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A B S T R A C T

A backwards-tracking Lagrangian–Eulerian method is used to simulate planar viscoelastic squeeze flow. The
momentum and continuity equations are discretized with the finite volume method and implicit immersed
boundary conditions are used to describe objects in the domain. The viscoelastic squeeze flow, which involves
moving solid geometry as well as free surface flow, is chosen for its relevance in industrial applications,
such as adhesive parts assembly and hemming. The main objectives are to validate the numerical method for
such flows and to outline the grid resolution dependence of important flow quantities. The main part of the
study is performed with the Oldroyd-B model, for which the grid dependence is assessed over a wide range
of Weissenberg numbers. An important conclusion is that the load exerted on the solids can be predicted
with reasonable accuracy using a relatively coarse grid. Furthermore, the results are found to be in excellent
agreement with theoretical predictions as well as in qualitative resemblance with numerical results from the
literature. The effects of different viscoelastic properties are further investigated using the PTT model, revealing
a strong influence of shear-thinning for moderate Weissenberg numbers. Finally, a reverse squeeze flow is
simulated, highlighting important aspects in the context of adhesive joining applications.
. Introduction

Viscoelastic fluids appear in various industrial processes, including
olymer processing, additive manufacturing, seam sealing and adhesive
oining applications such as parts assembly and hemming. For adhe-
ive joining applications, the ability to test different joining concepts,
aterial combinations and geometry variations through numerical sim-
lations is a powerful tool for the development process. Robust and
fficient numerical methods are therefore needed, which predict the
low of the adhesive as well as the loads exerted on the product and the
roduction equipment. The numerical models typically need to involve
iscoelastic free surface flow which is driven by moving solids.

A common approach to viscoelastic flow simulation is to solve
quations in the Eulerian frame of reference. Many examples may be
ound in the literature, for example with the finite volume method
FVM) [1–3] or the finite element method (FEM) [4,5]. The Eulerian
rame is well-suited for diffusion-dominated problems, e.g. viscous flow
r heat and mass transfer. However, viscoelastic constitutive equations
re typically hyperbolic and lack physical diffusion. Therefore, intu-
tively the Lagrangian frame of reference provides a natural description
or the viscoelastic stress transport. Consequently, Lagrangian or semi-
agrangian methods constitute appealing alternatives to fully Eulerian
ethods. Examples of the Lagrangian approach include the Lagrangian

∗ Corresponding author at: Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, 412 88, Sweden.
E-mail address: simon.ingelsten@fcc.chalmers.se (S. Ingelsten).

FEM method by Rasmussen and Hassager [6] and the split Lagrangian–
Eulerian FEM method by Harlen et al. [7]. In both methods, the
computational mesh was deformed over the course of the simulation
and re-meshing was thus necessary. Another example is the Lagrangian
particle method (LPM) by Halin et al. [8]. The viscoelastic constitutive
equation was solved for massless particles in the flow and polynomial
reconstruction was used to calculate the viscoelastic stress terms in
the FEM used to solve the momentum equations. This imposed a
lower limit on the number of particles per element for the simulations
not to fail, and a fairly large number of particles was required for
stable simulations. The method was further developed into the more
adaptive ALPM by Gallez et al. [9] and the backward-tracking BLPM
by Wapperom et al. [10].

An important component in adhesive joining applications is non-
Newtonian squeeze flow. Phan Thien and coworkers studied squeezing
flows of viscoelastic fluids as early as in the 1980’s, motivated by its
implications for bearing lubrication in unsteady load conditions as well
as for measurement applications [11–13]. They developed a theoretical
framework, leading up to a set of partial differential equations which
could be solved numerically. Moreover, asymptotic solutions for the
load exerted on the solid geometries were derived in the limits of
small and large Weissenberg numbers, respectively. Debbaut et al. [14]
vailable online 1 January 2022
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performed axisymmetric simulations in the finite element-based flow
solver Polyflow [15] to investigate viscoelastic and non-isothermal
effects in squeeze flows, which are of interest e.g. for compression
molding applications. Shafahi and Ashrafi [16] later simulated the
flow of a shear-thinning fluid in a similar configuration using a fi-
nite volume method with a moving mesh scheme. Other numerical
studies on squeeze flows in general include e.g. Duwairi et al. [17]
and Kaushik et al. [18]. The former simulated non-isothermal flow
of a Newtonian fluid subject to simultaneous squeeze and extrusion
in a one-dimensional configuration. The latter more recently used a
similar configuration for the isothermal flow of an Oldroyd-B fluid.
An extensive summary on squeeze-flows was presented by Engmann
et al. [19].

In our previous research, a Lagrangian–Eulerian method for sim-
ulation of viscoelastic has been developed [20,21]. The viscoelastic
constitutive equation is solved in Lagrangian fluid elements and the
stresses are coupled to the momentum equation through unstructured
interpolation with radial basis functions. An improved formulation of
the method was later presented, based on backwards-tracking [22]. In
the new formulation, the storage locations for the viscoelastic stresses
are explicitly chosen. Consequently, the unstructured interpolation is
eliminated and the total number of Lagrangian nodes is reduced. In
the same study, the method was also extended to simulation of vis-
coelastic free surface flow with the volume of fluid (VOF) method.
The method is implemented in the software IPS IBOFlow® [23], a
finite volume-based flow solver developed at the Fraunhofer-Chalmers
Research Centre for Industrial Mathematics in Gothenburg, Sweden. In
addition to viscoelastic fluid flow, the solver has been employed for
simulation of free surface flow of shear thinning fluids with applications
for automotive seam sealing [24,25], adhesive application [26] and
3D-bioprinting [27], as well as for fluid–structure interaction [28] and
conjugated heat transfer [29–31].

In the current study, the backwards-tracking Lagrangian–Eulerian
method is used for viscoelastic squeeze flow with free surfaces and
moving solid geometry. The aim of the study is to validate the nu-
merical method for this type of flow, as well as to investigate the
dependency on grid resolution for prediction of certain quantities. A
quantity of particular interest is the load exerted by the viscoelastic
fluid on the solid objects. This property is important e.g. as the forces on
the product geometry or the production equipment during an adhesive
joining operation. In addition, accurate prediction of the load is crucial
for fluid–structure interaction (FSI) applications. Such an example is
hemming, for which it is necessary to include solid deformations in the
numerical model. Within the context of adhesive joining in general, and
hemming in particular, a study of the corresponding reverse squeeze
flow is also presented.

The rest of the paper is structured as follows. First the governing
equations are stated, followed by a presentation of the numerical
method. In the results section, a grid dependence study for a wide
range of Weissenberg numbers is presented for the viscoelastic squeeze
flow considered. The load exerted on the upper plate is then compared
for different viscoelastic fluids for the considered flows. Finally, the
conclusions are stated and an outlook is given.

2. Governing equations

The viscoelastic fluid flow is described by the incompressible mo-
mentum and continuity equations

𝜌
( 𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮
)

= −∇𝑝 + ∇ ⋅ (2𝜂𝑠𝐒 + 𝝉) + 𝐟 , (1)

∇ ⋅ 𝐮 = 0, (2)

where 𝜌 is density, 𝐮 velocity, 𝑝 pressure, 𝜂𝑠 solvent viscosity, i.e. the
Newtonian contribution to viscosity, 𝐒 = 1 (∇𝐮 + (∇𝐮)𝑇 ) the strain rate
2

2 o
Fig. 1. Two-dimensional grid with one refinement level, showing cell centers (×) and
grid nodes (∙).

tensor, 𝝉 viscoelastic stress and 𝐟 a body force. The viscoelastic stress
𝝉 is described by a constitutive equation of the form

𝜆
▽
𝝉 + 𝐹 (𝝉)𝝉 = 2𝜂𝑝𝐒, (3)

where 𝜆 is the relaxation time, 𝜂𝑝 polymeric viscosity and 𝐹 a scalar-

alued function which depends on which constitutive model is used.
▽
𝝉

is the upper-convected derivative of 𝝉 and expands to
▽
𝝉 = 𝐷𝝉

𝐷𝑡
− (∇𝐮)𝑇 ⋅ 𝝉 − 𝝉 ⋅ ∇𝐮, (4)

here 𝐷𝝉
𝐷𝑡 is the Lagrangian time derivative of 𝝉. While (3) and (4)

o not represent all viscoelastic constitutive models, they cover those
onsidered in the current work. These are the Oldroyd-B model [32]

(𝝉) ≡ 1, (5)

he linear-form PTT model [33]

(𝝉) =
(

1 + 𝜀𝜆
𝜂𝑝

Tr (𝝉)
)

, (6)

and the exponential-form PTT model

𝐹 (𝝉) = exp
(

𝜀𝜆
𝜂𝑝

Tr (𝝉)
)

. (7)

In (6) and (7), 𝜀 is a dimensionless parameter and Tr (𝝉) is the trace of
𝝉, i.e. the sum of its normal components. Note that for 𝜀 = 0 both forms
of the PTT model reduce to the Oldroyd-B model.

An alternative means to express the solvent viscosity and the poly-
meric viscosity is in terms of the total viscosity 𝜂tot = 𝜂𝑠 + 𝜂𝑝 and the
iscosity ratio

=
𝜂𝑠

𝜂𝑠 + 𝜂𝑝
. (8)

. Numerical method

The numerical method to simulate viscoelastic flow is presented
n condensed form in this section. A more detailed description of the
ackwards-tracking Lagrangian–Eulerian method is given in Ingelsten
t al. [22].

The momentum Eq. (1) and the continuity Eq. (2) are discretized
n a collocated Eulerian grid with the finite volume method and the
ressure–velocity coupling is solved with the SIMPLEC method [34].
he solver combines a Cartesian octree or quadtree background grid,
espectively for two or three dimensions, with implicit immersed bound-
ry conditions for internal objects in the computational domain [35,
6]. These objects can be arbitrarily located in the domain and do
ot need to align with the grid boundaries. The immersed boundary
onditions are enforced through implicit mirroring of the velocity field
nside the boundary surface. With the current approach, the handling
f moving objects is straightforward.
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Fig. 2. Schematic description of the steps involved in the backwards-tracking algorithm.
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Fig. 3. Wall treatment with extrapolation node (◦), fluid nodes (∙) wall and mirroring
cells (filled).

All grid generation is automatic and the background grid is adap-
tively refined close to the solid walls and at the fluid–fluid interface.
The grid is refined by recursively splitting cells in half in each di-
mension. In Fig. 1 an example of a two-dimensional grid with one
refinement level is shown.

The viscoelastic constitutive Eq. (3) is solved in Lagrangian fluid
elements, represented by nodes which are convected by the flow.
The viscoelastic stress in a fluid element is described by the ordinary
differential equation (ODE) system

𝐷𝝉
𝐷𝑡

=
2𝜂𝑝
𝜆

𝐒 − 1
𝜆
𝐹 (𝝉)𝝉 + (∇𝐮)𝑇 ⋅ 𝝉 + 𝝉 ⋅ ∇𝐮, (9)

which follows from (3) and (4). Furthermore, since the local velocity
gradient ∇𝐮 appears on the right hand side of (9), the trajectory of the
fluid element is required and is described by
𝐷𝐱
𝐷𝑡

= 𝐮, (10)

here 𝐱 is the position of the fluid element.
A backwards-tracking procedure, partly inspired by the BLPM by

apperom et al. [10], is used to solve (9) and (10). The essence of the
ethod is to explicitly choose the locations of the Lagrangian nodes at

he end of a simulation step a priori to coincide with the Eulerian grid
odes. Thus, the connectivity of the Eulerian grid can be utilized for
structured and robust procedure to calculate the viscoelastic stress

ontribution to the fluid momentum.
Consider the calculation of the viscoelastic stress for the 𝑛th simu-

ation time step, corresponding to 𝑡 ∈ 𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1]. For a Lagrangian
ode, the trajectory backwards in time is given by

(𝑡) = 𝐱(𝑡𝑛+1) − ∫

𝑡𝑛+1

𝑡
𝐮(𝑡′, 𝐱(𝑡′))𝑑𝑡′, 𝑡 ∈ 𝐼𝑛, (11)

here 𝐱(𝑡𝑛+1) is the position of the corresponding grid node. To cal-
ulate the new stress, the trajectory 𝐱(𝑡), 𝑡 ∈ 𝐼𝑛, is first calculated
umerically by solving (10) backwards in time. Next, the viscoelastic
tress 𝝉𝑛 = 𝝉(𝑡𝑛, 𝐱(𝑡𝑛)) is calculated from the previous stress field

using bilinear or trilinear interpolation, respectively for two or three
dimensions. The ODE system (9) is then solved forwards in time along
the calculated trajectory to obtain the new stress 𝝉𝑛+1 = 𝝉(𝑡𝑛+1, 𝐱(𝑡𝑛+1)).

The velocities 𝐮 are stored at the cell centers of the Eulerian grid and
are interpolated with bilinear or trilinear interpolation, respectively for
two or three dimensions, when required along the trajectories of the
Lagrangian nodes. Similarly, the local velocity gradient ∇𝐮 is calculated
3

d

from the interpolation formula using the same basis. Further details are
given in Ingelsten et al. [22].

A schematic description of the algorithm is shown in Fig. 2. In
summary, the performed steps are:

(a) Calculate the Lagrangian node trajectory by solving (10) back-
wards in time, starting at the Eulerian grid node at 𝐱(𝑡𝑛+1).

(b) Interpolate the stress 𝝉(𝑡𝑛, 𝐱(𝑡𝑛)) to the Lagrangian node from the
known stress field at time 𝑡𝑛.

(c) Solve (9) forwards in time along the trajectory 𝐱(𝑡), 𝑡 ∈ 𝐼𝑛.

Following previous work [22], the ODE systems (9) and (10) are
olved with the fourth order Runge–Kutta RK4 method [37] with

sub = 3 equidistant substeps per fluid time step. While the optimal
hoice of 𝑁sub is not investigated in detail, it has been validated that
larger number does not affect the results for the flows considered in

he current work.
Viscoelastic stresses in the vicinity of immersed boundary walls are

alculated through extrapolation. Cells for which the center is located
ithin half a cell length inside the immersed boundary are defined as
irror cells. In the Lagrangian stress algorithm, nodes which connect

oth mirroring cells and standard fluid cells are denoted extrapolation
odes. At such extrapolation nodes the constitutive equation is not
olved. Instead, the viscoelastic stress is linearly extrapolated from the
odes inside the fluid. A geometric illustration is shown in Fig. 3.

The presence of two immiscible fluids, i.e. the viscoelastic fluid and
Newtonian fluid, is modeled with the volume of fluid (VOF) method,
y solving the convection equation [38]
𝜕𝛼
𝜕𝑡

+ 𝐮 ⋅ ∇𝛼 = 0, (12)

here 𝛼 ∈ [0, 1] is the local volume fraction of viscoelastic fluid.
onsidering an Eulerian cell, for 𝛼 = 1 it is completely filled with
he viscoelastic fluid and for 𝛼 = 0 it is filled with the Newtonian
luid. If 𝛼 ∈ (0, 1) the cell intersects the interface between the two

fluids, demonstrating the inherent diffuse-interface properties of the
VOF method.

The finite volume method is used to discretize (12) on the Eulerian
grid and the convection term is discretized with the compact CICSAM
scheme [39]. The scheme is specifically designed to minimize the nu-
merical diffusion of 𝛼 and avoid smearing the fluid interface. Although
two fluids are involved, a single set of Eqs. (1), (2) and (3) is solved.
Local variations of fluid properties are accounted for through averaging
on the form

𝜙 = 𝛼𝜙𝑣 + (1 − 𝛼)𝜙𝑁 , (13)

where 𝜙𝑣 and 𝜙𝑁 represent the properties of the viscoelastic and the
Newtonian phase, respectively. This averaging is applied for the local
properties 𝜂𝑝, 𝜆 and 𝝉. When 𝛼 is required at a Lagrangian node, the
ame interpolation scheme as for the velocities is used. To further
mprove numerical stability at the fluid–fluid interface, which may arise
ue to large velocity gradients in the low-viscous Newtonian phase, the
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Fig. 4. Schematic of the squeezing flow between two plates. The gray area between the plates is initially filled with the viscoelastic fluid.
Fig. 5. The grid M1defined in Table 2 at 𝑡 = 0.
Fig. 6. Velocity components (a) 𝑢 and (6(b)) 𝑣 between the plates at 𝑥∕ℎ0 = 3 and 𝑡∗ = 0.05 calculated for Wi = 1 with the grids defined in Table 2.
ocal values of 𝜌 and 𝜂𝑠 are calculated with a modified version of (13),
eading

̃ = 𝛼̃𝜙𝑣 + (1 − 𝛼̃)𝜙𝑁 , (14)

here 𝛼̃ is a modified volume fraction, which is intentionally smoothed
n the Newtonian phase. For each computational cell, 𝛼̃ is calculated as

𝛼̃𝑖,𝑘 =

{

∑

𝑓 𝑐𝑓 𝛼̃𝑓,𝑘−1 if 𝛼𝑖 < 0.01
𝛼𝑖 if 𝛼 >= 0.01

(15)

here 𝛼̃𝑖,𝑘 is the smoothed volume fraction in the 𝑖th cell at the 𝑘th
moothing step, such that 𝛼̃𝑖,0 = 𝛼𝑖. The coefficient 𝑐𝑓 is the inverse cell
ength in the normal direction of face 𝑓 , normalized by the sum of the
nverse cell lengths over the faces. Two smoothing steps are used, such
4

hat 𝛼̃ = 𝛼̃2 in (14). The procedure is an efficient and computationally
cheap method to reduce the occurrence of large velocity gradients
due to the low-viscous Newtonian phase, as well as the sensitivity to
the large viscoelastic term in the momentum equation, near the fluid
interface. It is remarked that the sole purpose of 𝛼̃ is for the calculation
of 𝜌 and 𝜂𝑠. The volume fraction 𝛼 solved for remains unmodified.

Following previous work, two threshold volume fractions are de-
fined, denoted 𝛼lim,1 and 𝛼lim,2, respectively. Firstly, the viscoelastic
constitutive equation is only solved for Eulerian grid nodes at which
𝛼 > 𝛼lim,1. Secondly, cells for which 𝛼 ≤ 𝛼lim,2 are excluded from the
calculation of the local velocity gradient along the Lagrangian node
trajectories. The values 𝛼lim,1 = 0.1 and 𝛼lim,2 = 0.01 are used, and a
more detailed description is given in Ingelsten et al. [22].

To couple the viscoelastic stress to the fluid momentum, the stress
divergence is integrated over the fluid control volumes and added to

the discretized form of the momentum Eq. (1). At this stage the product
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Fig. 7. Viscoelastic normal stress 𝜏𝑥𝑥 between the plates at 𝑥∕ℎ0 = 3 and 𝑡∗ = 0.05 calculated for Wi = 1 with the grids defined in Table 2.
Fig. 8. Viscoelastic shear stress 𝜏𝑥𝑦 between the plates at 𝑥∕ℎ0 = 3 and 𝑡∗ = 0.05 calculated for Wi = 1 with the grids defined in Table 2.
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ule is applied, such that

⋅ (𝛼𝝉) = 𝛼∇ ⋅ 𝝉 + 𝝉 ⋅ ∇𝛼. (16)

his formulation may be interpreted as a separation of the pure in-
erfacial contribution of the stress divergence term and the remainder
art [40]. The first term of (16) is integrated with Gauss’ divergence
heorem as

c.v.
∇ ⋅ 𝝉𝑑𝑉 = ∫c.s.

𝐧̂ ⋅ 𝝉𝑑𝑆 =
∑

𝑓
∫f.s.

𝐧̂𝑓 ⋅ 𝝉𝑑𝐴, (17)

here c.v. denotes the control volume, c.s. the surface of the control
olume and 𝐧̂ the outwards surface normal. In the second step of (17)
he surface integral is divided into a sum of the integrals over the
espective cell faces 𝑓 , with f.s. denoting the face surface and for which
he normal 𝐧̂𝑓 is constant.

The face integrals are approximated with the trapezoidal rule using
he stresses at the Eulerian grid nodes. For cell faces adjacent to smaller
ells, e.g. as shown in Fig. 1, the sub-faces are integrated separately
uch that the stress at each grid node is included. The volume integral
f the second term in (16) is approximated with the cell average stress
nd volume fraction gradient as

c.v.
(𝝉 ⋅ ∇𝛼)𝑑𝑉 ≈ (𝝉 ⋅ ∇𝛼)𝛥𝑉 , (18)

where 𝛥𝑉 is the cell volume and (∙) denotes volume average. The
olume average 𝝉 is calculated from the stresses at the nodes and ∇𝛼 is
alculated with central differences. The threshold volume fraction 𝛼lim,2
s again applied, such that the viscoelastic contribution is assumed to
anish in cells for which 𝛼 < 𝛼lim,2 as they lie outside the viscoelastic
hase.
5

It is remarked that the division of the stress divergence integral in
16) and the following approximations in (17) and (18) are used as
he formulation has been found to enhance the numerical stability in
ombination with the threshold volume fractions 𝛼lim,1 and 𝛼lim,2.

To summarize the numerical method, the algorithm to simulate one
luid time step can be described as

1. Add the viscoelastic stress contribution to the discretized mo-
mentum equation.

2. Solve the momentum Eq. (1) and continuity Eq. (2) using SIM-
PLEC iterations.

3. Solve the transport of the fluid volume fraction 𝛼 from (12)
4. Solve the viscoelastic constitutive Eq. (3) using the backwards-

tracking procedure:

(a) Calculate Lagrangian node trajectory through backwards-
tracking.

(b) Interpolate initial viscoelastic stress from previous time
step.

(c) Solve constitutive equation forwards in time along La-
grangian node trajectory.

4. Results

Simulation results from the described numerical method are pre-
sented in this section. The main focus of the current study is a viscoelas-
tic squeeze flow. A brief study of the opposite case, in which the plate
moves in the opposite direction, is also presented. Both cases are highly
relevant for adhesive joining applications.

A schematic of the planar flow of a viscoelastic fluid squeezed
between two parallel plates is given in Fig. 4. The lower plate is
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Fig. 9. Viscoelastic normal stress 𝜏𝑦𝑦 between the plates at 𝑥∕ℎ0 = 3 and 𝑡∗ = 0.05 calculated for Wi = 1 with the grids defined in Table 2.
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stationary and the upper plate moves with constant downward velocity
𝑉 . The initial gap at 𝑡 = 0 is denoted ℎ0 and, hence, the gap ℎ varies
with time as

ℎ(𝑡) = ℎ0 − 𝑉 𝑡. (19)

The plates have a length of 𝐿 = 10ℎ0 in the 𝑥-direction and a
thickness of 2ℎ0 in the 𝑦-direction. The computational domain has a
otal length of 16ℎ0 in the 𝑥-direction and 3ℎ0 in the 𝑦-direction. An

outlet boundary condition with 𝑝 = 0 is imposed at the right domain
oundary while the upper and lower domain boundaries are treated as
alls with the no-slip condition. A symmetry condition is imposed at

he left domain boundary. Hence, the case effectively describes flow
etween plates of length 2𝐿. At the stationary lower plate and at the
oving upper plate the no-slip condition is imposed with the mirroring

mmersed boundary method.
A two-fluid flow is considered. At the start of the simulation the

luids are at rest and the gap between the plates is filled with the
iscoelastic fluid. The area to the right of the plates is filled with a
ewtonian gas, namely air with viscosity 𝜇air = 1.8205 ⋅ 10−5 Pa s and
ensity 𝜌air = 1.204 kg∕m3. The effect of surface tension is neglected,
s the primary focus is the viscoelastic effects. However, it is remarked
hat the current numerical framework has been employed to simulate
lows with surface tension in previous studies, including with dynamic
ontact angle models [41].

Following previous work [11,13], the Weissenberg number is de-
ined as

i = 𝜆𝑉
ℎ0

, (20)

nd the Reynolds based on the solvent viscosity number as

e =
𝜌𝑉 ℎ0
𝜂𝑠

. (21)

The majority of the study is performed with the Oldroyd-B model.
Simulations are also performed with the linear-form PTT model (6)
and the exponential-form PTT model (7). The parameters for the vis-
coelastic fluid and for the flow, as well as the dimensionless groups,
are summarized in Table 1. The physical parameters are representative
for the intended applications, e.g. adhesive joining. It is noted that the
density and viscosity ratios between the two phases are 𝜌∕𝜌air ≈ 831
and 𝜂tot∕𝜇air ≈ 5.5 ⋅ 108, respectively. Furthermore, it is remarked that
the range of Weissenberg numbers covers four orders of magnitude.

The results in this section are presented as normalized quantities
denoted by (∙)∗. Time is normalized by

𝑡 =
ℎ0
𝑉

, (22)

.e. the time it takes for the upper plate to fully close the gap with a
onstant velocity 𝑉 . Stress and pressure are normalized by

𝜏 =
𝜂𝑠𝑉 . (23)
6

ℎ0 M
Table 1
Parameters and dimensionless numbers used for
the viscoelastic squeeze flow.
Quantity Value

𝐿 0.1 m
ℎ0 0.01 m
𝑉 0.1 m∕s

𝜂tot 104 Pa s
𝛽 1∕9
𝜆 [0.001, 10] s
𝜀 [0, 0.5]

Wi [0.01, 100]
Re 0.0009

Fig. 10. Pressure along the gap at 𝑦∕ℎ = 1∕2 and 𝑡∗ = 0.05 calculated for Wi = 1 with
the grids defined in Table 2.

A goal of the current study is to gain insight on the requirements on
grid resolution to predict important flow quantities to a certain level of
accuracy. To assess this, a grid dependence study is carried out using
the Oldroyd-B model.

All grids used follow the same structure and are defined in terms of
the base cell size (𝛥𝑥max, 𝛥𝑦max), which is the size of the largest cells.

ells are refined for 𝑛ref levels near the walls of the upper and lower
lates as well as around the fluid interface for 0.05 < 𝛼 < 0.95. The
efinements are generated automatically and are adaptively updated
hroughout the simulation, as the upper plate and the fluid interface
oves. The grids used are summarized in Table 2. For all grids 𝑛ref = 2

nd 𝛥𝑥max = 2𝛥𝑦max. In Fig. 5 grid M1 is shown at 𝑡 = 0. In the grid
tudy, the flow is simulated for 0 ≤ 𝑡∗ ≤ 0.05 for Wi = 0.01, 1, 100
ith the grids defined in Table 2, resulting in a total of 12 simulations.
or all simulations, the time step 𝛥𝑡 was chosen such that 𝑉 𝛥𝑡∕𝑦min =
⋅ 10−4. To validate the step length, simulations with grid M2 and
3 has been repeated with half the step length. The results with the
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Fig. 11. Simulated forces calculated with the grids defined in Table 2.
Table 2
Grids used in the grid study.
Grid ℎ0∕𝛥𝑦max ℎ0∕𝛥𝑦min 𝑛ref

M1 5 20 2
M2 10 40 2
M3 20 80 2
M4 40 160 2

different step lengths overlap, confirming that the chosen step length
is sufficiently small.

In Fig. 6 the velocity components 𝑢 and 𝑣, respectively in the 𝑥-
and 𝑦-directions, are shown across the gap at 𝑥∕ℎ0 = 3 for Wi = 1
at 𝑡∗ = 0.05. The corresponding viscoelastic stresses 𝜏𝑥𝑥, 𝜏𝑥𝑦 and 𝜏𝑦𝑦 are
shown in Fig. 7, Fig. 8 and Fig. 9, respectively. For the stresses, zoomed
in views near the moving upper plate are also given. As indicated by
the small Reynolds number in Table 1, the inertial effects are small and
the flow features a symmetry about the center of the gap at 𝑦 = ℎ∕2.
For both the velocities and the stresses, the profiles obtained with the
different grids are close and tend towards the solution from the finest
grid M4 with increasing resolution. Observing at the zoomed scales,
slight differences between the results on the different grids are revealed
for the viscoelastic stresses near the wall. The solution from the coarsest
grid M1 particularly stands out, while those from the two finer grids
M3 and M4 practically overlap. Moreover, the results from grid M2 is
reasonably close to those from the two finest grids. The corresponding
results for Wi = 0.01 and Wi = 100 are very similar to those for Wi = 1
and can be found in the supplementary material.

In Fig. 10 the pressure profiles along the gap centerline 𝑦∕ℎ = 1∕2
obtained for Wi = 1 with the grids defined in Table 2 are shown. The
same trends observed for the velocities and stresses are found for the
7

pressure. At the scale of comparison, the pressure computed with the
Fig. 12. Calculated relative area error for the grids defined in Table 2 simulated with
Wi = 1.

different grids are close, particularly for those computed with the three
finest grids.

A quantity of particular interest, not the least in the context of e.g.
adhesive joining operations, is the load exerted by the viscoelastic fluid
on the solid parts. The load exerted by a fluid on an object is given by
the integral of the fluid stress over the object surface, as

𝐖 = ∫𝑆
(−𝑝𝐈 + 𝝉 + 2𝜂𝑠𝐒) ⋅ 𝐧̂𝑑𝑆, (24)

where 𝐧̂ is the local surface normal. The main contribution to the load
is that in the 𝑦-direction on the horizontal surface in the gap, for which
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Fig. 13. Snapshots of simulation for Wi = 1 with grid M3 showing the interface between the viscoelastic fluid (green) and the air (white) visualized by 𝛼 = 0.5.
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24) simplifies to

𝑦 = ∫

𝐿

0
(𝑝 − 𝜏𝑦𝑦 − 𝜂𝑝

𝜕𝑣
𝜕𝑦

)𝑑𝐿. (25)

Since the viscoelastic and the viscous terms respectively tend to zero at
the wall, the load is expected to be dominated by the fluid pressure 𝑝.
Note, however, that the loads presented in this section are all calculated
with (24).

In Fig. 11 the 𝑦-directional loads on the upper plate simulated with
the grids defined Table 2 for Wi = 0.01, 1, 100 are shown for 0 ≤ 𝑡∗ ≤
.05. At the scale of comparison, the loads predicted with all grids are
ery close and a zoomed in comparison is therefore given for each Wi.

Grid convergence is observed and the loads predicted with the two
inest grids M3 and M4 are very close for all three cases. Again, the
esults obtained with grid M2 are reasonably close to those from the
iner grids, particularly at the global scale of comparison in Fig. 11. This
bservation is important for engineering applications and industrial
cale cases, as computational cost is often a limiting factor. The ability
o obtain acceptable force predictions also for coarser grids, and thus
t a lower computational cost, is therefore a big advantage.

Mass conservation is briefly assessed in terms of the integrated area

𝑣 = ∫𝛺
𝛼𝑑𝐴 =

𝑁cells
∑

𝑖=1
𝛼𝑖𝐴𝑖, (26)

here 𝛺 denotes the computational domain, 𝑁cells the number of fluid
ells, 𝛼𝑖 the volume fraction in the 𝑖th cell and 𝐴𝑖 the area of the cell
hich is does not include any immersed boundaries. The relative error
ith respect to the initial area is calculated as 𝐸𝐴 = |𝐴𝑣∕𝐴0 − 1|, where
0 is the area at 𝑡 = 0. In Fig. 12 the area errors obtained for Wi = 1
ith the grids in Table 2 are shown for 𝑡∗ ∈ [0, 0.05]. Initially, the
rrors are extremely small, while they increase as the viscoelastic fluid
tarts to emerge from the gap. The slight difference in behavior between
he grids is likely due to the automatic grid adaptation, since the grid
pdates depend on the cell sizes. For grid M2 , for which simulations
ave also been performed for 𝑡∗ ∈ [0, 0.5], the maximum observed
rror is 0.062%. Thus, the observed mass errors are small and may be
8

ssumed to not affect the simulation outcome.
So far, the simulations have been carried out for time 0 ≤ 𝑡∗ ≤ 0.05.
urther on, results from longer simulations are also reported. The focus
s mainly on the load exerted on the upper plate and, given the results
rom the grid dependence study, the simulations are mainly carried out
ith grid M2 . In Fig. 13 snapshots of a simulation performed with grid
3 for Wi = 1 are shown, where the two fluid phases are visualized.
s the gap decreases due to the upper plate movement, a certain
mount of viscoelastic fluid is squeezed out and exhibits swelling. This
bservation highlights the relevance of including the two-fluid model
n the framework, as the presence of such effects may be of importance
or practical applications. The details of the swelling effect are not
iscussed in detail in the current work. However, it is noted that the
iscoelastic die swell effect has been previously simulated with the
urrent numerical method [22].

To validate the results obtained for the viscoelastic squeeze flow,
hey are compared to the theoretical predictions presented by Phan-
hien and coworkers [11,13]. They studied squeeze-film flow between
lates in planar and axisymmetric configurations for different viscoelas-
ic constitutive models. In their work, it was assumed that the velocities
and 𝑣 may be expressed as

(𝑡, 𝑦) = 𝑉 𝑓 (𝑡, 𝑦), (27)

(𝑡, 𝑥, 𝑦) = −𝑥𝑉
𝜕𝑓
𝜕𝑦

, (28)

here 𝑓 is a function. The expression (27) stems from the assumption
hat material planes which are initially parallel to the plates remain
arallel [19], such that 𝑣 is a function only of 𝑡 and 𝑦. Then (28) follows
rom the continuity Eq. (2).

Expressions for the load on the upper plate for the limiting cases
i → 0 and Wi → ∞ were obtained using perturbation theory. For the

omplete derivation, the reader is referred to the original work [12,13].
he resulting expressions used in the current work for comparison are
tated here for completeness. Assuming a plate moving with constant
elocity 𝑉 , the load on 0 ≤ 𝑥 ≤ 𝐿 for Wi → 0 is given by
𝑊𝑦 =

6(1 + 𝑏)
+ 51 Re + 𝑂

(

Re2,ReWi,Wi2
)

, (29)

𝑊𝑇 𝐻3 35 𝐻2
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Fig. 14. Velocity profiles across the gap for Wi = 1 at different horizontal positions at 𝑡∗ = 0.05, obtained with grid M3.
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nd for Wi → ∞
𝑊𝑦

𝑊𝑇
= 6

𝐻3
+ 51

35
Re
𝐻2

+ 𝑂
(

Re2, 1
Wi

)

, (30)

here 𝑊𝑇 = 2𝜂𝑠𝑉 𝐿3∕(3ℎ30), 𝐻 = ℎ∕ℎ0 and 𝑏 = 𝜂𝑝∕𝜂𝑠. In (29) and (30)
the plate length 𝐿 is assumed to be large, such that end effects may be
neglected.

It is noted that for this particular case, the only difference between
(29) and (30) is the influence of the viscosity ratio, through the ratio 𝑏 =
𝜂𝑝∕𝜂𝑠. Furthermore, the expressions (29) and (30) actually correspond
to the behavior of Newtonian fluids, with viscosity 𝜂𝑝 + 𝜂𝑠 and 𝜂𝑠,
espectively.

As a first validation, the velocity profiles between the plates are
hown at different locations in order to test the agreement with the
ssumptions (27) and (28). According to (27), the vertical velocity
rofile 𝑣 is a function only of 𝑡 and 𝑦. Similarly, according to (28) the
rofiles of 𝑢 divided by the horizontal coordinate 𝑥 is also a function
f only 𝑡 and 𝑦. Consequently, these profiles of at different horizontal
ocations are expected to overlap. In Fig. 14 the streamwise velocity 𝑢
ivided by the horizontal coordinate 𝑥∕ℎ0 and the vertical velocity 𝑦 are
hown across the gap between the plates for Wi = 1 at 𝑥∕ℎ0 = 1, 3, 5 and
∗ = 0.05. Clearly, the profiles overlap, indicating that the simulations
gree with (27) and (28). The corresponding results for Wi = 0.01 and
i = 100 are virtually identical and can be found in the supplementary
aterial.

In Fig. 15 the calculated loads on the upper plate for 0 ≤ 𝑡∗ ≤ 0.5
or Oldroyd-B fluids with Wi = 0.01, 0.1, 0.3, 1, 10, 100 are shown. The
imulations have been performed with grid M2 . The asymptotic loads
or Wi → 0 and Wi → ∞ are included for comparison. For Wi = 0.01,

the simulated load approaches the asymptotic curve for Wi → 0 after
short time. It is also noted that the initial period of rapid change

s on the order of the relaxation time. For Wi = 0.1, a similar initial
ransient during the first relaxation time is observed, before reaching a
ehavior which is similar to the asymptotic curve, however of different
agnitude. At the opposite end of Weissenberg number range, the

imulated load for Wi = 100 follows the asymptotic curve for Wi →
closely. Furthermore, the predicted load for Wi = 10 is relatively

lose to the load for Wi = 100. The results indicate that Wi ≤ 0.01
pproximately fulfills the condition Wi → 0, provided that the initial
ransient is ignored. Similarly, Wi → ∞ is approximately fulfilled for

Wi ≥ 100. As a remark, these results agree qualitatively with those
reported by Debbaut et al. [14] and by Phan-Thien et al. [13], who
reported the same trends for the corresponding axisymmetric flow.

The influence of different fluid properties is further tested through
a set of simulations with the PTT model, both in the linear form (6)
and in the exponential form (7). Due to the nonlinear nature of the
PTT model, it involves shear-thinning and is arguably a more suitable
model for many real-life viscoelastic fluids, compared to the Oldroyd-B
model.
9

Fig. 15. Predicted loads on upper plate for Oldroyd-B fluids simulated using grid M2,
as well as asymptotic loads (dashed lines) for Wi → 0 and Wi → ∞.

First, the Oldroyd-B model and the PTT model are compared for
ifferent Wi. In Fig. 16 the load on the upper plate simulated for
≤ 𝑡∗ ≤ 0.5 with the linear and exponential form PTT models are

ompared for Wi = 0.01, 1, 100 using 𝜀 = 0 and 𝜀 = 0.05. Note that
or 𝜀 = 0 the PTT model is identical to the Oldroyd-B model.

As expected, both forms of the PTT model yield smaller loads
than the corresponding Oldroyd-B model, due to the shear-thinning
properties. The effect is the most pronounced for Wi = 1, while for
Wi = 0.01 and Wi = 100, the loads are very close to those predicted
by the Oldroyd-B model. Furthermore, the shear-thinning is practically
negligible for 𝑡∗ < 0.1 but increases with time. The effect is stronger for
the exponential-form PTT model, since the nonlinear term 𝐹 (𝝉) grows
faster with the stress trace compared to linear-form PTT model. The
onset of shear-thinning also appears earlier for the exponential form.

In Fig. 17 the loads on the upper plate simulated for 0 ≤ 𝑡∗ ≤ 0.5 for
Wi = 1 using 𝜀 = 0, 0.05, 0.1, 0.25, 0.5. In consistency with the previous
observations, the shear thinning increases with time and is generally
stronger for the exponential form PTT model. The largest difference is
observed between 𝜀 = 0 and 𝜀 = 0.05 and the onset of shear-thinning
appears earlier for increasing 𝜀. Again, the effect is stronger for the
exponential form model.

While the current work is mainly focused on squeeze flow, the
opposite case, here referred to as reverse squeeze flow, is relevant for
adhesive joining applications as well. One example is the springback
effect in during the hemming process. In hemming applications, two



Journal of Non-Newtonian Fluid Mechanics 300 (2022) 104722S. Ingelsten et al.

[
s

Fig. 16. Simulated loads with for Wi = 0.01, 1, 100 calculated using grid M2 defined in Table 2 for (a) the linear form PTT model and (b) the exponential form PTT model.
Fig. 17. Simulated loads with for Wi = 1 calculated using grid M2 defined in Table 2 with (a) the linear form PTT model and (b) the exponential form PTT model.
Fig. 18. Illustration of hemming process.
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panels are first joined through assembly with an adhesive. This is fol-
lowed by a forming step, in which the outer panel is folded around the
inner panel. At this point, however, the outer panel may recover a part
of the deformation. This effect, commonly referred to as springback,
may impact the quality of the joint, e.g. by reducing the degree of filling
of adhesive. An illustration of the effect is given in Fig. 18.

In the current work, a conceptual representation of the adhesive
flow during springback is taken as the reverse squeeze flow for the
configuration in Fig. 4, with the upper plate now instead moving
upwards with velocity 𝑉 . To reveal the dependence on viscoelastic fluid
properties, the flow is simulated with the Oldroyd-B model and the
exponential-form PTT model with Wi = 0.01, 0.1, 0.3, 1, 10, 100 for 𝑡∗ ∈
0, 0.2] using grid M2 . For the PTT model, 𝜀 = 0.05 is used. In Fig. 19
napshots from the simulation with the Oldroyd-B model and Wi = 1
10

t

re shown. The increase of volume between the plates results in a
rastic change of geometry for the viscoelastic fluid even for a relatively
mall movement. In the context of hemming, this demonstrates how
pringback may impact e.g. the degree of filling in the joint.

The magnitude of the loads on the upper plate for the reverse
queeze flow, which act in the negative 𝑦-direction, are shown in
ig. 20. A similar spread between the different Weissenberg numbers
s for the squeeze flow previously studied is found, as well as initial
ransients which occur approximately during the first relaxation time
f the flow. With exception for the initial transient behavior, the loads
ecrease over time. As shown by the loads for the PTT model, the
ecrease is enhanced by shear thinning and is the most pronounced
or the moderate Weissenberg numbers. In the context of hemming,
his indicates a decreasing resistance to the springback. The simulations
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Fig. 19. Snapshots of reverse squeeze simulation for Wi = 1 with grid M2 showing the interface between the viscoelastic fluid (green) and the air (white) visualized by 𝛼 = 0.5.
Fig. 20. Simulated loads for reverse squeeze flow for the Oldroyd-B model (solid lines)
and for the exponential PTT model with 𝜀 = 0.05 (dashed lines) calculated using grid

2 defined in Table 2.

hus highlight, albeit on a conceptual level, how the viscoelastic fluid
roperties may directly impact adhesive joint quality.

. Conclusions

A backwards-tracking Lagrangian–Eulerian method has been em-
loyed to simulate planar viscoelastic squeeze flow, which involves
ree surfaces as well as moving solid boundaries. The flow is of high
ndustrial relevance and has important implications e.g. for adhesive
oining applications, such as parts assembly and hemming. The goal
f the study was to validate the numerical method for such flows, as
ell as to assess the grid requirements for prediction of important flow
uantities.

A grid dependence study was performed for a wide range of Weis-
enberg numbers, covering four orders of magnitude. It was found that
11
fairly high resolution is required to resolve the viscoelastic stress in the
gap due to steep gradients near the upper plate. However, in contrast
to this, an important conclusion was that the load exerted on the upper
plate can be predicted to reasonable accuracy with a relatively coarse
grid. This has important implications for engineering applications, since
the ability to qualitatively compare different fluid properties or flow
configurations to a low computational cost can be crucial to enable
the productive use of numerical simulations. Furthermore, in many
applications, detailed knowledge about the stress field in the gap
may be disregarded while the load exerted on the product production
equipment may be important.

The main part of the study was performed for the Oldroyd-B model.
The simulated results were validated by theoretical predictions from
the literature and were found to be in excellent agreement with the
available theory. Furthermore, they qualitatively resembled similar
numerical results from the literature for the Oldroyd-B model across the
wide range of Weissenberg numbers. The same flow was then simulated
with the linear- and exponential-form PTT models. The simulations
revealed a strong influence of shear-thinning for moderate Weissenberg
numbers, which increased with time. Finally, a reverse squeeze flow
was simulated as a simple representation of the springback effect
in hemming applications, demonstrating geometrical aspects of the
viscoelastic adhesive as well as the load on the upper plate. The simula-
tions highlighted how different viscoelastic fluid properties may impact
the quality of adhesive joints on a conceptual level. More importantly,
the results indicated that similar results for industrial cases may be
valuable in the production design process.

Although simple in concept, the studied flows involve complex
combinations of shear and extensional flow of a viscoelastic fluid. A
majority of numerical methods for fluid flow simulations involve a body
conforming discretization. Hence, treatment of moving geometries may
result in a distorted mesh due to deformation, or require advanced
techniques such as moving meshes. In contrast, applying the current
method for more complex cases is fairly straightforward, due to the
combination of the immersed boundary method and the adaptive oc-
tree grid. The current study has therefore strongly indicated a great
potential towards real, industrial applications. In future research, the
numerical framework will be utilized for industrial adhesive joining



Journal of Non-Newtonian Fluid Mechanics 300 (2022) 104722S. Ingelsten et al.
applications such as parts assembly and hemming, which include more
complex geometries as well as viscoelastic fluids.
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