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A B S T R A C T

Context. There are many e-Health mobile apps on the apps store, from apps to improve a user’s lifestyle to
mental coaching. Whilst these apps might consider user context when they give their interventions, prompts,
and encouragements, they still tend to be rigid e.g., not using user context and experience to tailor themselves
to the user.
Objective. To better engage and tailor to the user, we have previously proposed a Reference Architecture
for enabling self-adaptation and AI personalization in e-Health mobile apps. In this work we evaluate the
end users’ perception, usability, performance impact, and energy consumption contributed by this Reference
Architecture.
Method. We do so by implementing a Reference Architecture compliant app and conducting two experiments:
a user study and a measurement-based experiment.
Results. Although limited in the number of participants, the results of our user study show that usability of
the Reference Architecture compliant app is similar to the control app. Users’ perception was found to be
positively influenced by the compliant app when compared to the control group. Results of our measurement-
based experiment showed some differences in performance and energy consumption measurements between
the two apps. The differences are, however, deemed minimal.
Conclusions. Our experiments show promising results for an app implemented following our proposed
Reference Architecture. This is preliminary evidence that the use of personalization and self-adaptation
techniques can be beneficial within the domain of e-Health apps.
. Introduction

In recent years e-Health apps have become more popular and have
ow a projected market growth to US$102.3 Billion by 2023 [1]. E-
ealth mobile apps are designed to aid the end user by providing
wide range of services that can help improve users’ lifestyles [2].

onsidering their spread and popularity, they might play a relevant
ole in the context of Decision Support Systems (DSSs) for health care,
hose aim is to help patients manage their health care by providing
ccessible and reliable health services [3]. E-Health apps have some
omponents that make them unique compared to other health-related
ystems i.e., (i) can take advantage of smartphone sensors, (ii) can reach
n extremely wide audience with low infrastructural investments, and
iii) can leverage the intrinsic characteristics of the mobile medium
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(i.e., being always-on, personal, and always-carried by the user) for
providing timely and in-context services [4]. However, even with all
of these tools available to them, e-Health apps still tend to be rigid
and not tailored in their interventions and prompts to the user, e.g.,
the apps are using a fixed rule set to construct their interventions
and not considering unique traits and behaviors of the individual user.
In the literature, several works exploit self-adaptation techniques or
personalization techniques to keep users engaged, in e-Health mobile
apps. For instance, self-adaptation policies are used to dynamically
self-configure the internal behavior of a wearable patient-monitoring
system for tele-rehabilitation, based on the current context of the
patient [5]. Self-adaptation is also exploited for delivering persuasive
messages stimulating the medication adherence, by using real-time
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physiological data (e.g., heart rate) [6]. Other self-adaptive applications
are intended for healthcare professionals and caregivers to deliver the
right patient’s information at the right time under variable connec-
tivity and limited resource availability [7,8]. Personalization, instead,
has been mainly exploited for clustering users according to specific
variables about their physical and psychological well-being [9], and
for reducing the drop-out rates and increase the patience adherence to
treatment [10,11]. However, none of existing approaches exploit both
self-adaptation and personalization techniques to get the most from
their combination. Moreover, according to [3], DSSs show some open
issues about (1) the exploitation of big data analytics to gain knowledge
from users/patients for healthcare professionals, (2) the exploitation
of IoT to extract insights from remote monitoring data, and (3) the
provisioning of patient-centered analytics to improve treatments, by
making them more accurate, efficient and personalized.

To address these problems, we previously proposed a reference
rchitecture (RA) that combines data-driven personalization with self-
daptation [12,13]. In this paper we extend on this research line
y:

• utilizing our RA to guide the implementation of an app.
• designing and conducting a user study to investigate end users’

concerns related to both usability and perception of an app com-
plying to our RA.

• designing and conducting a measurement-based experiment to
investigate the impact on performance and energy consumption
that an app complying to our RA has.

• discussing the newly found results and frame them in the broader
context of e-Health mobile apps and the usage of personalization
and self-adaptation techniques in this domain.

e conduct two experiments that investigate some concerns that devel-
pers and end users of our implemented app would have. To this end,
e have formulated four main research questions to empirically assess

he impact of personalization and self-adaptation from (i) the users’ per-
pective and (ii) the system perspective. Our experiment results show
hat for the user perspective personalization and self-adaptation tech-
iques have an overall positive impact on the end users’ perception of
-Health mobile apps. We saw no apparent impact of these techniques
n usability of e-Health mobile apps. From the system perspective
ur results have found some statistically significant differences in app
erformance. These differences are too small to realistically impact
he user experience of an Android app. Furthermore, our experiments
rovide evidence that the impact of personalization and self-adaptation
n energy consumption of e-Health mobile apps is negligible.

The paper is structured as follows. The next section briefly outlines
he RA presented in our previous work. Section 4 describes our study
esign, with Section 3 showing how an app was implemented following
he guidelines of our RA, and Sections 4.1 and 4.2 describing the design
f our experiments. Section 5 explains the results for both experiments.
n Section 6 we discuss the results. Section 7 explains the threats
o validity. Section 8 describes the related work. Lastly, Section 9
oncludes the paper.

. Reference architecture

In this work we evaluate the implementation of our RA for per-
onalized and self-adaptive e-Health apps, whose preliminary version
as presented in [12] and then extended in [13]. The RA combines
ersonalization [14] and self-adaptation [15] as effective instruments for
etting users continuously engaged and active, eventually leading to
etter physical and mental conditions. Specifically, the RA simultane-
usly supports (i) personalization for the different users, by exploiting
he users’ smart objects and preferences to dynamically get data about
.g., their mood and daily activities, and (ii) self-adaptation to the user-
eeds and context, such that to improve the usability of e-Health apps
hus keeping users engaged and active. The RA, exploits an online
2

clustering algorithm [16] for efficiently managing the evolution of the
users behavior, a dedicated goal model [13] for representing health-
related goals, and multiple Monitor - Analyze - Plan - Execute (MAPE)
loops [17] managing adaptation at different levels and for different
purposes.

Fig. 1 shows our RA [12]. For clarity and to make this study self-
contained, we summarize hereby the architecture components and their
main functionalities. The RA is made by two main macro-components,
the e-Health app running on the User ’s smartphone and the Back-end
hosting components supporting the general functioning of the app. The
back-end is managed by a Development team and it further exposes
an interface to the Domain Expert (e.g., psychologists), whose smooth
participation is supported.

For personalization and self-adaptation reasons, our RA takes into
account the Environment in which the user lives and uses the e-
Health app as well as possible Smart Objects that the user owns and
adopts (e.g., smart bracelet, smart-watch). Precisely, the environment
represents the physical location of the user, exploited by the e-Health
app to make self-adaptations according to its current operational con-
text (i.e., environmental conditions and weather) and to the user’s
scheduled activities. Smart objects, instead, are devices that the app
can communicate with, used to gather additional data about the users,
thus augmenting the data collected by the smartphone sensors (e.g., a
smart-watch providing extra information about the user’s heart-rate).

Through the Internet, the e-Health app sends collected data to the
AI Personalization back-end component. The communication from the
back-end to the e-Health app, instead, is performed by the User Process
Handler which is in charge of sending the User Process to the e-Health
app via push notifications. In fact, our RA exploits a particular type
of User Process that is composed of Abstract Activities, namely a vector
of Activity categories (one per weekday) and an associated goal. Each
Activity category identifies the kind of activity the user should perform
(e.g., Cardio or Strength Activity category), whereas each goal labeling
an abstract activity is defined in terms of a dedicated goal model for
representing health-related goals via a descriptive concise language
accessible by healthcare professionals (e.g., fitness coaches, psychol-
ogists). Then, for each user, the Activity categories are converted to
Concrete Activities at runtime via the use of the User Driven Adaptation
Manager and based on the user’s preferences. For instance, a cardio
Activity category can be instantiated into different Concrete Activities
such as running, swimming and walking.

The User Process Handler is, then, in charge of providing User
Processes, the same User Process to all users of the same cluster. In fact,
our RA exploits an online clustering algorithm (implemented by the
AI Personalization component) for efficiently managing the evolution of
the behavior of users as multiple time series evolving over time [16].
Clustering allows the RA to group similar users together, in a real-time
and online fashion; where similarity is determined by the data gathered
from the apps. This gives our RA a more sustainable, scalable, faster
and data efficient method of personalization, without requiring to create
individual personalization strategies (requiring more data from each
individual, gathered over a longer time period), maintaining a suitable
degree of personalization [16,18].

Lastly, our RA has five components used for self-adaptation. Each of
these components implements a MAPE loops [17] operating at different
levels of granularity and for different purposes. Specifically:

• the AI Personalization Adaptation monitors the evolution of clus-
ters, detects if any change occurs and enables the creation of new
User Process (e.g., a new cluster is generated);

• the User Driven Adaptation Manager receives the User Process and
refines the Abstract Activities into Concrete ones. It suggests users
the most suitable and timely activities according to their (evolv-
ing) health-related characteristics (e.g., active vs. less active), and
to technical aspects (e.g., smart objects own by the user);
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Fig. 1. Reference architecture for personalized and self-adaptive e-Health apps [12].
• the Smart Objects Manager maintains the connection with the
user’s smart objects and, if not possible, finds alternative sensors
to make the e-Health app able to continuously collect user’s data;

• the Internet Connectivity Manager sends data to the back-end and
provides resilience to the e-Health app’s internet connectivity;

• the Environment Driven Adaptation Manager to cope with char-
acteristics of the physical environment (e.g., indoor vs. outdoor,
weather) with the aim of keeping the users constantly engaged,
to ensure that they execute their planned schedule of activities.

The RA can be applied either in the context of a single e-Health
pp or by integrating the services of third-party e-Health apps (e.g.,
lready installed sport trackers). For a detailed description of the RA,
ts components and the functioning of each single MAPE loop, we refer
he interested reader to [13].

. Implementation of the e-Health app

In this section we describe the implementation of the RA compli-
nt e-Health app, named RELATE, that we used for our experiments.
ELATE is implemented in Android, as Android mobile devices cover

he majority of the mobile device sector and the majority of scientific
esearch on mobile software engineering is done on Android [19,20].
or an explanation of the app’s flow the reader is directed to the online
aterial in the replication package.

Fig. 2b shows RELATE’s architecture, whose mapping with the RA
omponents is shown in Fig. 2a. There are three activities in RELATE
hat together form the UI: the MainActivity, the SettingsActivity and
he FirstScreen activity.

FirstScreen. This is the first activity displayed to the user. The sole
responsibility of this activity is to present the user with the list of
available physical activities and have them choose their preferred ones.
After they have made their preference they are redirected to the Main
Screen, which is managed by the MainActivity.

– MainActivity. This activity is in charge of displaying the Main Screen
to the user, as well as instantiating and communicating to most other
components present in RELATE. It is also from here that the user can
choose to access the settings.

– SettingsActivity. This activity is in charge of displaying the app’s
3

settings to the user and redirecting them to either adjust their preferred
physical activities, read the about page or go back to the Main Screen.
Whenever the user makes a change to their preferred activities, the
SettingsActivity stores the preferences locally, so that they are available
even after the application has been closed by the user.

RELATE contains two services on the user side: the User Driven
Adaptation Manager and the Internet Connectivity Manager.

– User Driven Adaptation Manager. This service has two main responsibil-
ities: it creates a unique identifier token at installation which it sends
to the Back-end and it converts each User Process received from the
Back-end. The unique token is used by the Back-end to send the User
Process to the correctly paired user. The conversion of the User Process
is done by the User Driven Adaptation Manager in accordance to the
self-adaptive loop described in Section 2.

The responsibility of sending the token to the Back-end is a devia-
tion from the RA. In the RA the only component to send information
to the Back-end is the Internet Connectivity Manager. This change was
made to optimize the information flow of RELATE. As with the current
implementation of RELATE we do not have the AI Personalization in
the Back-end, we decided to use the already created information flow
from the User Process Handler to the User Driven Adaptation Manager
and add the task of receiving the user token.

– Internet Connectivity Manager. This service is started by the MainActiv-
ity whenever the app is opened in the foreground. Its main purpose is to
monitor and manage the connection to the internet via its self-adaptive
loop as described in Section 2.

RELATE contains four classes: Smart-Objects Manager, Environment
Driven Adaptation Manager, ThirdPartyAppData, and WeatherFetch.

– Smart Objects Manager. This class is initialized by the MainActivity
whenever the app is launched and has two main purposes: ask the user
for the runtime permission for the Bluetooth usage and, monitor and
manage the connection to external devices via the self-adaptive loop,
in accordance to the RA’s description.

– Environment Driven Adaptation Manager. This class is also initialized by
the MainActivity whenever the app is launched by the user. It has two
main purposes: to check what the weather forecast is for the current
day and to convert the daily suggested activity if the current user
environment calls for it. The class determines the daily weather forecast

with the help of WeatherFetch. The Environment Driven Adaptation
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Fig. 2. Figures describing the components of the RA used and the RELATE architecture.
Manager can also perform a change in suggested activity, as described
in the RA, which it then displays to the user via a push-notification.

– WeatherFetch. The main responsibility of this class is to determine
the weather forecast and deliver that information to the Environment
Driven Adaptation Manager. To determine the forecast, it uses the
4

OpenWeather API1 to retrieve a .json file containing information on
the weather forecast for that day. It processes the file and sends the

1 https://openweathermap.org/api.

https://openweathermap.org/api
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parsed information to the Environment Driven Adaptation Manager
(e.g., Sunny, Rain, Windy, Storm, etc.).

– ThirdPartyAppData. This class is a helper class to the User Driven
Adaptation Manager and the Environment Driven Adaptation Manager
in the conversion of the received UserProcess from the Back-end to a
schedule of concrete activities displayed to the user. In this version
of RELATE, this class did not interact with other third party apps as
described in the RA.

Lastly, the Back-end User Process Handler was implemented using
Flask in Python. The Flask server would receive the initial unique
identifier token sent by the User Driven Adaptation Manager and store
it in the User Tokens database. The User Process Handler then sends the
weekly user process to the app via the use of Google’s Firebase Cloud
Messaging.2 As we did not have a Domain Expert involved in these
Experiments, the User Process was fixed and saved in the same class
file as the User Process Handler. Furthermore, the other components
of the Back-end were not implemented in this version of RELATE.
Whilst in the future we would want to include all components to
our Experiments, for these Experiments we focused our efforts on the
application side of the RA, as it is most relevant to our current research
questions.

For both Experiments we also used a BaseApp as a comparison
to RELATE. It is identical to RELATE apart from not including: the
Environment Driven Adaptation Manager, the Internet Connectivity
Manager, and the Smart Objects Manager. The BaseApp is therefore
not able to provide the functionalities offered by those components. By
not having the Environment Driven Adaptation Manager the BaseApp
cannot adapt the daily physical activity to better suit the user’s current
environment and will not show the related push notification. Without
the Internet Connectivity Manager, the BaseApp is unable to detect and
automatically resolve a failure to connect to the internet, as well as
notify the user of such failure. By excluding the Smart Object Manager,
the BaseApp is unable to verify the current status of the Bluetooth
connection or amend problems that may occur with said connection.
As most of the excluded functionalities work without the user’s direct
involvement, the two applications are aesthetically identical as they
contain all of the same screens.

4. Study design

As shown in Fig. 3, our study is composed of three main phases,
namely: the instantiation of the RA, the user study (Experiment 1), and
the measurement-based experiment (Experiment 2). We describe each
step of all phases, its objective, expected input and output, and number
of involved researchers.

The goal of the RA instantiation phase is to design and develop an
instance of the RA, which is used in the two experiments. This phase is
composed of three main steps: the identification of the features of the
app (step 1.1), its implementation for the Android platform (step 1.2),
and its piloting (step 1.3).

– Features identification (step 1.1). This step is conducted by all five
researchers and has the goal of identifying the features that need to be
present in the app implementation. This activity is carried out by taking
into consideration our need of keeping the app reasonably simple (so
to be used by multiple participants without requiring extensive train-
ing), while still having room for personalization and self-adaptation at
runtime. The main output of this step is the list of the app features:

• F1. The app needs to provide a list of weekly physical activities
to the user.

• F2. The user is able to select their preferred physical activities
from a list of available ones.

2 https://firebase.google.com/docs/cloud-messaging.
5
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• F3. The app has to be able to determine the environment of the
user.

• F4. The app needs to change recommended physical activities in
accordance to the user environment.

– App implementation (step 1.2). The implementation is named RELATE,
standing for peRsonalized sELf-AdapTive E-health. RELATE is imple-
mented in Android and its back-end is implemented in Python. The
details of the implementation process are discussed in Section 3.

– Piloting (step 1.3). We pilot the implemented app in order to ensure
that it can be successfully used in the two experiments. Two researchers
different from the one implementing RELATE are involved in this step
and they carry out the piloting activities independently from each
other. Each researcher installs the app on their mobile device and
simulates typical usage scenarios according to the features identified
in step 1.1. During usage, they note down apparent bugs and problems
and discuss them with the researchers implementing the app. The app
would then go back to implementation, to correct the found issues.
This cycle continues until the app is deemed ready to be used for the
experiments. This step took a total of 14 days.

Once the implementation of the RELATE app is completed and
piloted, we can proceed with the design and execution of the two
experiments. The complementary nature of the two experiments allows
us to carry them out in parallel.

We organize the user study into four main phases: the design of
the user study, subjects selection, the execution, and the data analysis.
Below we describe how the four phases fit together, whereas their
detailed description is given in Section 4.1.

– Design of user study (step 2.1). The goal of this phase is to design a
user study that would allow us to understand the impact of personal-
ization and self-adaptation techniques on the usability and end users’
perception of our e-Health mobile app. The design is carried out collab-
oratively by all five researchers. In addition to the formulation of the
goal, research questions and other details, the main observable output
of this phase is the Participants guide. We hand out the Participants
guide to each participant. The Participants guide contains instructions
on how to install RELATE on their own personal smartphones, links and
instructions on how to fill in the participant surveys, where RELATE can
be downloaded from, contact e-mail for participants in need of help.

– Subjects selection (step 2.2). After completing the study design we con-
duct our subjects selection. This step is further detailed in Section 4.1.2.

– Execution of user study (step 2.3). As we are interested in under-
standing the influence of the introduction of self-adaptation and per-
sonalization techniques in our e-Health mobile app, we split the set
of participants into two groups. One group uses a baseline version of
our RELATE app, whilst the other group uses a version containing the
aforementioned techniques. We ask both groups to use their app for four
consecutive weeks. During this user study, each participant completes
three different types of surveys, namely: (i) an initial one-time survey
for the demographics, (ii) a daily survey reporting their activities and
their perception with respect to their app during the whole four-weeks
period, and (iii) a final one-time survey about the overall usability and
perception of the two versions of the RELATE app. The details about
the structure and contents of the surveys are reported in Sections 4.1.3
and 4.1.5, respectively.

– Data Analysis (step 2.4). The data analysis is carried out once the user
study is complete. This phase entails (i) cleaning and organization of all
the raw data produced in the previous step and (ii) its qualitative anal-
ysis in order to properly answer the research questions. The analysis of
the data is further explained in Section 4.1.4.

We organize the measurement-based experiment into three main

hases: the design of the experiment, its execution, and the data

https://firebase.google.com/docs/cloud-messaging
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analysis. Below we describe how the three phases fit together and their
details are provided in Section 4.2.

– Design of Experiment (step 2.5). The goal of this step is to precisely de-
fine the details of the measurement-based experiment, such as its goal,
research questions, dependent and independent variables, hypotheses,
statistical tests, etc. The experiment is designed as a one-factor-two-
treatments experiment, where the main factor is the presence of person-
alization and self-adaptation techniques. The dependent variables are:
the energy consumption, the CPU usage, and the memory consumption
of the RELATE app. Similarly to step 2.1, this step is carried out
collaboratively by all five researchers.

– Execution of Experiment (step 2.6). In this phase we execute the
experiment according to its design. All runs of the experiment are
orchestrated automatically and are carried out in a controlled setting.
This allows us to isolate the potential effect of the treatments of the
main factor of the experiment on the values of the dependent variables,
while having minimal bias from external confounding factors. Further
details of the experiment execution are reported in Section 4.2.4.

– Data Analysis (step 2.7). In this phase we firstly explore the collected
measures by graphically visualizing them and by performing descrip-
tive analyses. Then, we proceed to check for normality and test for
statistical significance, so to answer the statistical hypotheses of the
experiment. The detailed explanation of the data analysis is given in
Section 4.2.3.

A complete replication package is publicly available3 for allow-
ing independent replication and verification of both the experiments
presented above.

4.1. Design and execution of Experiment 1 (user study)

4.1.1. Goal and research questions
We formulate the goal of this experiment by using the goal template

provided by Basili et al. [21].

Analyze personalization and self-adaptation techniques for the pur-
pose of assessing their impact with respect to end users’ perception
from the viewpoint of users, developers, and researchers in the
context of our Android implementation of RA.

3 https://github.com/S2-group/self-adaptive-ehealth-apps-replication-
ackage.
6

d

The goal of this experiment is to study our RA from the end users’
erception. In order to gain a better understanding of the combination
f AI and self-adaptation, we identified the types of usability concerns
hat users have whilst using a system complying to our RA, as op-
osed to an identical, non dynamically tailored, system. As described
n Section 3, RELATE is implemented by following our RA and so,
n our experiments, is our RA compliant system. As our comparison,
on dynamically tailored, system we use the implemented BaseApp
described in Section 3). Specifically, for the scope of these experiments
e define dynamic tailoring to be the utilization of the Environment
riven Adaptation Manager, the Smart Objects Manager and the In-

ernet Connectivity Manager. As the two systems are identical, a part
rom one factor, using them in our experiments allows us to make a
air comparison of systems, that isolates our one investigated factor:
ynamic tailoring.

In the following we present and discuss the research questions we
ranslated from the above mentioned overall goal.

𝑹𝑸𝟏.𝟏 – What is the impact of personalization and self-adaptation
techniques on end users’ perception of an e-Health mobile app?

The main objective of 𝑅𝑄1.1 is to investigate how the inclusion
f the aforementioned techniques (personalization and self-adaptation)
an influence the perception that a user has on such an app as compared
o their perception of apps who are not personalized and self-adaptive.
he knowledge gained by answering this question can be of important
se to developers as they design and introduce these techniques in their
wn applications.

𝑹𝑸𝟏.𝟐 – What is the impact of personalization and self-adaptation
techniques on the usability of an e-Health mobile app?

The main objective of 𝑅𝑄1.2 is to investigate whether the use of
ersonalization and self-adaptation techniques can influence the usabil-
ty of an app, as compared to one that does not use such techniques.
y studying how users perceive RELATE, we can better understand the
sability concerns specifically related to dynamically tailored systems.
hese findings will allow researchers and developers in this field to
ave increased awareness on what usability concerns a user of a
ynamically tailored system has.

https://github.com/S2-group/self-adaptive-ehealth-apps-replication-package
https://github.com/S2-group/self-adaptive-ehealth-apps-replication-package
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Table 1
Table showing the initial subject selection, number of participants whom dropped-out
and final group numbers for each user study.

Participants
enrolled

Participant
drop out

End size of
Group R

End size of
Group B

First user study 20 11 5 4
Second user study 9 3 4 2
Total participants 29 9 6

4.1.2. Subjects selection
As shown in Table 1 we recruited 20 participants in the first user

study and 9 in the second one. The participants recruited were all either
members of staff or students of the university. The advertisement of
the user study was posted within the university Canvas groups. No
compensation was offered to the participants. The only requirements
was that the participant used an Android phone, as our apps could
only work on that OS. Participants were split into two groups: Group
R used RELATE, group B utilized the BaseApp. During the course of
the first user study 11 participants dropped out, whilst 3 participants
left in the second user study. The first user study was conducted with
weekly reminders to complete the given daily survey. For the second
study, as a way to try and diminish participant drop out, the reminders
were sent out daily. Another factor that might have played an important
role in participant drop out was the ongoing lock-down imposed by
the government due to the Covid-19 pandemic. During the first user
study, the lockdown was a lot stricter and was, in some cases, the
main factor in participants dropping out. This was discovered as we
contacted the inactive participants after the trail to inquire on the
reasons why they did not complete the study. The Covid-19 restrictions
were partially lifted during the run of the second user study. We
believe that the combination of less restrictive Covid-19 related policies
and the daily reminders, aided to diminish the participants’ drop out
numbers. In both user studies the majority of the participants identified
as male, with six out of nine in the first study and four out of the
six in the second study declaring their gender as male. All of the
participants were primarily students, a part from one participant in
the first user study being a researcher at the university. Overall, seven
participants used Samsung model smartphones, three participants used
Xiaomi brand smartphones, two used OnePlus brand smartphones and
the rest used other brands. Nine of the participants used Android 10,
three participants used Android 9 and the rest used either 7, 8 or
11. Lastly, as mentioned in Section 7, given the limited number of
participants, the obtained results should be interpreted as an insight
into the explored topics not as final generalizations.

4.1.3. Design of the surveys
The initial survey was given to the participants in order to collect

general information about them and is formed as shown in Fig. 4a.
The daily survey is presented on Fig. 4b. The goal of the daily survey

is to understand the level of engagement of the participants and what
their opinion on their daily suggested activity was.

The final questionnaire focuses on usability concerns (Fig. 4c).
This questionnaire uses the System Usability Scale (SUS) [22] together
with tailored made questions for our particular experiment. All of the
questions/state-ments in the daily and final survey, apart from Q13,
Q14, Q16 and Q17, are evaluated on a likert scale ranging from 1–5 (1
being strongly disagree and 5 being strongly agree).

4.1.4. Data analysis
For both studies we focused our analysis on the data collected from

the final survey, as that most directly addresses RQ1.1 and RQ1.2. For
each of the statements counted and classified each of the categorical
responses given on the likert scale. We then presented this analysis in
the form of tables. Thereafter, we analyzed if a difference was recorded
7

between the users of the BaseApp and those of RELATE.
4.1.5. Experiment execution
Following the initial stage of recruitment, we had the interested

participants fill in the initial survey. After, we randomly divided the
participants into two groups. Group R used RELATE and Group B used
the BaseApp. The participants were then sent an e-mail with attached
the .apk file for their system, as well as instructions on how to install
it on their own Android devices. Once all participants informed us
of the successful installation of the app, we sent them access to the
daily survey and sent them their first weekly activity schedule. During
the course of the study, we sent e-mail remainders to the participants
to fill in their daily surveys. After one month the study was ended.
At the end of the study the participants completed the final survey.
This designed experiment was executed twice. Once over the month
of December 2020 and the second from mid January to mid February
2021. Both executions of the experiment lasted 4 weeks and in both
cases the participants were selected via convenience sampling. Due to
the Covid-19 pandemic, both studies were conducted with no physical
interaction between us and the participants. All correspondence was
done via e-mail.

4.2. Design and execution of Experiment 2 (measurement-based experi-
ment)

4.2.1. Goal and research questions
Similarly to the previous experiment, we formulate the goal of this

experiment by using the goal template provided by Basili et al. [21].

Analyze personalization and self-adaptation techniques for the pur-
pose of assessing their impact with respect to resource consumption
at runtime from the viewpoint of users, developers, and researchers
in the context of our Android implementation of RA.

In the following we present and discuss the research questions we
translated from the above mentioned overall goal.

𝑹𝑸𝟐.𝟏 – What is the impact of personalization and self-adaptation
techniques on the performance of an e-Health mobile app?

The main objective of 𝑅𝑄2.1 is to investigate how the use of
ersonalization and self-adaptation could impact the performance of
e-Health mobile app as opposed to one that does not include such

echniques. For the purpose of our experiment, we measure perfor-
ance impact by measuring the CPU usage and memory consumed

y the mobile device whilst operating one of the tested systems (ei-
her RELATE or the BaseApp). This knowledge can help developers
nd users of personalized and self-adaptive e-Health mobile apps as
erformance problems are easily noticed by a user and impact to
heir experience. These performance problems can be perceived by
he user as app sluggishness and non-responsiveness which can lead
o user abandonment as they uninstall the app due to frustration and
issatisfaction.

𝑹𝑸𝟐.𝟐 – What is the impact of personalization and self-adaptation
techniques on the energy consumption of an e-Health mobile
app?
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The main objective of 𝑅𝑄2.2 is to investigate if the use of per-
onalization and self-adaptation can have a significant impact on the
nergy consumption that a e-Health mobile app draws as compared to
n identical e-Health app that does not use these techniques. Answering
his research question gives important insight to the developer and the
ser of such apps. The amount of energy consumed by a single app
an have great impact on the users’ experience, as it could potentially
inder the users’ ability of utilizing their mobile device all together. If
he introduction of these techniques would lead to a high enough en-
rgy consumption, it could potentially discourage users from choosing
-Health mobile apps containing personalization and self-adaptation,
omething that would be undesirable to a developer.

.2.2. Variables and hypotheses
This section explains both the independent and dependent variables

resent in our experiment.
The independent variables in this experiment are two: the type

f smartphone used and the type of system installed on it. The type
f smartphone used has two treatments: low-end and middle-end. For
ur low-end device we used a LG Nexus 5X and for the middle-end
evice we used a Samsung Galaxy J7 Duo (further details on the
wo smartphones are reported in Section 4.1.5). The type of system
nstalled on the smartphone has also two treatments: the system with no
ynamic tailoring (the BaseApp) and the system with dynamic tailoring
RELATE). For each execution of one of these systems we measure the
elow reported dependent variables.
The dependent variables in this experiment are the energy con-

umed (reported in Joules), the cpu usage (reported as the percent-
ge amount used over the total amount available) and the memory
onsumed (reported in kilobytes) by either the BaseApp or RELATE.

For each of the above listed dependent variables we formulate the
ollowing hypotheses:
8

c

• H1: We define 𝐶𝑃𝑈𝐵 to be the measured CPU usage of the
BaseApp and 𝐶𝑃𝑈𝑅 to be the measured CPU usage of RELATE.
The null and the alternative hypotheses are formulated as follows:
𝐻10 ∶ 𝐶𝑃𝑈𝐵 = 𝐶𝑃𝑈𝑅
𝐻11 ∶ 𝐶𝑃𝑈𝐵 ≠ 𝐶𝑃𝑈𝑅

• H2: We define 𝑀𝐸𝑀𝐵 to be the measured memory consumption
of the BaseApp and 𝑀𝐸𝑀𝑅 to be the measured consumption of
RELATE. The null and alternative hypotheses are formulated as
follows:
𝐻20 ∶ 𝑀𝐸𝑀𝐵 = 𝑀𝐸𝑀𝑅
𝐻21 ∶ 𝑀𝐸𝑀𝐵 ≠ 𝑀𝐸𝑀𝑅

• H3: We define 𝐸𝐶𝐵 to be the measured energy consumption of
the BaseApp and 𝐸𝐶𝑅 to be the measured energy consumption of
RELATE. The null and alternative hypotheses are formulated as
follows:
𝐻30 ∶ 𝐸𝐶𝐵 = 𝐸𝐶𝑅
𝐻31 ∶ 𝐸𝐶𝐵 ≠ 𝐸𝐶𝑅

H1 and H2 investigate the dependent variables for answering
Q2.1, while H3 aims at answering RQ2.2. All three hypotheses are
eparately assessed for each of the two smartphones used.

.2.3. Data analysis
In this experiment we are going to answer each of our research

uestions in four phases: exploration, normality checks, hypotheses
esting, effect size estimation.
Exploration. In this first phase we get an indication of the data

ollected via the use of descriptive statistics (i.e., mean, median and
tandard deviation) and boxplots.
Normality checks. We measure the distribution of each data type

ollected to understand whether we can apply parametric or non-
arametric statistical tests. We check whether the data is normally
istributed by first visually analyzing it with a Q–Q plot and the
pplying a Shapiro–Wilks statistical test [23] with an 𝛼 = 0.05. As we
eport in Section 5.2, the collected data is not normally distributed.
Hypotheses testing. Given the non normal distribution of the data
ollected we test our hypotheses by the use of the Mann Whitney U test
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Fig. 5. Execution of one repetition of the experiment.
(with an 𝛼 = 0.05). The Mann Whitney U (also known as the Wilcoxon
rank-sum test) is a non-parametric statistical test used to check whether
the population of two distributions are statistically equal [24].

Effect size estimation. To statistically test the effect size of the
difference found between samples we use the Cliff’s Delta statistical
test [25]. Cliff’s Delta is a non-parametric statistical tool used to cal-
culate the effect size without making assumptions on the distributions
compared.

4.2.4. Experiment execution
In this subsection we explain how we conducted our experiments to

measure CPU, memory and energy consumption. As shown in Fig. 5,
for each repetition of our experiments we used: a laptop, one of the
two chosen smartphones, a smartwatch, and an internet connection.

– The Laptop. It is running Ubuntu 16.04LTS and had the following
hardware specifications: RAM 16 GB, CPU i7-6700HQ @ 2.60 GHz * 8,
Intel HD Graphics 530. In order to automate our repetitions we installed
Android Runner (AR) on the laptop [20]. AR is a framework that allows
users to automatically execute measurement-based experiments on both
native and web apps running on Android devices.

– The Smartphones. The Android devices used are two: a LG Nexus 5X
smartphone and a Samsung Galaxy J7 Duo. The LG smartphone has a
1.8 GHz hexacore ARM Cortex A53 & Cortex A57 cpu with 2 GB of RAM
running Android 6.0.1. This model is chosen to represent the possible
performance impact that these systems can have on an older android
smartphone. The Samsung smartphone has a 1.6 GHz octacore ARM
Cortex A73 & Cortex A53 cpu with 4 GB of RAM running Android 8.0.0.
This smartphone is chosen to represent a mid level android smartphone.

Each repetition starts with installing either the BaseApp or RELATE
on the smartphone (step 1). Once installed, AR starts measuring the
system’s consumption of CPU, memory and energy (step 2). For mea-
suring the CPU and memory consumption AR uses Android Debug
Bridge4 (adb). For measuring the energy consumption it instead uses
the Android Batterystats profiler [26]. AR then follows a series of
screen taps and gestures that are engineered to be indicative of a worst
case scenario. Within the profiling session, the scenario goes through
the completion of the initial screen, giving of the necessary runtime
permissions, the re-connection to the paired smartwatch (step 4), the
receiving of the weekly user activities (step 5). When the scenario
is terminated, AR stops profiling the Android device (step 6). After
profiling, AR makes the necessary steps to set the device back to how it
was before the installation of the system (step 7 and 8). Lastly, AR waits
2 min before running another repetition of the experiment. This wait
is introduced to allow the device to ‘cool-off’ and go back to an idle
state; this break minimizes inconsistencies between repetitions. We ran
50 repetitions for each combination of system and smartphone, leading
to a total of 200 repetitions.

4 https://developer.android.com/studio/command-line/adb.
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5. Results

In this section we report on the results for both Experiments 1 and
2.

5.1. Results of Experiment 1 (user study)

We will now discuss the results of our user studies, organized by
research question and following the method and tools described in
Section 4.1.4. The results of the final survey for the first user study
are shown in Fig. 6a. The participants answering the final survey could
rate each statement from agreement (by rating it a 5) to disagreement
(by rating it a 1). It is important to note that the scoring can mean
something different per statement. For some statements disagreement
is desired and for other statements we are looking for user agreement.
Participants in Group R used RELATE and Group B participants used
the BaseApp. Fig. 6b illustrates the final survey results for the second
user study.

5.1.1. Investigating end users’ perception (RQ1.1)
The statements related to RQ1.1 are S1 and S2 shown in Fig. 6, and

Q12, Q15, Q13, and Q16 defined in Figs. 4b and 4c.

– Whilst using it, the app changed to better fit my needs and preferences
(S1). In both user studies participants in Group R tended to agree more
with this statement. Participants in Group B did instead agree less. This
means that generally participants in Group B did not find the app to
change for the better, implying that they either did not think the app
changed or that it changed for the worse.

– The changes that the app performed influenced my perception of it for
the better (S2). In the first user study participants in Group R rated
this statement with either disagreement or neutrality. Whilst members
of Group B showed more agreement to the statement. In the second
user study members of both groups showed their opinion to be either
neutral or in agreement. These findings imply that in the first user study
participants using RELATE did not believe that the changes performed
by the app influenced their opinion of it for the better. This could mean
that either the changes they perceived did not impact their opinion
of RELATE or shifted their opinion for the worse. On the contrary,
members of Group B as well as all participants in the second user
study seemed to have received the perceived changes positively. This
indicates that, especially for users of RELATE in the second study, the
changes offered and perceived by the users are considered a positive
aspect of the app.

– I am happy with the daily activity suggested to me today (Q12 and Q15).
We have grouped Q12 and Q15 as they are the same question but
posed in two different surveys (i.e., the daily and the final surveys). For
the first user study, we gathered the following average (median) and

https://developer.android.com/studio/command-line/adb
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Fig. 6. Recorded ratings for the final survey for both user studies.
standard deviation for Group B: 4.290 (5) and 1.062. Whilst, for Group
R we gathered the following average (median) and standard deviation
of 3.9256 (4) and 1.039. In the second user study, we gathered the
following results of average (median) and standard deviation from
Group B: 3.706 (4) and 0.47. For Group R we got an average (median)
and standard deviation of 3.655 (4) and 0.971. In both user studies the
results gathered indicate a minimal difference in happiness with the
suggested daily activities, with the participants in Group B seemingly
happier.

– I performed the daily activity suggested to me today (Q13 and Q16). For
these questions we calculated the percentage of times that participants
of a group reported performing their suggested physical activity of the
day. In the first user study participants of Group B reported following
the suggested daily activity 82.26% of the time. Participants of Group
R reported performing their suggested activity 73.4% of the time. In
the second study, the participants of Group B reported performing
their daily suggested activity 58.82% of the time, whilst participants of
Group R agreed with the suggested activity 66.37% of the time. These
findings show that in the first user study, participants using RELATE
recorded performing their suggested activities less often than those not
using this app. The opposite can be seen from the results of the second
10

user study.
5.1.2. Investigating usability (RQ1.2)
In this section we report on the data obtained to answer RQ1.2.

The statements related to this research question are S3 to S12 shown in
Fig. 6. We have grouped the statements together per overarching topic:
ease of use of the app, app cohesiveness, and likely hood of using the
app in the future. – Ease of use of the app. This topic groups the following
statements:

• I found the app unnecessarily complex. (S4)
• I found the app easy to use. (S5)
• I think that I would need the support of a technical person to be

able to use this app. (S6)
• I would imagine that most people would learn to use this app very

quickly. (S9)
• I felt very confident using the app. (S11)
• I needed to learn a lot of things before I could get going with this

app. (S12)

For this group of statements, we find that the participants rated their
utilized apps easy to use (S5, S6, S9, S11) and understand (S4, S6, S12).
This is true no matter if the participants are from Group R or Group
B. Furthermore, there is no significant difference in opinion between
the participants of the first user study as compared to those of the
second user study. As participants from both groups had no significant

difference in scoring their version of the app, we also understand that
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dynamic tailoring did not make it harder for the user to use and
understand the app.

– App cohesiveness. This group is comprised of the following statements:

• I found the various functions in this system were well integrated.
(S7)

• I thought there was too much inconsistency in this app. (S8)

The findings for S7 in the first user study show that, no matter
hich group the participants belonged to, they were split across the

cale. The opposite is seen for the results of the second user study,
ere the opinion on the integration of system functionalities was more
ocused and seen more positively. More cohesive are the results of S8.
or both user studies the participants found their apps to not have too
uch inconsistency. In particular users of RELATE were more neutral

owards this statement than the users of the BaseApp, which all rated
he statement with disagreement.

Likelihood of using the app in the future. Lastly, in this topic we group
he following statements:

• I think that I would like to use this app frequently. (S3)
• I found the app very cumbersome to use. (S10)

The findings for S3 are non homogeneous and inconsistent across
he two user studies. In the first one, most participants either disagreed
ith the statement of were neutral about it. In the second one, half of
roup R disagreed with the statement, whilst the other half agreed; the
embers of Group B all rated the statement neutrally. These findings

how a non homogeneous consent in the opinions of the participants.
e, instead, find cohesion in the results given for S10, as in both user

tudies the majority of participants did not find their version of the
pp to be cumbersome to use. We further elaborate on these results in
ection 7.4.

.2. Results of experiment 2 (Measurement-Based Experiment)

In this section we report on the results obtained for the
easurement-based experiment. We will be discussing the results per

esearch question answered, following the procedure reported in Sec-
ion 4.2.3.

.2.1. Impact on performance (RQ2.1)
Exploration. The performance data measured for the LG smart-

hone are shown on Fig. 7. For the CPU measurements, we see no clear
ifference between the two apps. The mean (median) and standard
eviation for the BaseApp are: 14.24% (10.55%) and 7.90%, whilst for
ELATE they are: 13.69% (11.00%) and 7.15% respectively.

We can observe a difference between the distribution of the memory
sage of the two apps, with RELATE consuming more memory. The
ean (median) and standard deviation of the BaseApp are 65266.40

B (64675.35 kB) and 1140.62 kB, respectively, and the descriptive
tatistics of RELATE are: 67912.26 kB (67859.79 kB) and 519.67 kB,
espectively.

The performance measured for the Samsung smartphone are shown
n Fig. 8. As shown in Fig. 8a, we have found no difference in CPU
sage by the two systems. The mean (median) and standard devi-
tion of the BaseApp are: 13.90% (11.96%) and 9.34%. Similarly,
he descriptive statistics for the CPU consumption of RELATE are:
2.61% (11.00%) and 7.93%. Similar to the LG smartphone, in this
ase RELATE tends to use more memory than the BaseApp (seen in
ig. 8b). The mean (median) and standard deviation for the BaseApp
re: 47963.58 kB (44531.24 kB) and 6363.78 kB, respectively. Differ-
ntly, RELATE reported a mean (median) and standard deviation of:
5492.90 kB (54478.22 kB) and 2898.77 kB, respectively.
Check for normality. Fig. 7 shows the Q–Q plot against the normal

istribution for both the CPU and the memory consumption data mea-
11

ured on the LG smartphone. Several measures fall far away from the 1
reference line, indicating that the collected measures are not normally
distributed. To further confirm our observation we carried out the
Shapiro–Wilks test on all four datasets. For RELATE CPU measurements
the test returned a 𝑝-value of 3.545e−08 and, for the BaseApp we
achieved a 𝑝-value of 4.72e−09. For the memory measurements of
RELATE we obtained a 𝑝-value = 0.03345 and for the BaseApp the
𝑝-value is 1.89e−05. Therefore, in all cases, we can reject the null
hypothesis stating that these samples come from a normal distribution.

With Fig. 8 we illustrate the Q–Q plots for the performance mea-
surements taken on the Samsung smartphone.

Our Shapiro–Wilks tests confirm the Q–Q plots. With a returned 𝑝-
alue of 6.262e−10 for the CPU measurements of RELATE and a 𝑝-value
f 4.161e−09 for the BaseApp. For the memory usage RELATE had a 𝑝-
alue = 1.285e−11 and the BaseApp returned a 𝑝-value of 4.661e−07.
e can therefore reject the null hypothesis stating that the Samsung

martphone CPU usage data comes from a normal distribution.
Hypothesis testing. As stated in Section 4.2.3, we utilize the non-

arametric Mann–Whitney U test to determine whether we can reject
ur stated null hypotheses (formulated in Section 4.2.2). Starting by ex-
mining the measurements collected for the LG smartphone; the 𝑝-value
eturned for the comparison between BaseApp and AdaptiveSystem on
he CPU consumption is equal to 0.48. As this 𝑝-value is above the
ignificance threshold (𝛼 = 0.05), we cannot reject the null hypothesis
10. When applying the statistical test to the memory consumption

alues of the two apps we obtain a returned 𝑝-value of 2.54814e−17.
s this value is smaller than our chosen 𝛼, we can reject our null
ypothesis 𝐻20. The above findings are similar for the Samsung smart-
hone, where the returned p-values for the comparison of the two apps
n CPU consumption and memory usage are 0.36 and 9.67143e−13,
espectively. This means that we cannot reject the null hypothesis 𝐻10,
ut we can reject the null hypothesis 𝐻20.
Effect size estimation. As a follow up to the use of the Mann–

hitney U test, we determine the effect size of the differences found.
s stated in Section 4.2.3, we use Cliff’s Delta to do so. A large effect
ize is found when investigating the difference in memory consumption
etween the BaseApp and AdaptiveSystem for both the Lg smartphone
0.98) and the Samsung smartphone (0.83).

.2.2. Impact on energy consumption (RQ2.2)
Exploration. Fig. 9b shows the distribution of the energy consump-

ion of the two apps running on the LG smartphone. We see no apparent
ifference in the energy consumption between the two apps. Indeed the
ean (median) and standard deviation for the BaseApp are: 139.54 J

133.53 J) and 15.34 J. For RELATE the mean (median) and standard
eviation are: 139.32 J (132.95 J) and 18.78 J.

For the Samsung smartphone we observe a slight difference in
nergy consumption between the two systems (shown in Fig. 9a). We
an observe that RELATE consumes less energy than the BaseApp; we
ill be further discussing this finding in Section 6. The mean (median)
nd standard deviation of the energy consumption for the baseline app
re: 137.51 J (134.83 J) and 9.99 J; whilst the descriptive statistic for
ELATE are: 133.96 J (131.85 J) and 8.28 J respectively.
Check for normality. Figs. 9d and 9f show the Q–Q plots against

he normal distribution for the energy consumption measured on the
G smartphone. Both plots show that the data collected is not normally
istributed.

To further corroborate our finding, the Shapiro–Wilks test done on
ELATE’s dataset returns a 𝑝-value of 6.115e−12 and the BaseApp
ase gives a 𝑝-value of 5.904e−09. Therefore we can reject the null
ypothesis of the data belonging to a normal distribution.

Figs. 9c and 9e illustrate the Q–Q plots against the normal distribu-
ion for the energy consumption measured on the Samsung smartphone.
s the plots indicates, the data is not normally distributed. This is
onfirmed by the Shapiro–Wilks test, as RELATE returned a 𝑝-value of

.258e−05 and the BaseApp returned a 𝑝-value equal to 3.329e−08.
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w

Fig. 7. All plots related to performance measurements for the LG smartphone.
We can therefore reject the null hypothesis that the energy consump-
tion measured from the Samsung smartphone comes from a normal
distribution.

Hypothesis testing. We start by using the Mann–Whitney U test
on the energy consumption data collected on the Lg smartphone. The
𝑝-value returned by the test is 0.73, as this value is above our chosen 𝛼,
we cannot reject the null hypothesis 𝐻30 and therefore we find that the
difference in energy consumption between the BaseApp and RELATE
on the Lg smartphone is not statistically significant. When running the
test on the energy consumption data for the Samsung smartphone we
obtain a 𝑝-value of 0.009. As the 𝑝-value is below our 𝛼 threshold,

e can reject the null hypothesis 𝐻30 and find that the difference in
energy consumption between the BaseApp and RELATE is statistically
significant.

Effect size estimation. Here we use Cliff’s Delta to follow up on
the findings gathered in our hypothesis testing. The difference found
on the Samsung smartphone can be classified as small (i.e., −0.30).

6. Discussion

6.1. Discussion on experiment 1 (User study)

We start by discussing the results on the end users’ perception
(RQ1.1). Participants using RELATE tend to agree more than those
using the BaseApp that the app changed to better fit their needs and
preference (S1). This result is interesting, as it suggests that users of
12
RELATE (i) noticed the adaptation of the app and (ii) found those
changes to be useful.

Most participants rated the statement ‘‘the changes that the app
performed influenced my perception of it for the better’’ neutrally or
approvingly (S2). Only the users of RELATE in the first user study also
stated disagreement with the statement. The disagreement with the
statement can either mean that the participants found the changes to
modify their perception of RELATE for the worse or that they did not
make a difference in their perception of the app. Given the agreement
recorded for the previous statement (S1), we find it unlikely for the dis-
agreement on this statement, S2, to have a negative connotation: as this
would contradict the positive implications found with S1. Therefore,
we can conclude that the changes performed by the app were overall
seen as either non impactful to the users’ perception of the app or as a
positive influence.

Regarding how happy the users were with their daily activities,
our results found little difference between users using the BaseApp
and those using RELATE in both user studies. The only difference
seems to be the fact that participants in Group B appeared to be
somewhat happier. This, however, is not reflected in the adherence to
performing the suggested activities. Here, the two user studies show
opposite results with the first one showing participants in Group B
performing their suggested activities more often, whereas the second
user study showed Group R more often performing their daily activities.
Therefore, these last results seem to be inconclusive. This could be
due to the simplicity of the suggested daily activities and the minimal
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Fig. 8. All plots related to performance measurements for the Samsung smartphone.
dynamic tailoring that is done with them in this current version of the
implemented apps. As future work, it would be important to include
all of the Back-end components in the RA in order to be able to
better personalize the daily suggested activities to the participants using
RELATE. This further implementation of dynamic tailoring could lead
to a wider observed difference between the two groups of participants
as the two apps will be further distinguished from each other.

In summary, the results we have obtained indicate that person-
alization and self-adaptation techniques have an overall positive
impact on the end users’ perception of e-Health mobile apps.
Therefore, developers and researchers whom are interested in end
users’ perception, can successfully adopt these techniques in their own
e-Health apps.

Lastly, privacy was a relevant concern during our experiments. We
addressed privacy concerns by having all of our participants give us
their personal information willingly and understand that it would be
saved and used for the purposes of this work. To respect privacy reg-
ulations, the data presented to the public, via the replication package,
has been anonymized.

We will discuss now the results related to our investigation on
the usability of our e-Health mobile app (RQ1.2). Across all of the
statements analyzed, we see a pattern of agreement between all of
13
the participants, no matter the group they were assigned to. This is
interesting, as it points to dynamic tailoring not being a determining
factor to how the participants responded to the survey. We observed
only with statements S3 (i.e., ‘‘I think that I would like to use this
app frequently’’) and S7 (i.e., ‘‘I found the various functions in this
system were well integrated’’) that the participants did not show a
clear trend or consensus, and were instead more distributed along the
Likert scale. Given these results, we can conclude that there seems
to be no apparent impact caused by personalization and self-
adaptation techniques on usability of e-Health mobile apps. As
discussed previously, a future implementation of RELATE containing
the complete Back-end components from our RA might help surface
differences that were not recorded in this study, as this new version of
RELATE would include the full range of dynamic tailoring advocated
by our RA and would therefore increase the difference between our two
tested systems (RELATE and our BaseApp).

6.2. Discussion on experiment 2 (Measurement-Based Experiment)

We start the discussion by elaborating on our results for RQ2.1,
namely: ‘‘What is the impact of personalization and self-adaptation
techniques on the performance of e-Health mobile apps?’’. For both
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Fig. 9. All plots for the energy usage measured.
devices, RELATE tends to use more memory than the BaseApp. This
is understandable, as RELATE contains the adaptive components that
the BaseApp does not (i.e., Environment Driven Adaptation Manger,
mart Objects Manager, and Internet Connectivity Manager). These
omponents require the utilization of the smartphone’s memory in
rder to carry out their business logic. As an example, the Environment
riven Adaptation Manager needs to assess what current day of the
eek it is, what the weather forecast for that day is and if it needs to

hange the currently recommended daily activity. Having said so, the
ifference of the amounts of used memory is negligible when put into
he context of the total amount of memory that these devices have.
he difference between the averages for the LG smartphone is 2645.9
B (over a total of 2 GB available) and for the Samsung smartphone
s 7529.3 kB (over a total of 4 GB available). This difference, whilst
hown to be statistically significant, has no practical implication over
he user experience of the apps. We can therefore conclude that the
price’ paid in terms of memory consumption for the benefits of adding
ynamic tailoring is worthwhile.

Our results also show a difference in the CPU usage levels between
he two examined apps on the Samsung smartphone. However, RELATE
eems to be the one consuming the least amount of CPU. If we take
14

he difference between RELATE CPU usage average and the one of the
BaseApp we get a difference of −1.288 (the CPU measurement is quan-
tified as a percentage of the total amount of CPU). Whilst our analysis
has shown this difference to be statistically significant, we argue that
such a small difference in CPU usage would have no impact on the
user experience. In conclusion, whilst our results have found some
statistically significant differences in app performance, these dif-
ferences are too small to realistically impact the user experience
of an Android app.

Regarding RQ2.2, namely: ‘‘What is the impact of personalization
and self-adaptation techniques on the energy consumption of e-Health
mobile apps?’’. Only for the Samsung smartphone we found a statis-
tically significant difference in energy consumption between the two
apps. This difference is, however, not expected as it shows RELATE to
be consuming less energy than the BaseApp. Upon closer inspection, we
notice that the difference in average energy consumption between the
BaseApp and RELATE is equal to 3.6 J. Just like with the differences
found for the memory and the CPU, this discovered difference is so
small that it will not impact the user experience in a practical sense.
In conclusion, our experiments provide evidence that the impact
of personalization and self-adaptation techniques on the energy

consumption of e-Health mobile apps is negligible.
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Overall, our findings for RQ2.1 and RQ2.2 show that using person-
alization and self-adaptation techniques in e-Health mobile apps has
no adverse effect on both performance an energy consumption. This
should encourage app developers and researchers working in this field
to adopt these techniques in their own e-Health apps as they provide
a great range of extra functionalities with little to no impact on the
resources of the user’s smartphone.

7. Threats to validity

7.1. External validity

– Experiment 1 (User study). There is a threat to generalizability as
the sample of participants for our experiment was limited. Because
of this, the presented results are not meant to be final but rather as
an exploration of these topics. Further work with a larger sample of
participants would be needed to draw more conclusive results.

– Experiment 2 (Measurement-Base Experiment). To minimize the threat
to external validity we ran our experiment on two different types of
smartphone. The smartphones chosen are intended to be a represen-
tation of a low-end and a middle-end device. This diversification of
devices should better capture the real world scenario. Having said so,
the use of a newer smartphone could possibly lead to different results
and conclusions. We therefore encourage further experiments to further
minimize this threat to validity.

7.2. Internal validity

– Experiment 1 (User study). To mitigate the threat to internal validity
we implemented the two applications to be as close as possible, leaving
dynamic tailoring as the sole difference. Furthermore, the participants
for both groups R and B were recruited in the same manner and are all
of a comparable demographic (therefore mitigating possible selection
bias).

– Experiment 2 (Measurement-Base Experiment). There are a number
of factors that can influence the measurements we have collected in
our experiments i.e., brightness of the screen, distance to the internet
router, distance to the Bluetooth smartwatch and background pro-
cesses. We designed our experiments so to minimize as much as possible
these factors. We maintained the brightness of the screen, the distance
to the internet router and the distance to the Bluetooth smartwatch
fixed across all repetitions. To mitigate the impact of uncontrollable
background processes we performed 50 repetitions for each experiment
case, mitigating the bias that one spike in background processes can
have over our overall readings. Lastly, maturation can influence the
data collected in the experiments. In our case maturation is the changes
that occur in the smartphone as the experiment is running (e.g., memory
sage, CPU heat generation and impact on its performance). In order
o mitigate it, we imposed a waiting time of 2 min between each repe-
ition. We also cleared any data that was gathered during the course of
repetition, to maintain the status of the smartphone identical across

xperiments.

.3. Construct validity

Experiment 1 (User study). To minimize the threat to construct validity,
e defined all of the details regarding our experiment design a priori

e.g., research questions, data analysis methodology, variables).

Experiment 2 (Measurement-Base Experiment). Here we also defined
verything regarding our experiment design and methodology a priori.
15
.4. Conclusion validity

Experiment 1 (User study). To mitigate the threat to conclusion va-
idity, we had all 5 researchers involved in the data analysis of the
esults obtained for this experiment. This mitigates an individual bias
nd interpretation of the results. Furthermore, we offer a complete
eplication package to the public. Allowing for independent replication
f our experiment.

Experiment 2 (Measurement-Base Experiment). To minimize the threat
o conclusion validity we have used statistical analysis to more ob-
ectively draw our conclusions on the experiment. Lastly, we offer a
omplete replication package to the public. Allowing for independent
eplication of our experiment.

. Related work

Self-adaptation represents a suitable method to detect and deal
ith (potentially impactful) unexpected context changes. In the field
f mobile apps, it is even more challenging due to, i.e., mobile phones
esource constraints (e.g., battery level, network traffic). The need for
elf-adaptation is exacerbated in the e-Health domain where adapting
o the user-needs and context may be of crucial importance, i.e., to
roperly and promptly react to monitored patients activities. Balles-
eros et al. [5] present a wearable patient-monitoring system for tele-
ehabilitation, supporting therapies by providing valuable information
or the evaluation, monitoring, and treatment of patients. The system
ollows a goal-oriented self-adaptation approach based on dynamic
oftware product lines (DSPL) and it uses a set of self-adaptation
olicies enabling it to dynamically self-configure its internal behavior
o the current context of the patient, while maintaining the system
fficiency (e.g., optimizing battery consumption). Differently than our
ELATE app, the used adaptation policies do not influence the usability
r end users’ perception, since end users do not directly interact with
he system. They only make use of the system’s devices and wearable
e.g., knee motion sensor), used to monitor and recognize the activity
he user is performing and to collect data to trigger re-configuration.

Mizouni et al. [7] focus on the design and development of self-
daptive applications that sense and react to contextual changes (e.g.,
nvironment, device status) to provide a value-added user experience.
he authors present a framework defining a systematic approach to
odel dynamic adaptation of mobile apps behavior at runtime by using

PL concepts and offering feature priority based dynamic adaptability.
he framework is evaluated through an application supporting doctors
n the move to have access to patients’ files, report medical condi-
ions, prepare for intervention and communicate with the hospital.

similar application targeting doctors on the move is proposed by
reuveneers et al. [8]. In this study, the authors focus on how to
eliver the right patient’s information at the right time under variable
onnectivity and limited resource availability. Probabilistic models and
ynamic decision networks are used to improve the user experience and
n-device resource utilization. Differently than [7], we have defined
ur RA by leaving a certain degree of freedom to developers about
esign decisions and adaptation strategies. Moreover, in contrast to
oth [7,8], our RELATE app is not intended for healthcare professionals
nd caregivers, but for end-users. For this reason, usability and users’
erception concerns are quite relevant, since they might impact the
onstant and active commitment of end users.

Lopez et al. [6] make use of non-obtrusive monitoring technology in
heir context-aware mobile app delivering self-adaptive persuasive mes-
ages that stimulate the medication adherence, by exploiting real-time
hysiological data (e.g., heart rate). In our e-Health app, in contrast,
elf-adaptation and personalization are used to create the best possible
onditions for users to keep active in their activities, by considering
heir current context and preferences, thus guaranteeing a good level
f usability.
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Table 2
Comparison with related works.

Approach Personalization Usability Self-adaptation Energy efficiency

Ballesteros et al. [5] x x � �
Mizouni et al. [7] x x � x
Preuveneers et al. [8] x x � �
Lopez et al. [6] � � x x
Raheel [27] ∼ � � x
Sartori et al. [9] � x x x
Gamberini et al. [10] � ∼ x x
Burley et al. [11] � x x x

RELATE � � � �

Concerning the user experience provided by the apps’ user interface,
aheel [27] proposes a set of adaptive mechanisms able to monitor-

ng the user’s behavior w.r.t. a mobile phone (e.g., determining the
istance between the user and the screen) and adapting the interface
ccordingly. The author presents a medical adaptive mobile app aiming
o help the elderly remember taking their medicine at specific times.
xperiments show the effectiveness of adaptive user interface in im-
roving usability and acceptance of the mobile app. However, our RA
rings other instruments in support of usability that go beyond the
sability of the user interface (e.g., the goal model, user process adapta-
ion) and, simultaneously, it aims to guarantee that the personalization
nd self-adaptation techniques we use do not degrade the app usability.

Other works specifically focused on personalization to keep e-Health
pps users engaged. Sartori et al. [9] exploit fuzzy logic to cluster users
ccording to quantitative and qualitative variables about their physical
nd psychological well-being. They applied their approach to design
nd implement MoveUp, a e-Health mobile app aiming at increasing
he physical activity level in sedentary people. Experiments show that
ersonalization by means of users profiling succeeds in promoting
roup physical activity among users characterized by similar behaviors.
n this work, similarly to our approach, the authors realize a data-
riven personalization by clustering similar users, although they do not
onsider self-adaptation of their app and do not evaluate its usability.
amberini et al. [10] propose PatchAi, an e-Health app exploiting a con-
ersational agent in the form of a chatbot, to reduce the drop-out rates
nd increase the patience adherence to treatments. The app supports
sers in inserting several data about their disease, symptoms, drugs
ssumption, etc. to which doctors may access and evaluate realtime
linical trial patient-related information. Lastly, for its implementation,
he authors followed the basic principles of usability and accessibility,
lthough they did not evaluate usability with users. Burley et al. [11]
lso experienced a high drop-out rate to their MindTrails online plat-

form, which aims to reframe the thinking patterns of highly anxious
individuals when responding to ambiguous situations that they might
interpret as stressful. As a solution they combined personalization and
implementation intentions. The former is done through an interactive
and informative interface driving users in selecting the domain in which
they want to improve their thinking. The latter, instead, is performed by
psychologists expert in behavioral interventions that provide intentions
scenarios based on the users data to ensure complete their treatments.
In both [10,11] the personalization requires the users participation,
thus it is not transparent neither exploits users smart objects to collect
users e-Health data. Moreover, self-adaptation is not considered at all.

In Table 2 we outline the comparison with the discussed related
work. In particular, ✓denotes that the corresponding feature is covered,
𝑥 means that it is not considered at all, and ∼ denotes that the feature
is only partially covered in comparison with our work. The above
reviewed studies share with our work the exploitation of self-adaptation
techniques or the use of personalization techniques to keep users en-
gaged, in e-Health mobile apps. None of them exploits both approaches
to get the most from their combination, as shown in Table 2. Further,
16

works providing personalization solutions, rarely evaluate usability of
their e-Health apps, which instead might negatively impact the person-
alization results. Moreover, in the context of mobile apps, adaptation
engines must satisfy the energy efficiency requirement. According to
Cañete et al. [28], energy consumption also depends on the execution
context (environment, devices status) and how the user interacts with
the application. Indeed, despite the hardware consumes the energy,
the software (e.g., adaptation mechanisms) is responsible for managing
hardware resources and its functionality, thus affecting the energy
consumption. This demands for energy-efficient adaptation. Although
some of the reviewed work (e.g., [5,8]) aim to maintain the system
efficiency, differently from them, our study investigates the impact of
the used personalization and self-adaptation techniques on the per-
formance and energy consumption of an e-Health app. Results of our
empirical evaluation clearly show that applications built on top of our
RA, exploiting several MAPE loops and dynamic, personalized user
processes, guarantee energy-efficient adaptation.

9. Conclusions and future work

In this work we build upon the RA and test an implemented proto-
type app that complies to it. We call this prototype RELATE, standing
for peRsonalized sELf-AdapTive E-health. We designed and executed
two experiments: a user study, to test user concerns regarding us-
ability and app perception, and a measurement-based experiment to
test concerns related to performance and energy consumption. Both
experiments focused on studying the impact of self-adaptation and
personalization on their respective independent variables. To be able
to isolate these variables, RELATE was tested again an identical app,
lacking dynamic tailoring, which we named BaseApp. In our user
study, our results show that end users’ usability and perception is not
harmed by the introduction of dynamic tailoring and is instead made
better for the case of usability whilst for user perception we could not
find any significant difference. In our measurement-based experiment,
we concluded that for both performance and energy consumption the
differences measured were never at such a scale to cause real world
usage consequences. As reported in Section 7, there are limitations with
our studies. The most impactful to our results are the relatively low
number of participants and the limited variety of smartphones used.
Whilst we could not fully overcome these limitations in this iteration
of the studies, we intend on addressing them in future work.

As future work we are also planning to expand RELATE to imple-
ment and use the entirety of the RA components. This would allow
for a deeper level of personalization and possible updated results on
our experiments. We would also like to conduct a larger user study
with the new version of RELATE. Lastly, we are planning to investigate
the feasibility of further generalizing the RA and RELATE to other
domains outside of e-Health, such as apps for the social good and social
networks.
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