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Let A be a separable, unital, simple, Z-stable, nuclear C∗-algebra, and let α : G →
Aut(A) be an action of a discrete, countable, amenable group. Suppose that the 
orbits of the action of G on T (A) are finite and that their cardinality is bounded. 
We show that the following are equivalent:
(1) α is strongly outer;
(2) α ⊗ idZ has the weak tracial Rokhlin property.
If G is moreover residually finite, the above conditions are also equivalent to
(3) α ⊗ idZ has finite Rokhlin dimension (in fact, at most 2).
If ∂eT (A) is furthermore compact, has finite covering dimension, and the orbit space 
∂eT (A)/G is Hausdorff, we generalize results by Matui and Sato to show that α is 
cocycle conjugate to α ⊗ idZ , even if α is not strongly outer. In particular, in this 
case the equivalences above hold for α in place of α ⊗ idZ . In the course of the proof, 
we develop equivariant versions of complemented partitions of unity and uniform 
property Γ as technical tools of independent interest.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Soit A une C*-algèbre nucléaire, unifère, simple, Z-stable, et soit α : G → Aut(A)
une action d’un groupe discret, dénombrable et moyennable. Supposons que les 
orbites de l’action de G sur T (A) soient finies et que leur cardinalité soit bornée. 
Nous montrons que les énoncés suivants sont équivalents :
(1) α est fortement extérieur ;
(2) α ⊗ idZ possède la propriété traciale faible de Rokhlin.
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Si en plus G est résiduellement fini, les conditions ci-dessus sont également 
équivalentes à :
(3) α ⊗ idZ a dimension de Rokhlin finie.
Si en plus ∂eT (A) est compact et de dimension finie, et l’espace des orbites 
∂eT (A)/G est Hausdorff, nous généralisons les résultats de Matui et Sato pour 
montrer que α est conjugué par cocycles à α ⊗ idZ , même si α n’est pas fortement 
exterieur. En particulier, dans ce cas, les équivalences ci-dessus sont valables pour 
α à la place de α ⊗ idZ . Au cours de la preuve, nous développons des versions 
équivariantes des partitions complétées de l’unité et de la propriété uniforme Γ
comme outils techniques d’intérêt indépendant.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper concerns the structure of group actions by discrete, countable, amenable groups on separable, 
simple, unital, nuclear, Z-stable C∗-algebras. One of the main themes of research in operator algebra theory 
in the past several decades has been the Elliott program to classify simple, nuclear, separable C∗-algebras 
by K-theoretic data. The Elliott program is now essentially complete: simple nuclear separable C∗-algebras 
which satisfy the Universal Coefficient Theorem and absorb the Jiang-Su algebra Z ([39]) are classified 
via the Elliott invariant. Moreover, this classification cannot be extended to the non-Z-stable case without 
enlarging the invariant and without significant new ideas. The property of Z-stability is a regularity condition 
for simple C∗-algebras, analogous to the McDuff property for type II1 factors. We refer the reader to [72] for 
a recent survey and further references concerning the classification program and Toms-Winter regularity, as 
a detailed exposition of these topics is beyond the scope of this paper.

The analysis of group actions on operator algebras is a natural and important line of research which has 
been studied intensively for C∗-algebras as well as in von Neumann algebra theory. It is closely related to 
the classification program discussed above, particularly via the crossed product construction. Specifically, 
given the role of Z-stability in the Elliott program (or the related regularity properties in the Toms-Winter 
conjecture), it is important to understand how robust the class of simple, nuclear, separable, Z-stable C∗-
algebras is, in particular with respect to standard constructions such as crossed products. The following is 
an important open problem in this context.

Problem 1.1. Let A be a separable, simple, nuclear, Z-stable C∗-algebra, and let α : G → Aut(A) be an 
action of a discrete countable amenable group G. Find conditions that ensure that A �αG is also separable, 
simple, nuclear, and Z-stable.

In the above setting, nuclearity and separability are always guaranteed since G is amenable and countable. 
By a celebrated result of Kishimoto [40], A �α G is simple whenever αg is outer for all g ∈ G \ {1}. The 
main task, then, is to find general conditions that entail preservation of Z-stability.

http://creativecommons.org/licenses/by/4.0/
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The Rokhlin property and its various generalizations form a collection of regularity conditions for group 
actions on C∗-algebras, whose roots stem from the Rokhlin Lemma in Ergodic Theory. This result was first 
extended to von Neumann algebras, starting with Connes’ work for the case of a single automorphism ([9, 
Theorem 1.2.5]; see also [70, Chapter XVII, Lemma 2.3]). Connes’ result was later generalized by Ocneanu 
in [55, Section 6.1], and used to prove that all outer actions of a discrete countable amenable group G
on the hyperfinite II1 factor are cocycle conjugate. In the context of actions on C∗-algebras, early works 
include the studies of cyclic and finite group actions on UHF-algebras by Herman and Jones ([28,29]), and 
Herman and Ocneanu ([30]), and later for automorphisms on UHF and AT -algebras by Kishimoto ([41–43]). 
A connection with permanence of Z-stability was made in [33], where it was shown that for actions of the 
integers, the reals or compact groups, Z-stability is preserved when passing to the crossed product, provided 
the action has the Rokhlin property. Other results for Rokhlin actions of compact groups can be found in 
[18,20,21].

Although the Rokhlin property is relatively common for actions of the integers, there are significant 
K-theoretic obstructions for finite group actions (and hence actions of groups which have torsion). This was 
studied in depth by Izumi [37,38] and spurred additional work [61,27]. Attempts to circumvent impediments 
of this sort led Phillips to introduce the tracial Rokhlin property [58], where the projections in the Rokhlin 
property are assumed to have a leftover which is small in trace. Among other applications, the tracial 
Rokhlin property has been used in [13] to study fixed point algebras of the irrational rotation algebra Aθ

under certain canonical actions of finite cyclic groups.
The tracial Rokhlin property does not bypass the most obvious obstruction to admitting Rokhlin actions: 

the existence of nontrivial projections. The need to study weaker versions of these properties led to two 
further generalizations. The first one, called the weak tracial Rokhlin property, which replaces projections 
with positive elements, has been considered in [31,62,51,53,71,23].

A different approach was taken in a paper by the second author, Winter, and Zacharias [34], who intro-
duced the notion of Rokhlin dimension. In this formulation, the partition of unity appearing in the Rokhlin 
property is replaced by a multi-tower partition of unity consisting of positive contractions, the elements 
of each tower being indexed by the group elements and permuted by the group action. Rokhlin dimension 
zero then corresponds to the Rokhlin property, but the extra flexibility makes finiteness of the Rokhlin 
dimension a much more common feature. This notion has primarily been used as a tool to show that various 
structural properties of interest (such as Z-stability or finite nuclear dimension) pass from an algebra to the 
crossed product. Rokhlin dimension has been extended and studied for actions of various classes of groups; 
the generalization which is pertinent for this paper is in work of Szabó, Wu, and Zacharias for residually 
finite groups ([68]). We refer the reader to [17,19,32,35,24] for further generalizations.

This work focuses on actions on simple C∗-algebras, and aims to improve upon related works by Matui-
Sato ([51,53]) and by Liao ([48,49]). We study the relationships between strong outerness, the weak tracial 
Rokhlin property and finite Rokhlin dimension by showing that they are equivalent in many cases of interest. 
More specifically, we obtain the following main results.

Theorem A. Let A be a separable, simple, nuclear, unital, stably finite, C∗-algebra, let G be a countable, 
discrete, amenable group, and let α : G → Aut(A) be an action. Suppose that the orbits of the action induced 
by α on T (A) are finite and that their cardinality is uniformly bounded. Then the following are equivalent:

(1) α is strongly outer.
(2) α⊗ idZ has the weak tracial Rokhlin property.

When G is residually finite, then the above are also equivalent to:

(3) α⊗ idZ has finite Rokhlin dimension.
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(4) α⊗ idZ has Rokhlin dimension at most 2.

This theorem is restated as Theorem 7.8 and proved in Section 7. The definitions of strong outerness, 
the weak tracial Rokhlin property, and Rokhlin dimension are provided in Section 2.

The first precursor of this result is Theorem 5.5 in [13], where (1) ⇔ (2) is shown under the additional 
assumptions that A has tracial rank zero, A has a unique tracial state, and G is finite. Matui and Sato 
proved (1) ⇔ (2) in the case that A is nuclear and has finitely many extreme tracial states, and the group 
G is elementary amenable ([53, Theorem 3.6]). This was later extended by Wang to all discrete countable 
amenable groups in [71, Theorem 3.8]. Here, we remove all the smallness assumptions on the extreme points 
of T (A), although we still have some non-trivial requirements on the size of the orbits for the induced action 
on T (A). This is made possible by developing an equivariant version of complemented partitions of unity 
from [6]; see more on this below.

The equivalence (1) ⇔ (3) of Theorem A generalizes Liao’s work in [48,49], where a similar result is proved 
for Zm-actions, under the additional assumptions that T (A) is a Bauer simplex with finite dimensional 
extreme boundary, and that the group acts trivially in T (A). Our method of proof differs significantly from 
Liao’s (other than in the use of complemented partitions of unity to remove the topological assumptions 
on ∂eT (A)), in that we obtain the Rokhlin towers by embedding suitable model actions on dimension drop 
algebras into the central sequence algebra of A. The advantage of our approach is that it does not require 
any restrictions on the group: in particular, we are able to treat groups with torsion, as well as groups that 
are not finitely generated. (The application of property (SI) in [48, Theorem 6.4] makes essential use of the 
fact that Z has no torsion, and the same applies for the generalization to Zm in [49].)

Our next main theorem improves upon results of Sato from [63] (which in turn generalizes results from 
[53]). The main theorem in [63] requires for the group to act trivially on the trace space, whereas we can 
weaken this assumption to a condition on the orbits analogous to the one in Theorem A.

Theorem B (Theorem 8.5). Let A be a separable, simple, nuclear, stably finite, Z-stable, infinite-dimensional, 
unital C∗-algebra. Let G be a countable, discrete, amenable group, and let α : G → Aut(A) be an action. 
Suppose that ∂eT (A) is compact, that dim(∂eT (A)) < ∞, that the orbits of the induced action of G on 
∂eT (A) are finite with uniformly bounded cardinality, and that the orbit space ∂eT (A)/G is Hausdorff. Then 
α is cocycle conjugate to α⊗ idZ .

The conditions on the trace space are met, for instance, when the G-action induced by α on ∂eT (A)
factors through a finite group action. We do not know whether the restriction on the topology of the trace 
space or the way in which the group acts on it can be relaxed. Some progress has been made in the recent 
paper [73], where the methods here developed are combined with arguments from topological dynamics to 
show equivariant Z-stability for actions of Z, assuming that ∂eT (A) is compact and finite-dimensional.

The arguments in this paper make an essential use of an equivariant version of uniform property Γ and 
complemented partitions of unity (CPoU). The non-equivariant versions are methods introduced in [6] in 
order to prove one of the remaining implications of the Toms-Winter conjecture, and were further developed 
in [7]. Roughly speaking, complemented partitions of unity provide a technique for globalizing properties 
which occur fiber-wise in the von Neumann algebras associated to the GNS representations of the traces, 
to properties holding uniformly over all traces; we adapt this method to allow gluing dynamical properties. 
As this is of independent interest, we record here what is proved in this respect, which can be thought of 
as a dynamical analogue of [7, Theorem 4.6]. The definitions of the terms in the theorem below appear in 
the relevant parts of the paper.

Theorem C. Let A be a separable, simple, nuclear, unital, stably finite, C∗-algebra with no finite-dimensional 
quotients. Let G be a countable, discrete, amenable group and let α : G → Aut(A) be an action such that the 
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induced action on T (A) has finite orbits bounded in size by a uniform constant M > 0. Then the following 
are equivalent:

(1) (A, α) has uniform property Γ.
(2) (A, α) has complemented partitions of unity with constant M .
(3) For every n ∈ N there is a unital embedding of the matrix algebra Mn → (AU ∩A′)αU .

If A is also Z-stable and simple, then the previous conditions are equivalent to

(4) (A, α) is cocycle conjugate to (A ⊗Z, α⊗ idZ).

Theorem C is the combination of Theorem 5.7, which covers the equivalence of the first three conditions, 
and Theorem 7.6, which adds the last condition.

The paper is organized as follows. In Section 3 and Section 4 we modify ideas from [6] in order to 
develop equivariant analogues of uniform property Γ and complemented partitions of unity. The main goal 
in Section 5 is to use techniques from the previous two sections to obtain that, under our assumptions, we 
can equivariantly embed model actions on the hyperfinite II1-factor into the central sequence algebra of 
uniform-tracial ultrapowers. Section 6 is a technical section, devoted to constructing model actions of finite 
groups which have Rokhlin-type towers on dimension drop algebras; those are needed in order to lift actions 
from the uniform-tracial central sequence algebra to the norm central sequence algebra. Section 7 contains 
the proofs of Theorem A and Theorem C. The last section provides a proof of Theorem B.

2. Preliminaries

2.1. Trace norms

For a unital C∗-algebra A, the trace space of A, denoted T (A), is the compact subspace of the dual of A
(endowed with the weak* topology) consisting of all states τ of A such that τ(ab) = τ(ba) for all a, b ∈ A.

We say that a trace τ ∈ T (A) is faithful if τ(a∗a) > 0 for all a ∈ A \ {0}. Given a trace τ ∈ T (A), the 
associated trace seminorm ‖ · ‖2,τ on A is given by

‖a‖2,τ = τ(a∗a)1/2,

for all a ∈ A. For a closed subset T ⊆ T (A), we set ‖ · ‖2,T = supτ∈T ‖ · ‖2,τ , which is a seminorm on A. We 
use the abbreviation ‖ · ‖2,u for ‖ · ‖2,T (A). Notice that ‖ · ‖2,T is in fact a norm if T contains at least one 
faithful trace. This is always the case, for instance, when A is simple and admits a trace.

Let G be a discrete group, and let α : G → Aut(A) be an action. Then α naturally induces an action α∗

of G on T (A) by affine homeomorphisms,1 given by α∗
g(τ) = τ ◦ αg−1 for all g ∈ G and all τ ∈ T (A). We 

say that a trace τ ∈ T (A) is α-invariant if τ ◦ αg = τ for all g ∈ G, and we denote by T (A)α ⊆ T (A) the 
space of α-invariant traces. Note that T (A)α is always non-empty if G is amenable ([60, Theorem 1.3.1]). 
Given τ ∈ T (A) such that the orbit G · τ is finite, we set

τα := 1
|G · τ |

∑
σ∈G·τ

σ.

If T ⊆ T (A) is G-invariant, then αg is isometric with respect to ‖ · ‖2,T for all g ∈ G.

1 The action α∗ is the restriction of the dual of α to T (A) ⊆ A∗, hence the notation.
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2.2. Ultrapowers

Let A be a C∗-algebra, let G be a discrete group, and let α : G → Aut(A) be an action. We denote by 
�∞(A) the C∗-algebra of all bounded sequences in A with the supremum norm, endowed with the G-action 
given by pointwise application of α. For a free ultrafilter U on N (which we will fix throughout), set

cU (A) = {(an) ∈ �∞(A) : lim
n→U

‖an‖ = 0}.

This is a closed, two-sided G-invariant ideal in �∞(A). We define the norm ultrapower of A to be the quotient 
AU = �∞(A)/cU (A), and denote by αU : G → Aut(AU ) the induced action. We denote by πA : �∞(A) → AU
the equivariant quotient map.

Given a closed subset T ⊆ T (A), we set

JT = {(an)n∈N ∈ AU : lim
n→U

‖an‖2,T = 0}.

Then JT is a closed, two-sided, ideal in AU , and it is G-invariant if T is. If τ ∈ T (A), we abbreviate J{τ} to 
Jτ . For T = T (A), we abbreviate JT (A) to JA, and call it the trace kernel ideal. The associated quotient

AU = AU/JA

is called the uniform tracial ultrapower of A. We denote by αU : G → Aut(AU ) the induced action, and 
by κA : AU → AU the equivariant quotient map. We abbreviate κA to κ whenever the algebra A is clear 
from the context. Given a subset S ⊆ AU , the commutant of S in AU is denoted by AU ∩ S′, and we use 
similar notation for subsets of AU . The following useful fact will be used repeatedly; see [45, Proposition 
4.5, Proposition 4.6]:

Lemma 2.1. Let A be a separable C∗-algebra, let G be a discrete group, let α : G → Aut(A) be an action, let 
S ⊆ AU be a separable G-invariant subset, and set S = κ(S). Then κ restricts to a surjective, equivariant 
map

κ : (AU ∩ S′, αU ) → (AU ∩ S
′
, αU ).

Like the norm ultrapower, the uniform tracial ultrapower of a C∗-algebra A satisfies countable saturation 
properties that allow us, via reindexing and diagonal arguments, to derive exact statements in AU from 
approximations in ‖ · ‖2,TU (A) or in ‖ · ‖2,T (A). For future reference, we isolate this in the following remark.

Remark 2.2. The notion of saturation is a fundamental and classical concept from model theory, which has 
also been formalized for C∗-algebras (see [16, Section 4.3], and see [26] for an extension to the equivariant 
setting). Among operator algebraists, all instances of saturation in the context of ultrapowers are usually 
reduced to an application of a technical lemma known as Kirchberg’s ε-test [44, Lemma A.1]. We also refer 
to this technical tool when invoking ‘countable saturation’ in our proofs.

Given a sequence (τn)n∈N in T (A), there is a trace τ ∈ T (AU ) given by τ(a) = limn→U τn(an) whenever 
(an)n∈N ∈ �∞(A) is a representing sequence for a. We call traces of this form limit traces, and denote by 
TU (A) the set of all limit traces on AU . Since any limit trace vanishes on JA, with a slight abuse of notation 
we also regard the elements in TU(A) as traces over AU . We denote by Tα

U (A) the set of all traces in TU(A)
which arise from sequences of traces in T (A)α. (This set should not be confused with the set TU(A)αU of 
G-invariant elements of TU(A), which may a-priori be larger.)
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A straightforward computation shows that for (an)n∈N in �∞(A) with corresponding class a ∈ AU , we 
have ‖a‖2,TU (A) = 0 if and only if limn→U ‖an‖2,u = 0. In particular, this shows that

JA = {a ∈ AU : ‖a‖2,TU (A) = 0}.

The ideals JT (A) and JT (A)α are not equal in general, even if G is amenable. (Take, for example, A = C(S1)
and G = Z acting on it via irrational rotations.) While the tools that we develop in this work are suitable 
for studying the quotient AU/JT (A)α , the kind of conclusions that we are interested in refer to the quotient 
AU/JA = AU . In general, it is not clear how to transfer information from one to the other. The assumptions 
in our main results concerning the size of the orbits of α∗ are used to do this.

Proposition 2.3. Let A be a C∗-algebra such that T (A) is nonempty, let G be a discrete group, and let 
α : G → Aut(A) be an action. Suppose that the cardinality of the orbits of α∗ is uniformly bounded. Then 
‖ · ‖2,T (A)α and ‖ · ‖2,u are equivalent, and in particular JA = JT (A)α .

Proof. Given τ ∈ T (A), set τα = 1
|G·τ |
∑

σ∈G·τ σ. One readily checks that τα ∈ T (A)α, and that τ(a) ≤
|G · τ |τα(a) for all a ∈ A+. Let M > 0 be a uniform bound for the orbits of α∗. Given for a ∈ A, we have

‖a‖2,T (A)α ≤ ‖a‖2,u ≤ M1/2‖a‖2,T (A)α . �
Given a C∗-algebra B and a G-action γ : G → Aut(B), we write Bγ for the fixed point algebra of γ. The 

following simple lemma follows from a straightforward reindexation argument, which we omit.

Lemma 2.4. Let A and B be a separable unital C∗-algebra, let G be a countable discrete group, and let 
α : G → Aut(A) be an action. Suppose there exists a unital homomorphism ϕ : B → (AU ∩A′)αU . Then for 
any separable subset S ⊆ (AU )αU there exists a unital homomorphism ψ : B → (AU ∩ S′)αU .

2.3. W ∗-ultrapowers

We will also need to use tracial ultrapowers for von Neumann algebras, so we recall this notion as well. 
Let (M, τ) be a tracial von Neumann algebra, and set

cU,τ = {(an)n∈N ∈ �∞(M) : lim
n→U

‖an‖2,τ = 0}.

We denote by MU the quotient MU = �∞(M)/cU,τ , and call it the W ∗-ultrapower of (M, τ).
There is unfortunately a notational conflict, since the notation MU could mean both the W ∗-ultrapower 

of (M, τ), or the uniform tracial ultrapower of M regarded as a C∗-algebra. Both notations are by now well 
established in the literature, and we will always make it clear which one we are referring to. In practice, 
little confusion should arise since we will never consider the uniform tracial ultrapower of a von Neumann 
algebra.

Denote by πτ the GNS representation associated to τ . Most tracial von Neumann algebras we deal with in 
this note are of the form πτ (A)′′ for some separable, simple, unital C∗-algebra A and some trace τ ∈ T (A). 
The canonical and implicit choice of faithful, normal trace on πτ(A)′′ is (the unique tracial extension of) τ . 
We will often use the notation Mτ to abbreviate πτ (A)′′.

2.4. Strong outerness

Let A be a C∗-algebra, and let τ ∈ T (A) be a trace. Note that if θ ∈ Aut(A) and τ is left invariant by 
θ, then θ extends uniquely to a trace-preserving automorphism of πτ (A)′′, which we denote by θτ .
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Definition 2.5. Let A be a simple, unital C∗-algebra with nonempty trace space, and let θ ∈ Aut(A) be an 
automorphism. We say that θ is strongly outer if θτ is outer for every τ ∈ T (A) satisfying τ ◦ θ = τ .

An action α : G → Aut(A) of a discrete group G on A is said to be strongly outer if αg is strongly outer 
for all g ∈ G \ {1}.

A strongly outer automorphism is clearly outer. The reverse implication is, however, false. For example, 
let A =

⊗∞
n=1 M2n and let θ be the approximately inner order 2 automorphism of A given as the limit of 

Ad(uk), where uk = v1 ⊗ v2 ⊗ . . .⊗ vk ⊗ 1⊗∞
n=k+1 M2n and vj = diag(−1, 1, 1, 1, . . . , 1). One can check that 

the sequence uk is Cauchy in the trace norm, and therefore θτ is inner, although θ is not inner (see [50]).

2.5. Rokhlin dimension

The notion of Rokhlin dimension was first defined for actions of Z and finite groups in [34], and later 
extended to residually finite groups in [68]. A group G is residually finite if for every g ∈ G \ {e} there is a 
normal subgroup H ≤ G of finite index such that g /∈ H.

Definition 2.6 ([68, Definition 4.4]). Let G be a countable, discrete, residually finite group, let A be a 
separable, unital C∗-algebra, and let α : G → Aut(A) be an action. Given d ∈ N, we say that α has Rokhlin 
dimension at most d, written dimRok(α) ≤ d, if for any normal subgroup H ≤ G of finite index, there are 
positive contractions f (j)

g ∈ AU ∩A′, for j = 0, . . . , d and g ∈ G/H, such that:

(1) (αU )g(f (j)
h

) = f
(j)
gh

for all j = 0, . . . , d and g ∈ G and h ∈ G/H,

(2) f
(j)
g f

(j)
h

= 0 for all j = 0, . . . , d and g, h ∈ G/H with g �= h,
(3)
∑d

j=0
∑

g∈G/H f
(j)
g = 1.

There is a related notion, called Rokhlin dimension with commuting towers, where the elements f (j)
g are 

assumed to moreover pairwise commute (see [34, Definition 2.3.b] and [68, Definition 9.2]). We will not deal 
with this notion here.

We record here an equivalent definition of Rokhlin dimension, which uses approximations instead of 
ultrapowers.

Proposition 2.7 ([68, Proposition 4.5]). Using the notation from Definition 2.6, we have dimRok(α) ≤ d if 
and only if for any normal subgroup H ≤ G of finite index, for any finite subset G0 ⊆ G, for every ε > 0 and 
for every finite subset F ⊆ A, there are positive contractions f (j)

g ∈ A, for j = 0, . . . , d and for g ∈ G/H, 
satisfying:

(a)
∥∥αg(f (j)

h
) − f

(j)
gh

∥∥ < ε for all j = 0, . . . , d, for all g ∈ G0 and for all h ∈ G/H,

(b)
∥∥f (j)

g f
(j)
h

∥∥ < ε for all j = 0, . . . , d and for all g, h ∈ G/H with g �= h,
(c)
∥∥1 −
∑d

j=0
∑

g∈G/H f
(j)
g

∥∥ < ε,
(d)
∥∥af (j)

g − f
(j)
g a
∥∥ < ε for all a ∈ F , for all g ∈ G/H and for all j = 0, . . . , d.

2.6. The weak tracial Rokhlin property

We begin by recalling some terminology.

Definition 2.8. Let G be a discrete group, and let δ > 0. Given finite subsets K, S ⊆ G, we say that S is 
(K, δ)-invariant if
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∣∣∣S ∩
⋂
g∈K

gS
∣∣∣ ≥ (1 − δ)|S|.

The existence of (K, δ)-invariant subsets of G for every finite set K and δ > 0 is Følner’s characterization 
of amenability.

The next definition goes back to Ocneanu’s notion of the Rokhlin property for actions of amenable groups 
on von Neumann algebras and specifically on the hyperfinite II1-factor; see [55, Chapter 6].

Definition 2.9. Let G be a discrete, amenable group, let A be a simple, separable unital C∗-algebra, and 
let α : G → Aut(A) be an action. We say that α has the weak tracial Rokhlin property if for any finite 
subset K ⊆ G and any δ > 0, there are n ∈ N, (K, δ)-invariant finite subsets S1, . . . , Sn ⊆ G, and positive 
contractions f�,g ∈ AU ∩A′ for � = 1, . . . , n and g ∈ S�, such that

(1) (αU )gh−1(f�,h) = f�,g for all � = 1, . . . , n and all g, h ∈ S�,
(2) f�,gfk,h = 0 for all �, k = 1, . . . , n, g ∈ S�, k ∈ Sh, whenever (�, g) �= (k, h),
(3) 1 −

∑n
�=1
∑

g∈S�
f�,g ∈ JA,

(4) for τ ∈ TU (A), for � = 1, . . . , n and for g ∈ S�, the value of τ(f�,g) is independent of τ and g, and is 
positive.

Definition 2.9 is inspired by Wang’s [71, Proposition 2.4], except for item (4), which is inspired by Matui 
and Sato’s [53, Definition 2.5.3]. In particular, our definition of the weak tracial Rokhlin property extends 
that of Matui-Sato to groups that are not necessarily monotileable.

Remark 2.10. Condition (4) in Definition 2.9 was used in a predecessor of this paper ([22]) to prove that 
actions with the weak tracial Rokhlin property have equivariant property (SI) whenever the underlying 
algebra has property (SI), which is needed in the proof of implication (1) ⇒ (3) of Theorem C. In this 
paper, we rely on the more general results from [67]; thus item (4) above is no longer used to prove the 
other implications. Nevertheless, we carry out the proof of (1) ⇒ (2) in Theorem C so as to obtain Rokhlin 
towers also satisfying condition (4), as we believe that such a stronger condition might prove to be useful 
in future applications.

3. Equivariant uniform property Γ

In the theory of von Neumann algebras, property Γ was originally introduced by Murray and von Neu-
mann ([54]) in order prove the existence of non-hyperfinite II1-factors. A II1-factor M with trace τ has 
property Γ if its central sequence algebra MU ∩M′ is non-trivial. Dixmier later showed that in this case 
property Γ is equivalent to the requirement that the II1-factor MU ∩ M′ is diffuse ([12]), that is, for ev-
ery n ∈ N there are orthogonal projections p1, . . . , pn ∈ MU ∩ M′ such that τMU (pi) = 1/n. This latter 
formulation of property Γ inspired an analogous definition for uniform tracial ultrapowers, which has been 
recently introduced in [6, Definition 2.1] and systematically studied in [7].

In the next two sections we borrow some of the main ideas in [6] and [7], and adapt them to the equivariant 
setting. We work with actions of discrete countable groups; for some statements, the group will be assumed 
to be amenable as well. We start with the definition of uniform property Γ for actions of countable discrete 
groups on unital separable C∗-algebras.

Definition 3.1. Let G be a countable, discrete group, let A be a unital, separable C∗-algebra with non-empty 
trace space, and let α : G → Aut(A) be an action. We say that (A, α) has uniform property Γ if for every 
n ∈ N and every ‖ · ‖2,TU (A)-separable subset S ⊆ AU , there are projections p1, . . . , pn ∈ (AU ∩ S′)αU with
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(1)
∑n

j=1 pj = 1,
(2) τ(apj) = 1

nτ(a) for all a ∈ S, all τ ∈ TU (A) and all j = 1, . . . , n.

When α is the trivial action the definition above coincides with the definition of uniform property Γ as 
given in [6, Definition 2.1].

Remark 3.2. In Definition 3.1, we could have equivalently required that the projections p1, . . . , pn belong to 
(AU ∩ A′)αU and only require that condition (2) holds for all a ∈ A; this follows from separability of the 
sets S considered in Definition 3.1, along with a standard diagonal argument (Lemma 2.4).

In [6, Proposition 2.3], it is shown that unital separable Z-stable C∗-algebras with non-empty trace space 
have uniform property Γ, since it is possible to embed matrix algebras of arbitrary dimension into the central 
sequence algebra of the uniform tracial ultrapower. A modification of that argument allows us to show that 
equivariantly Z-stable actions of discrete countable groups on such algebras have uniform property Γ.

Proposition 3.3. Let G be a countable, discrete group and let A be a separable, unital, Z-stable C∗-algebra 
with non-empty trace space. Let α : G → Aut(A) be an action and suppose that (A, α) is cocycle conjugate 
to (A ⊗ Z, α ⊗ idZ). Then for any ‖ · ‖2,TU (A)-separable subset S ⊆ AU and every n ∈ N, there exists a 

unital ∗-homomorphism Mn → (AU ∩ S′)αU . In particular (A, α) has uniform property Γ.

Proof. By Lemma 2.4, we can assume that S = A. By Theorem 3.7 in [66], because α is cocycle conjugate 
to α ⊗ idZ , there is an equivariant embedding ϕ : (Z, idZ) → (AU ∩ A′, αU ). Note that the image of ϕ is 
contained in the fixed point algebra (AU ∩ A′)αU . With κ : AU → AU denoting the canonical equivariant 
quotient map (see Lemma 2.1), it follows by simplicity of Z that κ ◦ ϕ : Z → (AU ∩ A′)αU is a unital 
embedding. Since Z has a unique trace τZ , we have for all z ∈ Z:

‖z‖2,τZ = ‖κ(ϕ(z))‖2,TU (A).

It follows that κ ◦ϕ is (‖ · ‖2,τZ -‖ · ‖2,TU (A))-contractive. The completion of C∗-norm unit ball of Z under the 
norm ‖ ·‖2,τZ is the C∗-norm unit ball of πτZ (Z)′′ ∼= R. As the C∗-norm unit ball of AU is ‖ ·‖2,TU (A)-complete 

([6, Lemma 1.6]), it follows that κ ◦ϕ extends to a unital homomorphism R ∼= πτZ (Z)′′ → (AU ∩A′)αU . By 
restriction, there is also a unital homomorphism ρ : Mn → (AU ∩A′)αU .

Let e1, . . . , en ∈ Mn be the canonical diagonal projections, and set pj = ρ(ej) for all j = 1, . . . , n. Then 
condition (1) in Definition 3.1 is automatically satisfied. To check (2), let a ∈ S, let j = 1, . . . , n, and let 
τ ∈ TU (A). The map Mn → C defined by b �→ τ(ρ(b)a) is a (not necessarily normalized) trace on Mn, hence 
a multiple of the canonical trace τMn

on Mn. Taking b = 1 we deduce that the multiple is τ(a), so that 
τ(ρ(b)a) = τMn

(b)τ(a). Now taking b = ej , we get τ(pja) = 1
nτ(a), as desired. �

The following proposition is an equivariant version of [6, Lemma 2.4]. It roughly states that, in the 
presence of uniform property Γ, positive contractions can be replaced by projections when computing tracial 
values in AU .

Proposition 3.4. Let G be a countable, discrete group and let A be a separable, unital C∗-algebra with non-
empty trace space. Let α : G → Aut(A) be an action and suppose that (A, α) has uniform property Γ. Let 
S, S0 ⊆ AU be ‖ · ‖2,TU (A)-separable subsets and let b ∈ (AU ∩ S′)αU be a positive contraction. Then there 

exists a projection p ∈ (AU ∩ S′)αU such that τ(ab) = τ(ap) for all a ∈ S0 and τ ∈ TU (A).

Proof. We follow closely the proof of Lemma 2.4 in [6]. By countable saturation of ultrapowers (see 
Remark 2.2), it suffices to find, for every n ∈ N, a positive contraction e ∈ (AU∩S′)αU with ‖e −e2‖2,TU (A) <
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1/n, and such that τ(ab) = τ(ae) for all a ∈ S0 and τ ∈ TU (A). Fix n ∈ N and let f1, . . . , fn ∈ C([0, 1]) be 
given by the following graph:

0 j−1
n

j
n

1

1
fj

Set S̃ = S ∪{b}. Using uniform property Γ for (A, α), let p1, . . . , pn be projections in (AU ∩ S̃′)αU such that 
for all c ∈ S̃ and all τ ∈ TU (A) we have

n∑
j=1

pj = 1 and τ(pjc) = 1
n
τ(c). (3.1)

Notice that t = 1
n

∑n
j=1 fj(t) for all t ∈ [0, 1]. Set e =

∑n
j=1 pjfj(b) ∈ (AU ∩ S′)αU . Fix a ∈ S0 and 

τ ∈ TU (A). Using at the last step that b = 1
n

∑n
j=1 fj(b), we have

τ(ea) =
n∑

j=1
τ(pjfj(b)a)

(3.1)=
n∑

j=1

1
n
τ(fj(b)a) = τ(ba).

Moreover, using at the second to last step that 
∑n

j=1 fj − f2
j ≤ 1, we get

τ(e− e2) =
n∑

j=1
τ(pj(fj(b) − fj(b)2))

(3.1)=
n∑

j=1

1
n
τ(fj(b) − fj(b)2) ≤

1
n
τ(1) = 1

n
.

Using that e − e2 is a positive contraction (because this is the case for fj − f2
j and the pj ’s are orthogonal), 

we conclude that

‖e− e2‖2,TU (A) = sup
τ∈TU (A)

τ((e− e2)2) ≤ sup
τ∈TU (A)

τ(e− e2) ≤ 1
n
,

as desired. �
4. Equivariant complemented partitions of unity

In [6] uniform property Γ is used to infer the existence of well-behaved partitions of unity in the central 
sequence algebra of uniform tracial ultrapowers, for nuclear separable C∗-algebras. Here we introduce the 
equivariant version of that definition.

Definition 4.1. Let A be a separable, unital C∗-algebra with non-empty trace space, let G be a countable, 
discrete amenable group, and let α : G → Aut(A) be an action. Given M > 0, we say that (A, α) has 
complemented partitions of unity (CPoU) with constant M , if for any ‖ · ‖2,TU (A)-separable subset S ⊆ AU , 
for any n ∈ N, for any a1, . . . , an ∈ A+ and for any δ > 0 with

sup
τ∈T (A)α

min{τ(a1), . . . , τ(an)} < δ,

there exist projections p1, . . . , pn ∈ (AU ∩ S′)αU such that
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(1)
∑n

j=1 pj = 1,
(2) τ(ajpj) ≤ Mδτ(pj) for every τ ∈ Tα

U (A) and j = 1, . . . , n.

We say that (A, α) has CPoU if there is a constant M > 0 such that (A, α) has CPoU with constant M .

Note that actions as in the above definition always have invariant traces.

Remark 4.2. It is not clear to us whether the above definition is the right one for general amenable group 
actions. Specifically, one may want to take the supremum over all T (A) in the displayed inequality and 
require that (2) holds for traces in TU(A). On the other hand, we will only work with actions for which the 
cardinality of the orbits of the induced action on T (A) is bounded, and in this case the two versions are 
equivalent by Proposition 2.3.

The intuition behind the name complemented partition of unity is the following (see also the discussion 
after Definition G in [6]): condition (1) implies that the elements p1, . . . , pn, when identified with the 
functions p̂j on TU (A) which send τ to τ(pj), form a partition of unity, while condition (2) asserts that 
p̂j is approximately subordinate to 1 − âj , the complement of âj. Indeed when τ(1 − aj) = 0, and hence 
τ(aj) = 1, condition (2) forces τ(pj) = τ(ajpj) ≤ Mδτ(pj), and thus τ(pj) = 0.

The main differences between our Definition 4.1 and the one in [6, Definition 3.1] are the requirements 
that p1, . . . pn have to be αU -invariant, the restriction to invariant traces and the presence of the constant 
M . The motivation for this constant is of technical nature2; it will play a role in the proof of Theorem 4.3, 
where we show that for an action α of an amenable group on a nuclear C∗-algebra A, uniform property 
Γ implies the existence of invariant CPoU. The proof of Theorem 4.3 is not only inspired by some of the 
results in [6, Section 3], but also directly uses some of them ([6, Lemma 3.6]). In the proof of Theorem 4.3
we need to uniformly bound the images of some elements in A via traces in T (A), starting from a bound 
on the images of invariant traces, which is where the constant M appears.

Theorem 4.3. Let G be a countable, discrete, amenable group, let A be a separable, nuclear, unital C∗-algebra 
with non-empty trace space and let α : G → Aut(A) be an action. Suppose that the induced action on T (A)
has finite orbits bounded in size by some uniform constant M > 0, and that (A, α) has uniform property Γ. 
Then (A, α) has CPoU with constant M .

Proof. We fix a ‖ · ‖2,TU (A)-separable subset S ⊆ AU , positive elements a1, . . . , an ∈ A and δ > 0 with

sup
τ∈T (A)α

min{τ(a1), . . . , τ(an)} < δ.

We divide the proof into two claims. The first one does not require the use of uniform property Γ; it is 
an equivariant version of Lemma 3.6 in [6].

Claim 4.3.1. Suppose there exist t > 0 and a projection q ∈ (AU ∩A′)αU such that τ(q) = t for all τ ∈ TU (A). 
Then there are positive contractions b1, . . . , bn ∈ (AU ∩ S′)αU such that

(1.a)
∑n

j=1 τ(bjq) = t for all τ ∈ TU (A),
(1.b) τ(ajbjq) ≤ Mδτ(bjq) for all τ ∈ Tα

U (A) and for j = 1, . . . , n.

2 It is in fact possible to show that (A, α) has CPoU with constant M if and only if it has CPoU with constant 1 (we refer to 
[15] for a discussion on this). This technical improvement makes no difference in this paper.
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Since G is countable, by replacing S with 
⋃

g∈G αU
g (S) we may assume that S is αU -invariant. Fix ε > 0

and a finite subset F ⊆ G. By saturation of AU (Remark 2.2), it suffices to find positive contractions 
b1, . . . , bn ∈ AU ∩ S′ satisfying (1.a) and (1.b) and

max
g∈F

max
j=1,...,n

‖αU
g (bj) − bj‖2,TU (A) < ε.

Use amenability of G to find a finite subset K ⊆ G such that

|gK�K|
|K| < ε

for all g ∈ F . For each j = 1, . . . , n, set a′j = 1
|K|
∑

k∈K αk−1(aj), which is a positive element in A. For 
τ ∈ T (A)α, we have τ(a′j) = τ(aj), and in particular

sup
τ∈T (A)α

min{τ(a′1), . . . , τ(a′n)} < δ.

Because τ ≤ Mτα (see subsection 2.1 where the notation τα is introduced), we deduce that

sup
τ∈T (A)

min{τ(a′1), . . . , τ(a′n)} < Mδ.

Apply [6, Lemma 3.6] to a′1, . . . , a
′
n to find positive contractions b′1, . . . , b′n ∈ AU ∩ S′ satisfying conditions 

(1.a) and (1.b) in this claim. For j = 1, . . . , n, set

bj = 1
|K|
∑
k∈K

αU
k (b′j) ∈ AU .

Since S is αU -invariant and since b′1, . . . , b
′
n commute with S, it follows that b1, . . . , bn also commute with 

S. Moreover, a routine computation shows that for all g ∈ F and for j = 1, . . . , n we have

‖αU
g (bj) − bj‖2,TU (A) ≤

|gK�K|
|K| < ε.

On the other hand, for every τ ∈ TU (A) and every j = 1, . . . , n, we have

τ(bjq) = 1
|K|
∑
k∈K

τ(αU
k (b′j)q) = 1

|K|
∑
k∈K

τ(αU
k (b′jq)).

Thus, by (1.a) we have 
∑n

j=1 τ(bjq) = t.
Let τ ∈ Tα

U (A) and j = 1, . . . , n. In the next computation, we use the fact that q is G-invariant and that 
τ = τ ◦ αU

k−1 at the second step, and the above displayed equation at the last step in combination with the 
fact that τ is G-invariant, to get

τ(ajbjq) = 1
|K|
∑
k∈K

τ(ajαU
k (b′j)q)

= 1
|K|
∑
k∈K

τ(αk−1(aj)b′jq)

= τ
( 1
|K|
∑
k∈K

αk−1(aj)b′jq
)

= τ(a′jb′jq)
(1.b)
≤ Mδτ(b′jq) = Mδτ(bjq).
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This proves the claim.

By saturation of ultrapowers (see Remark 2.2), the set I of all numbers t ∈ [0, 1] for which there are 
orthogonal projections p̃1, . . . , ̃pn ∈ (AU ∩ S′)αU such that

(i) τ(
∑n

j=1 p̃j) = t for all τ ∈ TU (A),
(ii) τ(aj p̃j) ≤ Mδτ(p̃j) for all τ ∈ Tα

U (A) and all j = 1, . . . , n,

is closed, and it is clearly non-empty as it contains zero. Let t0 be the maximal element in this set. Then 
(A, α) has CPoU if and only if t0 = 1. Set s0 = t0 + 1−t0

n . Then t0 ≤ s0 ≤ 1 and s0 = t0 if and only if t0 = 1.

Claim 4.3.2. s0 belongs to I (and thus s0 = t0 = 1).

Let p̃1, . . . , ̃pn ∈ (AU ∩ S′)αU be projections satisfying (i) and (ii) above for t0. Set q = 1 −
∑n

j=1 p̃j , 
and note that τ(q) = 1 − t0 for all τ ∈ TU (A). Apply Claim 4.3.1 to S̃ = S ∪ {q} in place of S to obtain 
b1, . . . , bn ∈ (AU ∩ S̃′)αU satisfying conditions (1.a) and (1.b) for 1 − t0 in place of t. Use Proposition 3.4 to 
find projections p′1, . . . , p′n ∈ (AU ∩ S̃′)αU such that

τ(qbj) = τ(qp′j) and τ(ajqbj) = τ(ajqp′j) (4.1)

for all j = 1, . . . , n and all τ ∈ TU (A). Set

T = A ∪ S ∪ {q, p̃1, . . . , p̃n, p
′
1, . . . , p

′
n}.

Use uniform property Γ for (A, α) to find orthogonal projections e1, . . . , en ∈ (AU ∩ T ′)αU which add up to 
1 and satisfy

τ(ejy) = 1
n
τ(y) (4.2)

for all τ ∈ TU (A), for all y ∈ T and for all j = 1, . . . , n. For j = 1, . . . , n, set

pj = p̃j + qp′jej ∈ (AU ∩ S′)α
U
.

Since q ⊥ p̃j , it follows that pj is a projection. Moreover, pj ⊥ pk if j �= k. For τ ∈ TU (A) we have

τ
( n∑

j=1
pj

) (4.2)= τ
( n∑

j=1
p̃j

)
+ 1

n
τ
( n∑

j=1
qp′j

)
(i),(4.1)= t0 + 1

n

n∑
j=1

τ(qbj)

(1.a)= t0 + 1 − t0
n

= s0.

In addition, given τ ∈ Tα
U (A), for j = 1, . . . , n we have

τ(ajpj) = τ(aj p̃j) + τ(ajqp′jej)
(4.2)= τ(aj p̃j) + 1

n
τ(ajqp′j)

(ii),(1.b)
≤ Mδτ(p̃j) + Mδ

τ(qp′j)
n
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= Mδτ(p̃j + qp′jej) = Mδτ(pj).

It follows that p1, . . . , pn witness the fact that s0 belongs to I, as desired. This proves the claim and the 
theorem. �

Invariant CPoUs are the main technical ingredient for the ‘local to global’ arguments employed to prove 
the implications (1) ⇒ (2) and (1) ⇒ (3) of Theorem A. This allows us to avoid the machinery involving 
W ∗-bundles developed in [48,49,22] (and in the non-dynamical setting in [1]), which required the assumption 
that T (A) is a Bauer simplex. Lemma 4.5 asserts that, in the presence of CPoU, if a polynomial identity is 
(approximately) satisfied in each individual tracial completion of (A, α), then the identity is (exactly) satis-
fied in (AU , αU ). To explicitly describe how this transfer works, we begin by establishing some terminology.

Definition 4.4. Let G be a discrete group. Given a tuple of non-commuting variables x̄ = (x1, . . . , xr) and 
g ∈ G, set g · x̄ = (g · x1, . . . , g · xr), which we also regard as a tuple of non-commuting variables. By a 
G-∗-polynomial in the variables x̄ we mean a ∗-polynomial in the variables {g · x̄ : g ∈ G}. Let A be a 
C∗-algebra and let α : G → Aut(A) be an action. Given a tuple x̄ = (x1, . . . , xr), given a G-∗-polynomial 
Q(x̄), and given a coefficient tuple ā = (a1, . . . , ar) ∈ Ar, the term Q(ā) is computed by interpreting each 
g · xj as αg(aj) for j = 1, . . . , r.

Lemma 4.5. Let A be a separable, unital C∗-algebra with non-empty trace space, let G be a countable, discrete 
group, and let α : G → Aut(A) be an action such that the induced action on T (A) has orbits which are 
uniformly bounded in size. Assume further that (A, α) has CPoU. For m ∈ N, let Qm be a G-∗-polynomial 
in rm + sm non-commuting variables, and let (aj)j∈N be a sequence in A. Suppose that for every ε > 0, 
for every n ∈ N and for every τ ∈ T (A)α, there are contractions wτ

j ∈ Mτ , for j ∈ N, such that, for 
m = 1, . . . , n we have

‖Qm(πτ (a1), . . . , πτ (arm), wτ
1 , . . . , w

τ
sm)‖2,τ < ε.

Then there are contractions wj ∈ AU , for j ∈ N, such that

Qm(a1, . . . , arm , w1, . . . , wsm) ∈ JT (A)α ,

for all m ∈ N.

Proof. Fix M > 0 such that (A, α) has CPoU with constant M . Let ε > 0 and let � ∈ N. By saturation of 
(AU , αU ) (see Remark 2.2), it is sufficient to find contractions wj ∈ AU , for j ∈ N, such that for all m ≤ �

we have

sup
τ∈Tα

U (A)
‖Qm(a1, . . . , arm , w1, . . . , wsm)‖2,τ < ε.

By assumption, for each τ ∈ T (A)α there are contractions w̃τ
j ∈ Mτ , for j ∈ N, such that for m = 1, . . . , �

we have

‖Qm(πτ (a1), . . . , πτ (arm), w̃τ
1 , . . . , w̃

τ
sm)‖2

2,τ <
ε2

M�
.

By Kaplansky’s density theorem, we can choose contractions wτ
j ∈ A with w̃τ

j = πτ (wτ
j ) for all j ∈ N. For 

each τ ∈ T (A)α, set
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bτ =
�∑

m=1

∣∣∣Qm(a1, . . . , arm , wτ
1 , . . . , w

τ
sm)
∣∣∣2. (4.3)

Then

τ(bτ ) =
�∑

m=1
‖Qm(a1, . . . , arm , wτ

1 , . . . , w
τ
sm)‖2

2,τ <
ε2

M
.

Use compactness of T (A)α to find τ1, . . . , τn ∈ T (A)α such that

sup
τ∈T (A)α

min{τ(bτ1), . . . , τ(bτn)} <
ε2

M
.

Set S = {wτ1
j , . . . , wτn

j , aj : j ∈ N}. Since (A, α) has CPoU with constant M , there are projections 
p1, . . . , pn ∈ (AU ∩ S′)αU adding up to 1 such that

τ(bτjpj) ≤ ε2τ(pj) (4.4)

for all τ ∈ Tα
U (A) and j = 1, . . . , n.

For k ∈ N, set wk =
∑n

j=1 pjw
τj
k . Those are contractions in AU . Fix j = 1, . . . , n. Because p1, . . . , pn are 

αU -invariant projections which commute with all elements in S, we have

∣∣∣Qm(a1, . . . , arm , w1, . . . , wsm)
∣∣∣2 =

n∑
j=1

pj

∣∣∣Qm(a1, . . . , arm , wτj
s1 , . . . , w

τj
sm)
∣∣∣2

(4.3)
≤

n∑
j=1

pjbτj .

As a consequence, given τ ∈ Tα
U (A) we have

‖Qm(a1, . . . , arm , w1, . . . , wsm)‖2
2,τ = τ

(∣∣∣Qm(a1, . . . , arm , w1, . . . , wsm)
∣∣∣2)

≤
n∑

j=1
τ
(
pj

∣∣∣Qm(a1, . . . , arm , wτj
s1 , . . . , w

τj
sm)
∣∣∣2)

≤
n∑

j=1
τ(pjbτj )

(4.4)
≤

n∑
j=1

ε2τ(pj) = ε2.

This concludes the proof. �
Remark 4.6. By countable saturation of ultrapowers (see Remark 2.2), the assumptions of Lemma 4.5 are 
satisfied if (and only if) for every τ ∈ T (A)α there exist contractions wτ

j in the von Neumann ultrapower 
MU

τ , for j ∈ N, such that

Qm(πτ (a1), . . . , πτ (arm), wτ
1 , . . . , w

τ
sm) = 0,

for all m ∈ N. This amounts to saying that the polynomial relations one wishes to realize in (AU , αU ) are 
exactly realized in the tracial ultrapower of every GNS closure.



92 E. Gardella et al. / J. Math. Pures Appl. 162 (2022) 76–123
As pointed out in [6, Remark 4.2.iii], there is a notable difference when employing CPoU in ‘local to global’ 
arguments over trace spaces, as opposed to older techniques relying on W ∗-bundles and on the assumption 
that T (A) is a Bauer simplex. Indeed, when ∂eT (A) is compact, it is enough to consider extreme traces 
in order to obtain an analogue of Lemma 4.5 (see [1, Lemma 3.18]). Concretely, this allows one to work 
exclusively with von Neumann algebras of the form πτ (A)′′ for τ ∈ ∂eT (A); when A is nuclear, those 
are always isomorphic to the hyperfinite II1-factor R. The same applies in the dynamical setting if one 
furthermore assumes T (A)α = T (A); see [48], [49] and [63]. This is not the case in our framework, since we 
want to remove the requirement that ∂eT (A) is compact (except for Section 8) and we work in a situation 
where in general T (A)α �= T (A); we may even have T (A)α ∩ ∂eT (A) = ∅. As a consequence, we are forced 
to consider all traces in order to apply Lemma 4.5, and thus find approximate solutions in general (tracial) 
GNS representations, not just factorial ones. The next section provides a concrete example of this approach.

5. Tracial ultrapowers of actions of amenable groups

The main objective of the current section is the following result, which plays a key role in the proofs in 
both Section 7 and Section 8. Given a group G and a normal subgroup N ≤ G, throughout the rest of the 
paper we let qN : G → N denote the quotient map.

The goal of the present section is to prove the following result.

Theorem 5.1. Let G be a countable, discrete, amenable group, let A be a separable, simple, unital, stably 
finite, nuclear C∗-algebra, and let α : G → Aut(A) be an action such that the orbits of the action induced 
by α on T (A) are finite and that their cardinality is bounded, and assume that (A, α) has CPoU. Let N be 
a normal subgroup of G such that αg is strongly outer for all g ∈ G \N , and let μG/N : G/N → Aut(R) be 
an outer action on the hyperfinite II1 factor R. Then there exists an equivariant, unital embedding

(R, μG/N ◦ qN ) →
(
AU ∩A′, αU

)
.

The strategy for proving Theorem 5.1 is as follows. First, we construct equivariant, unital embeddings 
of (R, μG/N ◦ qN ) in the central sequence algebra of the weak closure of each individual invariant trace of 
A. After that, we apply Lemma 4.5 to glue those embeddings using CPoU, thus obtaining an equivariant, 
unital embedding (R, μG/N ◦ qN ) → (AU ∩A′, αU ), thanks to Proposition 2.3. The first part translates into 
proving the existence of equivariant embeddings of (R, μG/N ◦ qN ) into the central sequence algebras of 
hyperfinite, not-necessarily factorial type II1 von Neumann algebras with respect to suitable outer actions; 
see Theorem 5.4.

We begin with some preliminaries.

Definition 5.2. Let A and B be unital C∗-algebras, let G be a discrete group, and let α : G → Aut(A) and 
β : G → Aut(B) be actions.

(1) We say that (A, α) and (B, β) are conjugate if there exists an isomorphism ϕ : A → B satisfying 
ϕ ◦αg = βg ◦ϕ for all g ∈ G. In this case, we say that ϕ : (A, α) → (B, β) is an equivariant isomorphism.

(2) An α-cocycle is a function u : G → U(A) satisfying ugh = ugαg(uh) for all g, h ∈ G. In this case, we 
define the cocycle perturbation αu of α to be the action given by αu

g = Ad(ug) ◦ αg for all g ∈ G. (The 
cocycle condition guarantees that this is indeed an action.)

(3) We say that (A, α) and (B, β) are cocycle conjugate, written (A, α) ∼=cc (B, β), if there is an α-cocycle 
u such that (A, αu) and (B, β) are conjugate.

We say that (A, α) (tensorially) absorbs (B, β) if (A, α) ∼=cc (A ⊗min B, α⊗ β).
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Similar notions apply to actions on von Neumann algebras, where tensorial absorption is considered with 
respect to the von Neumann tensor product ⊗.

Proposition 5.3. Let (M, τ) be a separably representable, type II1 von Neumann algebra, let G be a countable, 
discrete, amenable group, let γ : G → Aut(M, τ) be an action and let δ : G → Aut(R) be an action such 
that (R, δ) is cocycle conjugate to (

⊗
n∈NR, 

⊗
n∈Nδ). Suppose that (M, γ) absorbs (R, δ). Then there is a 

unital equivariant homomorphism (R, δ) → (MU ∩M′, γU ).

Proof. Observe that if (N0, γ0) is cocycle conjugate to (N1, γ1), then (NU
0 ∩N ′

0, γ
U
0 ) is conjugate to (NU

1 ∩
N ′

1, γ
U
1 ), since the inner automorphisms induced by a γ0-cocycle act trivially on the central sequence algebra 

NU
0 ∩N ′

0. It is therefore enough to show that there is a unital map

(R, δ) →
(
(M⊗R)U ∩ (M⊗R)′, (γ⊗δ)U

)
.

In turn, it suffices to find a unital map (R, δ) → (RU ∩ R′, δU ), since the latter is unitally contained in (
(M⊗R)U∩(M⊗R)′, (γ⊗δ)U

)
. We use the notation (R, ̄δ) to abbreviate (

⊗
n∈NR, 

⊗
n∈Nδ). By assumption 

(R, δ) ∼=cc (R, ̄δ), and hence (RU ∩ R′, δU ) is conjugate to (RU ∩ R′
, ̄δU ); thus, it suffices to find a unital 

map (R, δ) →
(
RU ∩R′

, ̄δU
)
. Let ϕn : (R, δ) → (R, ̄δ) be the equivariant unital inclusion in the n-th tensor 

factor. Then (ϕn)n∈N : R → RU is the desired unital map. �
We recall that an automorphism α of a von Neumann algebra M is said to be properly outer if for every 

α-invariant central non-zero projection p in M, the restriction of α to pMp is outer. Notice that if M is a 
factor, an automorphism is properly outer if and only if it is outer. An action γ : G → Aut(M) is said to 
be properly outer if γg is properly outer for every g ∈ G \ {e}.

When (M, τ) is a II1-factor, the following is a well-known result of Ocneanu [55]. The version we give 
here for hyperfinite II1 von Neumann algebras follows from the classification of actions of discrete amenable 
groups on semifinite, hyperfinite von Neumann algebras in [65] (see also [64, Section 3]).

Theorem 5.4. Let (M, τ) be a separably representable, hyperfinite, type II1 von Neumann algebra and let G
be a countable, discrete, amenable group. Fix an action γ : G → Aut(M, τ) which preserves τ . Let N be a 
normal subgroup of G such that γg is properly outer for all g ∈ G \N and let μG/N : G/N → Aut(R) be an 
outer action. Then

(M, γ) ∼=cc (M⊗R, γ ⊗ (μG/N ◦ qN )).

Proof. Denote by C the center of M, and let (X, ν) be its von Neumann spectrum, so that (C, τ |C) ∼=
(L∞(X, ν), 

∫
X
dν) as tracial von Neumann algebras. Without loss of generality, we assume that (X, ν) is a 

standard Borel probability space. By [70, Theorem XVI.1.5], there is an isomorphism M ∼= C⊗R. Therefore, 
by [69, Corollary IV.8.30], we can identify every b ∈ M with a decomposable element 

∫ ⊕
X

bxdν, where each 
bx ∈ R.

Given an arbitrary action α : G → Aut(M, τ), which will later be taken to be either γ or γ ⊗ μG/N ◦ qN , 
we let σα the measurable G-action on (X, ν) induced by α. We recall the notion of the ancillary groupoid
and ancillary action associated to α, as well as the cocycle conjugate invariants introduced in [65]. We refer 
to [65] for details (see also [64, Section 3] and [36]). There exists a measurable map ᾱ : X × G → Aut(R)
such that, given b =

∫ ⊕
X

bxdν ∈ M,

ᾱx,g

(
bσα(x)
)

= αg(b)x, (5.1)

g
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for every (x, g) ∈ X ×G. Denote by Gα := X ×G the measured transformation groupoid (with unit space 
X) corresponding to the G-action induced by α on X. Let

Hα := {(x, g) ∈ Gα : σg(x) = x}, and Nα := {(x, g) ∈ Hα : ᾱx,g is inner}.

Note that Nα is an invariant of cocycle conjugacy. Choose a Borel function U : Nα → U(R) such that 
ᾱn = Ad(U(n)) for every n ∈ Nα. The ways in which the unitaries in the image of U interact with each 
other and with the rest of the action is described via a relative cohomology class χα, which is also a cocycle 
conjugacy invariant of α (see [64, Section 2] for the precise definition).

We identify M and M⊗R throughout. Note that γ and γ ⊗ (μG/N ◦ qN ) induce the same action on 
the center of M, which we will denote simply by σ. It follows that the groupoids Gγ and Gγ⊗(μG/N◦qN ) are 
isomorphic, which in turn implies that Hγ

∼= Hγ⊗(μG/N◦qN ). It follows then by [64, Theorem p. 324] that the 
two actions are cocycle conjugate if and only if Nγ

∼= Nγ⊗(μG/N◦qN ) and χγ = χγ⊗(μG/N◦qN ). (The invariant 
δ does not play a role when M is finite.)

Claim 5.4.1. Let g ∈ G and x ∈ X satisfy σg(x) = x. (In other words, (x, g) ∈ Hγ = Hγ⊗(μG/N◦qN ).) Then

(γ ⊗ (μG/N ◦ qN ))x,g = γ̄x,g ⊗ (μG/N ◦ qN )g.

We show that the two automorphisms are equal on all elementary tensors b0 ⊗ b1 ∈ R⊗R (which we 
identify with R). We have

(γ ⊗ (μG/N ◦ qN ))x,g(b0 ⊗ b1)
(5.1)= (γ ⊗ (μG/N ◦ qN ))g(1L∞(X) ⊗ b0 ⊗ b1)x
= γg(1L∞(X) ⊗ b0)x ⊗ (μG/N ◦ qN )g(b1)

(5.1)= γ̄x,g(b0) ⊗ (μG/N ◦ qN )g(b1).

This computation proves the claim.

Claim 5.4.2. Fix g ∈ G \N . We claim that

ν
({

x ∈ X : (x, g) ∈ Hγ and γx,g is inner
})

= 0.

Denote by Y the set in the above displayed equation, and note that Y is Borel. To prove the claim, 
assume by contradiction that ν(Y ) > 0. By [47, Theorem 3.4], there is a non-zero central projection q ∈ M
such that γg is inner on qM. This contradicts the assumption that γg is properly outer (since g /∈ N).

Let g ∈ G. Using Claim 5.4.2, and up to removing a σ-invariant measure zero set from X, we can assume 
that if there is x ∈ X such that (x, g) ∈ Nγ implies g ∈ N . Similarly, it follows from Claim 5.4.1 that if 
there exists x ∈ X such that (x, g) ∈ Nγ⊗(μG/N◦qN ), then g ∈ N . In fact, if g ∈ G \N , then (μG/N ◦ qN )g is 
outer, which in turn forces γ̄x,g ⊗ (μG/N ◦ qN )g to be outer as well.

Finally, let (x, g) ∈ X ×N . Using Claim 5.4.1 in the second to last equivalence, we have

(x, g) ∈ Nγ ⇔ γ̄x,g is inner

⇔ γ̄x,g ⊗ idR = γ̄x,g ⊗ (μG/N ◦ qN )g is inner

⇔ (γ ⊗ (μG/N ◦ qN ))x,g is inner

⇔ (x, g) ∈ Nγ⊗(μG/N◦qN ).
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The equality χγ = χγ⊗(μG/N◦qN ) follows by the definition of the invariant χ ([64, Section 2]). Let U : Nγ →
U(R) be a Borel map such that γ̄g = Ad(U(g)) for every g ∈ Nγ . Note that (γ ⊗ (μG/N ◦ qN ))n = γ̄n ⊗ idR
by Claim 5.4.1. Let V : N → U(R⊗R) be given by V = U ⊗ 1R. Then

(γ ⊗ (μG/N ◦ qN ))g = Ad(V (g))

for every g ∈ Nγ . This finishes the proof. �
We record here the following consequence of Theorem 5.4, which will be needed in Section 8.

Corollary 5.5. Let (M, τ) be a separably representable, hyperfinite, type II1 von Neumann algebra, let G be 
a countable, discrete, amenable group and let γ : G → Aut(M, τ) be an action which preserves τ . Then for 
every d ∈ N, there is a unital homomorphism Md → (MU ∩M′)γU .

Proof. By taking G = N in Theorem 5.4, it follows that (M, γ) absorbs (R, idR) tensorially. By 
Proposition 5.3, it follows that there exists a unital embedding R → (MU ∩ M′)γU . Since there exists 
a unital homomorphism Md → R for every d ∈ N, the conclusion follows. �

The following result is the main application of CPoU in this section, and it is last ingredient we need in 
order to prove Theorem 5.1.

Proposition 5.6. Let G be a countable, discrete group, let A be a separable, unital C∗-algebra with non-empty 
trace space, and let α : G → Aut(A) be an action. Suppose that the induced action on T (A) has finite orbits 
bounded in size by some constant, and that (A, α) has CPoU. Let β : G → Aut(B) be an action of G on 
a separable, unital C∗-algebra B, and suppose that for every τ ∈ T (A)α there exists an equivariant, unital 
homomorphism

(B, β) →
(
MU

τ ∩M′
τ , (ατ )U

)
.

Then there exists an equivariant, unital homomorphism (B, β) → (AU ∩A′, αU ).

Proof. For each τ ∈ T (A)α, fix an equivariant, unital homomorphism

ϕτ : (B, β) →
(
MU

τ ∩M′
τ , (ατ )U

)
.

Let {an}n∈N be a countable dense subset of the unit ball of A. Let D1 be the unit disk in C and 
set Q1 = Q[i] ∩ D1. Let B0 be a countable dense subset of the unit ball of B containing 1B, which is 
invariant under the adjoint operation, multiplication, multiplication by scalars from Q1, and the operation 
(x, y) �→ 1

2 (x + y). Since G is countable, we can assume without loss of generality that B0 is β-invariant. 
Let {bn}n∈N be an enumeration of B0 such that b0 = 1B . Fix non-commuting variables x, y, z, w, and for 
λ ∈ Q1 and g ∈ G define the following G-∗-polynomials:

• Qid(x) = x − 1,
• Q+(x, y, z) = 1

2(x + y) − z,
• Q×(x, y, z) = xy − z,
• Q∗(x, y) = x∗ − y,
• Qλ(x, y) = λx − y,
• Qg(x, y) = g · x − y,
• Q[·,·](x, w) = xw − wx.
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Clearly, Qid(bn) = 0 if and only if n = 0. Given n, m ∈ N there is a unique k+
(n,m) ∈ N such that 

Q+(bn, bm, bk+
(n,m)

) = 0. Similarly, there is a unique k×(n,m) ∈ N such that Q×(bn, bm, bk×
(n,m)

) = 0. Analo-
gously, given n ∈ N, λ ∈ Q1 and g ∈ G there are unique k∗n, k

λ
n, k

g
n ∈ N such that

Q∗(bn, bk∗
n
) = 0, Qλ(bn, bkλ

n
) = 0, Qg(bn, bkg

n
) = 0.

Since ϕτ is an equivariant, unital homomorphism, we have Qid(ϕτ (1B)) = 0, moreover for every n, m ∈ N, 
λ ∈ Q1 and g ∈ G we have

Q+(ϕτ (bn), ϕτ (bm), ϕτ (bk+
(n,m)

)) = 0, Q×(ϕτ (bn), ϕτ (bm), ϕτ (bk×
(n,m)

)) = 0,

and

Q∗(ϕτ (bn), ϕτ (bk∗
n
)) = 0, Qλ(ϕτ (bn), ϕτ (bkλ

n
)) = 0, Qg(ϕτ (bn), ϕτ (bkg

n
)) = 0.

Finally, for all n, m ∈ N we have

Q[·,·](ϕτ (bn), πτ (am)) = 0,

since ϕτ (bn) belongs to the relative commutant of Mτ , and thus commutes with πτ (A). By Lemma 4.5 (see 
also Remark 4.6) and Proposition 2.3, we can find contractions b′n ∈ AU , for n ∈ N, such that

(a) Qid(b′0) = 0, that is b′0 = 1AU ,
(b) for every n, m ∈ N, we have Q+(b′n, b′m, b′

k+
(n,m)

) = 0 = Q×(b′n, b′m, b′
k×
(n,m)

),
(c) for every n ∈ N, λ ∈ Q1 and g ∈ G, we have

Q∗(b′n, b′k∗
n
) = Qλ(b′n, b′kλ

n
) = Qg(b′n, b′kg

n
) = 0,

(d) for all n, m ∈ N we have Q[·,·](b′n, πτ (am)) = 0.

Let Φ0 : B0 → AU be the map defined by sending bn to b′n for all n ∈ N. This map is unital by (a), it 
is additive and multiplicative by (b), and it is ∗-preserving, equivariant and Q1-homogeneous by (c). It can 
be therefore extended uniquely to a Q[i]-linear, equivariant, unital homomorphism Φ0 : span(B0) → AU . 
The image of Φ0 is contained in AU ∩A′ by (d). Notice that Φ0 is contractive, since it is contractive on B0, 
which is dense in the unit ball of span(B0). This, along with the fact that span(B0) is dense in B, allows 
us to extend uniquely Φ0 to an equivariant, unital homomorphism (B, β) →

(
AU ∩A′, αU), as desired. �

Proof of Theorem 5.1. For every τ ∈ T (A)α, we abbreviate πτ (A)′′ by Mτ . Then (Mτ , τ) is a separably 
representable, hyperfinite, type II1 von Neumann algebra. Moreover, the dynamical system (M, ατ ) absorbs 
(R, μG/N ◦ qN ) by Theorem 5.4, since ατ

g is properly outer whenever αg is strongly outer (see, for example, 
[25, Remark 2.17] or [67, Proposition 5.7]). The dynamical system (R, μG/N ◦ qN ) is cocycle conjugate to 
(
⊗

n∈NR, 
⊗

n∈NμG/N ◦ qN ) by [55, Theorem 2.6], therefore by Proposition 5.3 there exists an equivariant, 
unital embedding

ϕτ : (R, μG/N ◦ qN ) →
(
MU

τ ∩M′
τ , (ατ )U

)
.
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Claim 5.6.1. There exists a unital, monotracial, separable, simple, μG/N ◦ qN -invariant C∗-subalgebra B of 
R.3

We recall that being a finite von Neumann algebra, the hyperfinite II1-factor R has the strong Dixmier 
property (see [2, Definition III.2.5.16, Theorem III.2.5.18]). This means that for every a ∈ R the norm-
closed convex hull of {uau∗ : u ∈ U(R)} intersects the center in exactly one element which, in this case, is 
necessarily τR(a). Given any c ∈ R, we can thus find a countable set W ⊆ U(R) such that the intersection 

of conv{ucu∗ : u ∈ W}‖·‖ with the center of R is precisely {τR(c)}. If C ⊆ R is a C∗-subalgebra containing 

W ∪ {c}, then the ideal I in C generated by c contains conv{ucu∗ : u ∈ W}‖·‖. In particular, I contains 
the scalar τR(c), and thus I = C if c is a non-zero positive element. Furthermore, since all traces on C

are constant on conv{ucu∗ : u ∈ W}‖·‖, they all map c to τR(c). Therefore, given a norm-separable C∗-
subalgebra C ⊆ R, the strong Dixmier property can be used a countable number of times to obtain a 
separable, simple, unital, monotracial C∗-algebra B0 containing 1R such that C ⊆ B0 ⊆ R. On the other 
hand, using the fact that G is countable, we can find a separable, (μG/N ◦ qN )-invariant C∗-algebra B′

0 such 
that B0 ⊆ B′

0 ⊆ R. By iterating this construction we can build an increasing sequence

B0 ⊆ B′
0 ⊆ · · · ⊆ Bn ⊆ B′

n ⊆ · · · ⊆ R,

such that Bn is separable, simple, and monotracial, and such that B′
n is separable, and μG/N ◦ qN -invariant, 

for every n ∈ N. It follows that the inductive limit of this sequence is monotracial, separable, simple, 
(μG/N ◦ qN )-invariant and it contains 1R. This proves the claim.

Let B be a C∗-subalgebra of R as in the above claim, and let β denote the restriction of μG/N ◦ qN to 
B. By restricting ϕτ to (B, β), we obtain an equivariant, unital embedding (B, β) → (MU

τ ∩M′
τ , (ατ )U ). 

By Proposition 5.6, there exists an equivariant, unital homomorphism Φ: (B, β) → (AU ∩A′, αU ), which is 
injective as B is simple. Since B has a unique trace τB, the map Φ is (‖ · ‖2,τB -‖ · ‖2,TU (A))-contractive. As 
moreover the norm-unit ball of AU is ‖ · ‖2,TU (A)-complete (see [6, Lemma 1.6]), the map Φ can be extended 
by continuity to an equivariant unital embedding (R, μG/N ◦ qN ) → (AU ∩A′, αU ). �

The following is the main result of this section. It is an equivariant version of [7, Theorem 4.6], and 
summarizes the results of this and the previous section.

Theorem 5.7. Let A be a separable, unital, nuclear C∗-algebra with non-empty trace space and with no 
finite-dimensional quotients. Let G be a countable, discrete, amenable group and let α : G → Aut(A) be an 
action such that the induced action on T (A) has finite orbits bounded in size by a constant M > 0. Then 
the following are equivalent:

(1) (A, α) has uniform property Γ,
(2) (A, α) has CPoU with constant M ,
(3) for every n ∈ N there is a unital embedding Mn → (AU ∩A′)αU .

Proof. (1) ⇒ (2) follows by Theorem 4.3, while (3) ⇒ (1) is an immediate consequence of the definition 
of uniform property Γ, and both these implications do not require the assumption that A has no finite-
dimensional quotients.

3 This claim is immediate for certain specific outer actions of G/N on R, such as the Bernoulli shifts. On the other hand, and 
even though any two outer actions of G/N on R are cocycle conjugate, it is not clear how to obtain the claim for an arbitrary 
outer action only using that it is true for some outer action, due to the 1-cocycle.
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(2) ⇒ (3). Since A is nuclear and has no finite-dimensional quotients, Mτ is a hyperfinite, type II1
von Neumann algebra for every τ ∈ T (A). By Theorem 5.4 and Proposition 5.3, the dynamical system 
(R, idR) embeds unitally into (MU

τ ∩M′
τ , (ατ )U ) for every τ ∈ T (A)α. Given n ∈ N, by composing with a 

unital embedding Mn → R we get a unital equivariant embedding (Mn, idMn
) → (MU

τ ∩M′
τ , (ατ )U ). The 

conclusion then follows by Proposition 5.6. �
6. Model actions with Rokhlin towers

In this section, we analyze specific model examples of actions of residually finite groups which either 
have finite Rokhlin dimension or satisfy part of the definition. This is a technical step in our proof of the 
equivalences of Theorem A (see Theorem 7.8) concerning the Rokhlin dimension of the dynamical system 
(A, α): it will be shown that under the assumptions of Theorem A, strong outerness of α implies that those 
model actions can be embedded equivariantly into the central sequence algebra of A.

We begin by computing the Rokhlin dimension of a natural product-type action.

Proposition 6.1. Let G be a finite group. Set D =
⊗

n∈N B(�2(G)⊗n ⊕C). Denote by λ : G → U(�2(G)) the 
left regular representation. Define an action α : G → Aut(D) by αg =

⊗
n∈N Ad(λ⊗n

g ⊕ 1), for all g ∈ G. 
Then dimRok(α) = 1.

Proof. Given m ∈ N, set Dm = B(�2(G)⊗m ⊕ C) and let α(m) : G → Aut(Dm) be the action given by 
α

(m)
g = Ad(λ⊗m

g ⊕ 1) for all g ∈ G.

Claim 6.1.1. Let ε > 0 and fix n0 ∈ N. Then there exist m ∈ N with m ≥ n0 and positive contractions 
f

(j)
g ∈ Dm, for g ∈ G and j = 0, 1, satisfying

(1) α
(m)
g (f (j)

h ) = f
(j)
gh for all g, h ∈ G and for all j = 0, 1,

(2) f
(j)
g f

(j)
h = 0 for all g, h ∈ G with g �= h and for all j = 0, 1,

(3)
∥∥∥1 −
∑1

j=0
∑

g∈G f
(j)
g

∥∥∥ < ε.

For the ε > 0 given, choose m ∈ N such that |G|m−1 > 1/ε and also m ≥ n0. By Fell’s absorption 
principle ([3, Theorem 2.5.5]), if π : G → U(H) is any finite dimensional representation of G on a separable 
Hilbert space H, then λ ⊗ π is unitarily equivalent to a direct sum of dim(H) copies of λ. It follows that 
λ⊗m is unitarily equivalent to the direct sum of |G|m−1 copies of λ, and thus λ⊗m⊕1 is unitarily equivalent 
to (
⊕|G|m−1

k=1 λ) ⊕ 1. We fix such an identification for the remainder of the proof.
Since λ contains a copy of the trivial representation 1, there is a unitary representation λ̃ : G → U(V ) such 

that λ is unitarily equivalent to 1 ⊕ λ̃. Then λ⊗m ⊕ 1 is unitarily conjugate to the diagonal representation 
diag(1, ̃λ, 1, ̃λ, 1 . . . , ̃λ, 1), where the trivial representation appears |G|m−1 + 1 times and λ̃ appears |G|m−1

times.
For g ∈ G, let δg ∈ �2(G) be the corresponding Dirac function, and let eg ∈ B(�2(G)) be the projection 

onto the span of δg. By taking a suitable unitary conjugation of the eg, we find projections pg ∈ B(C ⊕ V )
satisfying 

∑
g∈G pg = 1 and Ad(1 ⊕ λ̃g)(ph) = pgh for all g, h ∈ G. Similarly, let qg ∈ B(V ⊕C), for g ∈ G, 

be projections satisfying 
∑

g∈G qg = 1 and Ad(λ̃g ⊕ 1)(qh) = qgh for all g, h ∈ G.
Let a0 : [0, |G|m−1] → [0, 1] be defined as a0(x) = x

|G|m−1 , and set a1 = 1 − a0. For g ∈ G, set

f (0)
g = diag(0, a0(1)qg, . . . , a0(|G|m−1)qg)

and
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f (1)
g = diag(a1(1)pg, . . . , a1(|G|m−1)pg, 0).

These are positive contractions satisfying conditions (1), (2) and (3) above, and the claim is proved.
We note that, since G is a finite group, it suffices to take H = {e} in Definition 2.6. The claim shows 

that there exist Rokhlin towers in D satisfying conditions (a), (b) and (c) in Proposition 2.7 for d = 1 and 
H = {e}. We now explain how to find new towers satisfying these conditions in addition to condition (d). 
Let F ⊆ D be a finite set. For the ε > 0 given above, find n0 ∈ N such that for every n ≥ n0, the unital 
equivariant embedding ϕn : (Dn, α(n)) ↪→ (D, α) into the n-th coordinate satisfies

‖ϕn(x)a− aϕn(x)‖ ≤ ε

2‖x‖

for all x ∈ Dn and all a ∈ F . Use the claim to find m ∈ N with m ≥ n0 and positive contractions f (j)
g ∈ Dm, 

for g ∈ G and j = 0, 1, satisfying conditions (1), (2) and (3) above for the tolerance ε/2. One checks that 
the positive contractions ϕm(f (j)

g ) ∈ D, for g ∈ G and j = 0, 1, satisfy conditions (a) through (d) in 
Proposition 2.7, as desired. It follows that dimRok(α) ≤ 1.

Finally, dimRok(α) = 0 is impossible because the unit of D is not divisible by |G| in K0(D). �
Using the computation above, we will show that certain canonical actions on dimension drop algebras 

admit Rokhlin towers that satisfy all the conditions in Definition 2.6 except for centrality. We define these 
actions next.

Definition 6.2. Let G be a finite group, and let k ∈ N. We denote by I(k)
G the dimension drop algebra

I
(k)
G =
{
f ∈ C
(
[0, 1],B(�2(G)⊗k) ⊗ B(�2(G)⊗k ⊕C)

)
:
f(0) ∈ B(�2(G)⊗k) ⊗ 1,
f(1) ∈ 1 ⊗ B(�2(G)⊗k ⊕C)

}
.

We denote by μ(k)
G : G → Aut(I(k)

G ) the restriction to I(k)
G of the action of G on C([0, 1]) ⊗ B(�2(G)⊗k) ⊗

B(�2(G)⊗k ⊕C) given by idC([0,1]) ⊗ Ad(λ⊗k) ⊗ Ad(λ⊗k ⊕ 1C).

Proposition 6.3. Let ε > 0, let G be a finite group, and adopt the notation for (I(k)
G , μ(k)

G ) from Definition 6.2. 
Then there exist k ∈ N and positive contractions f (j)

g ∈ I
(k)
G , for g ∈ G and j = 0, 1, 2, satisfying

(a)
∥∥(μ(k)

G )g(f (j)
h ) − f

(j)
gh

∥∥ < ε for j = 0, 1, 2, and for all g, h ∈ G,
(b) ‖f (j)

g f
(j)
h ‖ < ε for j = 0, 1, 2, and for all g, h ∈ G with g �= h,

(c)
∥∥∥1 −
∑

g∈G f
(0)
g + f

(1)
g

∥∥∥ < ε.

Proof. By Proposition 6.1 (see specifically the claim in its proof), we can find k ∈ N and positive contrac-
tions f̃ (j)

g ∈ B(�2(G)⊗k ⊕C), for g ∈ G and j = 0, 1, satisfying

(i) ‖Ad(λ⊗k
g ⊕ 1)(f̃ (j)

h ) − f̃
(j)
gh ‖ < ε for all j = 0, 1, and for all g, h ∈ G,

(ii) ‖f̃ (j)
g f̃

(j)
h ‖ < ε for all j = 0, 1, and for all g, h ∈ G with g �= h,

(iii)
∥∥∥1 −
∑

g∈G(f̃ (0)
g + f̃

(1)
g )
∥∥∥ < ε.

For g ∈ G, denote by eg ∈ B(�2(G)) the projection onto the span of δg ∈ �2(G). Then Ad(λg)(eh) = egh
for all g, h ∈ G, and 

∑
g∈G eg = 1. Regard eg as an element in B(�2(G)⊗k) ∼= B(�2(G))⊗k via the first factor 

embedding.
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Let h0 ∈ C([0, 1]) denote the inclusion of [0, 1] into C, and set h1 = 1 − h0 ∈ C([0, 1]). For g ∈ G and 
j = 0, 1, 2, set

f (j)
g =
{
h0f̃

(j)
g if j = 0, 1;

h1eg if j = 2.

One checks that conditions (a), (b) and (c) in the statement are satisfied, completing the proof. �
Next, we give a recipe for constructing unital equivariant homomorphisms from (I(k)

G , μ(k)
G ); see 

Theorem 6.7. We do so in a generality greater than necessary, because the proof is not more complicated 
and in fact the higher level of abstraction makes the argument conceptually clearer.

We need some preparatory facts about C(X)-algebras first. The following definition is standard. For a 
C∗-algebra A, we denote its center by Z(A).

Definition 6.4. Let X be a compact Hausdorff space. A unital C(X)-algebra is a pair (A, ζ) consisting of 
a unital C∗-algebra A and a unital homomorphism ζ : C(X) → Z(A). If A is a unital C(X)-algebra and 
U ⊆ X is open, then ζ(C0(U))A is an ideal in A. Given x ∈ X, the fiber over x is the quotient

A(x) := A/ζ(C(X \ {x}))A.

For a ∈ A, we write ax for its image in A(x).
If (A, ζA) and (B, ζB) are unital C(X)-algebras and ϕ : A → B is a homomorphism, we say that ϕ is a 

C(X)-homomorphism if ϕ ◦ ζA = ζB . If this is the case, then for every x ∈ X, the map ϕ induces a unital 
homomorphism between the corresponding fibers, which we denote by ϕx : A(x) → B(x).

As is customary, we will usually suppress ζ from the notation for C(X)-algebras. Recall that if A is 
a C(X)-algebra and a ∈ A, then the function x �→ ‖ax‖ is upper-semicontinuous. We assume that the 
following proposition may well be known, but we were not able to find it in the literature.

Proposition 6.5. Let X be a compact Hausdorff space, let A and B be unital C(X)-algebras, and let ϕ : A →
B be a C(X)-homomorphism. Then ϕ is injective (respectively, surjective) if and only if ϕx is injective 
(respectively, surjective) for all x ∈ X. In particular, ϕ is an isomorphism if and only if ϕx is an isomorphism 
for every x ∈ X.

Proof. We begin with the assertion regarding injectivity. Assume that ϕ is injective, and fix x ∈ X. Arguing 
by contradiction, assume that ϕx is not injective, and find a ∈ A such that ‖ax‖ = 1 and ϕx(ax) = 0. 
By upper-semicontinuity of the norm function on B, there is an open neighborhood U of x such that 
‖ϕ(a)y‖ < 1/2 for all y ∈ U . Let V be an open neighborhood of x such that V ⊆ U . Let f ∈ C(X) be 
supported on V and such that f(x) = 1. Using part (ii) of Lemma 2.1 of [10] at the fourth step, we get

1 = ‖f(x)ax‖ ≤ ‖ϕ(fa)‖ = ‖fϕ(a)‖ ≤ sup
y∈V

‖f(y)ϕ(a)y‖ < 1/2.

This contradiction implies that ϕx is injective, as desired.
Conversely, assume that ϕx is injective for all x ∈ X and let a ∈ ker(ϕ). Since ax ∈ ker(ϕx) for all x ∈ X, 

we must have ax = 0 for all x ∈ X, and thus a = 0.
We now prove the statement about surjectivity. Assume that ϕ is surjective, and let x ∈ X. Denote by 

πA
x : A → A(x) and πB

x : B → B(x) the corresponding quotient maps, and note that πB
x ◦ ϕ = ϕx ◦ πA

x . Let 
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c ∈ B(x), and find b ∈ B such that πB
x (b) = c. Since ϕ is surjective, there is a ∈ A with ϕ(a) = b. Then 

ϕx(ax) = ϕ(a)x = c. Thus ϕx is surjective.
Conversely, assume that ϕx is surjective for all x ∈ X. Let b ∈ B and let ε > 0. Given x ∈ X, find 

c(x) ∈ A(x) such that ϕx(c(x)) = bx. Since πA
x is surjective, we find a(x) ∈ A such that a(x)

x = c(x). Since 
the norm function on A is upper-semicontinuous, there exists an open set Ux ⊆ X containing x such that 
‖ϕ(a(x)

y ) −by‖ < ε for every y ∈ Ux. Since X is compact, we can find x1, . . . , xn such that U = {Ux1 , . . . , Uxn
}

covers X. Let f1, . . . , fn ∈ C(X) be a partition of unity subordinate to U , and set a =
∑n

j=1 fja
(xj) ∈ A. 

Then ‖ϕ(a)x − bx‖ < ε for every x ∈ X, and hence ‖ϕ(a) − b‖ < ε by part (ii) in Lemma 2.1 of [10]. Since 
ε > 0 is arbitrary, we conclude that ϕ is surjective. �
Remark 6.6. Let n ∈ N. Recall that the matrix algebra Mn is the universal C∗-algebra generated by 
elements {e1,k}nk=1 satisfying e1,ke1,j = 0 when k �= 1, e1,ke

∗
1,j = δk,je1,1 for all j, k = 1, . . . , n and such 

that e1,1 is a projection. By setting ej,k = e∗1,je1,k for every j, k = 1, . . . , n, it is well-known that Mn is also 
the universal C∗-algebra generated by {ej,k}1≤j,k≤n with the relations e∗j,k = ek,j and ei,jek,� = δj,kei,� for 
every i, j, k, � = 1, . . . , n. We will use freely both representations.

The following is an equivariant version of a well-known characterization of the dimension drop algebra 
from [59, Proposition 5.1]. As it is not clear how the proof in [59, Proposition 5.1] can be adapted to the 
equivariant setting, we give here a different and more explicit proof.

Theorem 6.7. Let G be a finite group, let B be a unital C∗-algebra, and let β : G → Aut(B) be an action. 
Let n ∈ N, let v : G → Mn be a unitary representation, and suppose there is a rank-one projection e in Mn

such that vge = e for all g ∈ G. Suppose that there exist a completely positive contractive equivariant order 
zero map

ξ : (Mn,Ad(v)) → (B, β)

and a contraction s ∈ Bβ satisfying ξ(e)s = s and ξ(1) + s∗s = 1. Let γ be the restriction to In,n+1 of the 
action of G on C([0, 1]) ⊗Mn ⊗Mn+1 given by

idC([0,1]) ⊗ Ad(v) ⊗ Ad(v ⊕ 1C).

Then there exists a unital, equivariant homomorphism ϕ : (In,n+1, γ) → (B, β).

Proof. Denote by D the universal C∗-algebra generated by the set {s, fj,k : j, k = 1, . . . , n} of contractions 
satisfying:

(R.1) f∗
j,k = fk,j for all j, k = 1, . . . , n,

(R.2) fj,kf�,m = δk,�fj,jfj,m for all j, k, �, m = 1, . . . , n,
(R.3) f1,1s = s,
(R.4)
∑n

j=1 fj,j + s∗s = 1.

It is clear that B admits a unital homomorphism from D. Most of the proof consists of showing that 
D is isomorphic to the dimension drop algebra In,n+1, which will then give us a unital homomorphism 
ϕ : In,n+1 → B. The last step will be to show that the map ϕ can be chosen to be equivariant.

Consider the following matrices in Mn(n+1) (each vertical line comes after n +1 entries, and the horizontal 
line appears after n rows):
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F1,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 1 0 · · · 0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
...

F1,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 0 0 · · · 0 0 · · · 1 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 1 0

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1,n+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 1

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The elements F1,j , for j = 1, 2, . . . , n + 1, are partial isometries satisfying F1,jF1,i = 0 when j �= 1, 
F1,jF

∗
1,i = δi,jF1,1 for all i, j ∈ {1, 2, . . . , n + 1}, and 

∑n+1
j=1 F ∗

1,jF1,j = 1. Therefore they generate a unital 
copy of Mn+1. We identify In,n+1 with the algebra of continuous functions from [0, 1] to Mn(n+1) such that 
f(1) is in the C∗-algebra generated by {F1,k | k = 1, 2, . . . , n +1} (which is isomorphic to Mn+1) and f(0) is 
in the commutant of the C∗-algebra generated by {F1,k | k = 1, 2, . . . , n + 1} (which is isomorphic to Mn).

Denote by ρ : [0, 1] → [0, 1] the identity function. For j, k = 1, . . . , n, let f̃j,k ∈ In,n+1 be the matrix-valued 
function which, written in block form where each block has size (n + 1) × (n + 1), has in its (j, k)-th block 
the diagonal matrix valued function diag(1, 1, . . . , 1︸ ︷︷ ︸

n times

, 1 − ρ), and 0 elsewhere. Let s̃ be the matrix-valued 

function
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s̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 √
ρ 0 0 · · · 0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 √
ρ · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 √
ρ

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where each vertical dividing line represents n + 1 entries.
One checks that the functions f̃j,k for j, k = 1, . . . , n and s̃ satisfy the relations defining D. Fix a unital 

homomorphism π : D → In,n+1 satisfying π(fj,k) = f̃j,k for all j, k = 1, . . . , n and π(s) = s̃. We will show 
that π is an isomorphism.

Claim 6.7.1. The following identities hold:

(1) fj,jfj,k = fj,kfk,k for all j, k = 1, . . . , n.
(2) For j = 1, . . . , n, we have sfj,1s = 0.

The first equality follows from item (R.2) in the list of relations defining D. The following computation 
establishes the second identity:

(sfj,1s)∗(sfj,1s) = s∗f1,js
∗sfj,1s

(R.4)= s∗f1,j

(
1 −

n∑
i=1

fi,i

)
fj,1s

(R.2)= s∗f1,jfj,1s− s∗f1,jfj,jfj,1s

(R.2)= s∗f2
1,1s− s∗f3

1,1s
(R.3)= 0.

This proves the claim.
Set

b = s∗s +
n∑

j=1
fj,1ss

∗f1,j = s∗s + ss∗ +
n∑

j=2
fj,1ss

∗f1,j . (6.1)

Note that b is a positive contraction (since all of the summands in its definition are pairwise orthogonal 
positive contractions). One checks that π(b) = ρ · 1, and therefore sp(b) = [0, 1].

Claim 6.7.2. The element b belongs to the center of D.

Let j, k = 1, . . . , n. Then

fj,kb
(R.2)= fj,ks

∗s + fj,jfj,1ss
∗f1,k and bfj,k

(R.2)= s∗sfj,k + fj,1ss
∗f1,kfk,k.

We show term by term that both expressions agree, which will imply the claim. For the first terms in both 
right hand sides, we have
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fj,ks
∗s

(R.4)= fj,k

(
1 −

n∑
i=1

fi,i

)
(R.2)= fj,k − fj,kfk,k

(R.2)= fj,k − fj,jfj,k

(R.2)=
(
1 −

n∑
i=1

fi,i

)
fj,k

(R.4)= s∗sfj,k.

For the second terms in both right hand sides, we have

fj,jfj,1ss
∗f1,k

(R.2)= fj,1(f1,1s)s∗f1,k
(R.3)= fj,1ss

∗f1,k

(R.3)= fj,1s(f1,1s)∗f1,k
(R.2)= fj,1ss

∗f1,kfk,k.

Likewise, using the fact that sfi,1s = 0 for all i = 1, . . . , n, proved in Claim 6.7.1, we get

sb = ss∗s + s
n∑

i=1
fi,1ss

∗f1,i = ss∗s. (6.2)

Moreover, by Claim 6.7.1, s∗s2 = s∗sf1,1s = 0, which implies s∗2s2 = 0 and therefore

s2 = 0, (6.3)

which allows us to compute, using (R.2) and (R.3) for the second equality and using (6.3) and (R.3) for the 
third equality:

bs = s∗s2 +
n∑

i=1
fi,1ss

∗f1,is = s∗sf1,1s + f1,1ss
∗f1,1s = 0 + ss∗s = sb, .

This completes the proof of the claim.
It follows that b endows D with a C([0, 1])-algebra structure, and the map π is a C([0, 1])-homomorphism. 

For t ∈ [0, 1], denote by D(t) and by In,n+1(t) the induced fibers, and by πt : D(t) → In,n+1(t) the corre-
sponding unital homomorphism. By Proposition 6.5, it suffices to show that πt is an isomorphism for all 
t ∈ [0, 1].

The fiber In,n+1(t) is isomorphic to Mn if t = 0, to Mn+1 if t = 1, and to Mn⊗Mn+1 otherwise. Since πt

is unital for all t ∈ [0, 1], it suffices to show that the fibers D(t) are also isomorphic to those corresponding 
matrix algebras. Denote by fj,k(t), s(t) and b(t) the images of the elements fj,k, s and b in the fiber D(t).

Case I: t = 0. Here b(0) = 0. In particular, as b(0) ≥ s∗(0)s(0), it follows that s(0) = 0. Therefore, 
{fj,k(0)}nj,k=1 generates D(0), and these are precisely the matrix units of Mn. Thus D(0) ∼= Mn.

Case II: t = 1. Using b(1) = 1, we compute

s(1)s∗(1) = s(1)s∗(1)b(1)

(6.1)= s(1)s∗(1)s∗(1)s(1) + s(1)s∗(1)
n∑

j=1
fj,1(1)s(1)s∗(1)f1,j(1)

(R.3), (6.3)= 0 + (s(1)s∗(1))2 + s(1)s∗(1)f1,1(1)
n∑

j=2
fj,1(1)s(1)s∗(1)f1,j(1)

(R.2)= (s(1)s∗(1))2

Thus s(1)s∗(1) is a projection, so s(1) is a partial isometry. Therefore, s∗(1)s(1) is a projection as well, 
which is orthogonal to s(1)s∗(1) as s∗(1)s(1) + s(1)s∗(1) ≤ 1. By (R.4), we have 

∑n
fj,j(1) = 1 − s∗s(1). 
j=1
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The summands on the left hand side are pairwise orthogonal, and right hand side is a projection. Therefore, 
fj,j(1) are pairwise orthogonal projections for j = 1, 2, . . . , n. It therefore follows that fj,k(1) are partial 
isometries, which satisfy fj,k(1)f�,m(1) = δk,�fj,m(1) for all j, k, �, m = 1, . . . , n.

Thus, the family {f1,j(1)}j=1,2,...,n ∪ {s(1)} generates D(1), and it also satisfies the relations from Re-
mark 6.6, which shows that the C∗-algebra they generate is isomorphic to Mn+1.

Case III: t ∈ (0, 1). Here b(t) = t1. For j, k, � = 1, . . . , n, set

cj,k = 1
t− t2

s(t)f1,j(t)s∗(t)f1,k(t) and d� = 1√
t(1 − t)

s(t)f1,�(t).

We verify that these elements satisfy the conditions from Remark 6.6, where we regard {cj,k}j,k≤n as matrix 
units of the form {e1,i}i≤n2 and each d� as e1,n2+�. To that end, note that

ts(t)f1,1(t)2s∗(t) = s(t)f1,1(t) · t1 · f1,1(t)s∗(t)

(6.1)= s(t)f1,1(t)
(
s∗(t)s(t) +

n∑
j=1

fj,1(t)s(t)s∗(t)f1,j(t)
)
f1,1(t)s∗(t)

(R.2)= s(t)f1,1(t)s∗(t)s(t)f1,1(t)s∗(t)

+s(t)f1,1(t)2s(t)s∗(t)f1,1(t)2s∗(t)
(R.3)= s(t)f1,1(t)s∗(t)s(t)f1,1(t)s∗(t) + s(t)2s∗(t)f1,1(t)2s∗(t)
(6.3)= s(t)f1,1(t)s∗(t)s(t)f1,1(t)s∗(t) + 0

(R.4)= s(t)f1,1(t)
(
1 −

n∑
i=1

fi,i(t)
)
f1,1(t)s∗(t)

(R.2)= s(t)
(
f1,1(t)2 − f1,1(t)3

)
s∗(t).

Likewise, we see that

ts(t)f1,1(t)s∗(t) = s(t)
(
f1,1(t) − f1,1(t)2

)
s∗(t).

Thus

s(t)f2
1,1(t)s∗(t) = (1 − t)s(t)f1,1(t)s∗(t), (6.4)

and therefore

s(t)
(
f1,1(t)2 − f1,1(t)3

)
s∗(t) = t(1 − t)s(t)f1,1(t)s∗(t) (6.5)

(R.3)= t(1 − t)s(t)f1,1(t)s∗(t)f1,1(t).

We can now verify that the elements cj,k and d� from above satisfy the conditions from Remark 6.6. For 
any j, k, �, m = 1, . . . , n we have:

cj,kc
∗
�,m = 1

(t− t2)2 s(t)f1,j(t)s∗(t)f1,k(t) · fm,1(t)s(t)f�,1(t)s∗(t)

(R.2)= δk,m
1

2 2 s(t)f1,j(t)s∗(t)
(
f1,1(t)2s(t)

)
f�,1(t)s∗(t)
(t− t )
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(R.3)= δk,m
1

(t− t2)2 s(t)f1,j(t)s∗(t)s(t)f�,1(t)s∗(t)

(R.4)= δk,m
1

(t− t2)2 s(t)f1,j(t)
(
1 −

n∑
i=1

fi,i(t)
)
f�,1(t)s∗(t)

(R.2)= δk,mδj,�
1

(t− t2)2 s(t)
(
f1,1(t)2 − f1,1(t)3

)
s∗(t)

(6.5)= δk,mδj,�
1

(t− t2)2 · t(1 − t)s(t)f1,1(t)s∗(t)f1,1(t) = δk,mδj,�c1,1

For j, k = 1, . . . , n, we have:

djd
∗
k = 1

t(1 − t)2 s(t)f1,j(t) · fk1(t)s∗(t)

(R.2)= δj,k
1

t(1 − t)2 s(t)f1,1(t)2s∗(t)

(6.4)= δj,k
1

t(1 − t)2 · (1 − t)s(t)f1,1(t)s∗(t)
(R.3)= δj,kc1,1

Similarly, for j, k, � = 1, . . . , n we have:

cj,kd
∗
� = 1

t3/2(1 − t)2
s(t)f1,j(t)s∗(t)f1,k(t) · f�,1(t)s∗(t)

(R.2)= δk,�
1

t3/2(1 − t)2
s(t)f1,j(t)s∗(t)f1,1(t)2s∗(t)

(R.3)= δk,�
1

t3/2(1 − t)2
s(t)f1,j(t)(s∗(t))2

(6.3)= 0

and likewise d�c∗j,k = 0. By Remark 6.6, it follows that {cj,k, dl}j,k,l=1,...,n generates a copy of Mn(n+1).

Claim 6.7.3. The set {cj,k, dl : j, k, l = 1, . . . , n} also generates D(t).

It suffices to show that this family generates s(t) and {f1,j(t)}nj=1. Indeed,

√
t

n∑
j=1

c∗j,1dj
(R.3)= 1

t(1 − t)2
n∑

j=1
s(t)fj,1(t)s∗(t)s(t)f1,j(t)

(R.4)= 1
t(1 − t)2

n∑
j=1

s(t)fj,1(t)
(
1 −

n∑
m=1

fm,m(t)
)
f1,j(t)

(R.2)= 1
t(1 − t)2

n∑
j=1

s(t)
(
fj,j(t)2 − fj,j(t)3

)
(R.4), (R.2)= 1

t(1 − t)2 s(t)
(
(1 − s∗(t)s(t))2 − (1 − s∗(t)s(t))3

)
(6.2)= 1

t(1 − t)2
(
(1 − t)2 − (1 − t)3

)
s(t) = s(t).

Given j, k = 1, . . . , n, we want to show that fj,k(t) =
∑n

c∗�,jc�,k + (1 − t)d∗jdk. We have
�=1
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n∑
�=1

c∗�,jc�,k = 1
t2(1 − t)2

n∑
�=1

fj,1(t)s(t)f�,1(t)s∗(t) · s(t)f1,�(t)s∗(t)f1,k(t)

(R.4)= 1
t2(1 − t)2

n∑
�=1

fj,1(t)s(t)f�,1(t)
(
1 −

n∑
m=1

fm,m(t)
)
f1,�(t)s∗(t)f1,k(t)

(R.2)= 1
t2(1 − t)2

n∑
�=1

fj,1(t)s(t)(f�,�(t)2 − f�,�(t)3)s∗(t)f1,k(t)

(R.4)= 1
t2(1 − t)2 fj,1(t)s(t)((1 − s∗(t)s(t))2 − (1 − s∗(t)s(t))3)s∗(t)f1,k(t)

(6.2)= 1
t2(1 − t)2 · t(1 − t)2fj,1(t)s(t)s∗(t)f1,k(t)

= 1
t
fj,1(t)s(t)s∗(t)f1,k(t),

and

(1 − t)d∗jdk = 1
t(1 − t)fj,1(t)s

∗(t)s(t)f1,k(t)

(R.2), (R.4)= 1
t(1 − t)fj,1(t)(1 − f1,1(t))f1,k(t)

(R.2)= 1
t(1 − t) (fj,j(t)fj,k(t) − fj,j(t)fj,1(t)f1,k(t))

(R.2), (R.4)= 1
t(1 − t) (1 − s∗(t)s(t))(fj,k(t) − fj,1(t)f1,k(t)).

Moreover

fj,1ss
∗f1,jfj,k

(R.2)= fj,1ss
∗f1,1f1,k

(R.3)= fj,1ss
∗f1,k,

and

fj,1ss
∗f1,jfj,1f1,k

(R.2)= fj,1ss
∗f2

1,1f1,k
(R.3)= fj,1ss

∗f1,k.

Thus, by definition of b and by the fact that b(t) = t we obtain

(1 − t)d∗jdk = 1
t(1 − t) (1 − s∗(t)s(t))(fj,k(t) − fj,1(t)f1,k(t))

= 1
t(1 − t) (1 − b(t))(fj,k(t) − fj,1(t)f1,k(t))

(R.2)= 1
t
(fj,k(t) − fj,j(t)fj,k(t))

(R.2)= 1
t

(
1 −

n∑
m=1

fm,m(t)
)
fj,k(t)

(R.4)= 1
t
s∗(t)s(t)fj,k(t).

Combining those observations, we get
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n∑
k=1

c∗k,1ck,j + (1 − t)d∗1dj = 1
t
(fj,1(t)s(t)s∗(t)f1,k(t) + s∗(t)s(t)fj,k(t))

(R.3)= 1
t
(fj,1(t)s(t)s∗(t)f1,1f1,k(t) + s∗(t)s(t)fj,k(t))

(R.2)= 1
t
(fj,1(t)s(t)s∗(t)f1,jfj,k(t) + s∗(t)s(t)fj,k(t))

(R.2)= 1
t

(
s∗(t)s(t) +

n∑
m=1

fm,1(t)s(t)s∗(t)f1,m(t)
)
fj,k(t)

= 1
t
b(t)fj,k(t) = fj,k(t).

This proves the claim, so have proved that D is isomorphic to In,n+1.
By universality of In,n+1, there is a unique unital homomorphism ϕ : In,n+1 → B satisfying ϕ(fi,j) =

ξ(ei,j) for all i, j = 1, . . . , n and ϕ(s) = s. (To lighten the notation, we use the same letter s to denote the 
given element in B and the element s in the universal C∗-algebra In,n+1.) We are left with checking that ϕ
is equivariant.

Note that β leaves ϕ(In,n+1) invariant. Furthermore, using the fact that vge1,1 = e1,1 and e1,j = e1,1e1,j , 
we have vge1,j = e1,j for j = 1, . . . , n and for all g ∈ G. It follows that

βg(ϕ(b)) = s∗s + ss∗ +
n∑

j=2
ξ(vgej,1)ss∗ξ(e1,jv

∗
g)

for all g ∈ G, we deduce thus that βg(ϕ(b)) = ϕ(b) for all g ∈ G. Thus, the restriction of β to ϕ(In,n+1) is 
an action via C([0, 1])-automorphisms. It follows that it suffices to check equivariance on each fiber.

Let t ∈ (0, 1). Define finite-dimensional Hilbert spaces H0, H1 and H2, contained in ϕ(In,n+1)(t), via 
H0 = span{ϕt(c1,1)},

H1 = span{ϕ(cj,k) : j, k = 1, . . . , n} and H2 = span{ϕ(dl) : l = 1, . . . , n}.

Then H0, H1 and H2 are invariant under β. Set E = span{e1,1, e1,2, . . . , e1,n}. Note that there are natural 
isomorphisms H1 ∼= E⊗E and H2 ∼= E, the first one given by identifying e1,j⊗e1,k with cj,k, and the second 
one given by identifying e1,k with dk, for j, k = 1, . . . , n. With these identifications, βt acts as vg ⊗ vg on H1
while leaving H0 fixed, and acts as vg on H2. Thus, the action induced by β on the fiber corresponding to 
some t ∈ (0, 1) is conjugate to Ad(v ⊗ (v ⊕ 1C)). The end-cases t = 0 and t = 1 are verified similarly, thus 
concluding the proof. �

We will apply Theorem 6.7 in the proof of Theorem 7.8, at the end of next section, to representations v
of the form λ⊗k : G → U(�2(G)⊗k), for k ∈ N, where λ is the left regular representation.

7. Regularity properties for actions of amenable groups

This section is devoted to the proofs of Theorem A and Theorem C, starting with the latter. The 
equivalence of item (4) with the other items in Theorem C, which is stated under the assumption of Z-
stability, is actually obtained in the presence of equivariant property (SI). This property, which we recall 
below, is an adaptation to the equivariant setting of Sato’s property (SI), which first appeared in [62] and 
was further used in [52], [51], [53], [63].

Definition 7.1. Let G be a countable, discrete, amenable group, let A be a unital, separable C∗-algebra with 
non-empty trace space, and let α : G → Aut(A) be an action. We say that (A, α) has equivariant property 
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(SI) if for any positive contractions a, b ∈ (AU ∩ A′)αU such that a ∈ JA and supm∈N ‖1 − bm‖2,TU (A) < 1, 
there is s ∈ (AU ∩A′)αU such that bs = s and s∗s = a.

We also need the following analogue of Kirchberg’s σ-ideal ([44, Definition 1.5]) in the equivariant setting. 
For Z-actions, this notion was considered in [48].

Definition 7.2. Let G be a discrete group, let B be a C∗-algebra, let β : G → Aut(B) be an action, and 
let J ⊆ B be a β-invariant ideal. We say that J is an equivariant σ-ideal (with respect to β), if for every 
separable, β-invariant subalgebra C ⊆ B, there is a positive contraction x ∈ (J ∩ C ′)β with xc = c for all 
c ∈ C ∩ J .

A σ-ideal is simply an equivariant σ-ideal with respect to the trivial action. The trace kernel ideal JA
is a σ-ideal by [45, Proposition 4.6]. Recall that Jτ (defined in subsection 2.2) is the kernel of the quotient 
map κτ : AU → MU

τ (see [45, Theorem 3.3]); it is also a σ-ideal (see [45, Remark 4.7]).
It is easy to see that if a finite group acts on a C∗-algebra, then any σ-ideal is automatically an equivariant 

σ-ideal: one simply averages the positive contraction in the definition of a σ-ideal to obtain a fixed one. 
When the group is amenable, one can average over Følner sets to get equivariant σ-ideals in ultrapowers, 
as we show below.

Proposition 7.3. Let A be a unital C∗-algebra with non-empty trace space, let G be a countable, discrete, 
amenable group, let α : G → Aut(A) be any action. Let T ⊆ T (A) be a G-invariant closed subset. Then 
JT ⊆ AU is a G-invariant, equivariant σ-ideal in AU .

Proof. Abbreviate JT to J . It is clear that JT is a G-invariant ideal in AU . Let C ⊆ AU be a separable, 
αU -invariant subalgebra. Since J is a σ-ideal in AU ([45, Proposition 4.6, Remark 4.7]), there is a positive 
contraction x ∈ J ∩C ′ with xc = c for all c ∈ C ∩ J . By Kirchberg’s ε-test ([44, Lemma A.1]), it is enough 
to prove that for every finite subset K ⊆ G and every ε > 0, there is a positive contraction y ∈ J ∩C ′ with 
‖(αU )k(y) − y‖ < ε for all k ∈ K and yc = c for all c ∈ C ∩ J .

We fix a finite subset K ⊆ G and ε > 0. Using amenability of G, find a finite subset F of G such 
that |kF�F | ≤ ε

2 |F | for all k ∈ K. Set y = 1
|F |
∑

g∈F (αU )g(x). Since C is αU -invariant, it follows that 
(αU )g(x)c = c for every g ∈ G and c ∈ C, therefore yc = c for all c ∈ C ∩ J . For k ∈ K, we have

‖(αU )k(y) − y‖ =
∥∥∥ 1
|F |
∑
g∈F

(αU )kg(x) − (αU )g(x)
∥∥∥

=
∥∥∥ 1
|F |

∑
g∈F\(kF∪k−1F )

(αU )kg(x) − (αU )g(x)
∥∥∥

≤ 1
|F |

∑
g∈F\(kF∪k−1F )

‖(αU )kg(x) − (αU )g(x)‖

≤ 2 |kF�F |
|F | ≤ 2 ε

2 = ε.

Since J is an αU -invariant ideal, the positive contraction y also belongs to J . Finally, it is also easy to check 
that y commutes with C, since C is also invariant under αU . This concludes the proof. �

We record the following consequence of Proposition 7.3, which is used repeatedly in the sequel. Recall 
that κ : (AU ∩A′, αU ) → (AU ∩A′, αU ) denotes the canonical quotient map (Lemma 2.1).
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Corollary 7.4. Let A be a unital separable C∗-algebra with non-empty trace space, let G be a countable, 
discrete, amenable group, let α : G → Aut(A) be any action. Let B be a separable, nuclear C∗-algebra, let 
β : G → Aut(B) be an action, and let

Ψ: (B, β) → (AU ∩A′, αU )

be an equivariant completely positive order zero map. Then there exists an equivariant completely positive 
order zero map Φ: (B, β) → (AU ∩A′, αU ) satisfying Ψ = κ ◦ Φ.

Proof. By the Choi-Effros Lifting Theorem [5] there is a completely positive map Φ0 : B → AU ∩ A′ such 
that Ψ = κ ◦ Φ0. Let C be a separable, αU -invariant subalgebra of AU containing A ∪ Φ0(B). Since JA is 
an equivariant σ-ideal by Proposition 7.3, there exists x ∈ (JA ∩C ′)αU such that xc = c for all c ∈ JA ∩C. 
Define Φ: B → AU ∩A′ by Φ(b) = (1 −x)Φ0(b)(1 −x) for all b ∈ B. One readily checks that Φ is completely 
positive, contractive, order zero and equivariant, and that κ ◦ Φ = κ ◦ Φ0 = Ψ, as required. �

Another useful consequence of Proposition 7.3 is the following dynamical analogue of [45, Theorem 3.3]. 
We point out that the following lemma also follows from the main result of [14].

Lemma 7.5. Let A be a separable unital C∗-algebra, let G be a discrete group, let α : G → Aut(A) be an 
action and τ ∈ T (A)α. Then the quotient maps κ : AU → AU and κτ : AU → Mτ restrict to surjective, 
equivariant maps

κ : (AU ∩A′)αU → (AU ∩A′)α
U
,

κτ : (AU ∩A′)αU → (MU
τ ∩M′

τ )(α
τ )U .

Proof. We only show the statement for κ : AU → AU , as the proof for κτ : AU → MU
τ is analogous. Given 

a ∈ (AU ∩ A′)αU , there is b ∈ AU such that κ(b) = a. Let C ⊆ AU be the separable C∗-algebra generated 
by A and b. By Proposition 7.3 there is x ∈ (JA ∩ C ′)αU such that xc = c for all c ∈ JA ∩ C. This implies 
that b′ := (1 − x)b belongs to (AU ∩A′)αU and it satisfies κ(b′) = a. �
Theorem 7.6. Let A be a separable, unital, nuclear, C∗-algebra with non-empty trace space and with no 
finite-dimensional quotients. Let G be a countable, discrete, amenable group and let α : G → Aut(A) be an 
action such that the induced action on T (A) has finite orbits bounded in size by a constant M > 0. Then 
the following are equivalent:

(1) (A, α) has uniform property Γ,
(2) (A, α) has CPoU with constant M ,
(3) for every n ∈ N there is a unital embedding Mn → (AU ∩A′)αU .

If A is moreover simple and Z-stable, then the above are also equivalent to:

(4) (A, α) is cocycle conjugate to (A ⊗Z, α⊗ idZ).

Proof. The equivalence of (1), (2) and (3) was already proved in Theorem 5.7, and (4) ⇒ (3) is 
Proposition 3.3. It remains to show that (3) ⇒ (4). Fix a unital embedding Ψ: M2 → (AU ∩ A′)αU , which 
we regard as a unital equivariant homomorphism Ψ: (M2, idM2) → (AU ∩ A′, αU ). By Corollary 7.4, there 
exists an equivariant completely positive contractive order zero map Φ: M2 → (AU ∩ A′)αU making the 
following diagram commute:
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(AU ∩A′)αU

κ

M2

Φ

Ψ
(AU ∩A′)αU

.

Note that τ(Φ(e1,1)m) = 1/2 for all τ ∈ TU (A) and for all m ∈ N. Set c1 = Φ(e1,1) and c2 = Φ(e1,2). Then

c1 ≥ 0, c2c
∗
2 = c21, and c1c

∗
2 = c2c

∗
1 = 0.

By [67, Theorem B], the dynamical system (A, α) has equivariant property (SI). Using this, fix a contraction 
s ∈ (AU ∩A′)αU satisfying s∗s = 1 −

∑2
j=1 c

∗
jcj and c1s = s. By Theorem 6.7, the elements c1, c2, s generate 

a copy of the prime dimension drop algebra

I2,3 = {f ∈ C([0, 1],M2 ⊗M3) : f(0) ∈ M2 ⊗ 1, f(1) ∈ 1 ⊗M3}

so there exists a unital homomorphism I2,3 → (AU ∩ A′)αU . By repeatedly using Lemma 2.4, we can find 
a countable sequence of unital homomorphisms I2,3 → (AU ∩ A′)αU with commuting ranges, and therefore 
a unital homomorphism I⊗∞

2,3 → (AU ∩ A′)αU . By [11, Theorem 1.1], Z embeds unitally in I⊗∞
2,3 , and in 

particular, we obtain a unital homomorphism Z → (AU ∩A′)αU . This implies, by [66, Theorem 2.6], that α
is cocycle conjugate to α⊗ idZ . �

We now turn our attention to the proof of Theorem A. We briefly describe our strategy for proving 
(1) ⇒ (2). First, we prove the existence of projections with properties analogous to those in Definition 2.9
for Bernoulli shifts on the hyperfinite II1-factor 

⊗
g∈GR ∼= R. Then Proposition 5.3 and Theorem 5.4 are 

used to show that there are similar projections also in the central sequence algebra of each fiber Mτ for 
τ ∈ T (A)α. Using Theorem 5.1 we then perform a ‘local to global’ argument via CPoU to glue these 
projections and obtain a Rokhlin tower in AU ∩ A′. Finally, we exploit the fact that JA is an equivariant 
σ-ideal (Definition 7.2) to lift those towers to AU ∩A′ and conclude the proof.

We start by addressing the first part, namely the existence of projections satisfying conditions analogous 
to those in Definition 2.9 for the Bernoulli shift on R. We do this in the following proposition, using the 
tiling result for amenable groups from [8].

Proposition 7.7. Let G be a countable, discrete, amenable group, and let βG : G → Aut(R) be the Bernoulli 
shift acting by left multiplication on the indices of the elementary tensors of 

⊗
g∈GR ∼= R. Given a finite 

set K ⊆ G and δ > 0, there are (K, δ)-invariant, finite sets S1, . . . , Sn ⊆ G and projections p�,g ∈ R for 
� = 1, . . . , n and g ∈ S�, such that

(i) (βG)gh−1(p�,h) = p�,g for all � = 1, . . . , n and all g, h ∈ S�,
(ii) p�,gpk,h = 0 for all �, k = 1, . . . , n, g ∈ S�, k ∈ Sh, whenever (�, g) �= (k, h),
(iii)
∑n

�=1
∑

g∈S�
p�,g = 1,

(iv) τR(p�,g) is positive and independent of g ∈ S�.

Proof. Fix a finite set K ⊆ G and δ > 0. Fix an embedding θ of L∞([0, 1]) with the Lebesgue measure in 
R, and let β̃G be the Bernoulli shift on 

⊗
g∈GL

∞([0, 1]). Notice that the embedding θ naturally induces an 
equivariant embedding

Θ:

⎛⎝⊗L∞([0, 1]), β̃G

⎞⎠→

⎛⎝⊗R, βG

⎞⎠ ,

g∈G g∈G
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where Θ sends, for every g ∈ G, the g-th coordinate of the domain to the corresponding g-th coordinate of 
the codomain via θ.

Set X =
∏

g∈G[0, 1] with the product measure. It follows that 
⊗

g∈GL
∞([0, 1]) ∼= L∞(X), and that β̃G

induces an action on X which is easily seen (and well known) to be measure preserving and ergodic. By [8, 
Theorem 3.6] there are (K, δ)-invariant sets S1, . . . , Sn ⊆ G and projections p̃�,g ∈ L∞(X) for � = 1, . . . , n
and g ∈ S� such that

(i)’ (β̃G)gh−1(p̃�,h) = p̃�,g for all � = 1, . . . , n and all g, h ∈ S�,
(ii)’ p̃�,gp̃k,h = 0 for all �, k = 1, . . . , n, g ∈ S�, k ∈ Sh, whenever (�, g) �= (k, h),
(iii)’
∑n

�=1
∑

g∈S�
p̃�,g = 1.

It is clear then that the projections p�,g = Θ(p̃�,g) for � = 1, . . . , n and g ∈ S� satisfy conditions (i), (ii) and 
(iii) of the statement.

Finally, item (iv) is an automatic consequence of the uniqueness of τR as a (faithful) normal trace on R, 
which is therefore βG-invariant. More specifically, for every � = 1, . . . , n, by condition (i) and βG-invariance 
of τR, the value τR(p�,g) is independent of g ∈ S�. Thus, if τR(p�,g) = 0 for some � = 1, . . . , n and g ∈ S�, 
then by faithfulness it follows that p�,h = 0 for all h ∈ S�. Therefore, up to discarding some of the S�’s, we 
obtain a family of projections satisfying condition (iv). �

Although (iii) implies (ii) in the statement of the above proposition, we state it explicitly because it is 
a condition that can be lifted along quotient maps via σ-ideals; see in particular the proof of (2) ⇒ (1) in 
Theorem 7.8.

For the reader’s convenience, we reproduce the statement of Theorem A.

Theorem 7.8. Let A be a separable, simple, nuclear unital C∗-algebra with non-empty trace space, let G
be a countable, discrete, amenable group, and let α : G → Aut(A) be an action. Suppose that the orbits of 
the action induced by α on T (A) are finite and with uniformly bounded cardinality. Then the following are 
equivalent:

(1) α is strongly outer,
(2) α⊗ idZ has the weak tracial Rokhlin property.

When G is residually finite, then the above statements are also equivalent to:

(3) α⊗ idZ has finite Rokhlin dimension,
(4) α⊗ idZ has Rokhlin dimension at most 2.

Proof. Note that α is strongly outer if and only if α⊗ idZ is strongly outer. By replacing α with α⊗ idZ , 
we may assume that (A, α) ∼=cc (A ⊗Z, α⊗ idZ).

(2) ⇒ (1). The argument is mostly standard, but we include it since we work with a slightly different 
notion of the weak tracial Rokhlin property. Fix g ∈ G \ {1} and τ ∈ T (A)αg . We denote as usual the 
von Neumann algebra generated by πτ (A) by Mτ , and note that αg extends to an automorphism ατ

g

of Mτ , even though α does not necessarily induce an action on Mτ . Fix K = {g} and δ = 1/2. Let 
S1, . . . , Sn be a family of ({g}, 1/2)-invariant subsets of G, and f�,h ∈ AU ∩A′, for � = 1, . . . , n and h ∈ S�, 
be contractions as in Definition 2.9. Let κτ : AU → MU

τ be the quotient map (see Lemma 2.1), and set 
p�,h = κτ (f�,h) ∈ MU

τ ∩ M′
τ . Since 

∑n
�=1
∑

h∈S�
p�,h = 1, we can assume that {p1,h}h∈S1 is a collection 

of non-zero, pairwise orthogonal (hence distinct) projections. By ({g}, 1/2)-invariance of S1, there exists 
h ∈ S1 such that gh ∈ S1, thus we have
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(ατ )Ug (p1,h) = (ατ )Ughh−1(p1,h) = p1,gh.

It follows that the automorphism (ατ )Ug acts non-trivially on the family {p1,h}h∈S1 . Therefore (ατ )Ug acts 
non-trivially on MU

τ ∩M′
τ , which in turn implies that ατ

g is outer, as desired.
(1) ⇒ (2). Assume that α is strongly outer. Let βG be the Bernoulli shift on R (see Proposition 7.7), 

which is an outer action. Since (A, α) is assumed to be cocycle conjugate to (A ⊗ Z, α ⊗ idZ), we deduce 
from Theorem 7.6 that (A, α) has CPoU. By Theorem 5.1 (with N = {e}), there exists a unital, equivariant 
embedding Ψ: (R, βG) → (AU ∩A′, αU ).

Let K ⊆ G be finite and let δ > 0. Using Proposition 7.7, find (K, δ)-invariant finite subsets S1, . . . , Sn of 
G and projections p�,g ∈ R, for � = 1, . . . , n and g ∈ S�, satisfying (i) through (iv) in Proposition 7.7. Denote 
by τR the unique trace on R. By lifting the projections Ψ(p�,g) along the surjective map κ : AU∩A′ → AU∩A′, 
we find positive contractions e�,g ∈ AU ∩A′, for � = 1, . . . , n and g ∈ S�, satisfying:

(a) (αU )gh−1(e�,h) − e�,g ∈ JA for � = 1, . . . , n and for all g, h ∈ S�,
(b) e�,gek,h ∈ JA for �, k = 1, . . . , n, and for all g ∈ S�, h ∈ Sk, whenever (�, g) �= (k, h),
(c) 1 −

∑n
�=1
∑

g∈S�
e�,g ∈ JA,

(d) τ(e�,g) = τ(Ψ(p�,g)) = τR(p�,h) > 0 for all τ ∈ TU (A), for � = 1, . . . , n and for all g, h ∈ S�.

Let C be a separable G-invariant subalgebra of AU containing A and the finite set {e�,h : � = 1, . . . , n, h ∈
S�}. By Proposition 7.3 there exists a positive contraction x ∈ (JA∩C ′)αU satisfying xc = c for all c ∈ C∩JA. 
For � = 1, . . . , n and g ∈ S�, we set f�,g = (1 −x)e�,g(1 −x) ∈ AU ∩A′. We claim that these elements satisfy 
the conditions of Definition 2.9.

Condition (3) in Definition 2.9 is satisfied by item (c) above and because x ∈ JA. To check (1) in 
Definition 2.9, let � = 1, . . . , n and g, h ∈ S�. Observe that (1 − x)c = 0 for every c ∈ C ∩ JA, and use this, 
along with invariance of x, to get

(αU )gh−1(f�,h) − f�,g = (αU )gh−1((1 − x)e�,h(1 − x)) − (1 − x)e�,g(1 − x)

= (1 − x)
(
(αU )gh−1(e�,h) − e�,g

)
(1 − x) (a)= 0.

To check condition (2) in Definition 2.9, let �, k = 1, . . . , n, let g ∈ S� and let h ∈ Sk with (�, g) �= (k, h). 
We use [x, e�,g] = 0 at the second step to get

f�,gfk,h = (1 − x)e�,g(1 − x)2ek,h(1 − x) = (1 − x)e�,gek,h(1 − x)3 (b)= 0.

Finally, for item (4) of Definition 2.9 observe that, given τ ∈ TU (A), for � = 1, . . . , n and for all g ∈ S�, we 
have

τ(f�,g) = τ((1 − x)e�,g(1 − x)) = τ(e�,g) + τ(e�,gx) + τ(xe�,g) + τ(xe�,gx)

= τ(e�,g).

Hence τ(f�,g) = τR(p�,g) > 0, and this value depends only on � by condition (iv) of Proposition 7.7.
From now on, we assume that G is residually finite.
(3) ⇒ (1). Fix g ∈ G \{1} and τ ∈ T (A)αg . Abbreviate πτ (A)′′ to Mτ , and let κτ : AU ∩A′ → MU

τ ∩M′
τ

be the equivariant quotient map. Since G is residually finite, there is a finite-index, normal subgroup H ≤ G

such that g /∈ H. Using the fact that d = dimRok(α) < ∞, find positive contractions f (j)
k

∈ AU ∩ A′, for 
j = 0, . . . , d and k ∈ G/H, which satisfy, for j = 0, . . . , d, for all g ∈ G and for all k, k′ ∈ G/H with k �= k

′:
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f
(j)
k

f
(j)
k
′ = 0,

d∑
j=0

∑
k∈G/H

f
(j)
k

= 1 and (αU )g(f (j)
k

) = f
(j)
gk

.

Fix j0 = 0, . . . , d such that κτ (f (j0)
k

) is not zero for some (and hence all) k ∈ G/H. Note that the positive 

contractions κτ (f (j0)
k

), for k ∈ G/H, are thus pairwise orthogonal and satisfy (ατ )Ug (κτ (f (j)
k

)) = κτ (f (j)
gk

). 
Since g /∈ H there is k ∈ G/H such that gk �= k. In particular, (ατ

g)U acts non-trivially on MU
τ ∩M′, thus 

ατ
g cannot be an inner automorphism of Mτ .
(4) ⇒ (3). This implication is trivial.
(1) ⇒ (4). Let H be a normal subgroup of G of finite index. After identifying R with the weak closure of ⊗
n∈N B(�2(G/H)), denote by μG/H the action given by 

⊗
n∈N Ad(λG/H). Since (A, α) ∼=cc (A ⊗Z, α⊗idZ), 

by Theorem 7.6 the dynamical system (A, α) has CPoU. As moreover α is a strongly outer action, we can 
apply Theorem 5.1 to obtain an equivariant, unital homomorphism

Ψ: (R, μG/H ◦ qH) → (AU ∩A′, αU ).

Fix ε > 0, and let k ∈ N be given by Proposition 6.3. Denote by

ϕ :
(
B(�2(G/H)⊗k),Ad(λ⊗k

G/H) ◦ qH
)
→ (AU ∩A′, αU )

the restriction of Ψ to B(�2(G/H)⊗k) ⊆ R. By Corollary 7.4, there exists an equivariant completely positive 
contractive order zero map

ρ :
(
B(�2(G/H)⊗k),Ad(λ⊗k

G/H) ◦ qH
)
→ (AU ∩A′, αU )

such that the following diagram commutes:

AU ∩A′

κ

B(�2(G/H)⊗k)

ρ

ϕ
AU ∩A′.

We denote by e ∈ B(�2(G/H)) the projection onto the constant functions, and regard e⊗k as a projection 
in B(�2(G/H)⊗k). One can verify that

τ(ρ(e⊗k)m) = τ(ϕ(e⊗k)m) = τ(ϕ(e⊗k)) = 1/[G : H]k

for all τ ∈ TU (A) and for all m ∈ N, using that ϕ(e⊗k) is a projection.
By [67, Theorem B], the system (A, α) has equivariant property (SI), so we can pick a contraction 

s ∈ (AU ∩A′)αU satisfying s∗s = 1 −ρ(1) and ρ(e⊗k)s = s. By Theorem 6.7, there exists a unital equivariant 
homomorphism

θ :
(
I
(k)
G/H , μ

(k)
G/H ◦ qH

)
→ (AU ∩A′, αU ).

Let f (j)
g ∈ I

(k)
G/H , for g ∈ G/H and j = 0, 1, 2, be positive contractions as in the conclusion of Proposition 6.3. 

Then the positive contractions θ(f (j)
g ) ∈ AU ∩A′ satisfy the conditions of Definition 2.6 up to ε. Since ε > 0

is arbitrary, the result follows by saturation of AU (Remark 2.2). �
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8. Equivariant Z-stability

We conclude the paper with the proof of Theorem B, which improves the main result of [63] by allowing 
the group to act nontrivially on T (A). In the case of integer actions, the recent paper [73] used the techniques 
in this work to remove the assumptions that we make on the induced action G � T (A).

We recall the following equivalent definition of covering dimension from [46]: a topological space X has 
(covering) dimension m ∈ N, in symbols dim(X) = m, if m is the minimal value such that every open cover 
O of X has a refinement O′ = O′

0 � · · · � O′
m such that the elements in O′

j are pairwise disjoint, for every 
j = 0, . . . , m. If no such value exists, we say that X has infinite dimension.

Under the assumptions of Theorem B, it is proved in Theorem 7.6 that (A, α) is (Z, idZ)-stable if and 
only if for all d ≥ 2 there exists a unital homomorphism Md → (AU ∩ A′)αU . The strategy to prove the 
existence of such homomorphisms is, once again, via a ‘local to global’ argument over the trace space. More 
specifically, in Corollary 5.5 we use results from Section 5 to show that for every τ ∈ T (A)α and every 
d ∈ N, there exists a unital homomorphism Md → (MU

τ ∩M′)(ατ )U . Then, in Proposition 8.4, we glue these 
maps together to obtain a unital homomorphism Md → (AU ∩A′)αU .

To perform this gluing argument, since in this case we do not assume that (A, α) has CPoU, we rely on 
the techniques from [45, Section 6, 7], which make essential use of the assumption that ∂eT (A) is compact 
and finite-dimensional. Those arguments could also be carried out using Ozawa’s work on W ∗-bundles in 
[56] (see for instance [48], [49]), whose role in our setting is replaced by AU . (One can show that AU is 
isomorphic to the ultrapower of the W ∗-bundle associated to the tracial completion of A when ∂eT (A) is 
compact.)

The main ‘local to global’ argument is contained in Proposition 8.4; it is an equivariant analogue of [45, 
Proposition 7.4, Lemma 7.5]. Related arguments in the equivariant setting, under the additional assumption 
that α∗ is trivial on ∂eT (A), can be found in [63], [48], [49].

We start with a preliminary lemma.

Lemma 8.1. Let A be a unital, separable C∗-algebra such that ∂eT (A) is compact. Let G be a countable, 
discrete group, and let α : G → Aut(A) be an action. Suppose that the orbits of the induced action α∗ of G
on ∂eT (A) are finite with bounded cardinality, and that the orbit space ∂eT (A)/G is Hausdorff. Then the 
averaging function ∂eT (A) → T (A) mapping τ ∈ ∂eT (A) to τα = 1

|G·τ |
∑

σ∈G·τ σ is continuous.

Proof. Since A is separable, both ∂eT (A) and T (A) are metrizable. It is therefore enough to show that 
if (τn)n∈N is a sequence in ∂eT (A) such that τn → τ in ∂eT (A), then ταn → τα in T (A). Fix ε > 0 and 
a1, . . . , ak ∈ A.

Since the orbits of the G-action on ∂eT (A) have bounded cardinality, upon passing to a subsequence we 
can assume without loss of generality that there is N ∈ N such that |G · τn| = N for every n ∈ N. Let Gτ

be the stabilizer of τ and let S = {s1, . . . , sM} be a set of representatives of left cosets of Gτ with s1 = e. 
In particular |G · τ | = |S| = M . Let V be an open subset of ∂eT (A) such that

(i) τ ∈ V ,
(ii) α∗

sj (V ) ∩ V = ∅ for every 1 < j ≤ M ,
(iii) |σ(αsj (ai)) − τ(αsj (ai))| < ε, for all σ ∈ V , all j ≤ M and all i ≤ k.

Claim 8.1.1. There exists m ∈ N such that G · τn ⊆
⋃M

j=1 α
∗
sj (V ) for every n > m.

Suppose this is not the case. Up to taking a subsequence, for every n ∈ N, let σn ∈ G · τn such that 
σn /∈
⋃M

α∗
s (V ). By compactness of ∂eT (A), up to taking a subsequence, we can assume that σn converges 
j=1 j
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to some σ ∈ ∂eT (A). Since ∂eT (A)/G is Hausdorff, it follows that σ ∈ G · τ ⊆
⋃M

j=1 α
∗
sj (V ), which is a 

contradiction. This concludes the proof of the claim.
Given n > m, let {σ1,n . . . , σK,n} be the intersection G ·τn∩V . Therefore, as each α∗

sj is a homeomorphism, 
it follows that G · τn =

⋃M
j=1 α

∗
sj (G · τn ∩ V ), and that in particular N = M ·K, so K does not depend on 

n > m. Finally, for all i ≤ k and every n > m big enough so that τn ∈ V , we conclude that

|ταn (ai) − τα(ai)| =
∣∣∣ 1
M ·K

M∑
j=1

K∑
h=1

σh,n(αsj (ai)) −
1
M

M∑
j=1

τ(αsj (ai))
∣∣∣

= 1
M

∣∣∣ 1
K

M∑
j=1

K∑
h=1

σh,n(αsj (ai)) −
1
K

M∑
j=1

K∑
h=1

τ(αsj (ai))
∣∣∣

≤ 1
M ·K

M∑
j=1

K∑
h=1

|σh,n(αsj (ai)) − τ(αsj (ai))|
(iii)
< ε. �

We fix some notation for the next couple of propositions.

Notation 8.2. Let A be a unital C∗-algebra such that ∂eT (A) is compact, let G be a countable group, and 
let α : G → Aut(A) be an action. Recall that α∗ denotes the affine action of G on T (A) induced by α; 
see subsection 2.1. Let α∗∗ : G → Aut(C(∂eT (A))) be defined as α∗∗

g (f) = f ◦ α∗
g−1 for every g ∈ G and 

all f ∈ C(∂eT (A)). Note that α∗∗ is the restriction of the double-dual action to C(∂e(T (A))) ⊆ A∗∗, thus 
justifying the notation.

Let T : A → C(∂eT (A)) be the unital, completely positive map defined as T (a)(τ) = τ(a) for all a ∈ A

and all τ ∈ T (A). Then T : (A, α) → (C(∂eT (A), α∗∗) is equivariant, since for g ∈ G, a ∈ A and τ ∈ ∂eT (A)
we have:

T (αg(a))(τ) = τ(αg(a)) = T (a)(α∗
g−1(τ)) = α∗∗

g (T (a))(τ).

The following proposition is an equivariant version of [45, Corollary 6.8].

Proposition 8.3. Let A be a separable, simple, nuclear, infinite-dimensional, unital C∗-algebra. Let G be a 
countable, discrete, amenable group, and let α : G → Aut(A) be an action. Suppose that ∂eT (A) is compact 
and nonempty.

Let {f (j)
k : 1 ≤ j ≤ m, 1 ≤ k ≤ sj} be an α∗∗-invariant partition of unity in C(∂eT (A)) such that 

f
(j)
k f

(j)
h = 0 for all j = 1, . . . , m and all k, h = 1, . . . , sj with k �= h. Given ε > 0, a compact subset Ω ⊆ A

and a finite subset G0 ⊆ G, there exist positive contractions c(j)k ∈ A, for j = 1, . . . , m, and for k = 1, . . . , sj, 
such that

(1) ‖c(j)k b − bc
(j)
k ‖ < ε for all b ∈ Ω,

(2) supτ∈∂eT (A)|f
(j)
k (τ) − τ(c(j)k )| < ε,

(3) c
(j)
k c

(j)
h = 0 for all h = 1, . . . , sj such that h �= k,

(4)
∥∥αg(c(j)k ) − c

(j)
k

∥∥ < ε for all g ∈ G0,
(5)
∑m

j=0
∑sj

k=1(c
(j)
k )2 ≤ 1 + ε0.

Proof. Let T : A → C(∂eT (A)) be the unital, completely positive equivariant map from Notation 8.2. By 
[45, Proposition 6.6], when ∂eT (A) is closed, the induced map TU : AU → C(∂eT (A))U maps the unit ball 
of AU onto the unit ball of C(∂eT (A))U . Moreover, denoting by Mult(TU ) the multiplicative domain of TU , 
we have
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JA ⊆ Mult(TU ) ⊆ JA + (AU ∩A′),

and the restriction TU : Mult(TU ) → C(∂eT (A))U is a surjective homomorphism whose kernel is JA ([45, 
Proposition 6.6.vi]). Moreover, the unital completely positive map TU : (AU , αU ) → (C(∂eT (A))U , α∗∗

U ) is 
equivariant by Notation 8.2.

Let C be the (α∗∗
U -invariant) C∗-subalgebra of C(∂eT (A))U generated by the family {f (j)

k }1≤j≤m,1≤k≤sj . 
By the previous observations, there is an injective homomorphism Φ: C → (AU∩A′)αU satisfying τ(Φ(f)) =
f(τ) for τ ∈ ∂eT (A) and f ∈ C. Regarding Φ as an equivariant map (C, idC) → (AU ∩ A′, αU ), by 
Corollary 7.4 there exists a completely positive, contractive, order zero map Ψ such that the following 
diagram commutes:

(AU ∩A′)αU

κ

C

Ψ

Φ
(AU ∩A′)αU

.

The positive contractions Ψ(f (j)
k ), for 1 ≤ j ≤ m and 1 ≤ k ≤ sj , are pairwise orthogonal, and hence can 

be lifted to pairwise orthogonal positive contractions (d(j)
k,n)n∈N ∈ �∞(A), for 1 ≤ j ≤ m and 1 ≤ k ≤ sj . 

We can thus find n ∈ N big enough so that setting c(j)k = d
(j)
k,n, for all j = 1, . . . , m and k = 1, . . . , sj , gives 

the required elements. �
The following equivariant analogue of [45, Proposition 7.4, Lemma 7.5] extends [49, Corollary 3.2] and 

[48, Proposition 3.3] to all amenable groups, while at the same time relaxing the assumptions on the induced 
action G � T (A).

Proposition 8.4. Let A be a separable, simple, nuclear, infinite-dimensional, unital C∗-algebra, let G be a 
countable, discrete, amenable group, and let α : G → Aut(A) be an action. Suppose that ∂eT (A) is compact, 
that dim(∂eT (A)) < ∞, that the orbits of the induced action of G on ∂eT (A) are finite with bounded 
cardinality, and that the orbit space ∂eT (A)/G is Hausdorff. Then, for every d ∈ N, there exists a unital 
homomorphism ψ : Md → (AU ∩A′)αU .

Proof. Fix d ≥ 1 and let τ ∈ T (A)α. By the assumptions on A, the von Neumann algebra Mτ is a separably 
representable, hyperfinite, and type II1, thus by Corollary 5.5 there is a unital homomorphism

θτ : Md → (MU
τ ∩M′)(α

τ )U .

The rest of the proof is divided into two claims, respectively inspired by Proposition 7.4 and Lemma 7.5 
in [45].

Claim 8.4.1. Let ε > 0, let m ∈ N, let G0 ⊆ G be finite and let Ω ⊆ A be compact. Then there exist an open 
cover O of ∂eT (A), and families Φ(j) = {ϕ(j)

1 , . . . , ϕ(j)
rj }, for j = 1, . . . , m, consisting of unital completely 

positive contractive maps ϕ(j)
k : Md → A, for k = 1, . . . , rj, such that all open sets V ∈ O are α∗-invariant, 

and for every j = 1, . . . , m, and k ∈ {1, . . . , rj} we have

(1.a)
∥∥ϕ(j)

k (a)b − bϕ
(j)
k (a)
∥∥ < ε‖a‖ for all a ∈ Md and for all b ∈ Ω,

(1.b)
∥∥ϕ(j)

k (a)ϕ(i)
h (b) − ϕ

(i)
h (b)ϕ(j)

k (a)
∥∥ < ε‖a‖‖b‖ for all i = 1, . . . , m with i �= j, all h = 1, . . . , ri, and for 

all a, b ∈ Md,
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(1.c)
∥∥αg(ϕ(j)

k (a)) − ϕ
(j)
k (a)
∥∥ < ε‖a‖ for all g ∈ G0, and for all a ∈ Md,

(1.d) for every V ∈ O and every j = 1, . . . , m there is k ∈ {1, . . . , rj} such that

sup
τ∈V

∥∥∥ϕ(j)
k (a∗a) − ϕ

(j)
k (a)∗ϕ(j)

k (a)
∥∥∥

2,τ
< ε‖a‖2,

for all a ∈ Md.

We call the tuple (O; Φ(1), . . . , Φ(m)) an (ε, Ω, G0)-commuting covering system, in analogy with Definition 7.1 
in [45].

To prove the claim, fix Ω ⊆ A and G0 ⊆ G as in the statement. Let τ ∈ ∂eT (A) and set

τα = 1
|G · τ |

∑
σ∈G·τ

σ ∈ T (A)α.

By Lemma 7.5 and by the Choi-Effros Lifting Theorem [5], there exists a unital, completely positive, con-
tractive map θ̃ such that the following diagram commutes:

(AU ∩A′)αU

κτ

Md

θ̃

θτα
(MU

τα ∩M′
τα)(ατ )U .

Applying the Choi-Effros Lifting Theorem again, we find unital, completely positive maps θ̃n : Md → A, 
for n ∈ N, such that (θ̃n)n∈N : Md → �∞(A) lifts θ̃.

Let M be an upper bound for the cardinality of the orbits of the G-action α∗ on ∂eT (A). By choosing a 
map far enough in the sequence, we claim that there exists a unital completely positive map ϕτ : Md → A

satisfying

(a) ‖ϕτ (a)b − bϕτ (a)‖ < ε‖a‖ for all a ∈ Md and all b ∈ F ,
(b) ‖αg(ϕτ (a)) − ϕτ (a)‖ < ε‖a‖ for all g ∈ G0 and all a ∈ Md,
(c) ‖ϕτ (a∗a) − ϕτ (a)∗ϕτ (a)‖2,τα < ε‖a‖2M1/2 for all a ∈ Md.

Conditions (a) and (b) are immediate, since G0 and F are finite, and the unit ball of Md is compact. To 
justify condition (c), note that θ̃(a∗a) − θ̃(a)∗θ̃(a) belongs to Jτα for all a ∈ Md, as θ̃ is itself a lift of the 
homomorphism θτα .

By compactness of the unit ball of Md and Lemma 8.1, we can find an open set V ′
τ of ∂eT (A) containing 

τ such the inequality in (c) holds also when substituting ‖ · ‖2,τα with ‖ · ‖2,σα for all σ ∈ V ′
τ . Set Vτ =⋃

g∈G α∗
g(V ′

τ ), and note that again for every σ ∈ Vτ the inequalities in item (c) hold with respect to the 
‖ · ‖2,σα -norm. Arguing as in Proposition 2.3, we see that σ ≤ Mσα for every σ ∈ ∂eT (A), which in turn 
implies that

‖ϕτ (a∗a) − ϕτ (a)∗ϕτ (a)‖2,σ < ε‖a‖2,

for all a ∈ Md and all σ ∈ Vτ .
We finish the proof of the claim by induction on m. When m = 1, we cover ∂eT (A) by the open sets Vτ

obtained in the previous paragraph and, by compactness of ∂eT (A), we can find an integer r1 ∈ N and traces 
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τ1, . . . , τr1 ∈ ∂eT (A), such that O = {Vτ1 , . . . , Vτr1
} is a cover of ∂eT (A). Then O and Φ(1) = {ϕτ1 , . . . , ϕτr1

}
satisfy the desired properties.

Assume that we have found an open, α∗-invariant cover O′ and families Φ(j) for j = 1, . . . , m − 1, 
satisfying the conditions in the statement. Let M1

d denote the unit ball of Md. For every τ ∈ ∂eT (A), find 
a map ϕτ : Md → A and an open, α∗-invariant neighborhood Wτ of τ as in the first part of the proof for 
the finite set

Ω ∪
m−1⋃
j=1

rj⋃
k=1

ϕ
(j)
k (M1

d ) ⊆ A

instead of Ω. Find an integer rm ∈ N and traces τ (m)
1 , . . . , τ (m)

rm ∈ ∂eT (A), such that {W
τ
(m)
1

, . . . , W
τ
(m)
rm

} is 
an α∗-invariant cover of ∂eT (A). Let O be the family of α∗-invariant open sets of the form V ∩W

τ
(m)
k

, for 
k = 1, . . . , rm and V ∈ O′, and set Φ(m) := {ϕ

τ
(m)
1

, . . . , ϕ
τ
(m)
rm

}. Then O and {Φ(j)}1≤j≤m satisfy the desired 
properties.

Claim 8.4.2. Let ε > 0, let m = dim(∂eT (A)), let G0 ⊆ G be finite and let Ω ⊆ A be compact. Set 
m = dim(∂eT (A)). There exist completely positive contractive maps ψ(0), . . . , ψ(m) : Md → A satisfying

(2.a) ‖ψ(j)(a)b − bψ(j)(a)‖ < ε for all j = 0, . . . , m, for all a ∈ M1
d and all b ∈ Ω,

(2.b) ‖ψ(j)(a)ψ(k)(b) − ψ(k)(b)ψ(j)(a)‖ < ε for all j, k = 0, . . . , m with j �= k, and for all a, b ∈ M1
d ,

(2.c) ‖αg(ψ(j)(a)) − ψ(j)(a)‖ < ε for all g ∈ G0, for all j = 0, . . . , m, and for all a ∈ M1
d ,

(2.d) ‖ψ(j)(1)ψ(j)(a∗a) − ψ(j)(a)∗ψ(j)(a)‖2,u < ε for all j = 0, . . . , m, and for all a ∈ M1
d ,

(2.e) supτ∈T (A) τ
(∑m

j=0 ψ
(j)(1) − 1

)
< ε.

Let (O; Φ(1), . . . , Φ(m)) be an (ε/2, Ω, G0)-commuting covering system given by Claim 8.4.1. Since the 
orbit space ∂eT (A)/G is Hausdorff (in addition to compact and second countable), it is metrizable. Moreover 
since the quotient map π : ∂eT (A) → ∂eT (A)/G is open and all orbits are finite, π preserves the topological 
dimension ([57, Proposition 2.16]). In particular, dim(∂eT (A)/G) = dim(∂eT (A)) = m. Find a refinement 
P of π(O) witnessing dim(∂eT (A)/G) = m, and let O′ be the collection of preimages of the elements of P. 
Every open set in O′ is then α∗-invariant, being a preimage of a set via the map π. Since the preimages 
of disjoint sets are themselves disjoint, we can decompose O′ into finite subsets O′

0, . . . , O′
m such that 

O′
j = {V (j)

1 , . . . , V (j)
sj } consists of pairwise disjoint open subsets of ∂eT (A) which are moreover α∗-invariant. 

It is clear that O′ is a refinement of O, since the latter is composed of invariant open sets.
Let {f̃ (j)

k : j = 0, . . . , m, k = 1, . . . , sj} ⊆ C(∂eT (A))/G be a partition of unity of ∂eT (A)/G with 

supp(f̃ (j)
k ) ⊆ π(V (j)

k ) for j = 0, . . . , m and k = 1, . . . , sj . For every j = 0, . . . , m and k = 1, . . . , sj , define

f
(j)
k = f̃

(j)
k ◦ π ∈ C(∂eT (A)).

It is immediate that each f (j)
k is α∗∗-invariant. Moreover, the family {f (j)

k : j = 0, . . . , m, k = 1, . . . , sj} ⊆
C(∂eT (A)) is also a partition of unity of ∂eT (A) with supp(f (j)

k ) ⊆ V
(j)
k = π−1(π(V (j)

k )) for j = 0, . . . , m
and k = 1, . . . , sj , since all elements in O′ are α∗-invariant. For a fixed j, the functions f (j)

1 , . . . , f (j)
sj are 

pairwise orthogonal, since they have disjoint supports.
For every j ∈ {0, . . . , m} and k ∈ {1, . . . , sj}, there is a unital completely positive map ϕ(j)

k : Md → A

belonging to Φ(j) such that conditions (1.a)-(1.d) in Claim 8.4.1 hold. Set

K = max
{

8 · max
0≤j≤m

s2
j , 4 ·

m∑
sj

}
, ε0 = ε2

2K , (8.1)

j=0
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and

Ω0 = Ω ∪ {ϕ(j)
k (a) : a ∈ M1

d , 0 ≤ j ≤ m, 1 ≤ k ≤ sj}.

By Proposition 8.3, there are positive contractions c(j)k ∈ A, for j = 0, . . . , m and k = 1, . . . , sj , satisfying 
the following for all j = 0, . . .m and k = 1, . . . , sj :

(i) ‖bc(j)k − bc
(j)
k ‖ < ε0 for all b ∈ Ω0,

(ii) ‖c(j)k c
(i)
� − c

(i)
� c

(j)
k ‖ < ε0 for all i = 0, . . . , m and all � = 1, . . . , si,

(iii) supτ∈∂eT (A)|f
(j)
k (τ) − τ(c(j)k )| < ε

1/2
0 ,

(iv) c
(j)
k c

(j)
� = 0 for all � = 1, . . . , sj such that � �= k,

(v) ‖αg(c(j)k ) − c
(j)
k ‖ < ε0 for all g ∈ G0,

(vi)
∑m

j=0
∑sj

k=1(c
(j)
k )2 ≤ 1 + ε0.

Fix j ∈ {0, . . . , m}, and define a linear map ψ(j) : Md → A by

ψ(j)(a) =
sj∑

k=1

c
(j)
k ϕ

(j)
k (a)c(j)k

for all a ∈ Md. As all c(j)k are mutually orthogonal positive contractions, it follows that ψ(j) is completely 
positive and contractive.

It remains to show that ψ(0), . . . , ψ(m) satisfy the conditions of the claim. The verification of conditions 
(2.a) and (2.b) is the same as verification of conditions (i) and (iii) in the proof of [45, Lemma 7.5]. To 
verify condition (2.c), fix g ∈ G0, an index j ∈ {0, . . . , m}, and a contraction a ∈ Md. We have

‖αg(ψ(j)(a)) − ψ(j)(a)‖
(v)
≤
∥∥∥∥∥

sj∑
k=1

c
(j)
k

(
αg(ϕ(j)

k (a)) − ϕ
(j)
k (a)
)
c
(j)
k

∥∥∥∥∥+ 2sjε0

(iv)
≤ max

1≤k≤sj

∥∥∥c(j)k

(
αg(ϕ(j)

k (a)) − ϕ
(j)
k (a)
)
c
(j)
k

∥∥∥+ ε

2

≤ max
1≤k≤sj

∥∥∥αg(ϕ(j)
k (a)) − ϕ

(j)
k (a)
∥∥∥+ ε

2
(1.c)
< ε.

Item (2.d) corresponds to condition (iv) in [45, Lemma 7.5], and can be inferred as follows. Fix j =
0, . . . , m and a ∈ M1

d . For k = 1, . . . , sj , set

Tk = (c(j)k )2ϕ(j)
k (a∗a) − ϕ

(j)
k (a)∗(c(j)k )2ϕ(j)

k (a),

and note that ‖Tk‖ ≤ 2. Fix τ ∈ ∂eT (A). Then

‖ψ(j)(1)ψ(j)(a∗a) − ψ(j)(a)∗ψ(j)(a)‖2,τ
(iv)=
∥∥∥ sj∑

k=1

c
(j)
k Tkc

(j)
k

∥∥∥
2,τ

(v)= max
k=1,...,sj

∥∥c(j)k Tkc
(j)
k

∥∥
2,τ .

By the above computation and since T (A) is convex, it is enough to prove that 
∥∥c(j)k Tkc

(j)
k

∥∥
2,τ < ε for every 

k = 1, . . . , sj . Fix k = 1, . . . , sj . If τ /∈ V
(j), then
k
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∥∥c(j)k Tkc
(j)
k

∥∥
2,τ ≤ ‖Tk‖‖c(j),2k ‖2,τ ≤ 2τ

(
(c(j)k )4
)1/2 ≤ 2τ(c(j)k )1/2

(iii)
< 2ε0 < ε,

as desired. Assume instead that τ ∈ V
(j)
k . Set D(j)

k := ϕ
(j)
k (a∗a) − ϕ

(j)
k (a)∗ϕ(j)

k (a), which is positive by the 
Schwarz inequality for completely positive maps ([4, Corollary 2.8]). Then

‖c(j)k Tkc
(j)
k ‖2,τ

(i)
≤
∥∥c(j),2k D

(j)
k c

(j),2
k

∥∥
2,τ + 3ε0

≤
∥∥(D(j)

k )1/2c(j),2k (D(j)
k )1/2
∥∥

2,τ + 3ε0

≤
∥∥D(j)

k

∥∥
2,τ + 3ε0

(1.d)
<

ε

2 + 3ε0 < ε,

which concludes the proof of (2.d). Item (2.e) is verified in the same way as condition (v) from [45, Lemma 
7.5], and we omit the proof. This proves the claim.

By iterating Claim 8.4.2 for larger and larger Ω ⊆ A, G0 ⊆ G, and for smaller and smaller ε > 0, we obtain 
m = dim(∂eT (A)) completely positive, contractive, order zero maps ψ(0), . . . , ψ(m) : Md → (AU ∩ A′)αU

with commuting images. Moreover, by condition (vi) on the c(j)k , it follows that 
∑m

j=0 ψ
(j)(1) ≤ 1, which in 

combination with (2.e) from Claim 8.4.2 yields 
∑m

j=0 ψ
(j)(1) = 1. By [45, Lemma 7.6] this gives a unital 

homomorphism ψ : Md → (AU ∩A′)αU , as desired. �
For the reader’s convenience, we reproduce the statement of Theorem B here.

Theorem 8.5. Let A be a separable, simple, nuclear, Z-stable unital C∗-algebra with non-empty trace space. 
Let G be a countable, discrete, amenable group, and let α : G → Aut(A) be an action. Suppose that ∂eT (A)
is compact, that dim(∂eT (A)) < ∞, that the orbits of the induced action of G on ∂eT (A) are finite with 
uniformly bounded cardinality, and that the orbit space ∂eT (A)/G is Hausdorff. Then α is cocycle conjugate 
to α⊗ idZ .

Proof. By Proposition 8.4, for every d ∈ N there exists a unital homomorphism

ϕ : Md → (AU ∩A′)α
U
.

The conclusion follows by the implication (3) ⇒ (4) in Theorem 7.6. �
We record the following immediate combination of Theorem 8.5 and Theorem 7.8.

Corollary 8.6. Let A be a separable, simple, nuclear, Z-stable unital C∗-algebra, let G be a countable, discrete, 
amenable group, and let α : G → Aut(A) be an action. Suppose that ∂eT (A) is compact, that dim(∂eT (A)) <
∞, that the orbits of the induced action of G on ∂eT (A) are finite with uniformly bounded cardinality, and 
that the orbit space ∂eT (A)/G is Hausdorff. Then the following are equivalent:

(1) α is strongly outer.
(2) α has the weak tracial Rokhlin property.
(3) when G is residually finite, α has finite Rokhlin dimension.
(4) when G is residually finite, we have dimRok(α) ≤ 2.

The difference between the above corollary and Theorem 7.8 is that here we do not assume that α absorbs 
idZ ; since ∂eT (A) is compact finite dimensional and ∂eT (A)/G is Hausdorff, this assumption follows from 
Theorem 8.5.
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