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Abstract
Purpose The aim of this study was to develop and validate an artificial intelligence (AI)-based method using convolutional 
neural networks (CNNs) for the detection of pelvic lymph node metastases in scans obtained using  [18F]PSMA-1007 positron 
emission tomography-computed tomography (PET-CT) from patients with high-risk prostate cancer. The second goal was 
to make the AI-based method available to other researchers.
Methods [18F]PSMA PET-CT scans were collected from 211 patients. Suspected pelvic lymph node metastases were marked 
by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. 
The performance of the AI method and the inter-observer agreement between the three readers were assessed in a separate 
test group of 50 patients.
Results The sensitivity of the AI method for detecting pelvic lymph node metastases was 82%, and the corresponding sensi-
tivity for the human readers was 77% on average. The average number of false positives was 1.8 per patient. A total of 5–17 
false negative lesions in the whole cohort were found, depending on which reader was used as a reference. The method is 
available for researchers at www. recom ia. org.
Conclusion This study shows that AI can obtain a sensitivity on par with that of physicians with a reasonable number of 
false positives. The difficulty in achieving high inter-observer sensitivity emphasizes the need for automated methods. On 
the road to qualifying AI tools for clinical use, independent validation is critical and allows performance to be assessed in 
studies from different hospitals. Therefore, we have made our AI tool freely available to other researchers.
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Introduction

Prostate cancer is the most common malignancy in men, 
and correct staging of the disease is important for the 
selection of appropriate treatment strategies. Prostate-spe-
cific membrane antigen (PSMA)-ligand positron emission 
tomography-computed tomography (PET-CT) imaging has 
recently been introduced for primary staging of high-risk 
prostate cancer patients with biochemical recurrence. The 
method has been shown to be more sensitive and accurate 
than the conventional imaging standard of CT and bone 
scan [1–4].

The interpretation of PET-CT scans relies heavily on 
visual analysis, where suspected malignant lesions are 
detected by a nuclear medicine physician or radiologist. 
Despite efforts to standardize the interpretation of PSMA 
PET-CT scans [5–7], both intra- and inter-observer disa-
greements have been found, even in single-centre studies 
[8, 9]. Therefore, there is an unmet need to interpret PSMA 
PET-CT scans objectively to increase reproducibility.

Artificial intelligence (AI) can be trained to help with 
the detection of metastases. A few attempts to identify or 
quantify tumours in PSMA PET-CT scans have been made 
[10–14]. Recently, automated prostate molecular imaging 
standardized evaluation (aPROMISE) software was devel-
oped. This CE-marked and FDA-approved software uses 
deep learning technology to segment organs in CT scans 
and classical image analysis methods to detect tumours in 
 [18F]DCFPyL PET-CT scans [10]. The software has high 
overall high sensitivity in detecting potential lesions, but 
there are a large number of false positive lesions per patient, 
which limits the efficiency for interpreting physicians. Thus, 
the aim of the present study was to develop and validate an 
AI-based tool for the detection of pelvic lymph node metas-
tases in  [18F]PSMA PET-CT. A secondary aim was to make 
the AI-based method freely available to other researchers.

Material and methods

Patients and imaging

The study included 211 patients who were referred for 
clinically indicated  [18F]PSMA-1007 PET-CT for initial 
staging due to high-risk prostate cancer at Skåne Univer-
sity Hospital, Lund and Malmö, Sweden, from December 
2019 to March 2020. Patients were administered 4 MBq/
kg  [18F]PSMA-1007, and after 120 min, they were scanned 
on a Discovery MI PET-CT (GE Healthcare, Milwaukee, 
WI). The patients were scanned from the mid-thigh to the 
base of the skull.

Scans were acquired for 2 min/bed position. The PET 
scans were reconstructed using a block-sequential regulari-
zation expectation maximization algorithm (Q.Clear; GE 
Healthcare, Milwaukee, WI), including time-of-flight and 
point spread function modelling with a 256 × 256 matrix 
(pixel size 2.7 × 2.7  mm2, slice thickness 2.8 mm) and a 
beta factor of 800 [15]. CT scans were acquired for attenu-
ation correction of the PET scans and anatomic correla-
tion. A diagnostic CT with intravenous and oral contrast 
was performed.

Tube current modulation was applied by adjusting the 
tube current for each individual with a noise index of 37.5 
and a tube voltage of 100 kV, and the slice thickness was 
0.625 mm. The CT used for attenuation correction was 
acquired in the late venous phase, and an adaptive statisti-
cal iterative reconstruction technique was applied. The study 
was conducted according to the principles expressed in the 
Declaration of Helsinki and approved by the local research 
ethics committee at Lund University (#2016/417 and 
#2018/753). All patients provided written informed consent.

Manual segmentations for training

Three physicians (readers A, B, and C) independently seg-
mented suspected lymph node metastases below the aortic 
bifurcation (defined as “pelvic” in this article) in the  [18F]
PSMA PET-CT scans. The readers have substantial experi-
ence in PET-CT reading (two with > 10 years and one with 
7 years of PET-CT experience, and all with > 3 years of  [18F]
PSMA PET-CT experience). The cloud-based annotation 
platform RECOMIA (https:// www. recom ia. org) was used 
for the manual segmentations and includes basic display 
features for PET-CT scans and segmentation tools [16]. 
Lymph nodes were graded according to E-PSMA guidelines 
[17]. Grade 1–2 lymph nodes were considered benign, while 
grade 4–5 were considered pathological. Grade 3 was con-
sidered pathological when deviating from known patterns 
of unspecific uptake such as low–intermediate uptake along 
the external iliac vessels. From the full set, 50 scans with 
three manual segmentations each were used as a test set. The 
remaining 161 scans were divided into a training set (125 
scans) and a validation/tuning set (36 scans).

AI tool

The AI tool is based on a UNet3D convolutional neural 
network (CNN) [18] that is trained to classify each pixel 
as either background or lymph node metastasis. Similar to 
a previous study [19], the input to the CNN consists of a 
CT image, standardized uptake value (SUV) image, and an 
organ mask, which is created using an organ segmentation 
network [16]. The organ mask has three channels, which 
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encode (1) the prostate and urinary bladder, (2) gastrointes-
tinal tract, and (3) any bone.

Training the network

A convolutional neural network is trained by feeding anno-
tated image patches to the network, while trying to minimize 
a loss function measuring the difference between the net-
work output and the manual annotations. In this work, the 
categorical cross entropy loss was used and minimization 
was performed using a variant of stochastic gradient descent. 
Each training batch consists of 8 patches with dimensions 
of 100 × 100 × 100 pixels, which are chosen such that 60% 
are centred on a pixel marked as lymph node metastasis. 
Pixels above the aortic bifurcation are ignored. An epoch is 
defined as 2500 batches for the training set and 500 batches 
for the validation set.

As mentioned, there are three independent manual seg-
mentations for each study. During training, these are essen-
tially treated as three different images. However, to favour 
high sensitivity, no loss is assigned to background pixels 
if one of the other readers has marked them as metastasis.

Hard examples After 50 epochs or when the validation loss 
has not improved for 10 epochs, the training is halted, and 
the current model is used to generate a segmentation for each 
image. From this segmentation, up to 20,000 incorrectly 
labelled pixels are marked as hard examples. The training 
is restarted but with 20% of the samples chosen from among 
the hard examples. This procedure is repeated four times.

Implementation details Optimization was performed with 
the Adam method [20] with Nesterov momentum. To avoid 
overfitting, we used early stopping, dropout with a rate of 
25%, and l2 regularization with a weight of 0.001. Input 
patches were augmented using rotation of − 0.15 to 0.15 
radians, scaling of − 10 to 10%, and intensity shifts of − 100 
to + 100 HU for the CT image and − 0.5 to + 0.5 for the SUV 
image.

Post‑processing

Pixels above the aortic bifurcation are automatically set to 
background using the same organ segmentation method [16] 
that was used to create the input mask.

Statistical analysis

True positive lesions for AI or a reader, respectively, were 
defined as either full or partial segmentation overlap with 
another reader used as reference, or else they were con-
sidered false negative. Lesions detected by AI or a reader 
without segmentation overlap with another reader used as 
reference were considered false positive. The sensitivity 
was calculated as the proportion of suspected lymph node 
metastases detected by the AI method or a reader out of 
those detected by a reader used as reference. Figure 1 shows 
an example, where reader A is first used as a reference, fol-
lowed by reader B, giving different values of sensitivity. The 
positive predictive value was calculated as the proportion 
of true positive lesions for AI or a reader when compared 
to another reader used as reference, divided by true posi-
tive plus false positive lesions when compared to the same 
reference reader. For all analyses, each of the three readers 
was alternately used as a reference and pairwise compared to 
either AI or another reader, and the average and range of all 
pairwise combinations were calculated. The specificity and 
negative predictive value cannot be calculated on a lesion 
basis since it is not possible to calculate non-malignant 
lesions not detected by either method.

Results

The AI model had 76–90% sensitivity (average 82%) for the 
detection of suspected pelvic lymph node metastasis on a 
lesion level when considering each of the three readers as a 
reference (Table 1, Fig. 2). When each reader was alternately 
used as a reference and tested against the other readers, the 

Fig. 1  Example of how sensitivity was calculated using different 
readers as a reference. In this case, reader B detects 2/3 of the lesions 
marked by reader A, giving a sensitivity of 67%, whereas reader A 

detects both lesions marked by reader B, giving a sensitivity of 100%. 
Similarly, the AI model has a sensitivity of 67% with reader A as a 
reference and 50% with reader B as a reference



 European Journal of Nuclear Medicine and Molecular Imaging

1 3

average sensitivity was 77% (range 55–98% depending on 
which of the readers that was used as a reference vs. test). 
Thus, the sensitivity for the AI model was well in the inter-
reader range. Table 1 also shows the number of false posi-
tive lesions and the total number of false negative lesions 
detected by the AI model with each reader as a reference. As 
shown, the number of false positives on a patient level was 
low (mean 1.8 false positives per patient).

Detailed analysis of false positive and negative 
lesions with reader A as a reference

False positive lesions were most often found in pelvic 
lymph nodes (not marked as suspected metastases by any 
reader) or in the gastrointestinal tract. A few false positive 
lesions were also found in areas of high PSMA uptake 
located in the prostate, seminal vesicles, or bone. The 
detailed analysis for reader A showed a total of 92 uptakes 
detected by the AI model but not by reader A (false posi-
tives), of which 13 were located in a suspected tumour in 
prostate/seminal vesicles, 35 were in pelvic lymph nodes 
not marked by the reader, 35 were in the gastrointestinal 
tract, 1 was in a suspected bone metastasis, and 8 were in 
other locations.

False negative lesions (lesions marked as lymph node 
metastases by a reader that were missed by the AI model) 
were often found in presacral/mesorectal lymph nodes. For 
example, of the 5 false negative metastases when consider-
ing reader A as ground truth, 3 were located in the presa-
cral area. Figures 3, 4, and 5 show representative findings 
of true positive, false negative, and false positive lymph 
node metastasis. The AI tool has been made freely avail-
able for researchers at www. recom ia. org or by e-mailing 
contact@recomia.org.

Table 1  True and false positives (TP/FP), false negatives (FN), sen-
sitivity, and positive predictive value (PPV). The number of true/false 
positives is shown for the whole test group and per patient for AI vs. 
reader and reader vs. reader (average and range; where one reader at 
a time was used as a reference). Sensitivity and PPV are similarly 
shown as the average and range when one reader at a time was used 
as a reference

n = 50 patients AI vs. reader Reader vs. reader

TP
-Total
-Per patient

46.0 (39.0–54.0)
0.9 (0.8–1.1)

42.3 (38.0–49.0)
0.9 (0.8–1.0)

FP
-Total
-Per patient

91.3 (80.0–102.0)
1.8 (1.6–2.0)

14.0 (1.0–32.0)
0.3 (0.02–0.6)

FN 10.3 (5.0–17.0) 14.0 (1.0–32.0)
Sensitivity (%) 82.4 (76.1–90.0) 77.3 (54.9–98.0)
PPV (%) 33.6 (27.7–40.3) 77.6 (56.8–97.9)

Fig. 2  Sensitivity of the AI 
model and between readers 
when using reader A, reader 
B, and reader C as a reference, 
respectively

Fig. 3  The two long arrows 
indicate lymph node metastases 
detected by all readers and the 
AI model (true positives). The 
short arrow shows a lymph 
node marked as a metastasis by 
reader B (false negative when 
reader B is ground truth) but not 
by reader A, reader C, or the AI 
model

http://www.recomia.org
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Discussion

In this study, we developed and validated an AI-based 
method for the detection of pelvic lymph node metastases 
in  [18F]PSMA-1007 PET-CT scans in patients with high-risk 
prostate cancer who were referred for initial staging. The 
AI model had rather high sensitivity (average 82%, range 
76–90% depending on which of the three readers that was 
used as a reference). The sensitivity of the AI model was 
well in the inter-observer range for the three readers (average 
77%, range 55–98% depending on which of the three readers 
that was used as a reference). The AI model had an average 
of only 1.8 false positive lesions per patient.

Current imaging techniques, including PET-CT, are 
challenged by time-consuming manual analysis and issues 
with inter-reader agreement. Despite attempts to standard-
ize reporting of PSMA PET/CT scans, there is still intra- 
and inter-reader disagreement, even from single centres 
[8, 9]. The readers in this study were well experienced but 
despite the fact, inter-reader agreement was not perfect. 
The results support the need for a tool to help reduce this 
problem. In many countries, there is also a lack of trained 
nuclear medicine physicians or radiologists to analyse 
the scans. Furthermore, it has been shown that tumour 
burden and the corresponding therapeutic radioligand 
dose received by the tumour correlate with the treatment 
response of PSMA-directed radioligand therapy [21].

PSMA radionuclide therapy is typically offered to 
patients with multiple metastases where it is impractical 

and time consuming to manually delineate all lesions. 
Therefore, there is a need for fast, automated, objective, 
and reproducible image analysis. AI tools offer an inter-
esting opportunity to improve reproducibility as well as 
reading times for PET-CT analysis.

A high number of false positive detections has been a 
major clinical limitation for clinical AI tools in mammogra-
phy and lung imaging, as well as for PSMA PET-CT. It can 
be time consuming for physicians to review and dismiss a 
large number of false positive detections, and there is also 
a risk that it could lead to decreased specificity [22]. There-
fore, the low number of false AI detections of pelvic lymph 
nodes in this study (1.8 per patient) was encouraging.

A recent paper by Johnsson et al. [10] found a sensitivity 
of just over 90% for automated detection of pelvic lymph 
node metastases for  [18F]DCFPyL PET-CT imaging. How-
ever, on average, there were 19.5 false positive pelvic lesions 
per patient (compared with 1.8 in our study) and 90.5 false 
positive lesions per patient when extra-pelvic lymph nodes 
were also detected. Another study by Zhao et al. [11] also 
aimed to develop an AI-based method for the detection of 
pelvic bone and lymph node lesions on  [68 Ga]Ga-PSMA-11 
PET-CT scans and found 90% sensitivity for the detection of 
pelvic lymph node metastases. They did not state the number 
of false positive uptakes. They only considered the pelvic 
region of the scans (small field of view) and used a patient 
cohort with considerably more metastases than ours, making 
the two studies difficult to compare.

One might wonder whether complicated methods such as 
CNNs are needed to detect metastases accurately or whether 

Fig. 4  The long arrow shows a 
lymph node metastasis detected 
by all readers and the AI model 
(true positive). The short arrow 
shows a lymph node metastasis 
marked by all readers but not 
detected by the AI model (false 
negative)

Fig. 5  The arrows show lymph 
nodes detected as suspected 
metastases by the AI model and 
by reader B (true positive when 
reader B is ground truth), but 
not by readers A and C (false 
positives when these readers are 
ground truth; regarded as unspe-
cific uptake by these readers)
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it is sufficient to use simple thresholds. Recent studies have 
used SUV thresholds above 3.0 or 4.3 for detecting lesions 
[12, 13]. Johnsson et al. [10] investigated these thresholds 
in a patient cohort and found a significant drop in sensitiv-
ity. For comparison, we applied a SUV threshold of 3.0 to 
our material, which resulted in a very high number of false 
positive lesions that the readers did not select, on average 
19.9 per patient (range 19.6–20.1 depending on which reader 
was used as reference). This is over 10 times more compared 
to our method which supports the application of AI. It is 
also well known that the use of different PET-CT scanners, 
acquisition protocols, and reconstruction algorithms results 
in different SUV, especially in small lesions [23], which may 
limit the usefulness of SUV thresholds.

The limitations of this study include the relatively small 
number of PET-CT scans and that all studies and readers 
came from a single centre. We also did not have any external 
validation, such as verification of lymph node metastases 
by histopathology. Only 21 of the 211 patients in the study 
underwent extended pelvic lymph node dissection after the 
PET-CT scan, 6 of which in the test group. The study was 
also based on only one of several available PSMA trac-
ers. The performance of the AI tool needs to be evaluated 
in PET-CT scans based on other PSMA tracers as well as 
on studies performed at other hospitals. In one of the next 
steps, an AI model will be trained to detect lymph node 
metastases outside the pelvis as well as primary tumours 
and bone metastases. Furthermore, it will include PET-
CT scans acquired at both 1 and 2 h after injection of the 
radiopharmaceutical.

Conclusion

This study has shown that AI can obtain a sensitivity that is 
well within the inter-observer range with a reasonable num-
ber of false positives per patient. The difficulty in achieving 
high inter-observer sensitivity emphasizes the need for auto-
mated methods, especially for new or unusual tracers. On the 
road to qualifying AI tools for clinical use, independent vali-
dation is critical for allowing performance to be assessed in 
studies from different patients and clinical settings. Thus, we 
have made our AI tool freely available to other researchers 
at www. recom ia. org or by e-mailing contact@recomia.org.
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