]), 
for different networks are selected based on the network operators’ 
experience. Once they are selected, they would not be changed even if 
the traffic situation or network configurations are varied. This may 
result in low efficiency and limit the performance of optical DCNs. 

On the other hand, machine learning (ML) algorithms have been 
introduced for the routing of optical networks to improve the efficiency 
of resource utilization and the network performance. S. Troia et al. [16] 
established the multi-layer optimization model which finds the optimal 
routing and wavelength assignment and virtual network function (VNF) 
arrangement as the environment for the Reinforcement Learning (RL) 
system for the dynamic resources allocation in the metro-core optical 
networks. I. Martin et al. [17] proposed the ML-based routing and 
wavelength assignment for the input traffic matrix in the optical 
wavelength division multiplexing (WDM) network. X. Chen et al. [18] 
proposed the cognitive routing, modulation format and spectrum 
assignment agent in the elastic optical networks based on the 
deep-reinforcement-learning approach, which improves the BP perfor
mance. L. Li et al. [19] chose the optimal path for the circuit-switched 
networks based on the prediction of the blocking probability (BP) per
formance of all candidate paths with a naive Bayesian classifier. How
ever, these ML-based works focus on conventional telecommunication 
networks, and may not be directly applicable for the routing tasks in 
optical DCNs, which often have high complexity of traffic situation. 

The optical DCNs have to work with various network segments (e.g., 
the long-reach backbone network and the wireless sensor network, etc.) 
to support the rapidly growing applications like 5G, Internet of Things 
(IoT), etc. The transmission performance, the network configuration and 
the service requirement of these segments differ significantly. Further
more, the optical interconnect architectures, particularly for large-scale 
DCNs, usually need to be highly scalable to satisfy the surging demands 
of data computation, storage and communication [8,10,20,21]. Besides, 
the traffic at the optical DCNs experiences the bursty temporal and 
spatial variation [22,23]. The features of the optical DCNs in terms of 
heterogeneity, scalability and traffic dynamics lead to the high 
complexity in path provisioning. The traditional routing methods based 
on pre-engineered static principles have difficulty in dealing with such 
challenges. Smart decision-making scheme of routing with the assis
tance of ML technologies is able to improve the decision accuracy and 
efficiency. W. Liu et al. [24,25] proposed the deep reinforcement 
learning-based routing (DRL-R), making a choice of the candidate paths 
for each arriving request to optimize the resource efficiency and network 
performance. X. Chen et al. [26] presented the knowledge-based 
autonomous service provisioning framework, where ML technology is 
used to realize the quality-of-transmission (QoT)-aware inter-domain 
path provisioning. In their work, the most cost-effective light path is 
set up while the QoT is guaranteed with the predicted bit error rate of 
the candidate paths. Both the frameworks were designed for provi
sioning the optimal decision for every candidate path. 

In this paper, we propose a neural network (NN) assisted decision- 
making scheme to select the optimal routing strategy instead of the 
optical routing path, which facilitates the adaptive routing in optical 
DCNs from a new perspective. The decision of the optimal routing 
strategy is made based on the predicted network performance by the 
trained NN model, where the corresponding load of arriving requests 
and configurations of optical DCNs are given. To better identify the 
characteristic of the proposed decision-making scheme under the dy
namic nature of DCN traffic, the performance of the scheme should be 
analyzed over a range of traffic load rather than the certain traffic load. 
Therefore, three metrics, i.e., the decision error which is defined as the 
ratio of wrong decision range over the whole range of interest in terms of 
traffic load, and the maximum losses of BP and resource utilization 
within the whole traffic load range of interest, are proposed to quantify 
the performance of the proposed scheme. Numerical results show that 
error-free decision-making is achieved in a large portion of tested cases 
covering the overall observed traffic load range and different network 

parameters, resulting in low average decision error and network per
formance degradation in terms of BP and resource utilization. 

The remainder of the paper is organized as follows. Section II illus
trates the proposed NN-assisted decision-making scheme to select the 
routing strategy in the optical DCNs as well as the studied use case of the 
decision-making between two routing strategies for the transparent 
optical multi-hop interconnected DCN. In Section III, the evaluation 
method which defines the new metrics for quantifying the performance 
of the proposed scheme is illustrated. Then the impact of observation 
range and the network parameters on the performance, in terms of the 
three newly defined metrics, i.e., decision error, the BP loss and resource 
utilization loss due to the wrong decision, is analyzed based on the 
observation of all the studied case. Finally, Section IV draws the 
conclusions. 

2. NN-assisted decision-making scheme for routing strategy 
selection in optical datacenter networks 

In this section, we first describe the procedure of the proposed NN- 
assisted decision-making scheme for routing strategy selection in opti
cal DCNs. Then we focus on a use case that involves two candidate 
routing strategies in the transparent optical multi-hop interconnected 
DCN [15]. This use case will be further considered in Section III for 
performance evaluation. 

2.1. Procedure of NN-assisted decision-making scheme 

In adaptive routing, routing strategies that emphasize on different 
aspects of resource deficiency perform differently in various optical 
DCNs [15]. The optimal routing strategy that achieves the lowest BP at a 
certain load of arriving requests is jointly determined by a number of 
network parameters, including the static parameters of network scale, 
interconnection configuration, resources (e.g., the spectrum and optical 
transceivers) deployment, and the dynamic parameters of arriving re
quests (e.g., the required capacity of arriving requests). To automatically 
select the optimal strategy for adaptive routing in the optical DCNs, we 
propose an NN-assisted decision-making scheme. 

Fig. 1(a) and (b) describe the flow of the proposed NN-assisted de
cision-making scheme for adaptive routing. The proposed scheme con
sists of two phases, i.e., training and provisioning. In the training phase, 
the data set of BP performance with various routing strategies for 
different networks and traffic loads is collected from simulation or 
realistic data from the operators. The NN model configured as Fig. 1(c) is 
trained with the assembled data set. Once training is completed, the 
trained NN model is capable of predicting BP performance corre
sponding to the DCN with any parameter set XNet, which contains the 
interconnection configuration (i.e., the number of ports one rack is 
connected to of the optical switching matrix), network scale, resources 
deployment, required capacity of the arriving requests, traffic load Xload 
and candidate routing strategies in the set C. In the provisioning phase, 
the BP performance BPc corresponding to Xload in a DCN with XNet for 
each candidate routing strategy c is predicted with the trained NN 
model. The routing strategy that offers the lowest BP is chosen as the 
optimal strategy OC. 

2.2. Use case 

To investigate the proposed NN-assisted decision-making scheme for 
routing strategy selection, the use case where two candidate routing 
strategies are considered for selection, referred to as two-strategy deci
sion, and the transparent optical multi-hop interconnected architecture 
[15] is adopted for DCN. Note that the similar way can also be applied to 
the cases with the number of routing strategy candidates larger than two 
for the network performance prediction. The optimal strategy can then 
be provisioned for adaptive routing. The two strategies which are to be 
determined in the use case correspond to the adopted different cost 
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functions of the links. In the investigated DCN architecture in this work, 
the racks are interconnected through the optical switching matrix (OSM) 
and the optical multi-hop paths provisioned to satisfy the connection 
demands are composed of one or several transparent links that connect 
the rack pairs by passing the OSM and fiber links without any 
optical-electrical-optical (OEO) conversion at the intermediate racks. It 
is verified that the interconnection degree (D), which indicates the 
maximum number of racks one rack simultaneously communicates with, 
has a great impact on the performance of the considered DCN archi
tecture [15]. Therefore, the degree D is set as the interconnection 
configuration parameter of the studied case and input to the NN for the 
BP prediction. 

Besides D, the predicted BP performance also depends on the pa
rameters of network scale, spectrum and number of optical transceivers 
at each rack, the capacity and the load of arriving connection requests as 
well as the adopted routing strategy. For the studied DCN, the network 
scale is characterized by the number of racks N. The configurations of 
spectrum and optical transceivers are indicated by the numbers of 
spectral slots on each fiber link S and the number of transceivers on each 
rack M, respectively. The dynamic parameters of the arriving connection 
requests contain not only the load of requests, but also the ratio of re
quests with various demanded capacities R, which determines the 
average capacity of arriving connection requests. The necessity of 
inputting R to the NN for BP prediction is due to the diversity of capacity 
requirements of connection requests (e.g., the mixed 40 Gbps and 100 
Gbps capacity requests) arriving at the investigated DCN. The two 
routing strategies correspond to implementing two different types of 
link cost function as shown in (1) and (2) [15]. The cost of a transparent 
link equals the number of fiber links within the transparent link between 
the rack pair (i, j), i.e. Numlink (i, j), or the square of the fiber link 
number, i.e. (Numlink (i, j))2. With the second type of link function cost, 
a longer path has a lower possibility to be selected. 

In our studied case, the BP performance is predicted given the 
network parameters N, D, M, S, R and the load as well as the link cost 
functions (1) and (2). The symbols and the corresponding definitions of 
the NN input in the case are listed in Table 1. 

cos t1(i, j)=Numlink(i, j), (1)  

cos t2(i, j) = (Numlink(i, j))2
. (2) 

According to the observation of the load-versus-BP performance of 
the studied DCN cases, the routing strategy with link cost function cost1 
always outperforms that with cost2 when the load is relatively large, 
regardless of network parameters. For conciseness, the two candidate 
routing strategies are denoted as cost1 and cost2, respectively. The su
periority of the cost1 over the cost2 for a large traffic load is attributed to 
the fact that the cost1 prefers routes with longer transparent optical 

paths and less occupation of transceivers, which can be seen from (1) 
and (2). Nevertheless, when the load is small or medium, the observed 
optimal routing strategy can be one of these two candidates, which 
varies at different load values and network parameters. 

It is observed there is at most one intersection of BP-versus-load 
curves of cost1 and cost2 for all the tested cases. The intersection mat
ters in the assessment of the routing decision, i.e., the performance 
advantage of cost1 and cost2 is opposite on different sides of the inter
section. To guarantee the quality of service in DCNs, the BP of the 
network shall be smaller than a certain value that is referred to as the BP 
threshold ThBP. The range of interest in terms of the load is [0, Th], 
where Th indicates the largest one of Thi with costi among all the 
investigated strategies. In the use case of the two-strategy decision, i∈
[1,2]. Depending on the relationship between the range of interest and 
the intersection, three situations are observed for all tested cases (see 
Fig. 2). 

In the proposed scheme, the BP for each candidate routing strategy is 
predicted by the NN before the decision of optimal routing strategy is 
made. Since the BP predicted by the NN in general is not the same as the 
real BP (i.e., the BP obtained from the real deployment, e.g., from the 
discrete-event simulator in this study) due to estimation error, the pro
visioned optimal routing strategy by the NN can be different from the 
actual one. To facilitate the analysis of the impact of inaccurate pre
diction from the NN on the performance of adaptive routing, seven 
scenarios that are collected from all tested cases are listed: 

Fig. 1. The procedure of NN–assisted decision–making scheme for adaptive routing in optical DCNs: (a) The training phase, and (b) the provisioning phase, and (c) 
the architecture of the NN model. Xload and XNet represent the load of arriving requests and the DCN for which the strategy decision is provisioned, respectively. To be 
specific, XNet contains the parameters of network scale, interconnection configuration, transceiver and spectrum deployment, required capacity of arriving request, 
etc. XNet, Xload and the adopted routing strategy are input to NN for predicting corresponding BP as shown in (c). C = {c} is the set of routing strategies, where each 
element c represents a routing strategy. OC refers to the optimal strategy in C for Xload and XNet. BPc represents the predicted blocking probability performance with 
the routing strategy c. 

Table 1 
Input of the NN in the use case.  

Symbol Definition 

N The number of racks, which refers to the “Network scale” of the NN input 
in the proposed scheme as shown in Fig. 1(c). 

D The maximum number of racks one rack simultaneously communicates 
with, which refers to the “Interconnection configuration” of the NN input 
in the proposed scheme as shown in Fig. 1(c). 

M The number of transceivers on each rack, which refers to the “Transceiver 
deployment” of the NN input in the proposed scheme as shown in Fig. 1(c). 

S The number of spectral slots on each fiber link, which refers to the 
“Spectrum deployment” of the NN input in the proposed scheme as shown 
in Fig. 1(c). 

R The ratio of requests with various demanded capacities, i.e. 40 Gbps and 
100 Gbps, which determines the average capacity of demanded requests 
and refers to the “Required capacity of requests” of the NN input in the 
proposed scheme as shown in Fig. 1(c). 

Load This refers to the “Traffic load of requests” of the NN input in the proposed 
scheme as shown in Fig. 1(c). 

Cost The link cost functions (1) and (2), which refers to the “Routing strategy” 
of the NN input in the proposed scheme as shown in Fig. 1(c).  
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2.2.1. Scenarios 1 and 7 
Both the intersections obtained by the real deployment (i.e. Inreal) 

and NN prediction method (i.e. Inpre) are with the situation shown in 
Fig. 2(a) (Fig. 2(c)) for Scenario 1 (Scenario 7); 

2.2.2. Scenario 2 
Inreal is with the situation shown in Fig. 2(a) while Inpre is with the 

situation shown in Fig. 2(b); 

2.2.3. Scenarios 4, 5 and 6 
Inreal is with the situation shown in Fig. 2(b) while Inpre is with the 

situations shown in Fig. 2(a), (b) and 2(c) for Scenarios 4, 5 and 6, 
respectively; 

2.2.4. Scenario 3 
Inreal is with the situation shown in Fig. 2(a) while Inpre is with the 

situation shown in Fig. 2(c). 
It should be noted that there are still possible scenarios not addressed 

here, i.e., that the Inreal is with the situation shown in Fig. 2(c) while Inpre 
is with the situation shown in Fig. 2(a) and (b). These scenarios are 
observed based on the 243 tested cases, which will be described in 
Section III. Despite of the finiteness of the studied network samples, it 
can be clearly seen that the considered Scenarios dominate, particularly 
for Scenarios 1 and 7. 

The detailed calculation of decision error (E), maximum BP loss 
(BPL) and resource utilization loss (UL) (see definitions in Table 2 of 
Section III-A) for the seven scenarios is shown in Table 3 of APPENDIX. It 
should be noted that the accuracy analysis of this work is executed based 
on the observation from all tested cases, where there is only one inter
section of the BP-versus-load curves of cost1 and cost2 and seven sce
narios in terms of the relationship between the intersections and the 
range of interest. In case there are more intersections than that in the 
above scenarios, the accuracy analysis could be more complicated and 
should be adapted accordingly, which is left for future research. 

3. Performance evaluation 

In this section, the impacts of observation range and the network 
parameters N, D, M, S and R on the performance of the studied use case 
are investigated numerically. In this paper, we use simulation results 
calculated based on discrete event-driven simulator to represent data for 
the real deployment as the benchmark for evaluation. Despite of this, we 
still use the symbol Inreal to represent the intersection obtained with 
simulation for consistency with Section II. In case the data of the real 
deployment is available, the same methodology can be used. To evaluate 
the performance of various DCNs, we take D as 4, 6, 8, M as 12, 16, 20, N 

as 32, 64, 96, R as 0.1, 0.5, 0.9 and S as 48, 64, 80, which results in the 
sample of 35 = 243 network cases. The cumulative distribution function 
(CDF) of the E, BPL and UL of the 243 tested cases together with their 
distributions over the seven scenarios are measured. The configurations 
of the NN model and the used data set for training are illustrated as 
follows. 

In the training phase, 952 randomly generated training samples are 
used for training. Each sample contains the network parameters N, D, M, 
S, R, the employed routing strategy, the traffic load, as well as the cor
responding BP. The BP performance is evaluated by a homemade 
discrete event-driven simulator. The arrival and the holding time of the 
connection requests follow the Poisson and exponential distribution, 
respectively. The source and destination racks for the connections are 
uniformly distributed. The arriving connection requests demand two 
data rates, 40 Gbps and 100 Gbps, to represent the diverse capacity 
requirements of connections in the optical DCNs. The flex-grid tech
nique is employed with the minimum unit of spectrum slot of 6.25 GHz. 
The modulation format is set to be 4QAM. To satisfy the connection 
requests of 40 Gbps and 100 Gbps, the maximum required numbers of 

Fig. 2. The relationship between the intersection of two routing strategies and the observation range for various situations. For situation (a), there is no intersection 
in the range of interest. The intersection falls (b) within the observation range and (c) on the right side of the observation range. As an example, the difference of BP 
performances with the two strategies, i.e. ΔBP, at various load is marked in the situation (b), where ΔBP first increases and then decreases along with the load rising 
from zero to the intersection. As the load continues rising, ΔBP increases with the load. ThBP and Th indicate the worst acceptable BP performance and the corre
sponding load of requests, respectively. Th equals the larger one of Thi where costi is implemented (i.e. Th1 in situations (a) and (b) and Th2 in (c)) (i = 1, 2). Load0 
indicates the initialized load when the blocking occurs with cost2. 

Table 2 
Definition of performance metrics and the relevant symbols.  

Symbol Definition 

{Inrealij} The set of load coordinates of the intersections of load-versus-BP 
performance corresponding to costi and costj calculated with real 
deployment. 

{Inpreij} The set of NN predicted load coordinates of the intersections of load- 
versus-BP performance corresponding to costi and costj. 

Th The largest load of the range of interest. It can be calculated according to 
the given largest allowed BP (ThBP), i.e., Th equals to the greatest load Thi 

at BP = ThBP with costi among all the investigated strategies. 
Loadmax The load that maximizes the BP difference among various routing 

strategies. It corresponds to maximum BP loss and resource utilization loss 
throughout the range of interest. 

E The decision error equals the ratio of wrong decision range over the whole 
range for decision-making, i.e. [0, Th]. 

BPL The maximum BP loss caused by the wrong decision-making in the 
observation range. If the costi and costj correspond to the best and worst BP 
performance at a given load, respectively, the BPLload equals to (BPj-BPi)/ 
BPj. The BPL equals the BPLload measured at load = Loadmax. 

UL The resource utilization loss caused by the wrong decision-making 
throughout the observation range. The BP performance of a certain 
routing strategy can be improved with more resource. The UL quantifies 
the difference in required resource for a fixed BP for different routing 
strategies. Suppose costi and costj result in the best and worst BP 
performance at certain load, respectively, additional Ra resource units are 
needed to achieve the same BP if using costj instead of costi. The ULload 

equals Ra/(R + Ra), where R indicates the number of resource units for 
costi. The UL equals the ULload measured at load = Loadmax.  
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spectrum slots are 4 and 10, respectively. The transmission reach in the 
datacenter is typically short (usually no larger than 2 km). Due to the 
intersection losses of the wavelength selective switches WSSs and optical 
switching matrix OSM, the largest possible number of hops is limited to 
3. For the K-shortest path algorithm used in the routing scheme, the K is 
set up to 3 [15]. To reflect the scalability and traffic dynamic features in 
the optical DCN, the network parameters are configured to be varied. 
According to Ref. [8], there could be dozens of racks, each of which has 
tens of transceivers. The rack number N and optical transceiver number 
M are set to be varied in the ranges of [48–80] and [12–32], respectively. 
The ratio of 40 Gbps over 100 Gbps connection requests R varies in the 
range of [0.1–0.95]. The number of spectral slots S is defined as the ratio 
of the whole optical spectrum width (several hundreds of GHz in elastic 
optical networks [27]) over the smallest spectrum slot width, which is 
set as 6.25 GHz, and thus the S is set to vary in the range of [16–128]. We 
also set the connection degree D to be varied in the range of [4–16] and 
load varied in [20–600]. The BP of each entry is obtained with a con
fidence level of 90% at 10% interval and over 20,000 requests [15]. 
Each of the 952 training samples is obtained by the randomly selected 
parameter set of N, D, M, S, R and the load varying in the corresponding 
ranges, and the BP calculated in the specified DCN case with the discrete 
event-driven simulator. 

The parameters of the NN, including the number of hidden layers, 
the number of neurons in each hidden layer, the activation function of 
neurons and the learning rate [28], are fine tuned to improve the pre
diction accuracy. The optimized NN for this study is found to be with 
two hidden layers and 10 neurons in each layer. The activation function 
of neurons in each layer is set as the hyperbolic tangent sigmoid func
tion. The learning rate in training is set to be 0.1. To improve the ac
curacy of BP prediction in the provisioning phase, 100 NNs are trained 
with the same training data but with different randomly initialized 
weights and biases. The predicted value of each BP is obtained by 
averaging the output of all 100 NNs with the same input. In terms of the 
validation procedure of the NN model, the handout cross validation 
method [29] that divides the collected samples into the training, vali
dation and test sets and decides when to stop training based on the 
measured performance on the validation set is employed. The training, 
validation and test sets are obtained by randomly dividing the collected 
samples into 7:1.5:1.5. The performance function used for the evalua
tion is the mean square error (MSE). The training stops once the MSE 
stops decreasing for 6 continuous epochs. 

3.1. Evaluation methodology 

To better quantify the performance of the NN-assisted strategy 
decision-making, the new evaluation methodology is proposed. 
Considering the dynamics of traffic in the optical DCNs, the accuracy of 
strategy decision is assessed for a range of traffic load rather than a 
certain value of load. Three metrics are proposed to quantify the accu
racy of the proposed scheme and its impact on performance: (a) decision 
error (E) is the range of wrong decision over the whole range of decision- 
making, (b) maximum BP loss (BPL) and (c) resource utilization loss 
(UL) are the losses over the range of interest, respectively. The BPL and 
UL correspond to the worst case when assessing the impact of an erro
neous strategy decision on the system performance throughout the 
observation range. The definitions of E, BPL and UL as well as the def
initions of the used symbols for calculating them are listed in Table 2. 
For any network case with a certain parameter set {N, D, M, S, R}, E, BPL 
and UL can be calculated according to the definitions in Table 2. 

As described before, the investigated two-strategy decision use cases 
can be categorized as seven scenarios according to the relationship be
tween the range of interest and the intersection. To better explain the 
evaluation methodology, the calculation of E, BPL and UL for the DCN 
cases of the seven scenarios is shown in Table 3 in APPENDIX. For 
Scenarios 1 and 7, error-free decision is achieved (i.e., E, BPL and UL 
equal 0). This is because there is no intersection in the range of interest 

[0, Th]. The cost1 (cost2) is determined as the optimal cost for any load in 
the range of interest. On contrary, though no intersection exists in the 
range of interest for Scenarios 3, the preferred routing strategy obtained 
with the NN assisted decision-making is opposite with that obtained by 
the simulation in the whole observation range (i.e., E equals 1). For 
Scenarios 2, 4, 5 and 6, E falls between 0 and 1 and can be calculated 
based on its definition and the relationship between the Inreal, Inpre (i.e., 
the intersections calculated with the simulation and NN methods Inreal12 
and Inpre12, simplified as Inreal and Inpre, respectively) and Th (i.e., the 
largest acceptable load). BPL and UL for various scenarios can be 
calculated based on Loadmax, i.e., the load that maximizes the BP dif
ference corresponding to various strategies over the range of interest. 
The determination of Loadmax depends on the load-versus-BP perfor
mance calculated with simulation and the wrong decision range. For 
better illustration, the determination of Loadmax in Scenario 5 is taken as 
an example, where both Inreal and Inpre follow the situation in Fig. 2(b). 
The load-versus-BP curve with simulation is depicted as Fig. 2(b). The 
wrong decision range equals the interval between Inreal and Inpre. It is 
easy to infer that Loadmax corresponds to Load0 when Inpre ≦ Load0 (Load0 
refers the load threshold when BP performance of routing strategy with 
cost2 starts to be larger than zero), while it equals to Inpre when Load0 <

Inpre ≦ Th, i.e., Loadmax equals max (Load0, Inpre) as shown in Table 3. 
Given the determined Loadmax, the calculation of UL can be divided into 
two situations depending on the relative advantage of cost1 and cost2 at 
load = Loadmax. Assuming that cost2 shows superiority over cost1 at 
Loadmax, additional Sa spectral slots are needed to achieve the same BP if 
using cost1 instead of cost2. The UL equals Sa/(S + Sa), where S indicates 
the number of spectral slots for the superior strategy under the situation, 
i.e. cost2, and (S + Sa) refers to the number of spectral slots for the 
inferior one cost1. If the situation is that cost1 shows an advantage over 
cost2 at Loadmax, a similar definition can be applied to UL in terms of the 
number of transceivers and UL equals to Ma/(M + Ma). (Ma + M) and M 
indicate the number of transceivers to achieve the same BP with the sub- 
optimal routing strategy (cost2) and optimal one (cost1), respectively. 

3.2. Impact of the observation range 

Fig. 3 shows the impact of the observation range on the performance 
of the proposed scheme. With the variation of the observation range (i. 
e., BP range of interest), the distributions of tested cases and CDF of E, 
BPL and UL vary accordingly. The ThBP varies from 0.01, 0.05 to 0.1. As 
shown in Fig. 3(a), with the increase of ThBP, the ratio of Scenario 1 
remains unchanged while that of Scenario 7 decreases. As a result, the 
sum of ratios of Scenarios 1 and 7, i.e., the ratio of the error-free cases, 
decreases with the increasing ThBP. This is because the scenario which 
the case belongs to depends on the relationship between the observation 
range and the intersection. According to the definitions, both Scenarios 
1 and 7 have no intersection in the range of interest. However, there is 
no observed intersection for Scenario 1, while for Scenario 7 the inter
section falls beyond the observation range. Therefore, for Scenario 1 the 
relationship is not affected by the variation of the observation range, 
while fewer cases belong to Scenario 7 as the intersection may fall into 
the observation range with an increase of the range. For other scenarios, 
their ratios vary with the increasing ThBP. Nevertheless, the summed 
ratio of Scenarios 2 to 6 does not exceed 17% regardless of ThBP, which 
means that error-free decision is achieved in a large portion (>83%) of 
the tested cases. As shown in Fig. 3(b), the BPL and UL induced by the 
wrong decision show the similar trend as E. Error-free ratio which is 
shown in Fig. 3(b), decreases with the larger ThBP, which is consistent 
with Fig. 3(a). For most of the cases with non-zero decision error, the E, 
BPL and UL increase with the increasing ThBP. The average values of {E 
BPL UL} of the tested cases are {2.00% 1.24% 0.29%}, {2.56% 3.16% 
0.97%} and {2.83% 3.88% 1.19%} for ThBP of 0.01, 0.05 and 0.1, 
respectively. They slightly increase with the rising ThBP. 

With over 83% error-free ratio regardless of the observation range, 
the proposed scheme shows high accuracy of decision for the optimal 
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routing strategy. The results also suggest the slight degradation of de
cision accuracy with the increase of observation range, i.e. the loosening 
of limitation of the worst acceptable BP performance. The variation of 
the E, BPL and UL when ThBP increases from 0.01 to 0.05 is larger than 
that in the case from 0.05 to 0.1. This suggests the accuracy of strategy 
decision is more sensitive to the range of interest when the range is 
relatively small. 

3.3. Impacts of network parameters 

The impacts of network parameters on the distributions of cases over 
the seven scenarios and the CDF of E, BPL and UL are presented in 
Figs. 4–8. According to the observation, the network parameters can be 
classified as two categories: an increased parameter that results in a 
right shift of the intersection (i.e., N, M) and that results in a left shift of 
the intersection (i.e., D, S, R). Due to the left/right shift of the inter
section, the ratio of Scenario 1 decreases and that of Scenario 7 increases 
with the increase of N and M, while the increase of D, S and R results in a 
smaller ratio of Scenario 7 and a larger ratio of Scenario 1, which are 
shown in Figs. 4-8(a). This can be inferred from the definitions of Sce
narios 1 and 7. It is observed the ratios of scenarios vary significantly 
with the change of network parameters, leading to the change of the 
optimal strategy in a remarkable number of tested cases. For example, 
when D increases from 4 to 8, 39.51% of all the tested cases change the 
optimal strategy from cost2 to cost1 throughout the range of interest as 
the cases transform from Scenario 7 to Scenario 1. This shows the high 
dynamics of the optimal strategy when changing network parameters, 
which implies that accurate decision-making with NN is of great 
importance for implementing adaptive routing strategy in optical DCNs. 

As shown in Figs. 4-8(b), the error-free ratio (shown in CDF of E) 
generally increases with the rising of D, S and R, while it may decrease or 
increase for a larger N or M. The increase of error-free ratio is more 
obvious for a larger D or R and a smaller S. This indicates the proposed 
scheme performs better in DCNs with a larger D or R and a smaller S. 
Besides the error-free ratio, E, BPL and UL of the tested cases vary with 

the changed parameters. Despite of the variation, the measured E, BPL 
and UL are never larger than 3.0%, 4.0% and 1.2% in terms of their 
mean values, respectively. This again verifies the high accuracy of NN- 
assisted strategy decision with various network parameters. 

In terms of the traffic characteristics, the high robustness with the 
traffic variation is revealed by the strategy decision scheme. The scope 
of traffic load under the investigation ranges from 0 to 540. Over this 
range, the ratio of error-free cases over all the tested cases reaches 83%. 
This, coupled with the average values no larger than 3.0%, 4.0% and 
1.2% in the E, BPL and UL with the variation of R from 0.1, 0.5 to 0.9 (i. 
e., the average traffic capacity varies from 94 Gbps, 70 Gbps to 46 Gbps), 
suggests the proposed scheme is robust to the variation of traffic load. 

It should be noted that the change of scenario distributions, E, BPL 
and UL caused by the network parameters is more remarkable compared 
to that induced by the observation range ThBP. This is because both the 
intersections Inreal and Inpre and the load range of interest Th vary with 
the varying parameters while only Th varies with the varying ThBP. The 
increase of load range of interest Th with the same ThBP is due to the 
availability of more network resources (i.e., a larger N/D/M/S/R). 

4. Conclusions 

A NN-assisted decision-making scheme for routing strategy selection 
has been proposed to facilitate the adaptive routing in optical DCNs. The 
BP performance of candidate routing strategies is predicted by a trained 
NN for the arriving requests of any load in the optical DCN that is 
characterized by its networking parameters N, D, M, S and R. The 
candidate with the lowest BP is determined by the NN as the optimal 
routing strategy. To show the feasibility of the proposed scheme, its 
performance in the case of two-strategy decision for the transparent 
optical multi-hop interconnected DCN is evaluated and analyzed. Three 
metrics are proposed to assess the performance of the scheme over the 
range of interest, i.e., the decision error (E), the greatest BP and resource 
utilization losses (BPL and UL) due to the wrong decision. The impacts of 
the range of interest and the various network parameters on the 

Fig. 3. (a) The scenario classification and (b) the cumulative distribution function (CDF) of the E, BPL and UL for 243 cases with different ranges of interest ThBP (i.e., 
“TB” in the legend). The error-free ratios for various ThBP are shown in the CDF of E. 

Fig. 4. (a) The scenario classification and (b) the CDF of E, BPL and UL for 243 cases with different numbers of racks N. The error-free ratios for various N are shown 
in the CDF of E. 
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performance are investigated. 
The results demonstrate that with the increase of the range of interest 

and the loosening of the worst acceptable BP, the accuracy of the two- 
strategy decision-making only declines slightly, proving the robustness 

of the proposed scheme. The ratio of error-free cases over the tested 
cases (i.e. the error-free ratio) always exceeds 83% regardless of the 
range of interest. The average E, BPL and UL caused by the wrong de
cision when changing the network parameters are not larger than 3.0%, 

Fig. 5. (a) The scenario classification and (b) the CDF of E, BPL and UL for 243 cases with the different numbers of optical transceivers on each rack M. The error-free 
ratios for various M are shown in the CDF of E. 

Fig. 6. (a) The scenario classification and (b) the CDF of E, BPL and UL for 243 cases with different degrees D. The error-free ratios for various D are shown in the CDF 
of E. 

Fig. 7. (a) The scenario classification and (b) the CDF of E, BPL and UL for 243 cases with different numbers of spectral slots on each fiber link S. The error-free ratios 
for various S are shown in the CDF of E. 

Fig. 8. (a) The scenario classification and (b) the CDF of E, BPL and UL for 243 cases with different ratios of the requests of 40Gbps/100 Gbps capacity R. The error- 
free ratios for various R are shown in the CDF of E. 
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4.0% and 1.2%, respectively. This verifies the feasibility of the proposed 
strategy decision-making scheme in the two-strategy scenario. More
over, the error-free ratio generally increases with the larger connection 
degree D, spectral slot number S and requests ratio of various capacities 
R. The improvement of error-free ratio is more obvious for a larger D or 
R and a smaller S, providing guidelines for the design of the optical DCNs 
with adaptive routing. It should be noted that in our study the NN model 
is trained with data set collected with simulation rather than the realistic 
data from the DCN operators which is often unavailable to the public. 
Nevertheless, it has been proven that the scheme can effectively learn 
from the simulation data and make reliable decisions for two routing 
strategies with the study. The scheme can be employed for the case of 
model training with realistic data without modification. The high ac
curacy and robustness of the proposed decision-making scheme imply 
that the smart adaptive routing is feasible which facilitates the network 
automation in optical DCNs. 

Moreover, the proposed routing strategy decision scheme could be 
applied to any optical interconnection products with the intelligent 
network control and management. The workflow contains the training 
and provisioning phases. In the training phase the dataset is collected 
based on the data aggregated from the real-time status of the operator’s 
network by the network controller. The training is performed offline and 
the trained model is then used for the online provisioning phase. The 
performance prediction assists in selection of the best routing strategy, 
which further informs the network controller. 
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APPENDIX  

Table 3 
The Calculation Of Decision Error E, The BP Loss BPL And Resource Utilization Loss UL For Various Scenarios  

Scenario 1: 
E = 0
BPL = 0
UL = 0 

Scenario 2: 

E =
Inpre

Th
BPL = BPL(Inpre)

UL = UL(Inpre)

Scenario 3: 
E = 1
BPL = BPL(Th)
UL = UL(Th)

Scenario 4: 

E =

[
Inreal1

Th
,
Inreal2

Th

]

BPL = BPL(Load0)

UL = UL(Load0)

Scenario 5: 

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Inreal1 − Inpre

Th
,
Inreal2 − Inpre

Th

]

​ if ​ Inpre < Inreal1

[

0,max
(

Inreal2 − Inpre

Th
,
Inpre − Inreal1

Th

)]

​ if ​ Inreal1 < Inpre < Inreal2

[
Inpre − Inreal2

Th
,
Inpre − Inreal1

Th

]

​ if ​ Inpre > Inreal2

BPL = BPL(max(Load0, Inpre))

UL = UL(max(Load0, Inpre))

Scenario 6: 

E =

[
Th − Inreal2

Th
,
Th − Inreal1

Th

]

BPL = BPL(Th)

UL = UL(Th)

Scenario 7: 
E = 0
BPL = 0
UL = 0 

aLoad0 refers the load threshold when BP performance of routing strategy with cost2 starts to be larger than zero. 

Fig. 9. The load-versus-BP performance curves calculated with the simulation and NN prediction. The load interval is set as 5 and 1 as example for simulation and 
NN, respectively. The parameter set {N, D, S, M, R} of the tested DCN case is {64, 6, 48, 12, 0.1}. The BP curves calculated with (a) simulation with the load interval 
of 5, (b) NN with the load interval of 1. 

The seven possible scenarios of the calculation of E, BPL and UL are listed in Table 3. Note that the intersection with simulation is represented by a 
certain interval [Inreal1, Inreal2] due to the limited resolution in load-versus-BP measurement, while the intersection with NN prediction is represented 
by a single value Inpre in the table. In the actual operation, the intersections with simulation and NN are both positioned by certain load intervals and 
the corresponding BP performance. The load-versus-BP performance with NN is continuous enough to position the intersection in the small enough 
interval, e.g., an interval of 1, while the continuity of the BP curves with simulation is limited due to the stochastic nature of the simulation. The BP 
curves with load intervals of 1 and 5 are presented as examples for NN and simulation, respectively, as shown in Fig. 9. For simplicity, the intersection 
with NN is taken as a certain integer. To improve the reliability of the evaluation based on the calculated intersections, the intersection with simulation 
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is located by the interval [Inreal1, Inreal2], which satisfies that BP2<BP1 at Inreal1 and BP2>BP1 at Inreal2. The interval between the Inreal1 and Inreal2 is set 
to be a reasonable value (e.g., 10 in this work) to balance the accuracy and reliability of the intersection positioning. For the scenarios where the 
calculation of decision error E relies on the intersection with simulation (i.e., Scenarios 4, 5 and 6), E is obtained by averaging the minimal and 
maximum values calculated based on the interval [Inreal1, Inreal2]. 
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