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Abstract: A new domain decomposition method for Maxwell’s equations in conductive media is
presented. Using this method, reconstruction algorithms are developed for the determination of
the dielectric permittivity function using time-dependent scattered data of an electric field. All
reconstruction algorithms are based on an optimization approach to find the stationary point of
the Lagrangian. Adaptive reconstruction algorithms and space-mesh refinement indicators are also
presented. Our computational tests show the qualitative reconstruction of the dielectric permittivity
function using an anatomically realistic breast phantom.
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1. Introduction

In this work are presented reconstruction algorithms for the problem of the deter-
mination of the spatially distributed dielectric permittivity function in conductive media
using scattered time-dependent data of the electric field at the boundary of the investigated
domain. Such problems are called Coefficient Inverse Problems (CIPs). A CIP for a sys-
tem of time-dependent Maxwell’s equations for an electric field is a problem regarding
the reconstruction of the unknown spatially distributed coefficients of this system from
boundary measurements.

One of the most important applications of the algorithms of this paper is microwave
imaging, including microwave medical imaging and the imaging of improvised explosive
devices (IEDs). Potential applications of the algorithms developed in this work are in
breast cancer detection. In the numerical examples of the current paper, we focus on
the microwave medical imaging of a realistic breast phantom provided by an online
repository [1]. In this work, we develop simplified versions of reconstruction algorithms,
which allow us to determine the dielectric permittivity function under the condition that the
effective conductivity function is known. Currently, we are working on the development of
similar algorithms for the determination of both spatially distributed functions, dielectric
permittivity and conductivity, and we are planning a report about the obtained results in
the near future.

Microwave medical imaging is non-invasive imaging. Thus, it is a very attractive
addition to the existing imaging technologies, such as X-ray mammography, ultrasound
and MRI imaging. It makes use of the capability of microwaves to differentiate among
tissues based on the contrast in their dielectric properties. In [2] were reported different
malign-to-normal tissue contrasts, revealing that malign tumors have a higher water/liquid
content and, thus, higher relative permittivity and conductivity values than normal tissues.
The challenge is to accurately estimate the relative permittivity of the internal structures
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using the information from the backscattered electromagnetic waves of frequencies around
1 GHz collected at several detectors.

Since the 1990s, quantitative reconstruction algorithms based on the solution of CIPs
for Maxwell’s system have been developed to provide images of the complex permittivity
function; see [3] for 2D techniques, [4–7] for 3D techniques in the frequency domain
and [8,9] for time-domain (TD) techniques. In all these works, microwave medical imaging
remains the research field and has little clinical acceptance [10] since the computations
are inefficient, take too long and produce low contrast values for the inside inclusions. In
all the above-cited works, local gradient-based mathematical algorithms use frequency-
dependent measurements, which often produce low contrast values of inclusions and miss
small cancerous inclusions. Moreover, computations in these algorithms are done often in
MATLAB, sometimes requiring around 40 h for the solution of inverse problems.

It is well known that CIPs are ill-posed problems [11–14]. The development of
non-local numerical methods is the main challenge in the solution of such problems.
In works [15–18], the authors developed and numerically verified a new, non-local, approx-
imately globally convergent method for the reconstruction of the dielectric permittivity
function. The two-stage global adaptive optimization method was developed in [15] for the
reconstruction of the dielectric permittivity function. The two-stage numerical procedure
of [15] was verified in several works [16–18] on experimental data collected by the mi-
crowave scattering facility. The experimental and numerical tests of the above-cited works
show that the developed methods provide accurate imaging of all three components of
interest in the imaging of targets: shapes, locations and refractive indices of non-conductive
media. In [7]—see also the references therein—the authors show the reconstruction of the
complex dielectric permittivity function using the convexification method and frequency-
dependent data. Potential applications of all the above-cited works are in the detection and
characterization of improvised explosive devices (IEDs).

The algorithms of the current work can efficiently and accurately reconstruct the
dielectric permittivity function in conductive media using time-dependent measurements of
the electric field for one concrete frequency using single-measurement data generated by a
plane wave. A plane wave can be generated by a horn antenna, as was done in experimental
works [16–18]. We are aware that the conventional measurement configuration for the
detection of breast cancer consists of antennas placed on the breast skin [5,8,10,19,20].
In this work, we use another measurement set-up: we assume that the breast is placed
in a coupling media and then one component of a time-dependent electric plane wave
is initialized at the boundary of the media. Then, scattered data are collected at the
transmitted boundary. These data are used in the reconstruction algorithms developed in
this work. Such an experimental set-up allows us to avoid multiple measurements and
overdetermination since we are working with data resulting from a single measurement.
An additional advantage is that, in the case of single-measurement data, one can use the
method of Carleman estimates [21] to prove the uniqueness of the reconstruction of the
dielectric permittivity function.

For the numerical solution of Maxwell’s equations, we have developed a finite el-
ement/finite difference domain decomposition method (FE/FD DDM). This approach
combines the flexibility of the finite elements and the efficiency of the finite differences
in terms of speed and memory usage, as well as fitting the best for the reconstruction
algorithms of this paper. We are unaware of other works that use a similar set-up for the
solution of CIPs for time-dependent Maxwell’s equations in conductive media solved via
FE/FD DDM, so this is the first work on this topic.

An outline of the work is as follows: in Section 2, we present the mathematical
model, and in Section 3, we describe the structure of domain decomposition. Section 4
presents the reconstruction algorithms, including the formulation of the inverse problem,
derivation of finite element and finite difference schemes, together with the optimization
approach for the solution of the inverse problem. Section 5 shows numerical examples of
the reconstruction of the dielectric permittivity function of an anatomically realistic breast
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phantom at frequency 6 GHz from an online repository [1]. Finally, Section 6 discusses the
obtained results and future research.

2. The Mathematical Model

Our basic model is given in terms of the electric field E(x, t) = (E1, E2, E3)(x, t), x ∈ R3,
changing in the time interval t ∈ (0, T), under the assumption that the dimensionless
relative magnetic permeability of the medium is µr ≡ 1. We consider the Cauchy problem
for the Maxwell equations for electric field E(x, t), further assuming that the electric volume
charges are equal to zero, to obtain the model equation for x ∈ R3, t ∈ (0, T].

1
c2 εr

∂2E
∂t2 +∇×∇× E = −µ0σ

∂E
∂t

,

∇ · (εE) = 0,

E(·, 0) = f0,
∂E
∂t

(·, 0) = f1.

(1)

Here, εr(x) = ε(x)/ε0 is the dimensionless relative dielectric permittivity and σ(x) is the
effective conductivity function; ε0, µ0 are the permittivity and permeability of the free space,
respectively, and c = 1/

√
ε0µ0 is the speed of light in free space.

We are not able to numerically solve the problem (1) in the unbounded domain, and
thus we introduce a convex bounded domain Ω ⊂ R3 with boundary ∂Ω. For the numerical
solution of the problem (1), a domain decomposition finite element/finite difference method
is developed and summarized in Algorithm 1.

Algorithm 1: The domain decomposition algorithm.
1: On the structured part of the mesh ΩFDM, where FDM is used, update the finite

difference (FD) solution at nodes ω+ and ω�.
2: On the unstructured part of the mesh ΩFEM, where FEM is used, update the finite

element (FE) solution at nodes ω∗ and ωo.
3: Copy the FE solution obtained at nodes ω� as a boundary condition for the FD solution

in ΩFDM.
4: Copy the FD solution obtained at nodes ωo as a boundary condition for the FE solution

in ΩFEM.

A domain decomposition means that we divide the computational domain Ω into
two subregions, ΩFEM and ΩFDM, such that Ω = ΩFEM ∪ ΩFDM with ΩFEM ⊂ Ω; see
Figure 1. Moreover, we additionally decompose the domain ΩFEM = ΩIN ∪ΩOUT with
ΩIN ⊂ ΩFEM such that functions εr(x) and σ(x) of Equation (1) should be determined
only in ΩIN; see Figure 2. When solving the inverse problem this assumption allows
stable computation of the unknown functions εr(x) and σ(x) even if they have large
discontinuities in ΩFEM.

The communication between ΩFEM and ΩFDM is arranged using a mesh overlapping
through a two-element-thick layer around ΩFEM; see the elements in the blue color in
Figure 1a,b. This layer consists of triangles in R2 or tetrahedrons in R3 for ΩFEM, and of
squares in R2 or cubes in R3 for ΩFDM.

The key idea with such a domain decomposition is to apply different numerical
methods in different computational domains. For the numerical solution of (1) in ΩFDM, we
use the finite difference method on a structured mesh. In ΩFEM, we use finite elements on a
sequence of unstructured meshes Kh = {K}, with elements K consisting of tetrahedrons in
R3, satisfying the minimal angle condition [22].
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ΩIN

ΩOUT

(a) Ω = ΩFEM ∪ΩFDM (b) ΩFEM = ΩIN ∪ΩOUT (c) ΩFDM

Figure 1. Domain decomposition and mesh discretization in Ω. The domain Ω presented on (a) is a
combination of the quadrilateral finite difference mesh ΩFDM presented on (c), and the finite element
mesh ΩFEM presented on (b).

(a) Ω = ΩFEM ∪ΩFDM (b) Ω = ΩFEM ∪ΩFDM

Figure 2. Coupling between ΩFEM and ΩFDM. The nodes of the FE/FD mesh of (a) are presented
also on (b) as sets of following nodes: ωo (green circles), ω� (blue diamonds), ω∗ (green stars), ω+

(red pluses), ωx (blue crosses). These sets are described in the domain decomposition algorithm.

We now describe the domain decomposition method between two domains ΩFEM and
ΩFDM where FEM is used for computation of the solution in ΩFEM, and FDM is used in
ΩFDM, see Figures 1, 2. Overlapping nodes between ΩFDM and ΩFEM are outlined in Figure

Figure 1. Domain decomposition and mesh discretization in Ω. The domain Ω presented in (a) is a
combination of the quadrilateral finite difference mesh ΩFDM presented in (c) and the finite element
mesh ΩFEM presented in (b).
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(red pluses), ωx (blue crosses). These sets are described in the domain decomposition algorithm.

We assume in this paper that, for some known constants d1 > 1, d2 > 0, the functions
εr(x) and σ(x) of Equation (1) satisfy

εr(x) ∈ [1, d1], σ(x) ∈ [0, d2], for x ∈ ΩIN,

εr(x) = 1, σ(x) = 0 for x ∈ Ω2 ∪ΩOUT, εr(x), σ(x) ∈ C2
(
R3
)

.
(2)

Turning to the boundary conditions at ∂Ω, we use the fact that (2) and (1) imply that
since εr(x) = 1, σ(x) = 0 for x ∈ ΩFDM ∪ΩOUT, then a well-known transformation

∇×∇× E = ∇(∇ · E)−∇ · (∇E) (3)

makes the terms in Equation (1) independent of each other in ΩFDM, and thus, in ΩFDM,
we need to solve the equation

∂2E
∂t2 − ∆E = 0, (x, t) ∈ ΩFDM × (0, T]. (4)
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We write ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3, meaning that ∂Ω1 and ∂Ω2 are the top and bottom
sides of the domain Ω, while ∂Ω3 is the rest of the boundary. Because of (4), it seems natural
to impose a first-order absorbing boundary condition for the wave equation [23],

∂E
∂n

+
∂E
∂t

= 0, (x, t) ∈ ∂Ω× (0, T]. (5)

Here, we denote the outer normal derivative of the electrical field on ∂Ω by ∂ ·
∂n , where n

denotes the unit outer normal vector on ∂Ω.
It is well known that, for the stable implementation of the finite element solution

of Maxwell’s equation, divergence-free edge elements are the most satisfactory from a
theoretical point of view [24,25]. However, the edge elements are less attractive for the
solution of time-dependent problems since a linear system of equations should be solved at
every time iteration. In contrast, P1 elements can be efficiently used in a fully explicit finite
element scheme with a lumped mass matrix [26,27]. It is also well known that the numerical
solution of Maxwell’s equations using nodal finite elements can result in unstable spurious
solutions [28,29]. There are a number of techniques that are available to remove them; see,
for example, [29–33].

In the domain decomposition method of this work, we use the stabilized P1 FE
method for the numerical solution of (1) in ΩFEM. The efficiency of using an explicit P1
finite element scheme is evident for the solution of CIPs. In many algorithms that solve
electromagnetic CIPs, a qualitative collection of experimental measurements is necessary on
the boundary of the computational domain to determine the dielectric permittivity function
inside it. In this case, the numerical solutions of time-dependent Maxwell’s equations are
required in the entire space R3—see, for example, [15–18,34]—and it is efficient to consider
Maxwell’s equations with a constant dielectric permittivity function in a neighborhood
of the boundary of the computational domain. An explicit P1 finite element scheme with
σ = 0 in (1) is numerically tested for the solution of the time-dependent Maxwell’s system
in 2D and 3D in [35]. Convergence analysis of this scheme is presented in [36]; see also
references therein for the CFL condition for this scheme. The scheme of [35] is used for
the solution of different CIPs for the determination of the dielectric permittivity function
in non-conductive media in time-dependent Maxwell’s equations using simulated and
experimentally generated data; see [16–18,34].

The stabilized model problem considered in this paper is

1
c2 εr

∂2E
∂t2 +∇(∇ · E)−4E− ε0∇(∇ · (εrE)) = −µ0σ ∂E

∂t in Ω× (0, T),
E(·, 0) = f0, and ∂E

∂t (·, 0) = f1 in Ω,
∂E
∂n = − ∂E

∂t on ∂Ω× (0, T),
(6)

with functions εr, σ satisfying condition (2).

3. The Domain Decomposition Algorithm

We now describe the domain decomposition method between two domains ΩFEM and
ΩFDM, where FEM is used for the computation of the solution in ΩFEM, and FDM is used
in ΩFDM; see Figures 1 and 2. Overlapping nodes between ΩFDM and ΩFEM are outlined in
Figure 2 by green circles (boundary nodes of ΩFEM) and blue diamonds (inner boundary
nodes of ΩFDM).

The communication between two domains ΩFEM and ΩFDM is achieved by the over-
lapping of both meshes across a two-element-thick layer around ΩFEM—see Figure 2. The
nodes of the computational domain Ω belong to one of the following sets (see Figure 2b):

ωo: Nodes ‘o’ lie on the boundary ∂ΩFEM of ΩFEM and are interior to ΩFDM;
ω�: Nodes ‘�’ lie on the inner boundary ∂ΩFDM of ΩFDM and are interior to ΩFEM;
ω∗: Nodes ‘∗’ are interior to ΩFEM;
ω+: Nodes ‘+’ are interior to ΩFDM;
ωx: Nodes ‘x’ lie on the outer boundary ∂Ω of ΩFDM.
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Then, the main loop in time for the explicit schemes that solve the problem (6) with
appropriate boundary conditions is shown in Algorithm 1.

By condition (2), functions εr = 1 and σ = 0 at the overlapping nodes between ΩFEM
and ΩFDM, and thus the Maxwell’s equations, will transform to the system of uncoupled
acoustic wave Equation (4), which leads to the fact that the FEM and FDM discretization
schemes coincide on the common structured overlapping layer. In this way, we avoid
instabilities at interfaces in the domain decomposition algorithm.

4. Reconstruction Algorithms

In this section, we develop different optimization algorithms that allow the determina-
tion of the relative dielectric permittivity function using scattered data of the electric field
at the boundary of the investigated domain. In all algorithms, we use the assumption that
the effective conductivity function is known in the investigated domain.

In summary, the main algorithms presented in this section are:

• Algorithm 2: The domain decomposition algorithm for the efficient solution of forward
and adjoint problems used in Algorithms 3–5.

• Algorithm 3: Optimization algorithm for the determination of the relative dielectric
permittivity function under the condition that the effective conductivity function is
known.

• Algorithms 4 and 5: Adaptive optimization algorithms for the determination of the
relative dielectric permittivity function. These algorithms use local adaptive mesh
refinement based on a new error indicator for the improved determination of the
location, material and sizes of the inclusions to be identified.

Let the domain decomposition of the computational domain Ω be as it is described
in Section 3; see also Figure 2. We denote by ΩT := Ω× (0, T), ∂ΩT := ∂Ω× (0, T), T > 0.
Let the boundary ∂Ω = ∂Ωout

FDM ∪ ∂Ωin
FDM be the outer boundary ∂Ωout

FDM of Ω together
with the inner boundary ∂Ωin

FDM of ΩFDM, and ∂ΩFEM be the boundary of ΩFEM. At
ST := ∂Ωout

FDM × (0, T), we have time-dependent backscattering observations.
Our coefficient inverse problem will be the following.
Inverse Problem (IP) Assume that the functions εr(x), σ(x) satisfy condition (2) for

known d1 > 1, d2 > 0. Let the function εr be unknown in the domain Ω\(ΩFDM ∪ ΩOUT).
Determine the function εr(x) for x ∈ Ω\(ΩFDM ∪ΩOUT), assuming that the function σ(x) is
known in Ω and the following function Ẽ(x, t) is measured at ST :

E(x, t) = Ẽ(x, t), ∀(x, t) ∈ ST . (7)

The function Ẽ(x, t) in (7) represents the time-dependent measurements of all compo-
nents of the electric wave field E(x, t) = (E1, E2, E3)(x, t) at ST .

To solve IP, we minimize the corresponding Tikhonov functional using a Lagrangian
approach. We present details of the derivation of the optimization algorithms in the
next section.

4.1. Derivation of Optimization Algorithms

For the solution of the IP for Maxwell’s system (6), it is natural to minimize the
following Tikhonov functional:

J(E, εr) =
1
2

∫
ST

(E− Ẽ)2zδ dsdt +
1
2

γ
∫

Ω
(εr − ε0)2 dx, (8)

where Ẽ is the observed electric field in (7), and E satisfies Equation (6) and thus depends
on εr, σ. We denote by ε0 the initial guess for εr, and by γ the regularization parameter.
Here, zδ is a cut-off function ensuring the compatibility conditions for data; see details
in [34].
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Let us introduce the following spaces of real valued functions:

H1
E(ΩT) := {w ∈ H1(ΩT) : w(·, 0) = 0},

H1
λ(ΩT) := {w ∈ H1(ΩT) : w(·, T) = 0},

U1 = ((H1
E(ΩT)

3 × (H1
E(ΩT))

3 × C
(
Ω
)
,

U0 = (L2(ΩT))
3 × (L2(ΩT))

3 × L2(Ω).

(9)

To solve the minimization problem

min
εr

J(E, εr) (10)

we take into account condition (2) on the function εr and introduce the Lagrangian

L(u) = J(E, εr)

+
∫

ΩT

λ
( 1

c2 εr
∂2E
∂t2 −∇ · (∇E)−∇∇ · ((εrε0 − 1)E) + µ0σ

∂E
∂t

)
dxdt,

(11)

where u = (E, λ, εr).
To solve the minimization problem (10), we find a stationary point of the Lagrangian

with respect to u satisfying ∀ū = (Ē, λ̄, ε̄r) ∈ U1

L′(u; ū) = 0, (12)

where L′(u; ·) is the Jacobian of L at u. For the solution of the minimization problem (12),
we develop a conjugate gradient method for the reconstruction of parameter εr.

To obtain optimality conditions from (12), we integrate by parts in space and time
the Lagrangian (11), assuming that λ(x, T) = ∂λ

∂t (x, T) = 0, ∂λ
∂t = ∂λ

∂n , and impose such
conditions on the function λ that L(E, λ, εr) := L(u) = J(E, εr). Using the facts that
λ(x, T) = ∂λ

∂t (x, T) = 0 and σ = 0, εr = 1 on ∂Ω, together with the initial and boundary
conditions of (6), we obtain the following optimality conditions for all ū ∈ U1:

0 =
∂L
∂λ

(u)(λ̄) = −
∫

ΩT

1
c2 εr

∂λ̄

∂t
∂E
∂t

dxdt +
∫

ΩT

(∇E)(∇λ̄) dxdt

+ ε0

∫
ΩT

(∇ · (εrE))(∇ · λ̄) dxdt−
∫

ΩT

(∇ · E)(∇ · λ̄) dxdt

+
∫

ΩT

µ0σ
∂E
∂t

λ̄ dxdt−
∫

Ω

εr

c2 λ̄(x, 0) f1(x) dx

+
∫

∂ΩT

λ̄
∂E
∂t

dσdt, ∀λ̄ ∈ (H1
λ(ΩT)

3);

(13)

0 =
∂L
∂E

(u)(Ē) =
∫

ST

(E− Ẽ) Ē zδ dσdt−
∫

Ω

εr

c2
∂λ

∂t
(x, 0)Ē(x, 0) dx

−
∫

∂ΩT

∂λ

∂t
Ē dσdt−

∫
ΩT

εr

c2
∂λ

∂t
∂Ē
∂t

dxdt +
∫

ΩT

(∇λ)(∇Ē) dxdt

+ ε0

∫
ΩT

(∇ · (εr Ē))(∇ · λ) dxdt−
∫

ΩT

(∇ · Ē)(∇ · λ) dxdt

−
∫

ΩT

µ0σĒ
∂λ

∂t
dxdt, ∀Ē ∈ (H1

E(ΩT)
3).

(14)
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Finally, we obtain the main equation for iterative update εr in the conjugate gradient
algorithm, which express that the gradient with respect to εr vanishes:

0 =
∂L
∂εr

(u)(ε̄r) = −
∫

Ω

ε̄r

c2 λ(x, 0) f1(x) dx−
∫

ΩT

ε̄r

c2
∂λ

∂t
∂E
∂t

dxdt

+ ε0

∫
ΩT

(∇ · λ)(∇ · (ε̄rE)) dxdt + γ
∫

Ω
(εr − ε0)ε̄r dx, x ∈ Ω.

(15)

Equation (13) is the weak formulation of the forward problem (6) and Equation (14) is
the weak formulation of the following adjoint problem:

1
c2 εr

∂2λ
∂t2 −4λ− ε0εr∇(∇ · λ) +∇(∇ · λ)− µ0σ ∂λ

∂t = −(E− Ẽ)zδ in ΩT ,
λ(·, T) = ∂λ

∂t (·, T) = 0 in Ω,
∂λ
∂n = ∂λ

∂t on ST .
(16)

4.2. The Domain Decomposition FE/FD Method for the Solution of Forward and Adjoint Problems
Finite Element Discretization

We denote by ΩFEMT := ΩFEM × (0, T), ∂ΩFEMT := ∂ΩFEM × (0, T), T > 0, where
∂ΩFEM is the boundary of ΩFEM, and we discretize ΩFEMT , denoting by Kh = {K} a
partition of the domain ΩFEM into elements K such that

Kh = ∪K∈Kh K = K1 ∪ K2...∪ Kl ,

where l is the total number of elements K in ΩFEM.
Here, h = h(x) is a piecewise-constant mesh function defined as

h|K = hK ∀K ∈ Kh, (17)

representing the local diameter of the elements. We also denote by ∂Kh = {∂K} a partition
of the boundary ∂ΩFEM into boundaries ∂K of the elements K such that vertices of these
elements belong to ∂ΩFEM. We let Jτ be a partition of the time interval (0, T) into time
intervals J = (tk−1, tk] of uniform length τ = T/N for a given number of time steps N. We
assume also a minimal angle condition on the Kh [22,37].

To formulate the finite element method in Ω for (12), we define the finite element
spaces Ch, WE

h . First, we introduce the finite element trial space WE
h for every component

of the electric field E defined by

WE
h := {w ∈ H1

E : w|K ∈ P1(K), ∀K ∈ Kh},

where P1(K) denotes the set of piecewise-linear functions on K.
To approximate function εr, we define the space of piecewise-constant functions

Ch ⊂ L2(Ω),
Ch := {u ∈ L2(Ω) : u|K ∈ P0(K), ∀K ∈ Kh}, (18)

where P0(K) is the piecewise-constant function on K. Setting WE
h (Ω) := [WE

h (Ω)]3, we
define Uh = WE

h (Ω) ×WE
h (Ω) × Ch. The finite element method for (12) now reads as

follows: find uh ∈ Uh, such that

L′(uh)(ū) = 0, ∀ū ∈ Uh. (19)

Equation (19) expresses discretized versions of the optimality conditions given by
(13)–(15). To obtain function εr via optimality condition (15), we need solutions first
of the forward problem (6), and then of the adjoint problem (16). To solve these prob-
lems via the domain decomposition method, we decompose the computational domain
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Ω = ΩFEM ∪ΩFDM as described in Section 3. Thus, in ΩFEM, we have to solve the following
forward problem:

1
c2 εr

∂2E
∂t2 +∇(∇ · E)−4E− ε0∇(∇ · (εrE)) = −µ0σ ∂E

∂t in ΩFEM × (0, T),
E(·, 0) = f0, and ∂E

∂t (·, 0) = f1 in ΩFEM,
∂E
∂n = g on ∂ΩFEM × (0, T).

(20)

Here, g is the solution obtained by the finite difference method in ΩFDM, which is saved
at ∂ΩFEM.

Equation (19) expresses that the finite element method in ΩFEM for the solution of the
forward problem (20) will be as follows: Find Eh ∈WE

h (ΩFEM) such that

1
c2

(
εrh

∂2Eh
∂t2 , λ̄

)
+ (∇Eh,∇λ̄) + ε0(∇ · (εrhEh),∇ · λ̄)− (∇ · Eh,∇ · λ̄)

+(gh, λ̄)∂ΩFEM + µ0(σh
∂Eh
∂t , λ̄) = 0, λ̄ ∈WE

h (ΩFEM)

Eh(·, 0) = f0h and ∂Eh
∂t (·, 0) = f1h in ΩFEM.

(21)

Here, we define f0h, f1h, gh, εrh, σh to be the usual WE
h -interpolate of f0, f1, g, εr, σ in (6)

in ΩFEM.
To obtain the discrete scheme for (21), we approximate Eh(kτ) by Ek

h for k = 1, 2, . . . , N
using the following scheme for k = 1, 2, . . . , N − 1 and ∀λ̄ ∈WE

h (ΩFEM):

1
c2

(
εrh

Ek+1
h −2Ek

h+Ek−1
h

τ2 , λ̄

)
+ (∇Ek

h,∇λ̄) + ε0(∇ · (εrhEk
h),∇ · λ̄)− (∇ · Ek

h,∇ · λ̄)

+(gk
h, λ̄)∂ΩFEM + µ0(σh

Ek+1
h −Ek−1

h
2τ , λ̄) = 0,

Eh
0 = f0h and Eh

1 = Eh
0 + τ f1h in ΩFEM.

(22)

Rearranging the terms in (22), we obtain for k = 1, 2, . . . , N − 1 and ∀λ̄ ∈WE
h (ΩFEM)(

(1 + τc2µ0
σh

2εrh
)Ek+1

h , λ̄

)
=
(

2Ek
h, λ̄
)
−
(

Ek−1
h , λ̄

)
− τ2c2(1/εrh∇Ek

h,∇λ̄)

− τ2c2ε0(1/εrh∇ · (εrhEk
h),∇ · λ̄) + τ2c2(1/εrh∇ · Ek

h,∇ · λ̄)

+ τ2c2

(
gk

h
εrh

, λ̄

)
∂ΩFEM

+ τc2µ0(
σh

2εrh
Ek−1

h , λ̄),

E0
h = f0h and E1

h = E0
h + τ f1h in ΩFEM.

(23)

The adjoint problem in ΩFEM will be the following:

1
c2 εr

∂2λ

∂t2 −4λ− ε0εr∇(∇ · λ) +∇(∇ · λ)− µ0σ
∂λ

∂t
= −(E− Ẽ)zδ for x ∈ ST ,

λ(·, T) =
∂λ

∂t
(·, T) = 0 for x ∈ ΩFEM,

∂λ

∂n
= p on ∂ΩFEMT .

(24)

The finite element method for the solution of adjoint problem (24) in ΩFEM reads as
follows: Find λh ∈WE

h (ΩFEM) such that ∀Ē ∈WE
h (ΩFEM)

1
c2

(
εrh

∂2λh
∂t2 , Ē

)
+ (∇λh,∇Ē) + ε0(∇ · λh,∇ · (εrhĒ))− (∇ · λh,∇ · Ē)

−(ph, Ē)∂ΩFEM − µ0(σh
λh
t , λ̄) = −((Eh − Ẽh)zδ, Ē).

(25)

Here, we define Eh, Ẽh, ph to be the usual WE
h -interpolate of E, Ẽ, p in (24) in ΩFEM.
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We note that the adjoint problem should be solved backwards in time, from time
t = T to t = 0. To obtain the discrete scheme for (25), we approximate λh(kτ) by λk

h for
k = N, N − 1, ..., 1 using the following scheme for k = N − 1, . . . , 1:

1
c2

(
εrh

λk+1
h −2λk

h+λk−1
h

τ2 , Ē
)
+ (∇λk

h,∇Ē) + ε0(∇ · λk
h,∇ · (εrhĒ))− (∇ · λk

h,∇ · Ē)

−
(

pk
h, Ē
)

∂ΩFEM
− µ0(σh

λk+1
h −λk−1

h
2τ , Ē) = −((Ek

h − Ẽk
h)zδ, Ē).

(26)

Multiplying both sides of (26) by τ2c2/εrh and rearranging the terms, we obtain(
(1 + τc2µ0

σh
2εrh

)λk−1
h , Ē

)
=
(

2λk
h, Ē
)
−
(

λk+1
h , Ē

)
− τ2c2(1/εrh∇λk

h,∇Ē)

− τ2c2ε0(1/εrh∇ · λk
h,∇ · (εrhĒ)) + τ2c2(1/εrh∇ · λk

h,∇ · Ē)

+ τ2c2

(
pk

h
εrh

, Ē

)
∂ΩFEM

+ τc2µ0(
σh

2εrh
λk+1

h , Ē)− τ2c2(1/εrh(Ek
h − Ẽk

h)zδ, Ē),

(27)

for k = N − 1, . . . , 1, ∀Ē ∈WE
h (ΩFEM)

We note that, usually, dim Uh < ∞ and Uh ⊂ U1 as a set, and we consider Uh as a
discrete analogue of the space U1. We introduce the same norm in Uh as the one in U0,

‖•‖Uh
:= ‖•‖U0 , (28)

where U0 is defined in (9). From (28), it follows that all norms in finite dimensional spaces
are equivalent. This allows us, in the numerical simulations of Section 5, to compute the
discrete function εrh, which is an approximation of εr(x), in the space Ch.

4.3. Fully Discrete Scheme in ΩFEM

In this section, we present schemes for the computation of the solutions of forward (6)
and adjoint (16) problems in ΩFEM. After expanding functions Eh(x) and λh(x) in terms of
the standard continuous piecewise linear functions {ϕi(x)}M

i=1 in space as

Eh(x) =
M

∑
i=1

Ehi
ϕi(x), λh(x) =

M

∑
i=1

λhi
ϕi(x),

where Ehi
and λhi

denote unknown coefficients at the mesh point xi ∈ Kh, i = 1, ..., M, we
substitute them into (23) and (27), correspondingly, with λ̄(x, t) = Ē(x, t) = ∑M

j=1 ϕj(x),
and obtain the system of linear equations for the computation of the forward problem (6):

M1Ek+1 = 2MEk −MEk−1 − τ2c2G1Ek − τ2c2ε0G2Ek

+ τ2c2G3Ek + τ2c2Fk + τc2µ0M2Ek−1.
(29)

Here, M, M1, M2 are the assembled block mass matrices in space; G1, G2, G3 are the assem-
bled block matrices in space; Fk is the assembled load vector at the time iteration k; Ek

denotes the nodal values of Eh(·, tk); τ is the time step. Now, we define the mapping FK for
the reference element K̂ such that FK(K̂) = K and let ϕ̂ be the piecewise-linear local basis
function on the reference element K̂ such that ϕ ◦ FK = ϕ̂. Then, the explicit formulas for
the entries in the system of Equation (29) at each element K can be given as:
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MK
i,j = (ϕi(x) ◦ FK, ϕj(x) ◦ FK)K,

M1
K
i,j = ((1 + τc2µ0

σh
2εrh

)ϕi(x) ◦ FK, ϕj(x) ◦ FK)K,

M2
K
i,j = (

σh
2εrh

ϕi(x) ◦ FK, ϕj(x) ◦ FK)K,

G1
K
i,j = (

1
εrh
∇ϕi ◦ FK,∇ϕj ◦ FK)K,

G2
K
i,j = (

1
εrh
∇ · (εrh ϕi) ◦ FK,∇ · ϕj ◦ FK)K,

G3
K
i,j = (

1
εrh

∇ · ϕi ◦ FK,∇ · ϕj ◦ FK)K,

Fk
j = (

gk
h

εrh

, ϕj ◦ FK)∂K,

(30)

where (·, ·)K denotes the L2(K) scalar product and ∂K is the part of the boundary of element
K that lies at ∂ΩFEM.

For the case of adjoint problem (27), we obtain the system of linear equations:

M1λk−1 = 2Mλk −Mλk+1 − τ2c2G1λk − τ2c2ε0GT
2 λk

+ τ2c2G3λk + τ2c2Pk
1 + τc2µ0M2λk+1 − τ2c2Pk

2 .
(31)

Here, M, M1, M2, G1, G2, G3 are the assembled block matrices in space with explicit entries
given in (30), and Pk

1 , Pk
2 are assembled load vectors at the time iteration k with explicit

entries

P1
k
j = (

pk
h

εrh
, ϕj ◦ FK)∂K,

P2
k
j = (1/εrh(Ek

h − Ẽk
h)zδ, ϕj ◦ FK)K,

(32)

λk denotes the nodal values of λh(·, tk); τ is the time step.
Finally, for reconstructing εr(x) in ΩIN , we can use a gradient-based method with an

appropriate initial guess value ε0. The discrete versions in space of the gradients given in
(15), after the integration by parts in space of the third term on the right-hand side of (15),
have the form ∀x ∈ ΩIN:

gh = − 1
c2 λh(x, 0) f1h −

1
c2

∫ T

0

∂λh
∂t

∂Eh
∂t

dt

+ ε0

∫ T

0
(∇ · λh)(∇ · Eh) dt + γ(εrh − ε0

h),
(33)

where ε0
h is the interpolant of ε0. We note that because of the usage of the domain decompo-

sition method, gradient (33) should be updated only in ΩIN since, in ΩFDM and in ΩOUT,
by condition (2), we have εr = 1, σ = 0. In (33), Eh and λh are the computed values of the
forward and adjoint problems using schemes (29) and (31), correspondingly, and εrh is the
approximate value of the computed relative dielectric permittivity function εr.

Finite Difference Formulation

We recall now that from condition (2), it follows that in ΩFDM, the function
εr(x) = 1, σ = 0. This means that in ΩFDM, the model problem (6) transforms into the
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following forward problem for an uncoupled system of acoustic wave equations for
E = (E1, E2, E3):

∂2E
∂t2 − ∆E = 0 in ΩFDM × (0, T),
E(·, 0) = f0, ∂E

∂t (·, 0) = f1 in ΩFDM,
∂E
∂n = − ∂E

∂t on ST ,
∂E
∂n = ∂EFEM

∂n on ∂Ωin
FDM,

(34)

where ∂EFEM
∂n are known values at ∂Ωin

FDM.
Using standard finite difference discretization of the first equation in (34) in ΩFDM, we

obtain the following explicit scheme for every component of the solution E of the forward
problem (34):

Ek+1
l,j,m = τ2∆Ek

l,j,m + 2Ek
l,j,m − Ek−1

l,j,m, (35)

with correspondingly discretized boundary conditions. In the equations above, Ek
l,j,m is the

finite difference solution on the time iteration k at the discrete point (l, j, m), τ is the time
step, and ∆Ek

l,j,m is the discrete Laplacian.
The adjoint problem in ΩFDM will be:

∂2λ

∂t2 − ∆λ = −(E− Ẽ)zδ in ΩFDM × (0, T),

λ(·, T) =
∂λ

∂t
(·, T) = 0 in ΩFDM,

∂λ

∂n
=

∂λ

∂t
on ST ,

∂λ

∂n
=

∂λFEM

∂n
on ∂Ωin

FDM,

(36)

where ∂λFEM
∂n are known values at ∂Ωin

FDM.
Similarly to (37), we obtain the following explicit scheme for the solution of adjoint

problem (36) in ΩFDM, which we solve backwards in time:

λk−1
l,j,m = −τ2(E− Ẽ)k

l,j,mzδ + τ2∆λk
l,j,m + 2λk

l,j,m − λk+1
l,j,m, (37)

with corresponding discretized boundary conditions. In Equations (35) and (37), (·)k
l,j,m is

the solution on the time iteration k at the discrete point (l, j, m).
Note that we use FDM only inside ΩFDM, and thus the computed values of ∂EFEM

∂n
and ∂λFEM

∂n can be approximated and will be known at ∂Ωin
FDM through the finite element

solution in ΩFEM; see details in the domain decomposition Algorithm 2.

4.4. The Domain Decomposition Algorithm to Solve Forward and Adjoint Problems

First, we present the domain decomposition algorithm for the solution of state and
adjoint problems. We note that, because of the use of the explicit finite difference scheme
in ΩFDM, we need to choose time step τ according to the CFL stability condition [38] such
that the whole scheme remains stable.
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Algorithm 2: The domain decomposition algorithm to solve forward and adjoint
problems.

1: Construct the finite element mesh Kh in ΩFEM and the finite difference mesh in ΩFDM,
as well as the time partition Jτ of the time interval (0, T). At every time step k, we
perform the following operations:

2: On the mesh in ΩFDM, compute Ek+1, λk−1 from (35), (37), correspondingly, using
absorbing boundary conditions at the outer boundary ∂Ω, with Ek, Ek−1 and λk, λk+1

known.
3: On the mesh Kh in ΩFEM, compute Ek+1, λk−1 using the finite element schemes (29)

and (31), correspondingly, with Ek, Ek−1 and λk, λk+1 known.
4: Use the values of the functions Ek+1, λk−1 at nodes ω∗ overlapping with nodes ω�,

which are computed using the finite element schemes (29) and (31), correspondingly, as
boundary conditions at the inner boundary ∂Ωin

FDM for the finite difference method
in ΩFDM.

5: Use the values of the functions Ek+1, λk−1 at nodes ωo overlapping with nodes ω+,
which are computed using the finite difference schemes (35) and (37), correspondingly, as
boundary conditions at ∂ΩFEM for the finite element method in ΩFEM.

6: Apply a swap of the solutions for the computed functions Ek+1, λk−1. Set k = k + 1 for
the forward problem and k = k− 1 for the adjoint problem and go to step 2.

4.5. Reconstruction Algorithm for the Solution of Inverse Problem IP

We use the conjugate gradient method (CGM) for the iterative update of approximation
εr

m
h of the function εrh, where m is the number of iterations in the optimization algorithm.

We introduce the following function

gm
h (x) = − 1

c2 λm
h (x, 0) f1h(x)− 1

c2

∫ T

0

∂λm
h

∂t
∂Em

h
∂t

dt

+ ε0

∫ T

0
(∇ · λm

h )(∇ · Em
h ) dt + γ(εr

m
h − ε0

h),
(38)

where functions Em
h , λm

h are computed by solving the state and adjoint problems with
εr := εr

m
h , σ := σm

h .

4.6. Adaptive Algorithms for Solution of the Inverse Problem IP

An adaptive algorithm allows the improvement of the already computed relative di-
electric permittivity function εr

M
h obtained on the initially non-refined mesh in the previous

optimization algorithm (Algorithm 3). The idea of the local mesh refinement (note that
we need it only in ΩIN) is that it should be refined in all neighborhoods of all points in
the mesh Kh where the function |hεrh| achieves its maximum value, or where |J′εr (εrh)|
achieves its maximal values. These local mesh refinement recommendations are based on a
posteriori error estimates for the error |εr − εrh| in the reconstructed function εr (see the
first mesh refinement indicator), and for the error |J(εr)− J(εrh)| in Tikhonov’s functional
(see the second mesh refinement indicator), respectively. The proofs of these a posteriori
error estimates for arbitrary Tikhonov’s functional are given in [19]. The a posteriori error
for Tikhonov’s functional (8) can be derived using the technique of [34], and it is a topic of
ongoing research. Assuming that we have proof of these a posteriori error indicators, let us
show how to compute them.
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Algorithm 3: Conjugate gradient algorithm for determination of the relative dielec-
tric permittivity function.

1: Initialize the mesh in Ω and the time partition Jτ of the time interval (0, T). Start with
the initial approximation εr

0
h = ε0

h with known σh, and compute the sequence of εr
m
h via

the following steps:
2: Compute solutions Eh(x, t, εr

m
h , σh) and λh

(
x, t, εr

m
h , σh

)
of the forward and adjoint

problems on Kh and Jτ using the domain decomposition algorithm (Algorithm 2).
3: Update the function εrh := εr

m+1
h on Kh and Jτ using the CGM as

εr
m+1
h = εr

m
h + αdm(x),

where α is the step size in the gradient update [39] and

dm(x) = −gm
h (x) + βmdm−1(x),

with

βm =
‖gm

h (x)‖2

‖gm−1
h (x)‖2

,

Here, d0(x) = −g0
h(x).

4: Stop computing εr
m
h at the iteration M := m and obtain the function εr

M
h := εh

m
r if

either ‖gm
h ‖L2(Ω) ≤ θ or norms ‖εr

m
h ‖L2(Ω) are stabilized. Here, θ is the tolerance

chosen by the user. Otherwise, set m := m + 1 and go to step 2.

We define by E(εr, σ), λ(εr, σ) the exact solutions of the forward and adjoint problems
for exact εr, σ, respectively. Then, by defining

u(εr, σ) = (E(εr, σ), λ(εr, σ), εr) ∈ U1,

and using the fact that, for exact solutions E(εr, σ), λ(εr, σ), we have

J(E(εr, σ), εr) = L(u(εr, σ)). (39)

Assuming now that solutions E(εr, σ), λ(εr, σ) are sufficiently stable, we can write that
the Frechét derivative of the Tikhonov functional is the following function:

J′εr (εr, σ) =
∂J
∂εr

(E(εr, σ), εr) =
∂L
∂εr

(u(εr, σ)). (40)

Inserting (15) into (40), we obtain

J′εr (εr, σ) = − 1
c2 λ(x, 0) f1(x)− 1

c2

∫ T

0

∂λ

∂t
∂E
∂t

dt

− ε0

∫ T

0
E∇(∇ · λ) dt + γ(εr − ε0)(x).

(41)

In the second mesh refinement indicator, a discretized version of (41) is used, computed
for approximations (εrh, σh).

• The First Mesh Refinement Indicator
Refine the mesh in the neighborhoods of those points of Kh where the function |hεrh|
attains its maximal values. In other words, refine the mesh in such subdomains of Kh
where

|hεrh| ≥ β̃ max
Kh
|hεrh|.
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Here, β̃ ∈ (0, 1) is a number that should be chosen computationally and h is the mesh
function (17) of the finite element mesh Kh.

• The Second Mesh Refinement Indicator
Refine the mesh in the neighborhoods of those points of Kh where the function
|J′εr (E, εrh)| attains its maximal values. More precisely, let β ∈ (0, 1) be the toler-
ance number, which should be chosen in computational experiments. Refine the mesh
Kh in such subdomains where

|J′εr (E, εrh)| ≥ β max
Kh
|J′εr (E, εrh)|. (42)

Algorithm 4: Adaptive Algorithm, first version.
1: Construct the finite difference mesh in ΩFDM. Choose an initial space–time mesh

Kh0 × Jτ0 in ΩFEM × [0, T]. Compute the sequence of εrk, k > 0, via the following steps:
2: Obtain numerical solution εrk with known function σk on Khk

using Algorithm 3
(Conjugate Gradient Method).

3: Refine such elements in the mesh Khk
where the first mesh refinement indicator

|hεrk| ≥ β̃k max
Khk
|hεrk| (43)

is satisfied. Here, the tolerance numbers β̃k ∈ (0, 1) are chosen by the user.
4: Define a new refined mesh as Khk+1

and construct a new time partition Jτk+1 such that
the CFL condition is satisfied. Interpolate εrk, σk on a new mesh Khk+1

and perform
steps 2–4 on the space–time mesh Khk+1

× Jτk+1 . Stop mesh refinements when
||εrk − εrk−1|| < tol1 or ||gk

h(x)|| < tol2, where toli, i = 1, 2 are tolerances chosen by the
user.

Algorithm 5: Adaptive Algorithm, second version.
1: Choose an initial space–time mesh Kh0 × Jτ0 in ΩFEM. Compute the sequence εrk, k > 0

with known σk, on refined meshes Khk
, via the following steps:

2: Obtain numerical solutions εrk on Khk
× Jτk using Algorithm 3 (Conjugate Gradient

Method).
3: Refine the mesh Khk

at all points where the second mesh refinement indicator

|gk
h(x)| ≥ βk max

Khk
|gk

h(x)|, (44)

is satisfied. Here, indicator gk
h is defined in (38). Tolerance number βk ∈ (0, 1) should

be chosen in numerical examples.
4: Define a new refined mesh as Khk+1

and construct a new time partition Jτk+1 such that
the CFL condition is satisfied. Interpolate εrk, σk on a new mesh Khk+1

and perform
steps 1–3 on the space–time mesh Khk+1

× Jτk+1 . Stop mesh refinements when
||εrk − εrk−1|| < tol1, or ||gk

h(x)|| < tol2, where toli, i = 1, 2 are tolerances chosen by
the user.

Remark 1.

1. We note that in (42), exact values of E(x, t), λ(x, t) are used, obtained with the already
computed functions (εrh, σh); see (41). However, in our algorithms and in computations, we
approximate the exact values of E(x, t), λ(x, t) by the computed ones Eh(x, t), λh(x, t).

2. In both mesh refinement indicators, we use the fact that functions εr, σ are unknown only
in ΩIN .
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We define the minimizer of the Tikhonov functional (8) and its approximated finite
element solution on a k-times adaptively refined mesh Khk

by εr and εrk, correspondingly.
In both of our mesh refinement recommendations, we need to compute the functions εrk
on the mesh Khk

. To do this, we apply Algorithm 3 (conjugate gradient algorithm). We will
define by εrk := εr

M
h values obtained at step 3 of the conjugate gradient algorithm.

Remark 2.

1. First, we describe how to choose the tolerance numbers β̃k, βk in (43) and (44). Their values
depend on the concrete values of max

ΩIN
|hεrk| and max

ΩIN
|gk

h(x)|, correspondingly. If we take

values of βk, β̃k that are very close to 1, then we will refine the mesh in a very narrow region of
the ΩIN , and if we choose βk, β̃k ≈ 0, then almost all elements in the finite element mesh will
be refined, and, thus, we will obtain global and not local mesh refinement.

2. To compute L2 norms ||εrk − εrk−1||, in step 3 of the adaptive algorithms, the reconstruction
εrk−1 is interpolated from the mesh Khk−1

to the mesh Khk
.

3. The computational mesh is refined only in ΩFEM such that no new nodes are added in the
overlapping elements between two domains, ΩFEM and ΩFDM. Thus, the mesh in ΩFDM,
where the finite difference method is used, always remains unchanged.

5. Numerical Examples

In this section, we present numerical simulations of the reconstruction of the permit-
tivity function of a three-dimensional anatomically realistic breast phantom taken from an
online repository [1] using the adaptive reconstruction Algorithm 4 of Section 4.6. We have
tested the performance of the adaptive Algorithm 5 and it is slightly more computationally
expensive in terms of time compared to the performance of Algorithm 4. Additionally,
relative errors in the reconstructions of the dielectric permittivity function are slightly
smaller for Algorithm 4 and, thus, in this section, we present the results of reconstruction
for Algorithm 4.

5.1. Description of Anatomically Realistic Data

We have tested our reconstruction algorithm using a three-dimensional realistic breast
phantom with ID = 012204 provided in the online repository [1]. The phantom comprises
the structural heterogeneity of normal breast tissue for the realistic dispersive properties of
normal breast tissue at 6 GHz reported in [40,41]. The breast phantoms of database [1] are
derived using T1-weighted MRIs of patients in prone position. Every phantom presents a
3D mesh of cubic voxels of the size 0.5× 0.5× 0.5 mm.

Tissue types and corresponding media numbers of breast phantoms are taken from [1]
and are given in Table 1. The spatial distribution of these media numbers for the phantom
with ID = 012204 is presented in Figure 3a–c.

The figures demonstrate the distribution of media numbers on the original coarse
mesh consisting of 34,036,992 nodes. Clearly, performing computations on a such large
mesh is a computationally demanding task, and thus, we have sampled the original mesh.
In all our computations, we have used the mesh consisting of 63,492 nodes as a coarse finite
element mesh, which was obtained by taking every 8th node in x1, x2 and x3 directions of
the original mesh. Figures 4 and 5 show the spatial distribution of dielectric permittivity εr
and effective conductivity σ (S/m) on original and sampled meshes.

Figure 3d demonstrates the distribution of media numbers on the finally sampled
mesh. Figure 6 presents the spatial distribution of weighted values of εr on the original
and finally sampled mesh for Test 1. The testing of our algorithms on other sampled
meshes is a computationally expensive task, requiring the running of programs in parallel
infrastructure, and can be considered as a topic for future research.

We note that in all our computations, we scaled the original values of εr and σ of
database [1] presented in Figures 4 and 5 and considered weighted versions of these
parameters, in order to satisfy condition (2), as well as for the efficient implementation
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of FE/FD DDM for the solution of forward and adjoint problems. Table 1 presents the
weighted values of εr and σ used in the numerical tests of this section. Thus, in this way,
we obtained a computational set-up corresponding to the domain decomposition method
that was used in Algorithms 2–5.
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Figure 3. (a–c) Original values and (d) sampled values of the spatial distribution of media numbers
of Table 1 for breast phantom of object ID_012204 of database [1]. Table 1 clarifies description of
media numbers and corresponding tissue types.

Figure 3. (a–c) Original values and (d) sampled values of the spatial distribution of media numbers
of Table 1 for breast phantom of object ID_012204 of database [1]. Figures are produced by MAT-
LAB code provided at [42]. Table 1 clarifies the description of media numbers and corresponding
tissue types.
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Table 1. Tissue types and corresponding media numbers of database [1] together with realistic
weighted values of εr and σ (S/m) for breast phantom with ID = 012204 used in numerical experiments
of Section 5.2. Figure 3 presents media numbers of this table on original and sampled meshes.

Tissue Type
Media Test 1 Test 1 Test 2 Test 2

Number εr /5 σ/5 εr /5 σ/5

Immersion medium −1 1 0 1 0

Skin −2 1 0 1 0

Muscle −4 1 0 1 0

Fibroconnective/glandular-1 1.1 9 1.2 9 1.2

Fibroconnective/glandular-2 1.2 8 1 1 0

Fibroconnective/glandular-3 1.3 8 1 1 0

Transitional 2 1 0 1 0

Fatty-1 3.1 1 0 1 0

Fatty-2 3.2 1 0 1 0

Fatty-3 3.3 1 0 1 0

5.2. Computational Set-Up

We have used the domain decomposition Algorithm 2 of Section 4.4 to solve forward
and adjoint problems in the adaptive reconstruction Algorithm 4. To do this, we set the
dimensionless computational domain Ω as

Ω = {x = (x1, x2, x3) ∈ (−0.8840, 0.8824)× (−0.8630, 0.8648)× (−0.8945, 0.8949)},

and the domain ΩFEM as

ΩFEM = {x = (x1, x2, x3) ∈ (−0.7, 0.6984)× (−0.7, 0.7018)× (−0.7, 0.7004)}.

We choose the coarse mesh sizes h1 = 0.0368, h2 = 0.0326, h3 = 0.0389 in x1, x2, x3
directions, respectively, in Ω = ΩFEM ∪ ΩFDM, as well as in the overlapping regions
between ΩFEM and ΩFDM. Corresponding physical domains in meters are Ω̃ = 0.17664×
0.17278× 0.17894 m for Ω and Ω̃FEM = 0.13985× 0.14018× 0.14004 m for ΩFEM.

The boundary ∂Ω of the domain Ω is decomposed into three different parts such that
∂Ω = ∂1Ω ∪ ∂2Ω ∪ ∂3Ω, where ∂1Ω and ∂2Ω are, respectively, the front and back sides of
Ω, and ∂3Ω is the union of the left, right, top and bottom sides of this domain. We collect
time-dependent observations at Γ2 := ∂2Ω× (0, T), or at the transmitted side ∂2Ω of Ω.
We also define Γ1,1 := ∂1Ω× (0, t1], Γ1,2 := ∂1Ω× (t1, T), and Γ3 := ∂3Ω× (0, T).

The following model problem was used in all computations:

1
c2 εr

∂2E
∂t2 +∇(∇ · E)−4E− ε0∇(∇ · (εrE)) = −µ0σ

∂E
∂t

in ΩT ,

E(x, 0) = 0,
∂E
∂t

(x, 0) = 0 in Ω,

∂E
∂n

= f (t) on Γ1,1,

∂E
∂n

= −∂E
∂t

on Γ1,2 ∪ Γ2,

∂E
∂n

= 0 on Γ3.

(45)
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Figure 3. Spatial distribution of realistic ultrawideband dielectric properties of 3D breast phantom
of database [1] developed at the Department of Electrical and Computer Engineering at University
of Wisconsin-Madison, USA. Figure a) shows original values of εr at 6 GHz for object ID_012204 of
database [1]. Figures b)-d) present sampled version of εr.

Figure 4. Spatial distribution of realistic ultrawideband dielectric properties of 3D breast phantom of
database [1] developed at the Department of Electrical and Computer Engineering at the University of
Wisconsin-Madison, USA. (a) shows original values of εr at 6 GHz for object ID_012204 of database [1].
(b–d) present sampled versions of εr. Figures are produced by MATLAB code provided at [42].
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Figure 4. Spatial distribution of realistic ultrawideband dielectric properties of 3D breast phantom
of database [1] developed at the Department of Electrical and Computer Engineering at University
of Wisconsin-Madison, USA. (a) shows original values of σ (S/m) at 6 GHz for object ID_012204 of
database [1]. (b–d) present sampled versions of σ (S/m).

Figure 5. Spatial distribution of realistic ultrawideband dielectric properties of 3D breast phantom of
database [1] developed at the Department of Electrical and Computer Engineering at the University
of Wisconsin-Madison, USA. (a) shows original values of σ (S/m) at 6 GHz for object ID_012204 of
database [1]. (b–d) present sampled versions of σ (S/m). Figures are produced by MATLAB code
provided at [42].
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(a) x1x3 view (b) x2x3 view

(c) x1x3 view (d) x2x3 view

Figure 6. Test 1. Slices of weighted exact εr; see Table 1 for description of different tissue types and
values of weighted εr. (a,b) Slices on original mesh with mesh size h. (c,d) Slices on sampled mesh
with mesh size 8 h.

We initialize a plane wave f (t) = (0, f2, 0)(t) for one component E2 of the electric field
E = (E1, E2, E3) at Γ1,1 in (45). The function f2(t) represents the single direction of a plane
wave that is initialized at ∂1Ω in time t = [0, 3.0] and is defined as

f2(t) =
{

sin(ωt), if t ∈
(
0, 2π

ω

)
,

0, if t > 2π
ω .

(46)

The goal of our numerical tests in Test 1 and Test 2 was to reconstruct the weighted
dielectric permittivity function εr shown in Figure 7a,b. Figures 8a–c and 9a–c present sim-
ulated solution |Eh| in ΩFEM of model problem (45) for Test 1 and Test 2, correspondingly.
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Test 1 Test 2

(a) (b)

Figure 7. Isosurface of weighted exact dielectric permittivity with value εr ≈ 5 corresponding
to tissue type “fibroconnective/glandular-1” (a) in Test 1 and (b) in Test 2. Table 1 clarifies the
description of different tissue types.

To perform computations for the solution of the inverse problem, we add normally
distributed Gaussian noise with mean µ = 0 to the simulated electric field at the transmitted
boundary ∂2Ω. Then, we smooth out these data in order to obtain reasonable reconstruc-
tions; see the details of the data preprocessing in [17,18]. Computations of forward and
inverse problems were performed in time T = [0, 3] with equidistant time step τ = 0.006,
satisfying the CFL condition. Thus, it took 500 time steps at every iteration of reconstruc-
tion Algorithm 4 to solve the forward or adjoint problem. The time interval T = [0, 3] was
chosen computationally such that the initialized plane wave could reach the transmitted
boundary ∂2Ω in order to obtain meaningful reflections from the object inside the domain
ΩFEM. Figures 8a–c, 9a–c and 10a–i show these reflections in different tests. Experimentally,
such signals can be produced by a Picosecond Pulse Generator connected with a horn
antenna, and scattered time-dependent signals can be measured by a Tektronix real-time
oscilloscope; see [17,18] for details of the experimental set-up for the generation of a plane
wave and collecting time-dependent data. For example, in our computational set-up, the
experimental time step between two signals can be τ̃ = 6 picoseconds and every signal
should be recorded during T̃ = 3 nanoseconds.

We have chosen the following set of admissible parameters for reconstructed function
εr(x)

Mεr = {ρ ∈ C2(Ω)|1 ≤ εr(x) ≤ 10}, (47)

as well as tolerance θ = 10−5 at step 3 of the conjugate gradient Algorithm 3. Parameter βk
in the refined procedure of Algorithm 4 was chosen as the constant βk = 0.8 for all refined
meshes Khk.

Figures 8d–i and 9d–i show simulated data of model problem (45) for all components
(E1, E2, E3)(x, t) of electric field E(x, t) at different times at the transmitted boundary ∂2Ω.
Figures 8d–f and 9d–f show randomly distributed noisy data and Figures 8g–i and 9g–i
show smoothed noisy data used for the solution of the inverse problem.
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These figures show that the largest amplitude reflections, or transmitted data, are
obtained from the second component E2 of the electric field E. The same observation was
obtained in previous works [34,35], where the authors used a similar computational set-up
with a plane wave. However, a comparison of all three components was not presented
in [34]. The domination of reflections at the transmitted boundary from the E2 component
can be explained by the fact that we initialized only one component of the electric field
E = (E1, E2, E3) as a plane wave f (t) = (0, f2, 0)(t) at Γ1,1 in the model problem (45), and
thus two other components E1, E3 will be smaller by amplitude than the E2 when we use
the explicit scheme (29) for computations. See also the theoretical justification of this fact
in [43].

t = 1.2 t = 1.8 t = 2.4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Test 1. (a–c): Solution |Eh| of model problem (45) at different times for ω = 40 in (46). (d–f):
Transmitted noisy scattered data Eh = (E1h, E2h, E3h) of components of electric field E = (E1, E2, E3)

at different times. (g–i): Smoothed transmitted scattered data Eh = (E1h, E2h, E3h) of components of
electric field E = (E1, E2, E3) at different times. The noise level in data is δ = 10%.
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t = 1.2 t = 1.8 t = 2.4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Test 2. (a–c): Solution |Eh| of model problem (45) at different times for ω = 40 in (46). (d–f):
Transmitted noisy scattered data Eh = (E1h, E2h, E3h) of components of electric field E = (E1, E2, E3)

at different times. (g–i): Smoothed transmitted scattered data Eh = (E1h, E2h, E3h) of components of
electric field E = (E1, E2, E3) at different times. The noise level in data is δ = 10%.

The numerical tests of [34] show that the best reconstruction results of the space-
dependent function εr(x) for σ = 0 in Ω are obtained for ω = 40 in (46). Thus, we per-
formed simulations of the forward problem (45) taking σ = 0 for different ω = 40, 60, 80, 100
in (46). We found that, for the chosen computational set-up with final time T = 3, maximal
values of scattered function E2 were obtained for ω = 40. Thus, we take ω = 40 in (46) in
all our tests.

We assume that both functions εr, σ satisfy condition (2): they are known inside
Ωout ∪ΩFDM and unknown inside ΩIN . The goal of our numerical tests is to reconstruct
the function εr of the domain ΩFEM of Figure 7 under condition (2) and the additional
condition that the function σ(x) of this domain is known. See Table 1 for the distribution of
εr, σ in ΩFEM.
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(a) t = 0.24 (b) t = 0.48 (c) t = 0.72

(d) t = 0.96 (e) t = 1.20 (f) t = 1.44

(g) t = 1.68 (h) t = 1.92 (i) t = 2.16

Figure 10. The figures (a–i) illustrate how our planar wave f used in implementations propagates
through the medium by color plotting |Eh| when ω = 40, to clarify its direction.

The computational set-up for the solution of the inverse problem is as follows. We
generate transmitted data by solving the model problem (45) on a three-times adaptively
refined mesh. In this way, we avoid variational problems when we solve the inverse
problem. The transmitted data are collected at receivers located at every point of the
transmitted boundary ∂2Ω, and then normally distributed Gaussian noise δ = 3%, 10%
with mean µ = 0 is added to these data; see Figures 8d–f and 9d–f. The next step is data pre-
processing: the noisy data are smoothed out; see Figures 8g–i and 9g–i. Next, to reconstruct
εr, we minimize the Tikhonov functional (8). For the solution of the minimization problem,
we introduce a Lagrangian and search for a stationary point of it using the adaptive
Algorithm 4; see details in Section 4.6.

We take the initial approximation ε0 = 1 at all points of the computational domain,
which corresponds to the start of our computations from the homogeneous domain. This
is done because of previous computational works [34], as well as the experimental works
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of [6,8,10], where it was shown that such a choice gives good results in the reconstruction
of the dielectric permittivity function.

5.3. Test 1

In this test, we present numerical results of the reconstruction of εr; exact values of
this function are given in Table 1—see Test 1. The isosurface of the exact function εr to
be reconstructed in this test is shown in Figure 7a. We note that the exact function εr has
a complicated structure. Using Figure 7a, one can observe that the isosurface presents a
discontinuous function with a number of large and small inclusions in the domain ΩFEM.

Figure 11a–i show results of the reconstruction on adaptively locally refined meshes
when the noise level in the data was δ = 10%. We start computations on a coarse mesh Kh0.
Figure 11a–c show that the location of the reconstructed function εh0 is imaged correctly
and the reconstructed isosurface covers the domain where the exact εr is located. We refer
to Table 2 for the reconstruction of the maximal contrast in εh0. For improvement of the
contrast and shape obtained on a coarse mesh Kh0, we run computations on locally adap-
tively refined meshes. Figure 11d–f show the reconstruction obtained on the final two-times
refined mesh Kh2. Table 2 presents results of reconstructions for εhk obtained on the refined
meshes Khk, k = 0, 1, 2. We observe that with mesh refinements, we achieve better contrast
for function εr. Moreover, the reconstructed isosurface of this function more precisely
covers the domain where the exact εr is located; compare Figure 11a with Figure 11d.
Figure 11g–i show locally adaptively refined mesh Kh2.

Table 2. Test 1. Computational results of the reconstructions maxΩFEM εhk on a coarse and on
adaptively refined meshes together with relative errors computed in the maximal contrast of
maxΩFEM εr, maxΩFEM εhk. Here, maxΩFEM εhk denotes the maximum of the computed function εh on
k-times refined mesh Khk in the domain ΩFEM, and Mk denotes the final number of iterations in the
conjugate gradient Algorithm 3 on k-times refined mesh Khk for reconstructed function εhk, k = 0, 1, 2.

Test 1

δ = 3% δ = 10%

Mesh maxΩFEM εhk
maxΩFEM |εr−εhk|

maxΩFEM |εr | Mk Mesh maxΩFEM εhk
maxΩFEM |εr−εhk|

maxΩFEM |εr | Mk

Kh0 6.535 0.274 2 Kh0 7.019 0.220 2
Kh1 7.865 0.126 2 Kh1 7.481 0.167 4
Kh2 10.0 0.111 2 Kh2 9.234 0.026 4

5.4. Test 2

Since it is quite demanding to reconstruct the very complicated structure of εr taken
in Test 1, in this test, we will reconstruct εr with the exact isosurface as it is presented in
Figure 7b. Exact values of this function are taken as in fibroconnective/glandular-1 media
(see Table 1) inside the isosurface of Figure 7b, and outside of this isosurface, all values of
εr = 1.

Figure 12a–i show results of the reconstruction on adaptively refined meshes when the
noise level in the data was δ = 10%. We refer to Table 3 for the reconstruction of the contrast
in εr. Using Table 3, we now observe that, with mesh refinements, we achieve slightly
higher maximal contrast 9.45 in reconstruction εh1 compared to the exact one 9. Moreover,
on the mesh Kh1 for σ = 10%, we obtain a more than eight-times smaller relative error in
the reconstruction compared to the error obtained on the coarse mesh Kh0. Figure 12d–i
show good matching of the reconstructed εh1 compared with the exact one. Figure 11j–l
show locally adaptively refined mesh Kh2.
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(a) perspective view (b) x1x2 view (c) x2x3 view

(d) perspective view (e) x1x2 view (f) x2x3 view

(g) x1x3 view (h) x1x2 view (i) x2x3 view

Figure 11. Test 1. (a–c): Reconstructions εh0 ≈ 5.0 (outlined in transparent green color) of εr ob-
tained on the coarse mesh. (d–f): Reconstructions εh2 ≈ 5.0 obtained on refined mesh Kh2. (g–i):
refined mesh Kh2. The noise level in the data is δ = 10%. See Table 2 for obtained contrasts
maxΩFEM εhk, k = 0, 1, 2. For comparison, we also present the exact isosurface with values correspond-
ing to reconstructed ones and outlined in the red color.
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(a) prospect view (b) x1x2 view (c) x1x3 view

(d) prospect view (e) x1x2 view (f) x1x3 view

(g) zoomed prospect view (h) zoomed x1x2 view (i) zoomed x1x3 view

(j) x2x3 view (k) x1x2 view (l) x1x3 view

Figure 12. Test 2. (a–c): Isosurfaces of reconstructions εh0 ≈ 5.0 (in green color) of εr obtained on the
coarse mesh Kh0. (d–f): Isosurfaces of reconstructions εh1 ≈ 5.0 obtained on refined mesh Kh1 (in
yellow color). (g–i) Zoomed reconstructions. (j–l): Refined mesh Kh1. The noise level in the data is
δ = 10%. See Table 3 for obtained contrasts maxΩFEM εhk, k = 0, 1. For comparison, we also present the
exact isosurface of εr with values corresponding to reconstructed ones and outlined in the red color.
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Table 3. Test 2. Computational results of the reconstructions maxΩFEM εhk on a coarse and on
adaptively refined meshes together with relative errors computed in the maximal contrast of
maxΩFEM εr, maxΩFEM εhk. Here, maxΩFEM εhk denotes the maximum of the computed function εh on
k-times refined mesh Khk in the domain ΩFEM, and Mk denotes the final number of iterations in the
conjugate gradient Algorithm 3 on k-times refined mesh Khk for reconstructed function εhk, k = 0, 1, 2.

Test 2

δ = 3% δ = 10%

Mesh maxΩFEM εhk
maxΩFEM |εr−εh k|

maxΩFEM |εr | Mk Mesh maxΩFEM εhk
maxΩFEM |εr−εhk|

maxΩFEM |εr | Mk

Kh0 6.874 0.236 2 Kh0 5.350 0.406 2
Kh1 7.558 0.160 5 Kh1 9.450 0.05 4
Kh2 10.0 0.111 2

5.5. Performance Comparison

All computations were performed on a Linux workstation with an Intel Core i7-9700
CPU with one processor using software package WavES [44], efficiently implemented in
C++/PETSc [45].

We have estimated the relative computational time Tr of the forward problem using
the following formula:

Tr =
t

nt · n
. (48)

Here, t is the total computational time of the forward problem on the mesh Khl , where
l = 0, 1, 2, . . . is the number of the refined mesh, n is the total number of nodes in the mesh
Khl , and nt is the number of time steps. We take nt = 500 in all computational tests; see
clarification in Section 5.2. Computational times (in seconds) for the solution of the forward
problem are presented in Table 4. Using this table, we observe that the relative time is
approximately the same for all tests and we can take it as Tr ≈ 1.8× 10−6. Next, using
this relative time, we can estimate the approximate computational time for the solution
of the forward problem for any mesh consisting of n nodes. For example, if we take the
original mesh consisting of n = 34, 036, 992 nodes, then the computational time will be
already t = Tr × nt × n = 1.8× 10−6 × 500× 34, 036, 992 = 30, 633 s, and this time is not
computationally efficient. Clearly, the computation of the solution of the inverse problem
on the sampled mesh allows significantly reduced computational times.

Table 4. Performance of solution of forward problem (45) in Tests 1 and 2 of Section 5 on the mesh Kh0
in terms of computational time (in seconds) and relative computational time computed by (48). Here,
n is the number of the nodes on the three-times adaptively refined original coarse mesh (consisting of
63,492 nodes), which we used for the generation of transmitted data.

Computational Time

δ = 3% δ = 10%

Time (s) Relative Time n Time (s) Relative Time n

Test 1 110.59 1.779 ×10−6 71,360 Test 1 116.22 1.869× 10−6 75,052
Test 2 106.58 1.714× 10−6 69,699 Test 2 111.53 1.793× 10−6 65,359

We have estimated also the relative computational time Tip
r of the solution of the

inverse problem using the formula

Tip
r =

tip

nt · nno
. (49)
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Here, tip is the total computational time to run inverse Algorithm 4 on the mesh Khl , where
l = 0, 1, 2, . . . is the number of the refined mesh, nno is the total number of nodes in the
mesh Khl , and nt is number of time steps. Computational times (in seconds) for the solution
of the inverse problem for Test 1 and Test 2 are presented in Tables 5 and 6, respectively.
Using these tables, we observe that the computational times are dependent on the number
of iterations Mk in the conjugate gradient method (CGM) and the number of nodes nno in
the meshes Khl . We took nt = 500 for all tests and, thus, the computational times presented
in these tables are not dependent on the number of time steps for different refined meshes.
We note that the number of time steps nt can be chosen adaptively as well. However, we
perform adaptive mesh refinement in space only, and not in time. The full space–time
adaptive algorithm can be considered as a topic for future research.

Using Table 5, we observe that the computational time in Test 1 is around 20 min for
both noise levels σ = 3% and σ = 10%. On every mesh Khl , l = 0, 1, 2, we performed
two iterations of CGM, or MK = 2. Thus, the total computational time to obtain the final
reconstruction in Test 1 is 60 min.

Table 6 shows that the computational time in Test 2 with noise in data δ = 3% is
around 20 min for non-refined mesh Kh0, 60 min for one-time refined mesh Kh1, and
20 min for twice-refined mesh Kh2. Thus, the total computational time to obtain the final
reconstruction in Test 2 is 100 min. The computational time in this test is greater than in
the previous Test 1 since CGM converged only at the fifth iteration on the one-time refined
mesh Kh1. However, the total computational time with noise in data δ = 10% is around
60 min. This is because the solution was obtained already on the one-time refined mesh
Kh1. Tables 5 and 6 also demonstrate that it takes around 10 min to compute the solution of
the inverse problem on the one iteration of the conjugate gradient algorithm.

We note that PETSc supports parallel implementation and, thus, the current version of
the code can be extended to the version with parallel implementation such that the times
reported in Tables 4–6 can be significantly reduced.

Table 5. Test 1. Performance of the reconstruction Algorithm 4 (in seconds) on adaptively refined
meshes. Here, k is the number of the refined mesh Khk of the domain ΩFEM, nno is the number of
nodes in the computational mesh Khk, and Mk denotes the final number of iterations in the conjugate
gradient Algorithm 3.

Test 1, Computational Time

δ = 3% δ = 10%

Mesh nno Time (s) Rel. Time Mk Mesh nno Time (s) Rel. Time Mk

Kh0 63,492 1183 3.73 ×10−5 2 Kh0 63,492 1180 3.71× 10−5 2
Kh1 64,206 1199 3.74 ×10−5 2 Kh1 64,766 2415 7.43× 10−5 4
Kh2 65,284 1212 3.71 ×10−5 2 Kh2 67,965 2525 7.435× 10−5 4

Table 6. Test 2. Performance of the reconstruction Algorithm 4 (in seconds) on adaptively refined
meshes. Here, k is the number of the refined mesh Khk of the domain ΩFEM, nno is the number of
nodes in the computational mesh Khk, and Mk denotes the final number of iterations in the conjugate
gradient Algorithm 3.

Test 2, Computational Time

δ = 3% δ = 10%

Mesh nno Time (s) Rel. Time Mk Mesh nno Time (s) Rel. Time Mk

Kh0 63,492 1186 3.72 ×10−5 2 Kh0 63,492 1214 3.82× 10−5 2
Kh1 64,096 3588 9.34 ×10−5 5 Kh1 63,968 2384 7.44× 10−5 4
Kh2 66,112 1228 3.72 ×10−5 2
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6. Conclusions

This work describes reconstruction methods for the determination of the relative dielec-
tric permittivity function in conductive media using scattered data of the time-dependent
electric field at a number of detectors placed at the boundary of the investigated domain.

Reconstruction methods use an optimization approach where a functional is mini-
mized via a domain decomposition finite element/finite difference method. In an adaptive
reconstruction method, the space mesh is refined only in the domain where a finite element
method is used, with feedback from a posteriori error indicators. The developed adaptive
algorithms allow us to obtain the correct values and shapes of the dielectric permittivity
function to be determined. Convergence and stability analysis of the developed methods is
ongoing work and will be presented in a forthcoming publication. The algorithms of the
current work are designed from previous adaptive algorithms developed in [16,34], which
reconstruct the wave speed or the dielectric permittivity function. However, all previous
algorithms are developed for non-conductive media.

Our computational tests show the qualitative and quantitative reconstruction of the
dielectric permittivity function using an anatomically realistic breast phantom that captures
the heterogeneity of normal breast tissue at a frequency of 6 GHz, taken from online
repository [1]. In all tests, we used the assumption that the conductivity function is
known. Currently, we are working on algorithms in which both dielectric permittivity and
conductivity functions can be reconstructed. Results of this work will be presented in a
future publication.

All computations were performed in real time and are presented in Tables 4–6. Some
data (Matlab code to read data of database [1], visualize and produce discretized values of
εr, σ, etc.) used in the computations of this work are available for download and testing;
see [42]. Additional data (computational FE/FD meshes, transmitted data, C++/PETSc
code) can be provided upon request.

In summary, the main features of the algorithms of this work are as follows:

• Ability to reconstruct shapes, locations and maximal values of dielectric permittivity
function of targets in conductive media under the condition that the conductivity of
this media is a known function.

• More exact reconstruction of shapes and maximal values of dielectric permittivity
function of inclusions because of local adaptive mesh refinement.

• Computationally greater efficiency because of usage of software package WavES [44],
implemented in C++/PETSc [45].
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