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Abstract

With the current technology trends, the number of computers and computation
demand is increasing dramatically. In addition to different economic and
environmental costs at a large scale, the operational time of battery-powered
devices is dependent on how efficiently the computer processors consume energy.

Computer processors generally consist of several processing cores and a
hierarchy of cache memory that includes both private and shared cache ca-
pacity among the cores. A resource management algorithm can adjust the
configuration of different core and cache resources at regular intervals during
run-time, according to the dynamic characteristics of the workload.

A typical resource management policy is to maximize performance, in
terms of processing speed or throughput, without exceeding the power and
thermal limits. However, this can lead to excessive energy expenditure since a
higher performance does not necessarily increase the value of the outcome. For
example, increasing the frame-rate of multi-media applications beyond a certain
target will not improve user experience considerably. Therefore, applications
should be associated with Quality-of-Service (QoS) targets. This way, the
resource manager can search for configurations with minimum energy that does
not violate the performance constraints of any application. To achieve this
goal, we propose several resource management schemes as well as hardware
and software techniques for performance and energy modeling, in three papers
that constitute this thesis.

In the first paper, we demonstrate that, in many cases, independent manage-
ment of resources such as per-core dynamic voltage-frequency scaling (DVFS)
and cache partitioning fails to save a considerable energy without causing
any performance degradation. Therefore, we present a coordinated resource
management algorithm that saves considerable energy by exploring different
combinations of resource allocations to all applications, at regular intervals
during run-time. This scheme is based on simplified analytical performance
and energy models and a multi-level reduction technique for reducing the
dimensions of the multi-core configuration space.

In the second paper, we extend the coordinated resource management with
dynamic adaptation of the core micro-architectural resources. This way, we
include instruction- and memory-level parallelism, ILP and MLP, resp., in the
resource trade-offs together with per-core DVFS and cache partitioning. This
provides a powerful means to further improve energy savings. Additionally,
to enable this scheme, we propose a hardware technique that improves the
accuracy of performance and energy prediction for different core sizes and cache
partitionings.

Finally, in the third paper, we demonstrate that substantial improvements in
energy savings are possible by allowing short-term deviations from the baseline
performance target. We measure these deviations by introducing a parameter
called slack. Based on this, we present Cooperative Slack Management (CSM)
that finds opportunities to generate slack at low energy cost and utilize it later
to save more energy in the same or even other processor cores. This way, we
also ensure that the performance consistently remains ahead of the baseline
target in every core.
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Chapter 1

Introduction

With the current technology trends, the number of computers and the computation demands
are increasing dramatically worldwide. The emergence of new applications such as autonomous
vehicles and digital currencies, and the rapid expansion of existing application domains
such as cloud computing or cyber-physical systems, are a few examples of these trends.
Consequently, reducing the energy consumption per unit of computation is necessary for
achieving sustainable development and avoiding severe economic and environmental problems.
To better understand the scale of this issue, HiPEAC vision 2019 [1] mentions that according
to some projections, “by 2030 ICT will consume the equivalent of half of the global electricity
production of 2014”. It also states that “Computing systems need to be orders of magnitude
more energy efficient” to succeed in their expectations. On the other hand, as a growing
number of computers are powered by batteries, the operational time and usability of these
systems depend on how efficiently their processors consume energy.

Hence, this thesis targets the important and challenging goal of improving the energy
efficiency of computers, ranging from battery-powered devices to high-performance data
centers. In this chapter, the necessary background information is provided along with the
statement of the thesis objective, an overview of the related work, the problem formulation,
challenges, and a summary of the contributions of the thesis. Finally, the thesis organization
is described at the end of this chapter.

1.1 Background

Today, a typical microprocessor is designed with a multi-core architecture consisting of several
processing cores or processors. Each core contains a private cache memory hierarchy (usually
two levels), while a third-level larger so called Last Level Cache (LLC) is shared among all
cores. When the processor cannot find a particular data in the cache hierarchy, it issues
an off-chip access to the main memory to collect that data. These accesses are a major
source of energy consumption, especially for memory-intensive applications. On the other
hand, processor cores are also responsible for a significant portion of energy consumption
when executing different instructions. Therefore, this thesis focuses on reducing these two
dominant energy components.

The energy of a processor core has a quadratic relationship to its voltage. For example,
reducing the voltage by half can save 75% of the core energy. But, the operating frequency
must be reduced accordingly due to an increased circuit delay. Most processors are capable
of performing such a change during run-time, using a technique called Dynamic Voltage-
Frequency Scaling (DVFS). Furthermore, the core energy consumption can also be reduced
by deactivating sections of its micro-architectural components [2]. But, this may lower the
performance by limiting the number of instructions and memory accesses that can be executed
in parallel — a.k.a instruction- and memory-level parallelism, ILP & MLP, respectively.

To reduce the memory access energy, the number of cache misses should be minimized
by utilizing the cache capacity efficiently. For example, providing a larger LLC share
to a memory-intensive application, at the right time, can reduce the number of memory
accesses significantly. But, this requires other applications to give up some of their allocated

1



2 CHAPTER 1. INTRODUCTION

LLC capacity. Therefore, such a decision cannot be taken without considering its effect
on all applications in the system. Dynamic reallocation of LLC capacity among different
applications can be performed via cache partitioning techniques such as Intel cache allocation
technology [3].

The trade-offs mentioned above can be regulated by a resource management scheme
that adapts the resource configurations according to the dynamic characteristics of the
applications in the multi-core workload. The resource manager can be implemented as a
lightweight software handler that is regularly invoked during run-time. At each invocation, it
can collect information about dynamic program characteristics from hardware performance
monitoring counters. Using this information, and based on the predetermined policies, the
resource management algorithm can modify the resource configurations such as per-core
DVFS, core sizes, and partitioning of the shared cache capacity, during run-time.

A typical objective in processor resource management schemes is to utilize the resources
to maximize performance in terms of processing speed or throughput. However, in many
applications, additional performance does not produce additional value all the time. A
simple example is multi-media applications with a certain performance target in terms of
frames-per-second rate. Increasing the processing speed beyond this target can only cause
excessive energy expenditure without any considerable improvement in user experience.
Additionally, there are scenarios when the value of energy-saving escalates. For instance,
when the battery charge of a smartphone is low, or when the cost of electricity increases for
a data-center, a controlled reduction in performance may be acceptable to enable additional
energy savings.

Therefore, applications should be associated with QoS targets that specify an acceptable
lower-bound on performance. This enables the resource manager to optimize the resource
configurations with the objective to minimize energy while meeting the performance con-
straints for all applications. Furthermore, by adjusting the QoS targets, this approach allows
controlled trade-offs between energy-saving and performance. For example, if an application
can tolerate a 30% increase in its execution time, the resource manager may find opportunities
to save more energy with a relaxed performance constraint. This can provide additional
value, e.g., in terms of reduced cost of electricity or extended battery-life.

1.2 Objective

Based on the background provided in the previous section, we establish the objective of this
thesis as follows:

In a multi-core processor that runs several independent applications,
the goal of this thesis is to reduce the energy consumption of the
system, as much as possible, while maintaining QoS, expressed as
performance targets, for all applications.

This objective is the fundamental target of the three papers – Paper I – III – this thesis
is based on. These papers are summarized later in Chapter 3. In the next section, we provide
a brief overview of the related work and explain the gap in the literature that is addressed
by these papers.

1.3 Related Work

When a processor runs a particular program, the utilization of different resources varies
dynamically according to the program characteristics. Therefore, several previous works such
as [4–10] propose resource management schemes that adapt different resource configurations
during run-time according to the QoS targets of a particular application. However, these
works do not consider the problem of sharing a resource such as cache capacity between
several QoS-constrained applications.

Resource management becomes more challenging when considering several applications
that share the resources of a multi-core processor. In order to provide QoS guarantees, prior
work such as [11] limit the number of QoS-constrained applications to a single one. Such
pessimistic over-allocation leads to inefficient use of resources. Therefore, to improve system
utilization without violating QoS, the following solution is proposed. Assuming a pool of
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best-effort applications with no specific performance requirements assumed, excess resources
are dynamically reclaimed from the QoS-constrained application when they are not fully
utilized. This way, system utilization is improved by running best-effort jobs as long as it
does not affect the performance of the QoS-constrained application.

There are several other studies such as [12–14] that propose a similar approach which
support multiple QoS-constrained applications instead of one. However, the approach taken
in these works does not take energy consumption into account. As mentioned in Section 1.1,
maximizing system performance — either in terms of throughput or utilization — can lead
to excessive energy expenditure if applications are not associated with a QoS target. This
is the case for best-effort applications. Furthermore, the improvements achieved with this
approach depends on the presence of a sufficient number of best-effort applications that can
tolerate unlimited performance degradation.

In another recent work [15], a reinforcement-learning mechanism is proposed that adapts
core mapping and DVFS with the objective to reduce power consumption while meeting the
QoS targets. However, there are three shortcomings in this approach. First, saving power
can potentially contradict with saving energy. A resource configuration with lower power
may consume higher energy if it leads to significantly longer execution time. Second, two
influential processor resources, namely, partitioning of the shared cache capacity, and dynamic
adaptation of the core micro-architectural components are not considered. The former has a
substantial effect on the number of memory accesses, while the latter affects instruction- and
memory-level parallelism, ILP & MLP, respectively. Thus, they have significant impact on
both energy and performance. Third, solutions that are entirely based on machine-learning
techniques are either too slow or too inaccurate when assuming no prior information about the
processor workload, and when the size of the configuration space is too large. Alternatively,
analytical models based on computer architecture knowledge can provide faster and more
accurate predictions.

1.4 Problem Statement

As mentioned earlier, we consider a multi-core processor that runs a set of independent
QoS-constrained applications. For simplicity, we assume the same number of applications
as the number of cores. We envision an online resource management scheme that controls
processor configurations including per-core DVFS and LLC partitioning at regular intervals
during run-time. Additionally, we consider a simple adaptive core architecture that can
dynamically switch between a few core sizes (small, medium, large). This can be done by
adding logic for deactivating/reactivating sections of different micro-architectural components
in each core.

We assume that a baseline resource configuration provides sufficient performance to meet
the QoS targets of all applications that are scheduled to run on the processor. The baseline
configuration can be, e.g., equal partitioning of LLC together with a set of core frequencies
and sizes. Hence, we formulate the main research problem as follows:

How can the resource manager select a configuration at each in-
vocation, that minimizes energy consumption without causing any
performance degradation compared to the baseline configuration for
all applications?

This problem formulation makes the resource manager independent from applications.
Regardless of what type of application runs on each core, it guarantees that the same
performance, or higher, is delivered to every application according to the initial resource
allocations. But, during run-time, resources can be re-distributed under the hood, based on
the dynamic program characteristics. This way, the objective stated in Section 1.2 can be
achieved.

However, the implementation of a resource management scheme that is capable of
addressing the above problem is challenging. Here, we briefly explain some of these challenges
at a high level.

First, at each invocation, the resource manager needs to know the effect of any reconfigu-
ration on the performance of all applications as well as the system energy. Assuming no prior
information about the applications and their dynamic run-time behavior, and considering the
large number of potential combinations of resource configurations, making such a prediction
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is difficult. A prediction with low accuracy may lead to QoS violations and higher energy
consumption and would contradict the stated objective of this thesis (Section 1.2).

Second, the overheads imposed by the resource manager, in terms of both execution time
and energy, must be negligible. A large overhead can lead to additional energy consumption
and performance degradation. Furthermore, it can limit the number of invocations of the
resource manager during run-time. This may reduce the effectiveness of the resource manager
in reacting to short-term variations in the workload behavior, and achieving the energy-saving
objective. Therefore, it is essential to have an efficient algorithm for exploring a large multi-
dimensional configuration space at each invocation of the resource manager. Furthermore,
the overheads must remain negligible even for systems with a larger number of processing
cores. In other words, the proposed scheme must be scalable.

Third, consider a scenario when several applications are competing for additional cache
space. If no application can tolerate any performance degradation compared to their baseline
resource setting, it may seem impossible to make any change in the system without violating
the performance constraint of one application. This may prevent energy-saving, e.g., by
lowering the core frequency or size, or a more efficient partitioning of cache.

1.5 Contributions
To address the challenges explained earlier and realize the objective stated for this thesis,
three papers are published which make the following contributions:

• Paper-I:

(1) An online resource management approach is presented that coordinates the
control of on-chip cache space and per-core DVFS to save processor energy
while respecting the QoS of every application in the workload.

(2) To reduce the overheads and achieve scalability, a heuristic algorithm is
proposed for finding the configuration that minimizes processor energy. A
linear time complexity with respect to the number of cores is achieved by
pruning the large multi-dimensional configuration space in several levels based
on the estimations made by analytical performance and energy models.

(3) The effect of coordinated and independent DVFS and cache partitioning is
quantitatively studied for a range of different mixes of application categories
and QoS targets. It is demonstrated how energy savings improve for different
workloads when relaxing the performance targets for all, or a subset of
applications in the workloads. Furthermore, the sensitivity of energy savings
to the baseline settings is analyzed.

• Paper-II: This paper builds on the approach presented in Paper-I by considering an
adaptive core architecture. Processor energy can be reduced further by extending the
scope of the resource manager to include micro-architectural components of each core.
The contributions of this paper can be summarized as follows:

(1) Based on a systematic analysis of the resource trade-offs for different applica-
tion categories, it is demonstrated in which workload scenarios the combination
of core resizing with DVFS and cache partitioning can provide a considerably
higher energy saving compared to the previous work (Paper-I).

(2) A resource management scheme is presented that improves energy efficiency
by dynamic adaptation of the core micro-architecture in coordination with
per-core DVFS and LLC partitioning, while respecting the QoS constraints of
all applications.

(3) A hardware design is proposed that improves the accuracy of performance
and energy modeling. This improvement is achieved through a heuristic
mechanism that predicts MLP for a range of different core sizes and cache
allocations.

• Paper-III: While Paper-I and Paper-II focus on energy optimization across the
resource configuration space at each invocation of the resource manager, Paper-III
extends the optimization by making trade-offs at different points in time. To enable
such trade-offs we need to keep track of short-term variations in processing speed
with a parameter, called slack. The contributions of this paper can be summarized as
follows:
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(1) Two important insights are presented: (a) The possibility to create slack
at a lower energy cost compared to the energy-saving enabled by using it
at a later point in time; and (b) the possibility to transfer slack from one
QoS application to another, through the shared resource, that enables more
energy-saving opportunities.

(2) Cooperative Slack Management (CSM) is introduced as a low-overhead re-
source management scheme to save substantial processor energy without
affecting the QoS of any application in the workload.

(3) A sampling technique is designed to improve the modeling accuracy dynam-
ically over run-time. This technique works with a hybrid approach that
supports both active and passive sampling. The former enforces a prede-
fined set of configurations to be sampled as soon as possible, while the latter
passively collects samples without interfering with the resource manager.

(4) In addition to CSM, a local slack management (LSM) algorithm is designed
that runs independently on each core. Over a range of different workload
scenarios and baseline assumptions, it is demonstrated when the coopera-
tive approach provides significant improvements and when an independent
approach is good enough.

1.6 Organization
The rest of this thesis is organized as follows. Chapter 2 explains the experimental method-
ology and the simulation framework developed in this thesis. A summary of each paper is
provided in Chapter 3. Chapter 4 presents the concluding remarks and the potential future
work. Finally, the three papers are appended to the end of this thesis.
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Chapter 2

Experimental Methodology

The experiments conducted in this thesis are based on simulations. A primary reason for this
choice is that we evaluate architectural concepts that are not available in commercial products.
This includes adaptive processor core micro-architectures and new hardware performance
monitoring counters. However, available computer architecture simulators do not fulfill the
requirements for our experiments out-of-the-box. This chapter starts by elaborating these
shortcomings in Section 2.1. Next, the simulation framework designed to address these issues
is described in Section 2.2. Finally, the evaluation metrics are discussed in Section 2.3.

2.1 Background

A fundamental challenge with computer architecture simulators is the prohibitively long
simulation time, especially for full execution of benchmark applications such as SPEC-CPU-
2006 [16] with reference input sets. To address this challenge, a technique called SimPoint
analysis was proposed by Sherwood et al. [17]. SimPoint was inspired by the intuition that
computer programs exhibit a dynamic behavior during run-time that can be categorized
into several program phases. For example, consider a simple program that consists of two
sequential loops. The first loop mainly contains memory instructions while the second loop
is mostly computational instructions. Program behavior is considerably different between
the execution of each loop. Therefore, this program can be divided into a memory-intensive
phase followed by a compute-intensive phase.

SimPoint breaks the entire instruction stream of a program into consecutive slices with a
fixed instruction count. It then uses a clustering algorithm to categorize slices with similar
characteristics into several program phases. Finally, it selects one slice from each phase as
the best representative of the average phase behavior. It also calculates the phase weights as
the percentage of slices that belong to that phase. By simulating only the representative
slices and using the phase weights, an estimate of the average program behavior can be
derived in a fraction of time compared to simulating the entire program. For example, given
the average cycles-per-instruction (CPI) count for each phase, a weighted average CPI can be
derived for the entire program execution. Furthermore, the simulation of representative slices
can be executed in parallel. Therefore, this technique can potentially reduce the simulation
time by several orders of magnitude.

However, this simulation methodology assumes a fixed system configuration for the entire
program execution. If a configuration such as core frequency or cache partitioning changes
during the execution time, the simulation results for different program slices that belong to
the same phase can be significantly different. Therefore, this methodology is not applicable
for evaluating dynamic resource management schemes.

Nevertheless, the outputs of the SimPoint technique can be used as part of a two-level
simulation framework that is capable of modeling the effect of dynamic changes in processor
configuration at regular intervals during run-time. This is inspired by the idea proposed
in [18] for improving the simulation of simultaneous multi-threading.

7
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Figure 2.1: Overview of the simulation framework.

2.2 Simulation Framework
Figure 2.1 shows an overview of the simulation framework used in the papers in this thesis.
It consists of two steps which are separated by a dashed line. The goal of the first step is to
create a database that holds detailed architectural simulation results for a range of different
processor configurations for the representative slice of each program phase. This is done
using the SimPoint technique together with Sniper [19, 20] and McPAT [21] simulators that
perform detailed performance and power/energy modeling, respectively. Once the database is
ready for all the applications in the multi-core workload, it is used by an in-house developed
resource-management-algorithm simulator (RMA-Sim) to perform different experiments.

This process starts by SimPoint which analyzes the entire instruction stream of a
particular benchmark application. We refer to this instruction stream as the “whole program
pinball”1. In the simplified example in Figure 2.1, each application consists of three continuous
phases highlighted by different shades of green. SimPoint produces two outputs that are
used by this framework. First, a representative region (RR)2 is selected for each phase —
as explained in Section 2.1. To improve the accuracy of the architectural simulations, each
representative region is preceded with another region to warm-up (WU) the memory hierarchy.
Second, a phase trace is produced that lists the phase numbers for every consecutive program
slice.

One advantage of this framework is that every detailed architectural simulation in the
first step can be performed independently in parallel. Therefore, given sufficient computing
resources, the simulation results database for all benchmark applications can be generated in a
short amount of time. For example, for program slices of 100-M instructions, Sniper+McPAT
simulations can be done in less than 1-hour, even when using the most accurate performance
model in Sniper, namely ROB. Another advantage is that the generated database can be used
for an unlimited number of experiments. It can also be extended with processor configurations
or new benchmark applications that are not simulated before.

To perform an experiment with the resource-management-algorithm simulator, we need

1A pinball [22] is a program instruction stream generated by Intel PinPlay tool [23].
The purpose of this tool is to have consistent and reproducible results by recording the
non-deterministic events during a program execution. The pinballs used in the papers in this
thesis are collected from the Sniper simulator website [24].

2The terms “region”, “slice”, and “interval” are used interchangeably in this thesis which
refer to a section of program instruction-stream with a fixed number of instructions.
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Figure 2.2: Run-time behavior of RMA-Sim.

to specify initial information such as the multi-core workload, QoS targets in terms of
the baseline configuration, other system configuration parameters, the target resource-
management-algorithm, etc. The simulator, which is an in-house software developed in
Python, uses the phase trace of each application together with the database to regenerate
a proxy of applications under the influence of the resource manager. This process is based
on a simplifying assumption, derived from SimPoint, that every program slice belonging to
a particular phase is identical to the representative slice of that phase. This is depicted in
Figure 2.1 under “Application reconstruction”.

To further explain the mechanics of this simulation, we use the simplified example shown
in Figure 2.2. In this example, the workload consists of two applications that run on two
processing cores. The resource-management-algorithm is invoked on each core after executing
100-M instructions. The simulation starts with the baseline resource configuration for the
first interval (I1) of each application. The simulator determines the corresponding phase
number for I1 from the phase trace. Using the phase numbers and the baseline resource
configuration, the average time-per-instruction (TPI) for both applications can be collected
from the database. Therefore, it can estimate the time to the next event, i.e., the earliest end
of a 100-M interval in any core. In this case, App1 with the lower time-per-instruction finishes
its first interval (I1) earlier at time t1. At this point, App2 is still in the middle of its first
interval and executed only 50-M instructions. The resource-management-algorithm is invoked
by App-1 which decides a new resource configuration. After accounting the overheads and
updating the simulation statistics for all cores, the time to the next event (t2) is estimated
in a similar fashion. The simulation continues until the finish criteria is met. The finish
criteria can be, e.g., when every application has executed at least a predefined number of
instructions or one round of execution. When applications in the workload reach the end of
their execution before the finish criteria is met, they are restarted.

2.3 Evaluation Metrics

We consider two kinds of evaluations metrics in this thesis which are related to performance
and energy consumption.

2.3.1 QoS

QoS is defined in this work as the performance achieved using the baseline resource con-
figuration. Hence, one goal of the resource-management-algorithm is to deliver an average
performance greater than or equal to the baseline configuration for each application. To
evaluate this target, every experiment starts with an Idle resource manager that maintains
the baseline configuration for the entire simulation. This way, the baseline execution time is
measured for one round of execution of each application in the workload.

Next, another simulation is performed using the target resource-management-algorithm.
During this simulation, the execution time of each round of every application is recorded.
If the average execution time per one round of execution is smaller than or equal to the
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baseline results, we assume that the QoS target is achieved for this application. Otherwise, a
QoS violation is reported. For example, if the average execution time is 5% longer compared
to the baseline results, this value is reported as the QoS violation for this application.

2.3.2 Energy-Saving
During each simulation, two types of energy values are recorded. First, a per-application
energy is recorded for each application that consists of the static and dynamic energy of the
core (including private caches), the dynamic energy of the last-level-cache, the dynamic energy
of the main memory, and the dynamic energy of Network-on-Chip. Second, an application-
independent energy is recorded for the entire system which includes the static energy of
the last-level-cache cache and Network-on-Chip. The static energy of the main memory
is considered out-of-scope since it is not affected by the proposed resource management
schemes.

The total instruction count varies significantly from one application to another in each
workload. Therefore, to have a fair comparison, we measure the energy consumption for
executing a fixed number of instructions on each core. This number corresponds to the
largest application (in terms of instruction count) in the workload, or the entire experiment.
Hence, the simulator adds the per-application energy components for executing the predefined
number of instructions from each application to the application-independent system energy
for the entire simulation time. The resulting value is then compared to the baseline simulation
result (using Idle resource manager). For example, if the total energy value is 80% of the
baseline result, a 20% energy-saving is reported by for the target RMA.

2.4 Summary
To evaluate the proposed resource management schemes, which include novel architectural
concepts, the experimental methodology is based on simulations. However, the available
simulation tools and methodologies such as Sniper and SimPoint do not fulfill the requirements
for these experiments out-of-the-box.

Hence, a novel 2-step simulation framework is developed. The first step uses SimPoint,
Sniper, and McPAT to generate a database that contains detailed architectural simulation
results for a range of resource configurations for every program phase. Due to the high
level of parallelism, this database can be generated in less than 1-hour, given sufficient
computing resources. Later, it can be used by the second step of the framework to conduct
an unlimited number of experiments. This step includes an in-house developed simulator
that regenerates a proxy of benchmark applications while modeling the effect of different
resource-management-algorithms during run-time. The computational demand and the
execution time of this step is dramatically lower compared to architectural simulations.
Therefore, this methodology enables a large number of experiments in a reasonable time.



Chapter 3

Summary of papers

3.1 Paper-I

3.1.1 Background

To reduce the energy consumption of multi-core processors, hardware resources can be
throttled to deliver sufficient performance without degrading user experience. Therefore,
applications must be associated with QoS targets that define a minimum constraint on
performance. These constraints can be used by a resource management scheme with the
objective to optimize processor energy.

Processor resources such as cache and voltage-frequency (VF) are typically controlled
independently. For example, in previous work [7–9] the processor VF is controlled to meet a
specific performance target; while in other work such as [25] the shared Last Level Cache
(LLC) is partitioned to minimize the total number of cache misses. Such independent resource
management approaches are not effective in a system with performance constraints on all
applications. Imagine a scenario when the performance of every application in the workload
is sensitive to their allocated shares of LLC capacity. An independent LLC controller cannot
change the LLC partitioning and guarantee the same performance for every application in the
workload at the same time. Similarly, the VF of processor cores cannot be reduced without
causing any performance degradation. Hence, the baseline resource configuration cannot be
changed due to performance constraints which prevents energy saving. Alternatively, if the
processor resources are controlled in a coordinated fashion for all applications, the resource
manager can explore a multi-dimensional configuration space. Therefore, it may find other
resource combinations that provide at least the same performance for every application, but
at a lower energy consumption.

3.1.2 Problem Statement

Paper-I attempts to answer the following question:

Assuming a baseline configuration of processor resources, including
the core VF and the partitioning of LLC capacity, provides sufficient
performance to meet the QoS targets of all applications in a multi-
programmed workload; how can a resource manager dynamically
find other resource configurations at run-time that minimize pro-
cessor energy consumption while meeting the performance targets
of all applications?

3.1.3 Proposed approach

To address the above question, the approach presented in this paper is to design a coordinated
Resource Management Algorithm (RMA) that combines the control of per-core Dynamic
Voltage-Frequency Scaling (DVFS) and partitioning of the LLC. Such RMA requires a
means to predict the performance and energy consumption of all applications across a

11
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Figure 3.1: Overview of the proposed RMA (Figure 3 from Paper-I ).

large multi-dimensional resource configuration space. This operation must be performed at
regular intervals during run-time to react to frequent program phase changes in the workload.
Therefore, the imposed overheads must remain sufficiently small, even when scaling to a
larger number of cores. Furthermore, the RMA must work with the assumption of no prior
knowledge about the applications.

Figure 3.1 shows an overview of the proposed RMA. The RMA that is implemented as a
light-weight software handler is invoked on each core at regular intervals after executing a
fixed number of instructions. It starts by collecting statistics from hardware Performance
Monitoring Counters (PMC) and the Auxiliary Tag Directory (ATD) [25]. ATD is a well-
known hardware extension that emulates the operation of the tag directory of the main
cache. It provides a prediction of the number of cache misses as a function of the number of
allocated cache ways (w), called cache-miss profile. A simple analytical performance model
uses this cache-miss profile together with other PMC statistics to estimate instructions-
per-second (IPS) as a function of w and core frequency (f). At this point, most of the
resource configuration space can be pruned based on the QoS constraint as follows. For
every w, a minimum frequency (fmin(w)) is found with IPS greater than or equal to the
baseline configuration. This is depicted by the yellow bars in Figure 3.1. Next, using another
simple analytical model, energy-per-instruction (EPI) is evaluated for every pair of w and
fmin(w). This value captures the energy of core, cache hierarchy, and the main memory that
is associated with the execution of each application.

Once an energy curve is available for all cores, they are passed to the global optimization
algorithm. This algorithm recursively reduces each pair of curves into one, until the optimum
LLC allocation ({w∗

j }) is found that minimizes the sum of energy values over all cores

(
∑

j EPIj(wj)), such that the sum of allocations (
∑

j wj) remains equal to the total number
of ways in LLC. Finally, the new partitioning is applied to LLC and the per-core DVFS is
set according to fmin,j(w∗

j ) for each core j.

3.1.4 Contributions
The main contributions of this paper are threefold:

(1) An online resource management approach is presented that coordinates the control
of on-chip cache space and per-core DVFS to save processor energy while respecting
the QoS of every application in the workload.

(2) To reduce the overheads and achieve scalability, a heuristic algorithm is proposed for
finding the configuration that minimizes processor energy. A linear time complexity
with respect to the number of cores is achieved by pruning the large multi-dimensional
configuration space in several levels based on the estimations made by analytical
performance and energy models.

(3) The effect of coordinated and independent DVFS and cache partitioning is quan-
titatively studied for a range of different mixes of application categories and QoS
targets. It is demonstrated how energy savings improves for different workloads when
relaxing the performance targets for all, or a subset of applications in the workloads.
Furthermore, the sensitivity of energy savings to the baseline settings is analyzed.
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3.1.5 Summary of results

To evaluate the proposed RMA, SPEC-CPU-2006 [16] benchmarks are categorized based
on two criteria: Memory intensity and cache sensitivity. These criteria help to analyze
the resource trade-offs in the system. For example, the effect of core frequency scaling is
considerably different between an application that is dominated by memory accesses, and
another application that is dominated by compute instructions. On the other hand, the effect
of cache size on the number of memory accesses is dependent on memory access patterns.
For instance, the number of memory accesses does not necessarily reduce when increasing the
allocated cache space to a memory-intensive application. More specifically, we categorize an
application as memory-intensive if the number of Misses Per Kilo Instructions (MPKI) on
the baseline LLC allocation is greater than a threshold. Otherwise it is counted as compute-
intensive. On the other hand, if the variation in MPKI for different LLC allocations around
the baseline is above another threshold, the application is considered as cache-sensitive,
otherwise cache-insensitive.

Therefore, applications can be categorized into four types. For example, a memory-
intensive and cache-sensitive application benefits significantly from a larger cache allocation
and its core frequency can be lowered to save energy. But, the performance of a compute-
intensive and cache-insensitive application is mostly dependent on the core frequency, while
it can give up its share of cache to other applications. Hence, several 4-core and 8-core multi-
programmed workloads are generated based on different combinations of these categories.
These workloads are simulated using the framework described in Chapter 2 to perform a
quantitative analysis of these trade-offs in a range of different workload scenarios.

In the first experiment, energy savings are evaluated for each workload using the proposed
combined RMA along with an RMA that controls only LLC partitioning. An RMA that
controls only DVFS cannot save energy without degrading the performance. According
to the experimental results, up to 18% and 14% of system energy can be saved using the
Combined RMA in 4-core and 8-core systems, respectively. The average energy saving is 6%
in both cases. In comparison, the Partitioning RMA can save only 1% and 2% on average
in 4-core and 8-core systems, respectively. The combined RMA is most effective in the
majority of workloads that include a cache sensitive application. In a few cases where all the
applications are cache insensitive, there is even a small increase in system energy due to a
limited modeling accuracy.

To evaluate the effect of modeling error, perfect models with no prediction error are used
in a different experiment. With these models, the combined RMA saves on average 8% of
system energy which is very close to the realistic results with the presented analytical models.
In 13 cases out of 80 applications in the 4-core workloads, the modelling error leads to a QoS
violation i.e. average execution time longer than the baseline 1. The average value of these
violations is 3% with a maximum of 9%. Regarding the 8-core results, 15 violations occurred
out of 80 applications with an average and maximum value of 3% and 7%, respectively.

The energy savings can be further improved if users can tolerate a bounded reduction in
performance. To evaluate this trade-off, in the next experiment, the performance constraints
are gradually relaxed up to 80% longer execution time compared to the baseline. According
to this experiment that uses perfect models, energy savings with the proposed scheme can
improve up to 29% and on average 17% with only a limited relaxation of the QoS target
(around 40% longer execution time). Furthermore, the energy savings are evaluated and
analyzed in several scenarios where the QoS target is relaxed only for a subset of the workload.
The sensitivity of energy savings to the choice of the baseline VF is also studied.

The overhead of the proposed RMA is evaluated based on a software implementation in
C language. The number of executed instructions are measured to be less than 40K which is
0.04% of an execution interval with 100M instructions. The overheads imposed for collecting
the required statistics and applying the new resource settings are presented and analyzed in
details in this paper.

3.1.6 Conclusion

The experimental results confirm that the proposed RMA provides an effective solution for
the main research problem, i.e., saving processor energy without causing any performance
degradation for any application. Using simple analytical models and a heuristic algorithm,
the RMA can assess the performance of every application and the processor energy in

1Values below 1% are considered negligible.
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a large configuration space, while imposing negligible run time overhead. Therefore, it
can dynamically adapt to the program phase changes in the workload and find the most
energy-efficient resource configuration that meets the QoS targets of all applications, at each
invocation during run-time.

3.2 Paper-II

3.2.1 Background

The previous work (Paper-I) proposes a multi-core resource management approach that
coordinates per-core DVFS and LLC partitioning. It shows that such coordination between
processor resources can enable energy savings without causing a performance degradation
for any application in the workload. However, the scope for energy saving is limited when
considering only DVFS and cache partitioning as the control knobs. For example, imagine a
scenario when the LLC share of one application is reduced in favor of another application
that benefits more from the LLC capacity. To avoid a performance degradation in the first
application, the resource manager may need to increase the VF of the corresponding core at
a quadratic energy cost. Therefore a considerable portion of the energy-savings achieved in
the rest of the system is canceled by this energy cost. In fact, scaling the core VF has no
effect on the stall time due to additional memory accesses. Therefore, DVFS becomes less
effective as the number of cache misses increases.

Alternatively, if the resource manager has control over the core micro-architectural
components to increase the issue width and instruction window length, i.e., the size of the
reorder buffer, the required performance improvement can be achieved via parallelism. Unlike
DVFS, increasing instruction-level-parallelism (ILP) can lead to a higher memory-level-
parallelism (MLP) which may reduce the memory stall time. Furthermore, this performance
improvement can be achieved at a lower energy cost compared to DVFS.

3.2.2 Problem Statement

This paper attempts to answer the following question:

Assuming that a multi-core processor resource manager has control
over the size of the core micro-architectural components as well
as per-core DVFS and partitioning of the shared LLC; how can
it dynamically find trade-offs between these resources at run-time
that minimizes processor energy consumption without degrading
the performance of any application?

3.2.3 Proposed approach

This paper addresses the above problem in two steps. First, it systematically analyzes the
resource trade-offs in a range of workload mixes. Second, it proposes a resource management
scheme that can select between a few sizes for each processing core (small, medium, large).
This can be done with minimal overhead by adding some logic to activate/deactivate sections
of micro-architectural components such as issue-width, reorder buffer, reservation stations,
and load/store queues. The resource manager dynamically controls the size of each processing
core in coordination with per-core DVFS and LLC partitioning across all applications in the
workload. Compared to Paper-I, the addition of the third control parameter, i.e., the core
size, imposes new challenges. The simplifying assumption of constant MLP in the analytical
performance and energy models in Paper-I is no longer valid. Therefore, a means to predict
the change in MLP over different core sizes and cache allocations is required. Furthermore,
the imposed overheads must remain negligible with the addition of another dimension in the
resource configuration space for each core.

Figure 3.2 shows an overview of the proposed resource manager. The resource-management-
algorithm is invoked regularly on each core after executing a fixed number of instructions.
It starts by collecting statistics of the past execution interval from hardware PMCs. These
statistics are used by simple analytical models to predict the performance and energy con-
sumption associated with the execution of a particular application as a function of resource
configuration, including the core size (c), frequency (f), and the number of allocated ways
(w) in LLC.
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Figure 3.2: Overview of the proposed resource manager (Figure 3 from Paper-
II).

To search for the optimal processor configuration in an efficient way, the local optimization
algorithm removes two dimensions from the configuration space of each core as follows. For
every possible w, a combination of c and f is found that minimizes the energy without
lowering the performance compared to the baseline configuration. This step results in a
one-dimensional energy curve (E(w)) for the core that invoked the resource manager. In the
next step, the global optimization algorithm, which contains the energy curves of all cores
(Ej(wj) for each core j), finds an optimum distribution of LLC ways ({w∗

j }) that minimizes

the sum of energy values, such that
∑

j wj remains equal to the total number of ways in LLC.
The approach used in the last step is similar to the global optimization algorithm in Paper-I.
It recursively reduces each pair of energy curves into one, until the optimum distribution is
found. A main advantage of this approach is its linear time complexity when scaling the
number of cores. Once the optimum LLC partitioning ({w∗

j }) is found, the corresponding

frequency and size of each core ({f∗j } and {c∗j}) can be derived easily from the outcome of
the local optimization.

As mentioned earlier, the analytical models in this work must be capable of predicting
the effect of MLP variation for different values of c and w2. Therefore, a new hardware
PMC is designed in this work based on the the Auxiliary Tag Directory (ATD) [25]. The
original ATD has a counter for each w that counts the memory accesses that are predicted
to miss given a cache allocation of w ways. This provides no information regarding MLP
which is necessary when considering an adaptive core architecture. A variation in MLP can
significantly affect performance since the cache misses that overlap with a leading miss do
not contribute to the memory stall time [26,27]. Hence, the proposed hardware extension
contains different counters for each possible c and w that use a heuristic mechanism to detect
and ignore the predicted cache misses that are overlapping with an earlier miss. The overhead
of this hardware extension is estimated to be less than 300 bytes per core.

2Changing the core frequency has no effect MLP.
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3.2.4 Contributions
This paper makes the following contributions:

(1) Based on a systematic analysis of the resource trade-offs for different application
categories, it is demonstrated in which workload scenarios the combination of core
resizing with DVFS and cache partitioning can provide a considerably higher energy
saving compared to the previous work (Paper-I).

(2) A resource management scheme is presented that improves energy efficiency by
dynamic adaptation of the core micro-architecture in coordination with per-core
DVFS and LLC partitioning, while respecting the QoS constraints of all applications.

(3) A hardware design is proposed that improves the accuracy of performance and energy
modeling. This improvement is achieved through a heuristic mechanism that predicts
MLP for a range of different core sizes and cache allocations.

3.2.5 Summary of results
In order to analyze the resource trade-offs between different applications under QoS con-
straints, the SPEC CPU2006 benchmarks [16] are categorised based on two attributes: Cache
Sensitivity and Parallelism Sensitivity. Similar to Paper-I, an application is counted as
cache-sensitive (CS) if the variation in MPKI for different cache allocations around the
baseline is above a specific threshold. Otherwise, it is counted as cache-insensitive (CI). On
the other hand, if a change in core size leads to a certain variation in MLP, the application
is counted as parallelism-sensitive (PS), otherwise parallelism-insensitive (PI). This leads to
four different categories (CS-PS, CS-PI, CI-PS, and CI-PI). These categories help in better
understanding and analyzing the resource trade-offs in different workload scenarios. We
analyze a simple case of a two-core system that runs a two-application multi-programmed
workload. In this case, there are 16 possible mixes of application categories. For all possible
mixes, the resource trade-offs are analyzed for three resource management schemes: RM1
that controls only the LLC partitioning; RM2 that coordinately controls per-core DVFS
and LLC partitioning according to Paper-I; and RM3 (the proposed scheme in this work)
that controls the size and VF setting of each core along with LLC partitioning. RM1 is
not effective in most of the cases. But, when comparing RM2 with RM3, four interesting
scenarios are detected:

(1) RM3 considerably improves the energy savings compared to RM2.

(2) The energy savings are comparable with both RM3 and RM2.

(3) Only RM3 can save a considerable amount of energy while RM2 is ineffective.

(4) Both RM3 and RM2 are ineffective.

According to this analysis, in 12 out of 16 possible mixes, the proposed scheme (RM3)
substantially improves the energy savings. The resource management schemes are evaluated
on several 4-core and 8-core workloads created for each scenario. The simulation framework
described in Chapter 2 is used to run the experiments.

The experimental results show the same trend as expected from the analysis. In Scenario-
1, the proposed RM3 saves up to 17.6% and on average 14% of system energy. The energy
savings with RM3 are up to 60% larger compared to RM2 in this scenario. In Scenario-2, the
energy savings are up to 10% and on average 5% while the results are similar with both RM2
and RM3. RM3 can save up to 11% and on average 8.5% of system energy in Scenario-3
while RM2 is not very effective. Finally, both RM2 and RM3 are not effective in Scenario-4.

Both the energy savings and QoS results can be affected by modeling error. In the next
experiment, the proposed modeling technique (Model-3) based on the new hardware support
is evaluated against two simple models: Model-2 that assumes constant MLP according to
Paper-I and Model-1 that estimates total memory stall time as the product of the total
number of cache misses and average latency of a single memory access. A comprehensive
analysis is performed to evaluate the probability of QoS violations at each program interval
(100M instructions). According to this analysis, Model-3 has 3% probability of QoS violation
which is 32% and 46% smaller compared to Model-2 and Model-1, respectively. Furthermore,
Model-3 substantially improves the expected value and standard deviation of violations by
49% and 26%, respectively, compared to Model-2. The experimental results on energy savings
also shows a considerable improvement with Model-3. The weighted average energy savings
is 10% with Model-3 compared to 7% and 5% with Model-2 and Model-1, respectively.
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To evaluate the overheads imposed by RM3, the number of executed instructions are
measured for a software implementation in C language. The resulting values are 18K, 40K,
and 67K instructions for systems with 2, 4, and 8 cores, respectively. These values are less
than 0.1% of a 100M instruction interval. The overheads imposed by other components of
the system are also analyzed in details.

3.2.6 Conclusion

The experimental results confirm that the proposed scheme provides an effective solution for
the main research problem, i.e., saving processor energy without causing any performance
degradation for any application. It uses a novel hardware technique to evaluate performance
and energy for a wide range of resource configurations in a negligible time with improved
accuracy. Therefore, it can dynamically exploit resource trade-offs based on ILP/MLP to
further reduce system energy under per-application performance constraints.

3.3 Paper-III

3.3.1 Background

The previous work (Paper-I and Paper-II) shows that by coordinating the control of multiple
resources, including dynamic core resizing, per-core DVFS, and LLC partitioning, the resource
manager can explore a multi-dimensional configuration space that expands to include all
applications in the workload. Therefore, it can find resource trade-offs in this enlarged
configuration space that reduce processor energy without lowering the performance of any
application. This performance constraint is enforced at every invocation of the resource-
management-algorithm during run-time.

However, it is not really necessary to maintain a constant performance, e.g., in terms of
instructions-per-second (IPS), at all points in time, to satisfy the QoS targets of applications.
A QoS-constrained application requires to finish a certain computation task within a particular
time frame, which we call a QoS window. A key insight driving this paper is that allowing
short-term variations in the performance target, within each QoS window, enables new
opportunities to substantially reduce processor energy. In order to keep track of the deviation
from the baseline performance target, a parameter called slack is defined. Slack can be
generated or consumed for a particular application by raising or lowering the performance
compared to the baseline target, respectively.

For each application, the cost of generating slack and the benefit of consuming slack, in
terms of energy, is variable depending on the dynamic characteristics of the multi-program
workload running on the multi-core processor. For example, when the LLC share of a
memory-intensive application is increased, it enjoys a performance boost that generates slack
at no energy cost. In fact, the energy is reduced due to fewer memory accesses. But, it can
generate even more slack by raising the core VF at the same time3, which imposes an energy
cost.

Such cost may be justified as it can enable a larger energy saving in the future. Imagine
that, in the same example scenario, another application enters a memory-intensive phase
which leads to contention in LLC. It may be possible to find a more efficient LLC partitioning
that significantly reduces the total number of memory accesses and the processor energy.
But, this partitioning is prohibited if the baseline performance constraints are enforced for
all applications. In this case, the accumulated slack from the previous resource management
intervals can change the game by creating a safe leeway that allows the more efficient
configuration. The resource manager insures that no application experiences a performance
degradation by keeping the slack deposit in a safe range, instead of maintaining a fixed
processing speed at all times.

3In fact, the coordinated resource manager reduces the core VF, as much as possible,
to turn the potential performance boost from cache partitioning into energy-saving. But,
for generating additional slack, it can select a relatively higher VF setting compared to the
minimum acceptable VF.



18 CHAPTER 3. SUMMARY OF PAPERS

Interval j Interval j+1

Program Execution (Instruction Stream)

Invocation of Resource Manager

For core i:For core i:

Update SD E
i
(w

i
) curve

Sampling Table

Global Optimization
Minimize ΣEE

i
(w

i
) s.t. ΣEw

i
 = LLC size

Global Optimization
Minimize ΣEE

i
(w

i
) s.t. ΣEw

i
 = LLC size

Apply New 
System Configuration

Apply New 
System Configuration

Check/Update
 Sampling Table
Check/Update

 Sampling Table Model C
base

Model C
base

Phase 
Detection
Phase 

Detection
Step-1: 
Monitoring 

Step-2: 
reducing 
dimensions 
and CBA 

Step-3: global 
optimization

2-level Reduction
For each w

i
: 

- Prune configurations that violate SD constraint
- Buy slack according to budget and current SD

Key VF Statistics

(Ph, m, w) vf stats

… … ...

Figure 3.3: Overview of the proposed resource manager (Figure 2b from
Paper-III).

3.3.2 Problem Statement
This paper attempts to answer the following question:

Assuming a resource manager that keeps track of short-term de-
viations from the baseline performance target of each application
using a parameter called slack; how can it dynamically find slack
trade-offs, across different applications at different points in time,
that reduce processor energy while continuously keeping the slack
deposit of every application in a safe range that meets the QoS
targets?

3.3.3 Proposed approach
To address the above question, this paper first explains two key insights by analyzing
motivational data for a simplified educational example. As a first insight, it demonstrates
that in certain conditions, slack can be generated at a relatively low energy cost. It also
shows other conditions in which slack can be consumed to save a larger amount of energy.
As a second insight, it shows the possibility to transfer slack from one application to another
through the shared resource, i.e., LLC. By extending the slack trade-offs to include all
applications, the opportunities to save processor energy increases dramatically.

Based on these insights, a new resource management scheme called Cooperative Slack
Management (CSM) is designed. An overview of this scheme is presented in Figure 3.3.
Similar to Paper-I and Paper-II, the resource manager is invoked on each core after executing
a fixed number of instructions. The operation of the resource-management-algorithm can
be divided into three steps. First, it collects the required statistics of the past interval and
performs the initial tasks that enable the analytical performance and energy models. The
second step starts by updating the slack deposit (SD) for each core i. Based on the updated
SD, it evaluates slack trade-offs for every possible LLC allocation to this core (wi) while
reducing the dimensions of the optimization problem in two levels. This step leads to a
one dimensional energy curve (Ei(wi)) for each core i. Finally, in the third step, a global
optimization algorithm finds an optimum distribution of LLC ways that minimizes the sum
of energy values for all cores. The global optimization algorithm is similar to the one used in
Paper-I and Paper-II.

Compared to the previous work, this paper requires a higher modeling accuracy, particu-
larly for the baseline configuration. A modeling error on the performance of the baseline
configuration propagates to the slack calculation and accumulates in the SD value. Therefore,
it can lead to a large QoS violation; especially since the resource manager attempts to use
as much slack as possible to improve energy savings. To alleviate this problem, a dynamic
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sampling technique is proposed in this work that improves the modeling accuracy during
run-time. In a hybrid approach, it can actively enforce selected configurations to be sampled
as soon as possible, as well as passively collect samples based on the outcome the resource
manager decisions. Hence, the sampling mechanism can be tuned to provide a relatively
higher accuracy for selected configurations, such as the baseline, while imposing minimal
interference with the normal operation of the resource manager.

3.3.4 Contributions
The main contributions of this paper can be summarized as follows:

(1) Two important insights are presented: (a) The possibility to create slack at a lower
energy cost compared to the energy-saving enabled by using it at later point in time;
and (b) the possibility to transfer slack from one QoS application to another, through
the shared resource, that enables more energy-saving opportunities.

(2) Cooperative Slack Management (CSM) is introduced as a low-overhead resource
management scheme to save substantial processor energy without affecting the QoS
of any application in the workload.

(3) A sampling technique is designed to improve the modeling accuracy dynamically
over run-time. This technique works with a hybrid approach that supports both
active and passive sampling. The former enforces a predefined set of configurations
to be sampled as soon as possible, while the latter passively collects samples without
interfering with the resource manager.

(4) In addition to CSM, a local slack management (LSM) algorithm is designed that
runs independently on each core. Over a range of different workload scenarios and
baseline assumptions, it is demonstrated when the cooperative approach provides
significant improvements and when an independent approach is good enough.

3.3.5 Summary of results
To evaluate the proposed approach, two workload scenarios are studied. An interesting
scenario that demonstrates the advantage of CSM is when there is contention in LLC. In such
a scenario, the applications in the workload are sensitive to their allocated cache capacity
such that a change in the baseline cache allocation can cause a considerable change in the
number of cache misses. More specifically, we categorize an application as cache-sensitive if
the average MPKI on the baseline LLC allocation is above a certain threshold and changing
the LLC share around the baseline allocation leads to a large enough change in MPKI.

Hence, in Scenario-1 random mixes of cache-sensitive applications from the SPEC-
CPU-2006 benchmarks [16] are selected to create several multi-programmed workloads.
Additionally, to provide a more comprehensive evaluation, the workloads in Scenario-2 are
created by randomly selecting any application from the benchmark suite.

As a reference for comparison, two other resource management schemes are simulated
along with CSM using the framework explained in Chapter 2. The first scheme is the resource
manager presented in Paper-I, which is referred to as “Coordinated Core configuration
and Cache Partitioning” (C3P). The second scheme is an extended version of C3P that
independently performs Local Slack Management (LSM) for each core.

In the first set of experiments, three baseline configurations are studied. First, to evaluate
a high-performance target, the baseline is set to the largest core size and the highest VF level.
While C3P and C3P+LSM are effective only for a few workloads in Scenario-2, CSM saves
up to 35% and on average 16% (Scenario-1) and 10% (Scenario-2) energy. For comparison,
the average values with C3P+LSM are only 1% and 6%, respectively. If we eliminate the
effect of modeling error, the average energy savings with CSM increase to 22% (Scenario-1)
and 17% (Scenario-2). The second baseline is a mid-range performance target based on a
medium core size and a mid-range VF. In this case, C3P and C3P+LSM are also effective in
both workload scenarios as they can use a larger core size to achieve a performance boost
when needed. Consequently, the energy saving results are, on average, comparable for the
three resource management schemes: 17% (C3P), 20% (C3P+LSM), and 20% (CSM) for
Scenario-1, and 13% (C3P), 14% (C3P+LSM), and 12.5% (CSM) for Scenario-2. Finally, for
the third baseline configuration, a fixed core architecture is assumed along with highest core
VF. Similar to the first baseline, CSM shows significant improvement compared to C3P and
C3P+LSM, in this case. It can save up to 36.5% and on average 22% (Scenario-1) and 10%
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(Scenario-2) while C3P+LSM saves on average only 1% (Scenario-1) and 6.5% (Scenario-2).
When using idealistic models, CSM can save up to 41% and on average 25% (Scenario-1)
and 17% (Scenario-2).

While the first set of experiments were conducted with 4-core workloads, the second
set of experiments evaluates the scalability of CSM to larger number of cores. Therefore,
experiments similar to the first baseline configuration (high-performance) were performed
with 8-core and 16-core workloads in the same two scenarios. The results for the three
resource management schemes show a consistent overall trend to the 4-core simulations.

Finally, in the last set of experiments, sensitivity of CSM to different parameters is
evaluated. The CSM algorithm contains three constant parameters that determine a lower
(ε) and upper (SDthr) bound SD and a budget that limits the energy cost for generating
additional slack (Ebudget). These parameters can be used to adjust the behavior of CSM for
different systems. While the experiments show negligible sensitivity to the value of SDthr,
energy savings improve consistently when the value of ε is reduced. When changing ε from
0 to -5%, the average energy savings increase from 20% to 28.5% in Scenario-1 and from
14% to 23% in Scenario-2. This change is equivalent to relaxing the performance target to
allow QoS violations of up to 5%, i.e., extending the execution time deadline to 105% of the
baseline. On the other hand, the sensitivity to Ebudget does not show a consistent trend. It
shows a sweet-spot around Ebudget = 6%4 that saves, on average, 22% (Scenario-1) and 17%
(Scenario-2) energy. The reason for such behavior is the presence of two contradictory effects.
On the one hand, raising Ebudget leads to a larger SD that enables more energy saving in the
future. On the other hand, this action increases the energy cost for generating slack in the
current interval. Therefore, there is sweet-spot that maximises the overall energy savings.

3.3.6 Conclusion
According the experimental results, the proposed cooperative approach shows dramatic
improvements in energy-savings compared to previous work and even when it is extended
with independent slack management on each core. The largest improvements are achieved
in scenarios when there is contention in the cache, when the performance target is high,
and when the core architecture is fixed. The experiments also shows a similar trend when
the system scales to a larger number of cores. This confirms that CSM can effectively take
advantage of the presented insights, about the potential of slack management in a cooperative
way, to save significant processor energy while maintaining QoS for all applications.

4The value of energy budget is set as the percentage of the system energy estimated for
the baseline configuration at each invocation of the resource-management-algorithm.



Chapter 4

Concluding Remarks and
Future Work

In this thesis, different resource management approaches are studied in the context of a
multi-core processor that runs a multi-programmed workload. The main objective is to reduce
the energy consumption as much as possible, while maintaining QoS for all applications in
the system. In this case, we assume that the QoS target is met if no application experiences
any performance degradation compared to a baseline allocation of resources.

To this end, three different resource management approaches are presented in this thesis.
First, we demonstrate that independent management of resources, such as per-core DVFS
and cache partitioning, in many cases fail to save a considerable amount of energy without
causing any performance degradation. To address this problem, we present a resource
management scheme (in Paper-I) that controls these resources in a coordinated fashion,
across all applications. Therefore, it can explore a multi-dimensional configuration space to
find alternative configurations that meet the performance targets at a lower energy. This
process is performed regularly during run-time to adapt to the dynamic characteristics of
the processor workload.

Next, we extend the scope of coordinated resource management (in Paper-II) to include
dynamic adaptation of the micro-architectural resources of each core. This approach improves
the energy savings by exploiting instruction and memory level parallelism (ILP and MLP,
respectively) in the resource trade-offs, in coordination with DVFS and cache partitioning.

Finally, we demonstrate (in Paper-III) that energy savings can improve substantially by
allowing short-term deviations from the baseline performance targets, in a controlled way.
Here, we introduce a measurable concept, called slack, that tracks these deviations to avoid
any QoS violation. Based on this, we present Cooperative Slack Management (CSM) that
attempts to find opportunities to generate slack when the energy cost is low, and consume it
later when it saves a large amount of energy. We show that slack can be transferred between
QoS-constrained applications, which enables new opportunities for energy saving. Therefore,
CSM can save significant energy, even in scenarios when the resource management schemes in
previous work (Paper-II) and an extended version with independent local slack management
are not effective.

The proposed resource management schemes are designed based on simple analytical
performance and energy models. The accuracy of these models affect both the QoS targets
and energy savings. Therefore, in Paper-II, we present a low-overhead hardware extension
that improves the accuracy of modeling MLP for different core sizes and a range of possible
cache allocations. Next, in Paper-II, a dynamic sampling technique is proposed that improves
the accuracy of the models during run-time.

Furthermore, to conduct experiments based on new hardware techniques, a novel simula-
tion framework is designed in this work (detailed in Chapter 2). This framework enabled
extensive experiments with full execution of benchmark applications in a wide range of
scenarios. This is achieved by a technique based on SimPoint [17] that reduces the simulation
time by several orders of magnitude. Using this technique, the simulator regenerates a
proxy of the benchmark instruction streams in a multi-programmed workload that runs on a

21
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multi-core system under the control of a specific resource-management-algorithm.
This study leads to several interesting questions for future work. For example, CSM

uses a parameter called “energy budget” that determines an upper bound for the energy
cost of generating slack. This is currently a static parameter with a value that is derived
empirically. But, according to the sensitivity study in Paper-III, there is a sweet spot that
maximizes the energy savings. Therefore, one research question, for future work, is how to
design a new approach that dynamically adapts the energy budget according to the workload
characteristics during run-time.

Another potential direction is to study the possibility of using slack in a more extreme
way as follows. Assuming high contention in the shared cache; a subset of applications with
sufficient slack can be halted to alleviate the contention. This way, the remaining applications
can utilize the entire cache capacity and enjoy a significant performance boost in addition to
energy saving. Therefore, they can collect a considerable slack that can be used in the future
to return the favor to the halted applications.

Finally, the proposed sampling technique in Paper-III operates in a hybrid scheme that
supports both passive and active sampling of selected configurations. Thus, another research
question is how to select the best resource configurations for active sampling that maximizes
the modeling accuracy while imposing minimal interference with the normal operation of the
resource manger? These are some avenues that can be explored in future that build on the
research in this thesis.
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