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flows applied to adhesive joining

Simon Ingelsten
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Abstract

Viscoelastic flows are important for many industrial processes, such as adhesive joining,

polymer extrusion and additive manufacturing. Numerical simulations enable virtual

evaluation and product realization, which can support the design phase and reduce

the amount of costly physical testing. However, such applications are challenging to

simulate. Thus, efficient, robust and user-friendly simulation methods are needed.

In this thesis, a Lagrangian–Eulerian simulation framework for viscoelastic flow is

presented. The constitutive equation is solved at Lagrangian nodes, convected by the

flow, while the momentum and continuity equations are discretized with the finite vol-

ume method. The volume of fluid method is used to model free-surface flow, with an

injection model for extrusion along arbitrary nozzle paths. The solver combines an

automatic and adaptive octree background grid with implicit immersed boundary con-

ditions. In contrast to boundary-conformed mesh techniques, the framework handles

arbitrary geometry and moving objects efficiently. Furthermore, novel coupling meth-

ods between the Lagrangian and Eulerian solutions as well as unique treatment of the

Lagrangian stresses at the fluid-fluid interface are developed. Consequently, the result-

ing method can simulate the complex flows associated with the intended applications,

without the need for advanced stabilization techniques.

The framework is validated for a variety of flows, including relevant benchmarks

as well as industrial adhesive joining applications. The latter includes robot-carried

adhesive extrusion onto a car fender as well as a hemming application. The results

agree with the available experimental data. As such, the research presented in this

thesis can contribute to enable virtual process development for joining applications.

Keywords: viscoelastic flow, computational fluid dynamics, immersed boundary

methods, volume of fluid, adhesive joining
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Chapter 1

Introduction

Viscoelastic fluid flows are of great importance for many industrial processes. This

includes adhesive joining, polymer extrusion, additive manufacturing and seam sealing.

In many cases the process repeatedly needs to adjusted for new products and optimized

in terms of the product quality, production cycle time and material consumption. This

typically involves substantial manual work, including time-consuming and expensive

physical testing.

Numerical simulation tools enable virtual verification and product realization, which

can aid a reduction of the physical testing required. They can also provide valuable

insight early in design phase through virtual concept evaluation. As such, user-friendly

and efficient simulation tools can offer a process to optimize the production cost and

contribute to sustainability. However, many industrial applications involve complex

geometry, moving or deforming objects and viscoelastic free-surface flow, making them

challenging to simulate numerically.

A variety of numerical methods for viscoelastic flow can be found in the literature.

An extensive review on the subject was recently published by Alves et al. (2021).

Commonly, the governing equations are discretized in the Eulerian frame of reference

with the finite volume method (FVM) (Alves et al., 2001, 2003; Oliveira et al., 1998;

Pimenta & Alves, 2017) or the finite element method (FEM) (Baaijens et al., 1995;

Hulsen et al., 2005). The Eulerian description is suitable for transport equations with

diffusion, including transport of momentum, heat and mass. However, viscoelastic

constitutive equations are typically hyperbolic and lack physical diffusion. Specialized

high-order discretization schemes may therefore be necessary to minimize numerical
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1. INTRODUCTION

diffusion (Alves et al., 2003). Thus, the Lagrangian frame of reference constitutes an

appealing alternative.

Some Lagrangian techniques involves deformation of the computational mesh. As

such, repeated re-meshing is necessary to avoid excessive distortion. The Lagrangian

method by Rasmussen & Hassager (1995) and the split Lagrangian–Eulerian method

by Harlen et al. (1995), which are both based on FEM, constitute such examples.

However, a Lagrangian–Eulerian approach does not necessarily require a deforming

mesh. In the Lagrangian particle method (LPM) by Halin et al. (1998), the con-

stitutive equation was integrated along the trajectories of massless particles in the

flow, while the momentum and continuity equations were solved on a stationary mesh

with FEM. The element integrals were evaluated through polynomial approximation

of the Lagrangian stress solution. Thus, a minimum of three particles per element was

required for the polynomials to be admissible. In the adaptive Lagrangian particle

method (ALPM) (Gallez et al., 1999), adaptive creation and deletion of particles were

introduced. In LPM and ALPM a relatively large amount of particles was required to

achieve numerical stability. Later, the improved backward-tracking Lagrangian particle

method (BLPM) (Wapperom et al., 2000) was proposed.

For viscoelastic free-surface flow, different numerical techniques are conceivable.

An early example is the mixed FEM method to simulate the viscoelastic die swell

effect by Crochet & Keunings (1982). A recent example with a similar approach was

reported by Spanjaards et al. (2019). An extensively used method is the marker-and-cell

(MAC) method (de Paulo et al., 2007; Oishi et al., 2011, 2008; Tomé et al., 2002, 2008,

2010, 2012). In this method, a finite difference discretization is used for the governing

equations and the free surface is tracked by marker particles. The method has been

proven useful for certain flows, although it is typically implemented for uniform spatial

discretization.

A popular method in FVM frameworks, for Newtonian as well as viscoelastic free-

surface flow, is the volume of fluid (VOF) method. VOF is a diffuse-interface method,

in which the local fluid volume fraction is convected with an algebraic or a geometric

scheme. A single set of governing equations is solved, for which the fluid properties are

locally averaged with the volume fraction. A sharp fluid interface may be reconstructed

from the computed volume fraction field. Examples of viscoelastic VOF applications

include Habla et al. (2011), Comminal et al. (2018) and Niethammer et al. (2019). A

2



1.1 Scope of this thesis

different approach related to VOF was reported by Bonito et al. (2006). They performed

a predictor step, convecting the solution in the cells of a cubic lattice in a Lagrangian

manner. A finite element method was then used to correct the solution and solve the

flow in the liquid region.

In addition to the above mentioned approaches, other free-surface techniques include

e.g. front-tracking methods (Izbassarov & Muradoglu, 2015), phase-field methods (Zo-

grafos et al., 2020) and level-set methods (Pillapakkam & Singh, 2001; Stewart et al.,

2008).

A majority of the discussed methods assume a boundary-conformed computational

mesh, i.e. the flow geometry is described through the external boundary conditions

of the domain. Alternatively, structured grids are used, limiting the description to

non-complex geometries. While a boundary-conformed description is useful for many

applications, including detailed study of benchmark flows, it lacks flexibility for certain

types of flow. Typically, a substantial manual effort is required to generate a mesh,

particularly in complex geometries. Flows with moving objects are particularly chal-

lenging, requiring advanced techniques with deforming, overlapping or sliding meshes.

Alternative numerical methods are therefore needed, which can efficiently handle com-

plex geometry, moving objects and viscoelastic free surface flow. Immersed boundary

methods, as for example used in this thesis, can be a suitable approach.

1.1 Scope of this thesis

In this thesis a new Lagrangian–Eulerian framework for numerical simulation of vis-

coelastic flow is presented. The viscoelastic constitutive equation is solved along the

trajectories of Lagrangian fluid nodes, which are convected by the flow. The fluid mo-

mentum and continuity equations are solved with an Eulerian finite volume method,

discretized on an automatic and adaptive octree grid. Boundary conditions on solid

objects in the computational domain are imposed with implicit immersed boundary

conditions and free-surface flow modeled with the volume of fluid method.

The combination of the immersed boundary method with the automatic grid gener-

ation enables efficient handling of arbitrary geometry and moving objects with minimal

user-input compared to boundary-conformed mesh methods. An injection model de-

3



1. INTRODUCTION

scribes the inflow of a viscoelastic fluid from a moving nozzle, which enables simulation

of adhesive extrusion along industrial robot paths.

The main scientific contribution of this thesis consists of the development, imple-

mentation and validation of two novel versions of a Lagrangian–Eulerian algorithm to

solve the viscoelastic constitutive equation within the immersed boundary finite volume-

framework. This includes the development of unique, tailored methods to couple the

Lagrangian and the Eulerian fields.

In the forwards-tracking method, a robust radial basis function method is used

for unstructured interpolation of the viscoelastic stress to the Eulerian grid, such that

the viscoelastic term in the momentum equation can be integrated in the cells. In

contrast to similar methods with local polynomial approximation of the stress, the

interpolation results in a method which is versatile and insensitive to the local number

of Lagrangian nodes. In the backwards-tracking method, the viscoelastic stress is stored

in a structured, staggered-like arrangement in the Eulerian grid nodes. The viscoelastic

term in the momentum equation is therefore integrated numerically over the Eulerian

cell surface directly from the Lagrangian solution. Hence, no additional interpolation

is required.

The Lagrangian–Eulerian framework is intended for viscoelastic free-surface flow

and utilizes a unique treatment of the Lagrangian stress solution near the fluid-fluid

interface. The Lagrangian solver is localized to the viscoelastic phase and the influence

of large velocities in the low-viscous Newtonian phase is reduced. Consequently, the

computational performance as well as the robustness is enhanced.

To the best of the authors knowledge, this type of Lagrangian–Eulerian formulation

in a finite volume framework has not previously been reported. The same holds for

the treatment of the coupling between the Lagrangian and Eulerian solution fields and

the treatment of the Lagrangian solution in free-surface flow. As will be shown in the

thesis, these properties combined results in a numerical method which can simulate the

complex viscoelastic flows in the intended applications, including moving, deforming

objects and extrusion from a moving adhesive nozzle. Furthermore, no advanced nu-

merical stabilization or enhanced stress-velocity coupling scheme, such as those similar

to Rhie-Chow interpolation used in Eulerian finite volume methods, is necessary.

4



1.2 Outline of thesis

1.2 Outline of thesis

In the following sections of this chapter, the background of the research project is

presented and the software framework is summarized. This is followed by an intro-

duction to viscoelasticity and an overview of viscoelastic flow, with focus on numerical

simulation. The chapter is concluded with a motivation for the choice of numerical

method.

In the second chapter, the numerical framework is presented in detail with focus

on the Lagrangian algorithms developed to solve the viscoelastic constitutive equation

and the coupling to the Eulerian momentum equation. The chapter is concluded with

a few remarks on the corresponding software implementation.

In the third chapter the numerical studies conducted with the Lagrangian–Eulerian

framework are presented. This includes relevant benchmark flow simulations, a compu-

tational performance assessment and a numerical case study of a viscoelastic adhesive

joining application. Finally, in the fourth chapter the thesis is concluded and the out-

look on future research is discussed.

1.3 Background of research project

The research presented in this thesis is part of the long-term aim at the Fraunhofer–

Chalmers Research Centre for Industrial Mathematics to develop efficient and user-

friendly numerical tools for simulation and optimization of various production processes.

An important focus area is the adhesive joining process. This includes the flows involved

in the adhesive extrusion and joining, as well robot programming and optimization.

The aim is to enable virtual product realization through simulation. Other focus areas

include surface treatment processes, such as a seam sealing, electrostatic spray painting

and oven curing, as well as heat transfer processes for electronics cooling and additive

manufacturing. The research has been carried out in publicly funded projects as well

as industrial collaboration projects.

In previous research, shear-thinning viscosity models, e.g. the Carreau model, proved

insufficient to correctly predict the adhesive bead profile in certain adhesive extrusion

applications. Furthermore, the use of viscoelastic constitutive models was identified
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1. INTRODUCTION

as a promising approach. Thus, an accurate, robust and efficient numerical method

suitable for such flows was desired.

1.4 Software framework

The Lagrangian–Eulerian framework presented in this thesis is implemented in the

in-house software platform IPS IBOFlow® (IPS IBOFlow, 2022), an incompressible

fluid flow solver implemented in C++ at the Fraunhofer-Chalmers Centre for Indus-

trial Mathematics in Gothenburg, Sweden. The key features of the solver are the use of

implicit immersed boundary methods (Mark & van Wachem, 2008; Mark et al., 2011)

and the automatic and adaptive octree discretization. Prior to the current work, the

software has been employed for simulation of free-surface flow of shear thinning fluids

in automotive seam sealing (Edelvik et al., 2017; Mark et al., 2014), adhesive appli-

cation (Svensson et al., 2016) and 3D-bioprinting (Göhl et al., 2018), as well as for

fluid-structure interaction (FSI) applications (Svenning et al., 2014) and conjugated

heat transfer (Andersson et al., 2018; Mark et al., 2013; Nowak et al., 2020). Within

these areas, the software framework is utilized as a research platform but is also com-

mercially available.

1.5 Viscoelasticity

Mechanical elements constitute a useful means of illustrating viscoelastic material prop-

erties. The discussion in this section is based on Barnes et al. (1989) and Bird et al.

(1987b). A Hookean spring and a viscous damper, shown in Figure 1.1, serve as models

of ideal elastic and viscous materials.

G
σ σ

(a) Hookean spring.

η
σ σ

(b) Viscous damper.

Figure 1.1: Mechanical elements.

The spring obeys Hooke’s law of elasticity

σ = Gγ, (1.1)
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1.5 Viscoelasticity

where σ is the stress in the spring, γ the strain and G the elastic shear modulus, in

case of shear strain. The damper obeys Newton’s viscosity law

σ = ηγ̇, (1.2)

where η is the viscosity and γ̇ is the strain rate or, in case of simple shear strain, the

shear rate.

Viscoelastic models can be generated through combination of the spring and damper

elements. Combination in series yields the Maxwell element and in parallel the Kelvin-

Voigt element, both shown in Figure 1.2.

η G
σ σ

(a) Maxwell element.

η

G

σ σ

(b) Kelvin-Voigt element.

Figure 1.2: Viscoelastic elements.

For the Maxwell element, the stresses in the damper and the spring are equal, while

the total strain is the sum of the element strains. This results, after some manipulation,

in

λσ̇ + σ = ηγ̇, (1.3)

where λ = η/G is the Maxwell relaxation time. The corresponding equation for the

Kelvin-Voigt element reads

σ = Gγ + ηγ̇, (1.4)

which can be derived by assuming equal strains in the damper and the spring and that

the total stress is the sum of the respective stresses.

The Maxwell and Kelvin-Voigt elements represent models of linear viscoelastic-

ity. Generally, all linear viscoelastic models obey linear ordinary differential equations

(ODE) on the form (Barnes et al., 1989)(
1 +

n∑
i=1

αi
di

dti

)
σ =

(
β0 +

m∑
k=1

βk
dk

dtk

)
γ, (1.5)
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1. INTRODUCTION

where di/dti is the ith order time derivative, and {αi}ni=1 and {βk}mk=0 are constants.

For example, by letting α1 = λ and β1 = η be the only nonzero constants, the Maxwell

model is obtained. For β0 = G and β1 = η the Kelvin-Voigt model is obtained.

Generalization of linear viscoelastic models to constitutive equations for viscoelastic

flow is discussed in Section 1.6.4.

1.6 Viscoelastic flow

Relevant aspects of viscoelastic flow are discussed in this section, including the govern-

ing equations as well different frames of reference and convected derivatives.

1.6.1 The Lagrangian and Eulerian frames of reference

This thesis considers a Lagrangian–Eulerian formulation of the governing equations for

viscoelastic flow. An introduction to the corresponding frames of reference is therefore

given.

In the Lagrangian frame of reference, properties are described in material points

which move with the material due to deformation and flow. In contrast, in the Eulerian

frame of reference properties are described at fixed spatial locations. The Lagrangian

and Eulerian frames are also denoted the material and spatial descriptions, respectively.

Let x(x0, t) be the location of the material point at time t, such that x(x0, t0) = x0.

Let ∂ϕ
∂t denote the rate of change of ϕ at a fixed location x(x0, t) at some time t. By

application of the chain rule

d

dt
(ϕ(x(x0, t), t) =

∂ϕ

∂t
+
∂ϕ

∂x
· ∂x
∂t

=
∂ϕ

∂t
+ u · ∇ϕ =

Dϕ

Dt
, (1.6)

where u is velocity. Here, Dϕ/Dt is the Lagrangian time derivative of ϕ and ∂ϕ/∂t the

Eulerian time derivative.

1.6.2 The momentum and continuity equations

For continuum flow, the conservation of mass is described by the continuity equa-

tion (Schlichting & Gersten, 2000)

∂ρ

∂t
+∇ · (ρu) = 0, (1.7)
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1.6 Viscoelastic flow

where ρ is the mass density. For incompressible flows, the density is constant and (1.7)

reduces to the incompressible continuity equation

∇ · u = 0, (1.8)

i.e. the velocity field is divergence-free.

Conservation of linear momentum is described by Cauchy’s first law of continuum

mechanics (Truesdell & Rajagopal, 1999)

ρ
Du

Dt
= ∇ · σ + F, (1.9)

where σ is the Cauchy stress tensor and F a body force, including e.g. gravity. Fur-

thermore, Cauchy’s second law of continuum mechanics states

σ = σT, (1.10)

i.e. the stress tensor is symmetric. For fluid flow, the stress can be expressed as

σ = −pI+ τ d, (1.11)

where p is the isotropic pressure p = −1
3Tr (σ), I is the identity tensor and Tr (σ) the

trace of σ. The tensor τ d is called the deviatoric stress (Schlichting & Gersten, 2000).

For a Navier-Stokes fluid, or Newtonian fluid, the deviatoric stress for incompressible

flow reads (Truesdell & Rajagopal, 1999)

τ d = 2µS, (1.12)

where µ is the viscosity and S is the strain rate tensor, i.e. the symmetric part of the

velocity gradient, and reads

S =
1

2

(
∇u+∇uT

)
. (1.13)

Insertion of (1.11) and (1.12) into the Cauchy momentum equation (1.9) yields the

well-known incompressible Navier-Stokes equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ F. (1.14)

In (1.14) the right hand side is expressed in the Eulerian frame of reference. Further-

more, it has been used that for incompressible flow with constant viscosity µ

∇ · (2µS) = µ∇2u. (1.15)

9



1. INTRODUCTION

For a viscoelastic fluid, the deviatoric stress can be expressed as the Newtonian

counterpart with an additional term as

τ d = 2µS+ τ , (1.16)

where τ is the viscoelastic stress. The corresponding momentum equation reads

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+∇ · τ + F. (1.17)

In the context of polymeric fluids, the Newtonian viscosity µ ≥ 0 is commonly referred

to as the solvent viscosity. The viscoelastic stress τ is described by a constitutive

equation, discussed in Section 1.6.4.

1.6.3 Convected derivatives

Replacing the scalar stress σ and strain rate γ̇ by their tensorial counterparts τ and

2S, e.g. in the Maxwell model equation (1.3), may appear reasonable to construct a

constitutive equation for viscoelastic flow. However, it can be shown that the result is

not frame invariant (Morozov & Spagnolie, 2015). For a constitutive equation to be

admissible, it must be independent of the frame of reference in which it is expressed,

including time-depending frames (Barnes et al., 1989). This is sometimes expressed in

terms of a material objectivity condition, see for example Lodge (1974).

To derive formulation principles for admissible constitutive equations, Oldroyd

(1950) introduced a convected coordinate system which is embedded and deforms with

the material, commonly referred to as the covariant base vectors. Another set of con-

vected base vectors are the contravariant base vectors, which are perpendicular to the

material surfaces (Bird et al., 1987b). Frame-invariant convected time derivatives can

be identified by expressing the stress tensor τ in terms of the convected base vectors

and applying the time derivative. After some manipulation, the covariant frame leads

to the upper-convected time derivative, which for a second order tensor L reads

▽
L =

DL

Dt
− L · ∇u−∇uT · L, (1.18)

which is common in viscoelastic constitutive models. The contravariant frame leads to

the lower-convected time derivative,

△
L =

DL

Dt
− L · ∇uT −∇u · L. (1.19)

10



1.6 Viscoelastic flow

Linear combinations of the upper- and lower-convected derivatives also yield frame-

invariant time derivatives, as

□
L =

(
1 + as

2

)▽
L+

(
1− as

2

)△
L, (1.20)

where as ∈ [−2, 2] is a slip parameter. A different form is the Gordon-Schowalter

derivative
□
L (Larson, 1988)

□
L =

DL

Dt
− L · ∇u−∇uT · L+ ξ (L · S+ S · L) , (1.21)

where ξ ∈ [0, 2] is related to the slip parameter as.

Finally, higher order convected derivatives may be constructed by successive appli-

cation of the convected derivative, such that (Bird et al., 1987b)

L[n+1] =
(
L[n]

)
[1]
, (1.22)

where L[n] is the nth order convected derivative of L and L[1] =
□
L.

1.6.4 Constitutive models

An intuitive method to construct admissible constitutive equations is through gener-

alization of linear viscoelasticity, introducing tensorial quantities and convected time

derivatives, resulting in so-called quasi-linear constitutive models. For such models,

experimental data is necessary for an appropriate choice of convected derivative (Bird

et al., 1987b). A general such model reads

τ +

n∑
i=1

αiτ [i] = β0γ + 2

m∑
k=1

βkS[k−1]. (1.23)

Compared to the linear viscoelastic model (1.5), σ is replaced by τ and γ by the strain

tensor γ. Furthermore, the property γ[1] =
□
γ = ∇u +∇uT = 2S (Bird et al., 1987b)

is used.

As discussed in Section 1.5, the Maxwell element equation is obtained with the

nonzero constants α1 = λ and β1 = η in (1.5). Similarly, the same choice of constants in

(1.23) with the upper-convected derivative yields the upper-convected Maxwell (UCM)

model

λ
▽
τ + τ = 2ηS, (1.24)
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where λ is the relaxation time and η the polymeric viscosity. Another constitutive

model is the Oldroyd-B model, which may be obtained from (1.23) with the nonzero

constants α1 = λ, β1 = η0 and β2 = η0λr, resulting in the constitutive equation (Larson,

1988)

λ
▽
τ + τ = 2η0

(
S+ λr

▽
S

)
, (1.25)

where η0 is the total viscosity and λr is the retardation time. An alternative formulation

of the Oldroyd-B model results from the decomposition

τ d = 2
λr
λ
η0S+ τ , (1.26)

where τ has the constitutive equation

λ
▽
τ + τ = 2

(
1− λr

λ

)
η0S. (1.27)

In this form, the Oldroyd-B model corresponds to the UCM model with the nonzero

solvent viscosity µ = λr
λ η0 and the polymeric viscosity η =

(
1− λr

λ

)
η0.

Quasi-linear models, including the UCM and Oldroyd-B models, impose no upper

limit on the physical stretching of polymer molecules. This may lead to unbounded

normal stresses. Nonlinear models, however, can provide a physically correct descrip-

tion for a wider range of flows. Admissible constitutive equations can be constructed

through combination of convected derivatives with empirical expressions (Bird et al.,

1987b). The Giesekus model is such an example, obtained by adding a quadratic term

to the UCM model (Morozov & Spagnolie, 2015),

λ
▽
τ + τ +

αGλ

η
τ · τ = 2ηS, (1.28)

where αG ∈ [0, 1/2] is a dimensionless parameter.

A different approach is to derive constitutive equations from molecular theory (Bird

et al., 1987a). A well-known example is the Phan Thien Tanner (PTT) model (Thien

& Tanner, 1977), derived from network theory assuming non-affine motions between

the strands, reading

λ
□
τ +

(
1 +

ελ

η
Tr (τ )

)
τ = 2ηS, (1.29)

where ε is a dimensionless parameter. A version with an exponential nonlinear term

was later proposed (Phan-Thien, 1978), such that

λ
□
τ + exp

(
ελ

η
Tr (τ )

)
τ = 2ηS. (1.30)
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1.6 Viscoelastic flow

If the Gordon-Schowalter derivative
□
τ is reduced to the upper convected derivative

▽
τ ,

the model is also referred to as the simplified PTT (SPTT) model.

In the finitely extensible nonlinear elasticity (FENE) models (Herrchen & Öttinger,

1997), the viscoelastic fluid is considered a dilute solution of nonlinear dumbbells, i.e.

beads connected by nonlinear springs as shown in Figure 1.3.

Figure 1.3: Dumbbell.

Different constitutive equations can be obtained for the continuum-level stress, de-

pending on the choice of closure approximation. The Peterlin approximation yields the

FENE-P constitutive equation (Bird et al., 1987b)

Z(Tr (τ ))τ + λ
▽
τ − λ

(
τ − (1− 2

2 + l
)
η

λ
I

)
D lnZ

Dt
= −2(1− b

b+ 2
)ηS, (1.31)

where l is a model parameter related to the maximum dumbbell extension and the

function Z reads

Z(Tr (τ )) = 1 +
3

l

(
1− λ

3η
Tr (τ )

)
. (1.32)

Another closure approximation by Chilcott & Rallison (1988) results in the FENE-CR

constitutive equation

λ
▽
τ +

(
l2 + λ

ηTr (τ )

l2 − 3

)
τ = 2η

(
l2 + λ

ηTr (τ )

l2 − 3

)
S. (1.33)

In addition to those discussed, other models derived from molecular theory include

the Pom-Pom model (McLeish & Larson, 1998) for branched polymer melts and the

Rolie-Poly model (Likhtman & Graham, 2003). A different class of models are inte-

gral models, in which the the deformation history is accounted for through a memory

function, e.g the K-BKZ model (Mitsoulis, 2013).
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1.6.5 Conformation tensor

The viscoelastic state of a material may be expressed in terms of the molecular config-

uration state through the conformation tensor

c =
λ

η
τ + I. (1.34)

In physical terms, the conformation tensor is the second moment of the dimensionless

end-to-end vector of polymer chains (Morozov & Spagnolie, 2015). Many constitutive

models may be formulated for c on the form (Chen et al., 2013)

▽
c =

1

λ
Y(c)H(c), (1.35)

where Y(c) is a scalar-valued function and H(c) a tensor-valued function. The con-

formation tensor equation is commonly used in stability enhancement techniques, dis-

cussed in Section 1.7. In Table 1.1 the expressions for Y and H are listed for different

constitutive models.

Model Y(c) H(c)

UCM/Oldroyd-B 1 I− c

Giesekus 1 I− c− αG(I− c)

(S)PTT (linear form) 1 + ε(Tr (c)− 3) I− c

(S)PTT (exponential form) ε(Tr (c− 3) I− c

FENE-P 1 I− c/(1− Tr (c) /l2)

FENE-CR (1− Tr (c) /l2)−1 I− c

Table 1.1: Functions Y(c) and H(c) in (1.35) for different constitutive models.

1.6.6 Multiple modes

In general, the viscoelastic stress tensor may be considered to be a sum of multiple

stress modes as

τ =

Nm∑
k

τ k, (1.36)

where τ k is the kth stress mode and Nm the number of modes. Each stress mode τ k is

described by a constitutive equation with a unique set of parameters. Thus, viscoelastic

fluids with multiple relaxation times can be modeled.
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1.6 Viscoelastic flow

1.6.7 Normal stress differences

The normal stress behavior is important for viscoelastic flow. This is illustrated by

simple shear flow, shown in Figure 1.4. Here, u2,3 = 0 and u1 > 0 varies linearly

in the x2-direction. Thus, the only nonzero component of the velocity gradient is

γ̇ = ∂u1/∂x2. For this case, if any other component of the deviatoric stress tensor τ d

than the shear stress τ12 is nonzero, the flow is by definition non-Newtonian (Barnes

et al., 1989).

x1

x2

x3

t = 0

x1

x2

x3

U

t > 0

Figure 1.4: Simple shear flow.

The normal stresses τ11, τ22 and τ33 cannot be measured directly in rheometry

experiments. However, the differences

N1 = τ11 − τ22, (1.37)

N2 = τ22 − τ33, (1.38)

can be measured (Larson, 1999). N1 and N2 are called the first and second normal

stress differences, respectively.

1.6.8 The Reynolds, Weissenberg and Deborah numbers

The Reynolds number quantifies the ratio of inertial to frictional forces, and reads (Schlicht-

ing & Gersten, 2000)

Re =
ρUL

µc
, (1.39)

where U and L are characteristic velocity and length scales, respectively and µc a

characteristic viscosity.

15



1. INTRODUCTION

The Deborah and Weissenberg numbers quantify the effects of elasticity in a flow.

While their definitions are similar for many flows, they should be interpreted differently.

The Deborah number was originally proposed by Reiner (1964) as

De =
Characteristic material time scale

Observation time scale
. (1.40)

A small De corresponds to fluid-like behavior while a large De corresponds to solid-like

behavior. For practical reasons, a commonly used definition is

De =
trelaxation
tprocess

, (1.41)

where trelaxation is the material relaxation time and tprocess the time scale of the defor-

mation process. For certain flows which are steady in the Lagrangian sense, e.g fully

developed pipe and channel flows or steady simple shear, the deformation time scale is

infinite. Hence, the Deborah number is zero for such flows (Poole, 2012).

The Weissenberg number Wi was identified by White (1964) as the number quan-

tifying the ratio of viscoelastic to viscous forces. Following Poole (2012), the elastic

forces in steady simple shear flow of an UCM fluid are characterized by the first normal

stress difference N1 = τ11 − τ22 = 2ληγ̇2c and the viscous forces by the shear stress

τ12 = ηγ̇c, where γ̇c is a characteristic shear rate. The Weissenberg number is then

Wi =
N1

τ12
=

2ληγ̇2c
ηγ̇c

= 2λγ̇c = 2λ
U

L
. (1.42)

From (1.42) it is clear that Wi may be interpreted as the ratio of viscoelastic to viscous

forces. It is remarked that in some cases the Deborah and Weissenberg numbers are

equal or are related through a geometrical factor. However, this not is the case for all

flows (Poole, 2012).

1.7 Numerical stability

In viscoelastic flow simulations, numerical instabilities and convergence issues can arise

for moderate Weissenberg or Deborah numbers, commonly referred to as the high Weis-

senberg number problem (HWNP) (Keunings, 2000). Convergence issues at limiting

values of Wi or De arise either due to model limitations or numerical approximation

errors. Some semi-analytical evidence of limiting values exist. However, what can be

interpreted as a limiting Wi or De for the discrete problem could arguably instead stem
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from numerical artifacts (Owens & Phillips, 2002). Numerical evidence suggests that

the origin of the numerical breakdown is a loss of resolution near large stress gradients.

In regions where the stresses grow exponentially, the commonly used polynomial ap-

proximations constitute inappropriate representations of the stress profiles (Fattal &

Kupferman, 2004).

Different remedies to the HWNP have been proposed. A comparison between dif-

ferent stabilization methods was conducted by Chen et al. (2013). As a general remark,

a pointed out by Keunings (2000), schemes or modifications to implicitly or explicitly

smooth the stress profiles could effectively change the problem being solved. Thus,

while numerical stability is achieved, the obtained solution corresponds to a different

problem than the original one.

A straightforward means of increasing the numerical stability is to enhance the

ellipticity of the problem through artificial diffusion in the momentum equation, referred

to as both sides diffusion (BSD). The corresponding momentum equation reads

ρ

(
∂u

∂t
+ u∇ · u

)
− 2(µ+ µa)∇ · S = −∇p− 2µa∇ · S+∇ · τ + F, (1.43)

where µa is the artificial viscosity. In the continuum sense, the additional terms 2µa∇·S
cancel each other. However, in the discretized equations, the left hand side term is

treated implicitly and the right hand side term explicitly. Consequently, numerical

diffusion which enhances the numerical stability is introduced. In light of the remark

by Keunings (2000), BSD may falsely diffuse the solution in time and is preferably

avoided for transient simulations, noted by Xue et al. (2004). On the other hand, the

stabilization method can be suitable for steady flow applications.

The conformation tensor c is symmetric and positive definite (SPD) and thus have

real eigenvalues and the diagonalization c̃ = RTcR, where R consists of the eigenvec-

tors of c (Alves et al., 2021). As such, the constitutive equation may be reformulated for

a tensor with improved numerical properties, e.g. inherent preservation of the positive

definiteness of c or reduction of steep stress gradients. A popular such method is the

Log-conformation representation (LCR) proposed by Fattal & Kupferman (2004, 2005).

As the name suggests, an the constitutive equation is transformed to an equation for

Θ = log(c), reading

DΘ

Dt
− (ΩΘ−ΘΩ)− 2B =

1

λ
Y(eΘ)e−ΘH(eΘ), (1.44)
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where Ω is an antisymmetric tensor and B a tensor which commutes with c and

Tr (B) = 0. The tensors Ω and B stem from a decomposition of the velocity gra-

dient ∇u, assuming ∇ ·u = 0. The functions Y and H are those listed in Table 1.1 for

the conformation tensor equation (1.35).

A formulation conceptually similar to LCR is the square-root conformation repre-

sentation (SRCR) by Balci et al. (2011). The square-root conformation tensor b is

defined such that c = b · b. Balci et al. (2011) originally stated the equations for b

for the Oldroyd-B and FENE-P models, which for a general constitutive reads (Pal-

hares Junior et al., 2016)

Db

Dt
= b · ∇uT +M · b+

1

2λ
Y(b2)b−1 ·H(b2). (1.45)

The tensor M is antisymmetric and can be calculated explicitly.

The LCR and SRCR both reduce steep gradients in the solution variables and

preserve the positive definiteness of the conformation tensor, enhancing numerical sta-

bility for strongly elastic flows. Certain challenges for accuracy at high De remain,

however, due to demanding requirements of grid refinements Alves et al. (2021). A

generalized mathematical framework to transform the constitutive equation in terms of

any continuous, invertible and matrix transformation, was formulated by Afonso et al.

(2012), called the kernel-conformation method. For appropriate choices of the matrix

transformation, e.g. the LCR and SRCR equations can be recovered.

Finally, a stabilization scheme which should be mentioned is the positive definiteness

preserving scheme (PDPS) proposed by Stewart et al. (2008), in which the discretization

scheme for the constitutive equation preserves the positive definiteness c per design.

It is noted that the stabilization methods discussed are commonly applied to Eule-

rian solution algorithms. However, reformulations such as e.g. the LCR and SRCR are

feasible for Lagrangian or semi-Lagrangian frameworks as well.

1.8 Motivation for the chosen approach

The current chapter is concluded with a motivation for the Lagrangian–Eulerian ap-

proach chosen for the developed numerical method.

Eulerian finite volume discretization is a well-established method for viscous flow as

well as for transport of heat and mass. For the viscoelastic constitutive equation, as pre-

viously discussed, Eulerian discretization may require specialized high-order schemes
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to minimize the numerical diffusion (Alves et al., 2003). For collocated grids, en-

hanced stress-velocity coupling schemes are necessary, similar to Rhie-Chow interpo-

lation (Alves et al., 2021). Furthermore, stabilization through e.g. LCR is frequently

utilized for numerical stability. Thus, a Lagrangian algorithm to solve the constitutive

equation is a viable approach.

The solution of the Lagrangian constitutive equation is straightforward to paral-

lelize. Consequently, the resulting algorithm can be executed in parallel on the core

processing unit (CPU) or the graphics processing unit (GPU). In comparison, for Eule-

rian discretization of the constitutive equation, three or six large coupled linear systems

must be solved, respectively for 2D and 3D. Furthermore, for free-surface flow applica-

tions in which the viscoelastic phase only occupies a small part of the computational

domain, the Lagrangian algorithm only needs to be executed in those areas.

The Lagrangian–Eulerian framework presented in this thesis extends the Eulerian

finite volume solver described in Section 1.4 with a Lagrangian method to solve the

viscoelastic constitutive equation. In contrast to some Lagrangian methods, e.g. Ras-

mussen & Hassager (1995) or Harlen et al. (1995), the computational grid is stationary

and therefore not subject to deformation. The current approach has certain similar-

ities to the FEM-based Lagrangian particle methods by Gallez et al. (1999); Halin

et al. (1998); Wapperom et al. (2000). Important differences compared to their work

include the use of FVM discretization, the automatic octree grid and the immersed

boundary method. This combination enables efficient handling of complex flow geom-

etry and moving or deforming objects, particularly compared to boundary-conformed

mesh descriptions. Thus the method is suitable for e.g. adhesive joining applications.

In addition, the coupling between the Lagrangian and the Eulerian solution variables

through interpolation requires considerably fewer Lagrangian nodes per cell for stable

results and does not automatically fail if the number of nodes is too small. Finally,

in contrast to the referenced Lagrangian methods, the current numerical framework

supports simulation of free-surface flow with the VOF method.

In summary, the chosen approach aims to utilize the advantages of the Lagrangian

constitutive equation and the Eulerian momentum and continuity equations. The re-

sulting framework can describe complex industrial applications in an efficient and user-

friendly manner, without the need for advanced stabilization techniques, enhanced

stress-velocity coupling schemes or a boundary-conformed computational mesh.
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Chapter 2

Lagrangian–Eulerian framework

In this chapter, the numerical method developed is described, with main focus on the

Lagrangian algorithms for the viscoelastic stress. Two versions of the Lagrangian–

Eulerian method have been developed. The forwards-tracking method was developed

mainly during earlier part of the project [Paper I-II], while the improved backwards-

tracking method was developed during the later part [Paper III-V].

This chapter is structured as follows. The governing equations are stated, followed

by a description of the finite volume method used to solve the Eulerian transport

equations. The Lagrangian methods to solve the constitutive equation and couple the

results to the Eulerian momentum equation are then described in detail. The chapter

is concluded with a short discussion on the software implementation of the numerical

framework.

2.1 Governing equations

The viscoelastic fluid flow is described by the incompressible momentum equation (1.17)

and the continuity equation (1.8), stated again here for completeness

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+∇ · τ + F, (1.17)

∇ · u = 0. (1.8)

For Nm viscoelastic stress modes, the constitutive equation is assumed to have the

general form
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λk
□
τ k + Fk(τ k)τ k = 2ηkS, k = 1, . . . , Nm, (2.1)

where Fk is a scalar-valued function, defined by the choice of constitutive model.

2.2 Eulerian finite volume solver

The momentum and continuity equations are discretized with the finite volume method

on a collocated octree background grid. A computational domain is defined as the

Cartesian box

Ω =

{
Ix × Iy, d = 2

Ix × Iy × Iz, d = 3
, (2.2)

where Ix,Iy and Iz are intervals in the respective coordinate directions and d the number

of spatial dimensions considered. The discretization of the domain Ω is defined through

an equidistant subdivision of the domain in the respective coordinate direction, i.e. a

base cell size. The grid may be anisotropic, i.e. the cell sizes may vary between the co-

ordinate directions. The grid is automatically generated and can be adaptively refined,

e.g. around moving objects, in narrow channels and at fluid interfaces. Refinements are

generated by recursively dividing cells in the coordinate directions to the desired level,

illustrated in Figure 2.1 for d = 2, 3.

× ×

×
× ×

× ×

(a) d = 2. (b) d = 3.

Figure 2.1: Examples of octree grids with one refinement level, with cell centers (×)

and grid nodes (•).

The momentum equation (1.17) provides transport equations for the velocity com-

ponents, which are coupled to the pressure field through the pressure gradient. However,
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the incompressible continuity equation (1.8) does not include the pressure. A pressure-

velocity coupling algorithm is thus necessary to couple the fields. In this work the

Semi-implicit method for pressure-linked equations – consistent (SIMPLEC) (Door-

maal & Raithby, 1984) is used, which is based on the original SIMPLE method by

Patankar (1980).

2.2.1 Immersed boundary method

Interior objects in the computational domain Ω are represented by surface triangu-

lations. Boundary conditions from such objects are imposed using the mirroring im-

mersed boundary method (Mark & van Wachem, 2008; Mark et al., 2011). As the

linear system for the momentum equation is assembled, the velocity field is implicitly

mirrored across the boundary surface such that the prescribed boundary condition is

satisfied for the converged solution. The mirroring technique introduces a fictitious flow

field inside the object, which is replaced by the object velocity in all flux calculations

to ensure zero mass flow across the boundary.

2.2.2 Volume of fluid method

Two-fluid flow is modeled with the volume of fluid method. A color function Λ ∈ {0, 1}
is defined such that

Λ =

{
1, In the viscoelastic phase

0, In the Newtonian phase
. (2.3)

The discrete counterpart to Λ is the fluid volume fraction α ∈ [0, 1], which constitutes

the local volume average of Λ in a control volume. The transport of α is described by

the convection equation Tryggvason et al. (2011)

∂α

∂t
+ u · ∇α = 0. (2.4)

By definition, α is the relative volume of viscoelastic fluid in a cell. Thus, for α = 1 the

cell is completely occupied by the viscoelastic fluid and for α = 0 by air. For 0 < α < 1,

the cell is intersected by the interface between the two phases.

The transport equation (2.4) is discretized on the Eulerian grid with the finite

volume method using the compact CICSAM scheme (Ubbink & Issa, 1999). This
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compressible convective scheme is developed to minimize the numerical diffusion of the

interface.

Although two fluids may be present, the flow is described by a single set of momen-

tum, continuity and constitutive equations. The local contributions from the respective

phases are accounted for through the volume averaging

ϕ = αϕv + (1− α)ϕN , (2.5)

where ϕv is the property of the viscoelastic phase and ϕN that of the Newtonian phase.

The averaging (2.5) is applied to µ, ρ, η, λ and τ .

For practical reasons, two viscoelastic subsets of the computational domain Ω are

defined as

Ωv,1(t) = {r ∈ Ω : α(t, r) ≥ αlim,1} , (2.6)

Ωv,2(t) = {r ∈ Ω : α(t, r) ≥ αlim,2} , (2.7)

where αlim,1 > αlim,2 and, thus, Ωv,1 ⊆ Ωv,2. The viscoelastic constitutive equation is

only solved at points r ∈ Ωv,1. Other points are considered to lie outside the viscoelastic

phase. Furthermore, the contribution from points r ̸∈ Ωv,2 is excluded from the velocity

gradient in the constitutive equation.

The first condition, defined by Ωv,1, reduces the problem size as the constitutive

equation is only solved in the viscoelastic phase, in contrast to the whole domain. The

set Ωv,2 is mainly introduced to reduce the influence on the constitutive equation from

large velocities in the Newtonian phase, which often has low viscosity and density. Thus,

the requirement to resolve all velocity scales in the Newtonian phase near the interface

is relaxed. In all results presented in this thesis, the threshold values αlim,1 = 0.1

αlim,2 = 0.01 are used.

2.2.3 Injection model

Certain applications involve continuous inflow of a viscoelastic fluid from a moving

nozzle, as illustrated in Figure 2.2. An injection model is therefore included in the

numerical framework, with the objective to inject the viscoelastic fluid to the compu-

tational for the given process conditions.

The adhesive injection is carried out with the following steps:
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2.2 Eulerian finite volume solver

Figure 2.2: Application with a moving nozzle.

• The grid is refined in the injection zone (current nozzle location)

• Injection cells which approximate the nozzle geometry are identified.

• Adhesive is injected by modifying the volume fraction α in the injection cells.

The procedure is illustrated in Figure 2.3. Note that the nozzle geometry is not

included as an immersed boundary object in the simulation. The nozzle geometry is

accounted for solely by the injection cells.

(a) Initial state (b) Grid refinement (c) Injection

Figure 2.3: Schematic of injection step.

The velocity condition imposed for the injection cells is based on the volume flow

rate and the applicator velocity and is treated as an immersed boundary condition.

The velocities in the injection cells are set to

uinj = uflow + uapp, (2.8)

where uflow is the velocity based on the volume flow rate and uapp is the nozzle move-

ment velocity. To account for discrepancies between the nominal nozzle geometry and

25



2. LAGRANGIAN–EULERIAN FRAMEWORK

the discrete approximation by the injection cells, a flow rate correction is calculated as

V̇corr = max

(
ξs
Vnom − Vinj

∆t
, ξlV̇nom

)
, (2.9)

where Vinj is the injected volume and Vnom the nominal volume with respect to the

flow rate history. ξs ∈ (0, 1] is introduced to smoothen flow variations over time and

ξl ∈ (0, 1) to impose a lower limit on the flow rate. The volume flow rate used for the

injection is calculated as

V̇ = ξr

(
Vnom + V̇corr

)
+ (1− ξr)V̇old, (2.10)

where ξr ∈ (0, 1] is a relaxation factor and V̇old the flow rate in the previous time step.

In this work, ξs = 0.2, ξl = 0.1 and ξr = 0.1 have been found to be suitable values and

are used in the simulations.

2.3 Lagrangian-Eulerian formulation

The constitutive equation (2.1) is expressed as

Dτ k

Dt
=

2ηk
λk

S− F(τ k)

λk
τ k +A(τ k), k = 1, . . . , Nm, (2.11)

where A(τ k) expands to

A(τ k) = τ k · ∇u+∇uT · τ k − ξ (τ k · S+ S · τ k) , k = 1, . . . , Nm. (2.12)

For a fluid element, (2.11) constitutes an ODE system for the local viscoelastic

stress. However, the fluid element is convected by the flow and (2.11) involves the ve-

locity gradient ∇u. Thus, to solve (2.11) for the element its trajectory x(t) is required.

An ODE system for the trajectory is expressed as

ẋ(t) = u(t,x), (2.13)

τ̇ k(t,x) = Gk(τ k,∇u(t,x)), k = 1, . . . , Nm, (2.14)

where Gk expands to the right hand side of (2.11).

Two methods to solve (2.13) and (2.14) throughout the flow and add the contri-

bution to the momentum equation (1.17) have been developed. The forwards-tracking
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2.4 Forwards-tracking method

method was developed in the earlier part of the research project. The backwards-

tracking methods was later developed as an improved version of the method, introducing

structured storage of the Lagrangian stresses and eliminating the need for unstructured

interpolation. Consequently, the backwards-tracking improved the general robustness,

as well as the support for refined Eulerian grids and free-surface flow. The two methods

are described in the following sections.

2.4 Forwards-tracking method

In the first method developed, denoted the forwards-tracking method, the ODE systems

(2.13) and (2.14) are solved simultaneously forwards in time for Lagrangian nodes

distributed throughout the viscoelastic flow. As the resulting stress field is stored in

an unstructured set of points, radial basis function (RBF) (Iske, 2004) interpolation is

used to calculate the stresses at the cell centers of the Eulerian grid. The procedure

can be summarized as:

1. Distribute/redistribute Lagrangian nodes

2. Convect nodes and compute updated stresses by solving ODE systems

3. Interpolate viscoelastic stresses to Eulerian grid

4. Calculate viscoelastic contribution to the discretized momentum equation

The different steps are discussed in detail below.

2.4.1 Distribution of Lagrangian nodes

At initialization, Lagrangian nodes are distributed in the domain through a subdivision

of the Eulerian cells. Each cell is split into nsplit smaller segments in each coordinate

direction and a Lagrangian node is placed in each sub-volume, as shown in Figure 2.4.

Since the Lagrangian nodes move with the flow, the distribution is subject to vari-

ation. The distribution is therefore is maintained through addition and deletion of

nodes. A node is added if the neighborhood of a cell sub-volume does not contain a

node. The neighborhood is defined as the box centered on the sub-volume and with

the side (1 + εneigh)∆x/nsplit, where εneigh = 0.1 in the current work, as shown in Fig-

ure 2.5. In this work εneigh = 0.1 is used, which has been found a suitable value. The
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∆x

(a) nsplit = 2. (b) nsplit = 3.

Figure 2.4: Subdivision of a two-dimensional Eulerian cell for Lagrangian node distri-

bution.

stress of the newly added node is interpolated from the surrounding nodes with the

RBF method, discussed in detail in Section 2.4.3.

∆x
nsplit

(1 + εneigh)
∆x
nsplit

Figure 2.5: Box covering subcell.

Deletion of nodes occurs when the number of nodes in a sub-volume exceeds the

limit nmax ≥ 1. The pairwise closest nodes are replaced by a new node with their mean

position and stress until the number of nodes is within the allowed range.

2.4.2 ODE systems

In the forwards-tracking method the ODE systems (2.13) and (2.14) are solved for-

wards in time for each Lagrangian node, as illustrated in Figure 2.6. The ODE solver

algorithm is discussed in Section 2.7. When solving the ODE systems, u and ∇u are

interpolated from the Eulerian grid with bilinear or trilinear interpolation, respectively

for two and three spatial dimensions, from the Eulerian grid nodes.
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
x(t)

τ 1(t)
...

τNm(t)

 
x(t+∆t)

τ 1(t+∆t)
...

τNm(t+∆t)


Figure 2.6: Lagrangian node trajectory in flow field.

2.4.3 Radial basis function interpolation

Viscoelastic stresses are stored in the Lagrangian nodes and interpolated to the Eulerian

cell centers using radial basis functions. In general, let f be a scalar-valued function

which is known at the points x1, . . . ,xNc . The approximate value f̂ at a point r is then

calculated as (Iske, 2004)

f̂(r) =

Nc∑
n=1

wnψ(ζs|r− xn|) + P (r), (2.15)

where w1, . . . , wNc are weights, ψ : R 7→ R a radial basis function and ζs a scaling

parameter. The term P (r) is the polynomial

P (r) = v0 +
d∑

s=0

vsrs, (2.16)

where v0, . . . , vd are polynomial coefficients and r0, . . . , rd the components of r. The

coefficients in (2.15) and (2.16) constitute the solution to the system[
M B

BT 0

] [
w
v

]
=

[
f
0

]
, (2.17)

where

Mij = ψ(ζs|xi − xj |), (2.18)

B =

[
1 · · · 1
x1 · · · xNc

]T
, (2.19)
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f =
[
f(x1) · · · f(xNc)

]T
, (2.20)

w =
[
w1 · · · wNc

]T
, (2.21)

v =
[
v0 · · · vd

]T
. (2.22)

It is noted that the matrices M and B depend only on the points x1, . . . ,xNc , while

the vector f depends on the function f .

To interpolate the viscoelastic stress to a given point, the Lagrangian nodes close

to the point are found. The system (2.17) is then assembled once and solved for each

stress component. The close nodes are identified efficiently with a search tree data

structure. Depending on the type of implementation, the search tree is either an R-tree

structure (Guttman, 1984) or a grid-based structure.

2.5 Backwards-tracking method

The second method developed is denoted the backwards-tracking method. The funda-

mental strategy of this method is to maintain the structure of the Lagrangian node set

by choosing the location of the nodes at the end of each time step a priori. Specifically,

the locations are chosen to be at the Eulerian grid nodes. The strategy has been partly

inspired the BLPM method of Wapperom et al. (2000).

Given the structured arrangement of the viscoelastic stress solution, the need for

unstructured stress interpolation as well as to maintain the node set is eliminated. As

such, the overall robustness is enhanced and the total number of Lagrangian nodes

is reduced compared to the forwards-tracking method. Furthermore, the support for

refined octree grids is improved.

The viscoelastic stress calculation is carried out as follows. Assuming a known

velocity field for t ∈ [tn, tn+1] and a stress field for t = tn, the stress at t = tn+1 at a

given grid node is desired. Hence, the trajectory of the fluid element which resides at

the grid node at t = tn+1 is needed. Letting x(t) be the position the fluid element, the

trajectory may be expressed as
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2.5 Backwards-tracking method

x(t) = x(tn+1)−
∫ tn+1

t
u(t′,x(t′))dt′, t ∈ [tn, tn+1], (2.23)

which is calculated numerically by solving (2.13) backwards in time, starting from

x(tn+1). The viscoelastic stress is interpolated from the nodes at time tn to x(tn).

Finally, (2.14) is solved forwards in time along the trajectory, such that the viscoelastic

stress τ (tn+1,x(tn+1)), i.e. at the grid node, is obtained.

An illustration of the backwards-tracking procedure is given in Figure 2.7. The steps

can be summarized as

1. Calculate the Lagrangian node trajectory by solving (2.13) backwards in time,

starting at the Eulerian grid node at x(tn+1).

2. Interpolate the stress τ (tn,x(tn)) to the Lagrangian node from the known stress

field at time tn.

3. Solve (2.14) forwards in time along the trajectory x(t), t ∈ [tn, tn+1].

x(tn+1)

x(tn)

(a) Backwards-tracking.

τ (tn)

(b) Interpolation.

τ (tn+1)

τ (tn)

(c) Forwards-solving.

Figure 2.7: Backwards-tracking procedure.

When (2.13) and (2.14) are solved, the velocity along the trajectory is calculated

with bilinear or trilinear interpolation, respectively for two and three dimensions, from

the cell centers. Similarly, the velocity gradient is calculated as the gradient of the

bilinear or trilinear interpolation expressions. For interpolation to a point near grid

refinements, the smallest local cell size is used to form the interpolation box. For

corners of the interpolation box which do not coincide with a cell center, the velocities

are calculated with a first order polynomial approximation from the cells intersecting

the box. The interpolation box is visualized in Figure 2.8.
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×

×

×

×
x

(a) Uniform

×

◦

◦

×

×
x

(b) Refined

Figure 2.8: Basis for interpolating properties stored at the Eulerian cell centers to

Lagrangian nodes in (a) areas with uniform grid spacing and (b) near refinements.

2.6 Viscoelastic contribution to momentum equation

In the momentum equation (1.17) the viscoelastic stress affects the flow through the

term ∇·τ . As discussed in Section 2.2.2, the volume fraction averaging (2.5) is applied

to the viscoelastic stress. Thus, the viscoelastic stress contribution is calculated as

∇ · (ατ ) = α∇ · τ + τ · ∇α, (2.24)

in which the product rule has been applied. This is interpreted as a separation of a

pure interfacial contribution of the stress divergence term and the remainder part (Ni-

ethammer et al., 2019). The first term of (2.24) is integrated with Gauss’ divergence

theorem as

∫
c.v.

∇ · τdV =

∫
c.s.

n̂ · τdS =
∑
f

∫
f.s.

n̂f · τdA, (2.25)

where c.v. denotes the cell volume, c.s. the cell boundary surface and n̂ the outwards

surface normal. In the second step of (2.25) the surface integral is expressed as the sum

of the cell face integrals, for which the normal vectors n̂f are constant. The volume

integral of the second term in (2.24) is approximated as∫
c.v.

(τ · ∇α)dV ≈ (τ · ∇α)∆V, (2.26)

where ∆V is the cell volume and (•) denotes the volume average. The quantity ∇α is

calculated using central differences.
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2.7 ODE solver

In the forwards-tracking method, the cell face integrals are approximated through

linear interpolating of the viscoelastic stress to the face centers. For faces at the domain

boundary or inside immersed boundaries the stress is linearly extrapolated from using

the neighboring cell at the opposite face.

In the backwards-tracking method, the face integrals are approximated with the

trapezoidal rule, directly using the stresses stored at the grid nodes. For cell faces

adjacent to smaller cells, e.g. as shown in Figure 2.1, the sub-faces are integrated

separately such that the contribution from each grid node is included.

For two-fluid flow, the threshold volume fraction threshold αlim,2 is used, see Sec-

tion 2.2.2. Cells in which α < αlim,2 are assumed to lie outside the viscoelastic phase

and, hence, the viscoelastic contribution is assumed to vanish.

2.7 ODE solver

Let y be the solution vector to the ODE system{
ẏ(t) = g(t,y)

y(t0) = y0

, (2.27)

The system (2.27) is solved for a global time step of length ∆t with Nloc > 0 local steps

of size ∆t1, . . . ,∆tNloc
, where ∆t1 + . . .+∆tNloc

= ∆t.

2.7.1 Forwards-tracking method

Two ODE solution methods are employed for the forwards-tracking method, depending

on the implementation. The first method is a second order backwards-differentiation

formula (BDF). An approximate solution yn at time tn is calculated from

bn∆tnẏn − yn + an,1yn−1 − an,2yn−2 = 0, (2.28)

where ∆tn = tn − tn−1 is of variable length and the coefficients bn, an,1 and an,2 are

uniquely determined given the recent step size history (Hindmarsh et al., 2018).

The second method is the more simple implicit Euler method, for which an approx-

imate solution at time tn is calculated from

yn = yn−1 +∆tnẏn, (2.29)

where ∆tn are constant for n = 1, . . . , k.
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2.7.2 Backwards-tracking method

For the backwards-tracking method, the fourth order Runge-Kutta RK4 method (Tahir-

Kheli, 2018) is used to solve the ODE systems. An approximate solution at t = tn is

then calculated explicitly as

y(tn) = y(tn−1) +
1

6
(K1 + 2K2 + 2K3 +K4) , (2.30)

with the coefficient vectors K1, . . . ,K4

K1 = g (tn−1,yn−1)∆tn, (2.31)

K2 = g

(
tn−1 +

∆tn
2
,yn−1 +

K1

2

)
∆tn, (2.32)

K3 = g

(
tn−1 +

∆tn
2
,yn−1 +

K2

2

)
∆tn, (2.33)

K4 = g (tn,yn−1 +K3)∆tn. (2.34)

2.8 Implementation

An important aspect of the research presented in this thesis is the software implemen-

tation of the proposed methodology. The algorithms presented are mainly implemented

in C++ code and are executed in parallel on the CPU. The backwards-tracking method

is implemented entirely in CPU code, while for the forwards-tracking method a GPU-

accelerated version has also been developed. In this version, the ODE solver and the

RBF interpolation are parallelized on the GPU. The algorithms are implemented in

CUDA C++ code and utilize the Thrust library (Bell & Hoberock, 2011) for the paral-

lelization. A summary of the available implementations of the ODE solver algorithms

and the RBF interpolation is given in Table 2.1.

The forwards-tracking method is implemented in three versions with the intent to

enable performance comparison between the CPU-based and GPU-accelerated versions.

The implemented versions, including the backwards-tracking method, are summarized

in Table 2.2. CPU-BDF constitutes the original implementation of the forwards-

tracking method, while CPU-Euler is mainly used to enable fair comparison between
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2.8 Implementation

Routine CPU-impl. GPU-impl.

BDF ODE solver ✓

Implicit Euler ODE solver ✓ ✓

Runge-Kutta RK4 ODE solver ✓

RBF interpolation ✓ ✓

Table 2.1: Summary of CPU and GPU implementations of ODE solvers and interpo-

lation routines.

the CPU-based and the GPU-based algorithms, with respect to computational perfor-

mance.

Implementation ODE solver RBF interpolation

CPU-BDF BDF, CPU CPU

CPU-Euler Implicit Euler, CPU CPU

GPU Implicit Euler, GPU GPU

Backwards-tracking RK4, CPU -

Table 2.2: Combinations of ODE solver and interpolation routines implemented for the

Lagrangian–Eulerian methods.

2.8.1 ODE solver

The BDF formula is implemented for execution on the CPU with the available solvers in

the Sundials CVode library (Hindmarsh et al., 2018; Sundials, 2020), while the implicit

Euler and Runge-Kutta RK4 methods, respectively, are implemented in our in-house

code. The implicit Runge-Kutta RK4 method is implemented for execution on the

CPU, while the implicit Euler method is implemented for execution either on the CPU

or the GPU.

2.8.2 Radial basis function interpolation

The RBF interpolation procedure consists of two main steps:

1. Find all Lagrangian nodes close to the point.
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2. Solve the system (2.17) and calculate the interpolated stress components.

The first step is performed differently on the CPU and GPU. In the CPU implemen-

tation the Lagrangian node positions are stored in an R-tree data structure, enabling

efficient identification of the nodes within a given distance to a point. The R-Tree

structure used is implemented in the Boost C++ libraries (Dawes & Abraham, 2020).

In the GPU implementation, the Lagrangian nodes are instead stored in a lattice grid

structure. When interpolating the viscoelastic stress to a given cell center, all nodes

residing in the cell are simply included.

While the R-tree implementation arguably is a more general, the lattice grid struc-

ture used for the GPU-implementation is more efficient for the GPU-architecture. This

is the main argument for using different search-strategies for the different implementa-

tions in the current work.

2.8.3 Numerical stability

Both sides diffusion is implemented in the numerical framework, but is only used for

the study of steady flows due to its inherent disadvantages for transient flows, discussed

in Section 1.7.

The Lagrangian-Eulerian framework is compatible with reformulation techniques,

e.g. the log-conformation representation. LCR is implemented but is not used for the

any of the numerical studies presented in this thesis. The intent is instead to evaluate

the numerical method without advanced stabilization techniques unless necessary.
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Chapter 3

Results and discussion

In this chapter simulation results obtained with the proposed Lagrangian–Eulerian

methods are summarized and discussed. Since the focus of the thesis is to present new

simulation methodology for viscoelastic flow, the results are focused on validation of

the method in different aspects.

Firstly, results for viscoelastic single-phase flows are presented for the proposed

methods. A discussion around the performance enhancements obtained for GPU cal-

culations is included in this section. This section summarizes Paper I–II and partly

Paper III. Secondly, multiphase flows are discussed, summarizing Paper III–IV. Finally,

simulated adhesive joining applications are demonstrated, summarizing the results from

Paper V.

For the results presented in this section, the solvent viscosity and polymeric viscosity

are quantified by the total viscosity ηt and the viscosity ratio

β =
µ

µ+ η
, (3.1)

such that µ = βηt and η = (1− β)ηt.

3.1 Single-phase flow

A first validation study of the forwards-tracking method is conducted for a planar

Poiseulle flow and for a confined cylinder flow. For the Poiseulle flow, analytic solutions

are available. For the confined cylinder flow, the computed results are compared to

numerical and experimental data from the literature.
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The Poiseulle flow, shown in Figure 3.1, is subject to a constant pressure drop ∆p

and periodic boundary conditions in the streamwise direction. Thus, effectively an

infinitely long channel is modeled. The viscoelastic fluid is described with the UCM

and Oldroyd-B models, with the constitutive equation

λ
▽
τ + τ = 2ηS, (3.2)

with the viscosity ratio β = 0 for the UCM model and β ∈ (0, 1) for the Oldroyd-B

model.

p = ∆p p = 0
y

x

2H

H

∆x

Figure 3.1: Planar Poiseulle flow.

All simulations are transient and initialized with vanishing velocity and stress fields.

The accuracy is estimated with the relative errors at steady flow conditions with respect

to the analytic solution. The error for a flow quantity ϕ is calculated as

Eϕ =
||ϕ−ϕa||L2

||ϕa||L2

, (3.3)

where || • ||L2 denotes the L2-norm over the fluid cells and ϕa the analytic solution.

The Weissenberg number is defined as Wi = λU/H, where U is the mean steady

flow velocity. In Figure 3.2 the errors calculated for the velocity and the viscoelastic

normal stress for the UCM model are shown for varying uniform grid spacing ∆x and

Weissenberg number. The errors converge to zero with second order accuracy for the

considered Wi range, which agrees with the order of accuracy of the momentum and

continuity discretization for the case.

The simulated transient startup flow compared to the corresponding analytic so-

lution for Oldroyd-B model with varying β and Wi is shown in Figure 3.3. Here, the
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(a) Velocity.
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(b) Normal stress.

Figure 3.2: Relative errors with respect to analytic solution in planar Poiseuille flow

for (a) velocity and (b) normal stress.

streamwise velocity at the center of the channel is shown. Both β and Wi strongly in-

fluence the transient flow dynamics. This is captured in the numerical solution, which

practically overlap the analytic curves.
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(a) Wi = 0.1.
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Figure 3.3: Transient streamwise velocity at channel centerline for startup of planar

Poiseuille flow.
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The confined cylinder geometry is shown in Figure 3.4. The flow involves both shear

and extension characteristics and is a common benchmark problem for viscoelastic flow

simulation, see for example Alves et al. (2001); Oliveira et al. (1998). In this work,

the intent is to validate the proposed numerical method for flows involving realistic

viscoelastic fluids as well as complex geometry. As such, the use of the Lagrangian–

Eulerian method with immersed boundary conditions is assessed.

x

y
4R

R

∆x

Figure 3.4: Symmetrically confined cylinder flow.

The viscoelastic fluid is modeled by a four-mode linear-form PTT model with the

constitutive equation

λk
▽
τ k +

(
1 +

εkηk
λk

Tr (τ k)

)
τ k = 2ηkS, k = 1, . . . , 4, (3.4)

for which the parameters are chosen to match those reported by Baaijens et al. (1995)

for a viscoelastic polyisobutylene solution, see Table 3.1. In their work, experimental

measurements as well as FEM simulation of the flow were reported.

ηk [Pa · s] 0.443 0.440 0.0929 0.00170

λk [s] 0.00430 0.0370 0.203 3.00

εk 0.39 0.39 0.39 0.39

Table 3.1: Parameters for the SPTT model used in the confined cylinder flow.

A Deborah number is defined as De = λ̄U/R and a Reynolds number as Re =

ρRU/η0, where η0 is the total viscosity η0 = η1 + . . . + η4 and λ̄ the mean relaxation

time λ̄ = (η1λ1 + . . .+ η4λ4)/η0

The computed results are compared to the data from Baaijens et al. (1995) at steady

flow conditions for De = 0.25, 0.93, 2.32, corresponding to Re = 0.019, 0.069, 0.174. The

velocity u and first normal stress difference N1 = τxx − τyy are compared across the
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3.2 Computational performance

channel at different locations in Figure 3.5 and along the centerline in Figure 3.6. The

velocity is normalized by the mean velocity U and the stress by τ0 = 3η0U/R.

Overall, the results agree well with the FEM simulations from Baaijens et al. (1995).

A few small discrepancies are observed, which could be attributed to the different

numerical methods and uncertainties in the data. No grid dependency assessment was

reported for the FEM simulations and the raw data from Baaijens et al. (1995) have not

been available for the comparison. However, it is noted that the discrepancies between

the numerical results are small compared to the differences between the numerical and

experimental data.

−6 −4 −2 0 2 4

x/R or u/U

−2

−1

0

1

2

y
/
R

−5.0 −1.5 1.5

(a) Velocity

−6 −4 −2 0 2 4

x/R or N1/τ0

−2

−1

0

1

2
y
/
R

−5.0 −1.5 1.5
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Figure 3.5: Computed quantities across the channel for De = 2.32 (−), compared to

FEM-simulations (□) and experiments (◦) from Baaijens et al. (1995).

Combined, the simulations of the Poiseulle and confined cylinder flows show the ca-

pability of the proposed numerical method to simulate different viscoelastic flows. This

includes realistic viscoelastic fluids and complex geometry described with immersed

boundary conditions. Similar studies have been conducted to validate the different

implementations of the forwards-tracking method, discussed in Section 2.8, as well as

the backwards-tracking method. Although the complete study is not repeated for each

method and implementation, a certain overlap is asserted, summarized in Table 3.2.

3.2 Computational performance

An example of relative contributions to the simulation time from the ODE solver, the

RBF interpolation and the node redistribution are shown in Figure 3.7. The times
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Figure 3.6: Computed quantities along the confined cylinder channel centerline y =

0 for De = 2.32 (−), compared to FEM-simulations (□) and experiments (◦) from

Baaijens et al. (1995).

Fwd (CPU-BDF) Fwd (CPU-Euler) Fwd (GPU) Bwd

Poiseille (steady) ✓ ✓ ✓ ✓

Poiseille (transient) ✓ ✓

Confined cylinder ✓ ✓ ✓

Table 3.2: Overview of single-phase validation cases simulated with the versions of the

Lagrangian–Eulerian method presented in Chapter 2.
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3.2 Computational performance

have been measured for 100 time steps of the confined cylinder flow, simulated with

four processor cores with the CPU-BDF implementation, discussed in Section 2.8. From

Figure 3.7, it is evident that substantial performance gains may be obtained by reducing

the computational cost of these operations.
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Figure 3.7: Relative computational times in CPU-BDF implementation..

As previously stated, the Lagrangian form of the viscoelastic constitutive equa-

tion enables straightforward parallelization of the calculations. Utilizing this property,

the GPU-accelerated version of the forwards-tracking method has been implemented.

A performance comparison of the implementations of the forwards-tracking method

discussed in Section 2.8 is presented in this section.

The confined cylinder flow described in Section 3.1 is employed as the benchmark

case for computational performance. Simulations with 100 time steps are performed

with varying grid resolution as well as number of CPU cores. At the highest resolution,

512000 Eulerian cells and approximately 2 million Lagrangian nodes are used. All

simulations are performed with an Intel(R) Xeon(R) Gold 6134 CPU with 8 3.20GHz

cores and with a Tesla V100 GPU with 32Gb memory.

The operations which differ between the implementations are the ODE solver and

the RBF interpolation. In Figure 3.8 the average time per simulation step for these op-

erations are compared for the different implementations. The GPU implementation is

associated with smallest times for both operations. The CPU-based variants share the

implementation of the RBF interpolation. Hence, the interpolation times are identical

for the two. The ODE solution executes faster for the CPU-Euler implementation than

the CPU-BDF version. It is remarked that the implicit Euler method is performed
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3. RESULTS AND DISCUSSION

with a single substep in both the CPU and the GPU implementation. The compu-

tational cost of the CPU-Euler implementation increases rapidly with the number of

substeps, while the GPU implementation is much less sensitive to this parameter. This

is discussed in greater detail in Paper II.
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(a) ODE solution.

103 104 105 106 107

Num. Lagrangian Nodes

10−3

10−2

10−1

100

101

T
im

e
pe

r
st

ep
[s

]

(b) RBF interpolation.

Figure 3.8: Average time for solving (a) ODE systems and (b) RBF interpolation for

the four-mode PTT fluid in the confined cylider channel for GPU (◦), CPU-BDF (⋄)
and CPU-Euler (□) using 4 CPU threads.

In Figure 3.9 the corresponding comparison for varying number of CPU cores is

shown for the highest grid resolution. Similar relationships between the simulation

times are found. The parallelization on the GPU is not affected by the number of

processor cores. Hence, the measured times for the GPU implementation are essen-

tially constant with respect to the number of CPU cores, while remaining substantially

smaller than the CPU counterparts.

Ultimately, the performance of the full algorithm is the main property of interest. In

Figure 3.10 the measured computation times for the full viscoelastic stress calculation

and for a full simulation step are compared. As expected, the GPU-implementation

results in a major reduction in computation time, compared to the CPU implementa-

tions.

To summarize, the GPU-implementation reduces the computation time for the

ODE solver by 98 -99.6% and the RBF interpolation by 93 -98%, depending on the

number of CPU cores used. The corresponding decrease of the total simulation time
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Figure 3.9: Average time for (a) solving ODE systems and (b) RBF interpolation for

the four-mode PTT fluid in the confined cylider channel for GPU (◦), CPU-BDF (⋄)
and CPU-Euler (□).

1 2 4 8

Num. CPU threads

10−1

100

101

102

T
im

e
pe

r
st

ep
[s

]

(a) Stress calculation.

1 2 4 8

Num. CPU threads

100

101

102

T
im

e
pe

r
st

ep
[s

]

(b) Full step.

Figure 3.10: Average time for (a) viscoelastic stress calculation and (b) full time step

for the four-mode PTT fluid in the confined cylider channel for GPU (◦), CPU-BDF

(⋄) and CPU-Euler (□).
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is 44 -62%. Consequently, it can be concluded the Lagrangian–Eulerian algorithm is

indeed well-suited for GPU-acceleration. Moreover, the reduction of total time for the

CPU-Euler implementation is 21 -30%, demonstrating the influence of the choice of

ODE solver algorithm.

Although the performance has been assessed in detail for the forwards-tracking

method specifically, the observed results have important implications for the backwards-

tracking method as well. The backwards-tracking method requires a smaller number

of Lagrangian nodes. Furthermore, the RBF-interpolation as well as the node redistri-

bution are eliminated. Thus, the backwards-tracking has a lower computational cost

than the forwards-tracking method by construction.

3.3 Free-surface flow

So far, the simulations presented have considered single-phase viscoelastic flow, whereas

many applications involve free surface flow. Adhesive joining applications, being of

particular interest in this thesis, constitute such an example. Other examples include

e.g. polymer extrusion and additive manufacturing. In this section the focus is aimed

on viscoelastic free surface flow simulations. The cases are selected for their relevance

as viscoelastic benchmarks as well as for industrial applications. The simulations are

performed with the backwards-tracking Lagrangian–Eulerian method.

The die swell effect is important for e.g. polymer processing applications and has

been subject to extensive numerical study, see for example Comminal et al. (2018);

Crochet & Keunings (1982); Habla et al. (2011); Oishi et al. (2011, 2008); Spanjaards

et al. (2019); Tomé et al. (2002, 2008, 2010, 2012). In the case of adhesive joining

applications, viscoelastic swelling may appear e.g. during adhesive extrusion or for

squeeze flows in parts assembly. The effect arises for viscoelastic fluids subject to

constrained flow in a pipe or channel, which emerge through a nozzle or die. As an

illustration, Barnes et al. (1989) described the fluid as a bundle of elastic threads. In

constrained flow the threads are stretched by the streamwise normal stress. As the fluid

emerges the threads relax and decrease in length, causing the width of the extrudate

to increase.

A planar die swell flow is simulated, illustrated in Figure 3.11. The channel is

initially filled with the viscoelastic fluid, which is a single-mode Oldroyd-B fluid with

46



3.3 Free-surface flow

β = 1/9, while the expansion zone to the right is filled with a Newtonian gas. The box,

which effectively creates the channel, is imposed as an immersed boundary condition.

Fully developed stress and velocity profiles are imposed at the inlet. The transient flow

is simulated until the viscoelastic fluid exits through the outlet.

Outlet

Inlet h hmax

5h

10h 12h

x

y

Figure 3.11: Die swell domain.

A Weissenberg number is defined as Wi = λU/h and a Reynolds number as Re =

2ρUh/(µ+η). The swell ratio is calculated as Sr = hmax/h. Furthermore, the so-called

recoverable shear SR is adopted, defined as (Crochet & Keunings, 1982)

SR =

∣∣∣∣ N1

2τxy

∣∣∣∣
y=h

=

∣∣∣∣τxx − τyy
τxy

∣∣∣∣
y=h

=
3λU

h
= 3Wi, (3.5)

where N1 = τxx − τyy.

Simulations are performed for Re = 0.5 and SR = 1, 1.5, 2, 2.5, varied through λ.

In Figure 3.12 and Figure 3.13 the simulations for SR = 1 and SR = 2.5, respectively,

are shown at different normalized times t∗ = tU/h. The viscoelastic fluid is subject to

swelling outside the channel, increasing in magnitude with SR.

To validate the results, the swell ratios are compared to data from the literature,

summarized in Table 3.3. The data represents a variety of numerical methods as well as

slightly varying setup. For example, the Reynolds are small, but vary slightly between

the studies.

The swell ratios obtained from the die swell simulations are compared to the liter-

ature data in Figure 3.14. For completeness, the theoretical solution by Tanner (1970,

2005) is included to the comparison. While a certain spread between the data sets
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Figure 3.12: Die swell simulation with SR = 1, interface between viscoelastic phase

(green) and Newtonian phase (white) visualized for α = 0.5.
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Figure 3.13: Die swell simulation with SR = 2.5, interface between viscoelastic phase

(green) and Newtonian phase (white) visualized for α = 0.5.
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3.3 Free-surface flow

Work Method Re

Current work VOF, Lagrangian-Eulerian 0.5

Crochet & Keunings (1982) Mixed FEM 0

Tomé et al. (2002) GENSMAC 0.5

Habla et al. (2011) pseudo-VOF 0.5

Comminal et al. (2018) (CCU) VOF, Geometric scheme 0

Comminal et al. (2018) (HRIC) VOF, Algebraic scheme 0

Comminal et al. (2018) (RheoTool) VOF, Algebraic scheme (MULES) 0.01

Table 3.3: Summary of numerical data compared for the die swell flow.

exists, the results show similar trends, including those obtained in this work. Hence,

the results arguably agree with the literature data, demonstrating the capability to

predict the die swell effect correctly.
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Figure 3.14: Simulated swell ratios compared to data from the literature.

Another well-known phenomenon in viscoelastic free-surface flow is jet buckling.

As such, it is a common test case for numerical simulations, see for example Bonito

et al. (2006); de Paulo et al. (2007); Oishi et al. (2008); Tomé et al. (2002, 2008, 2010,

2012). A more detailed discussion on planar jet buckling is given in Paper III. In
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3. RESULTS AND DISCUSSION

Figure 3.15 a three-dimensional jet buckling simulation is shown. The incoming jet

has a circular cross section with diameter D = 5mm and inlet velocity U = 0.5m/s.

Gravity acts in the negative z-direction. The flow is characterized Re = ρDU/ηt = 0.25

and Wi = λU/D = 10.

At impact, the jet initially floats and builds upwards. After a certain time, the jet

yields and buckles. After the buckling process is initiated, the effect is substantial and

continues for the duration of the simulation.

(a) t = 0.1 s. (b) t = 0.2 s. (c) t = 0.3 s. (d) t = 0.4 s.

(e) t = 0.5 s. (f) t = 0.6 s. (g) t = 0.7 s. (h) t = 0.8 s.

Figure 3.15: Three-dimensional viscoelastic jet buckling simulation, interface between

viscoelastic phase visualized for α = 0.5.
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3.4 Adhesive joining flows

3.4 Adhesive joining flows

As previously stated, the adhesive joining process is a target application for the devel-

oped numerical framework. Typically, this includes a robot-carried adhesive extrusion,

in which the adhesive is applied by a nozzle moving along a prescribed path, followed

by a joining operation. This section, which concludes the chapter, is focused on such

flows.

3.4.1 Adhesive extrusion

Adhesive extrusion is simulated for two cases for which scanned adhesive beads of a

structural rubber adhesive are available for comparison. In the first case, as shown in

Figure 3.16, adhesive is applied onto a flat plate by a circular nozzle with diameter

d = 2mm moving with constant velocity uapp = 150mm/s at distance dapp to the

plate.

uapp

dapp
x

z

Figure 3.16: Adhesive application on plate .

The extrusion simulation is performed with different magnitudes of the tilt angle

θt, which refers to a rotation in the plane orthogonal to the nozzle movement direction.

The rotation is applied about the target point on the substrate, as shown in Figure 3.17.

In this work, the application distance dapp refers to the distance between the nozzle

center and the target point. Thus, the actual height of the nozzle from the plate,

denoted happ, varies as happ = dapp cos θt.

In this work, the adhesive flow rate is defined through the nominal bead diameter

dnom, which constitutes the diameter of a cylindrical bead cross section for a given flow
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θt
y

z

Figure 3.17: Tilt angle in adhesive extrusion, movement direction out-of-plane.

rate and nozzle velocity. The nominal bead cross section area Anom is the volume of

adhesive per distance moved by the applicator, i.e. Anom = V̇ /uapp. Thus,

dnom =

√
4Anom

π
=

√
4V̇

πuapp
. (3.6)

The nominal diameter and application distance dnom = dapp = 3.5mm are used, corre-

sponding to the flow rate V̇ ≈ 1.44ml/s.

Simulations are carried out with θt = 0 , 10◦, 20◦, 30◦ for a total bead length of

50mm. The viscoelastic properties of the adhesive are modeled with a single-mode

exponential SPTT model, with ε = 0.5, λ = 0.1 s, ηt = 103 Pa · s and β = 0.2.

The inflow of adhesive to the simulation is realized with the injection model, de-

scribed in Section 2.2.3. In Figure 3.18 the early stages of the simulation with θt = 0

are shown, demonstrating the accumulation of adhesive injected to the domain. The

full simulation is shown in Figure 3.19.

(a) t = 0.01 s (b) t = 0.02 s (c) t = 0.03 s

Figure 3.18: Adhesive bead visualized for α = 0.5 and injection cells (solid cubes) for

extrusion simulation with dnom = 3.5mm, uapp = 150mm/s and θt = 0.

In Figure 3.20 the 3D-scanned beads available for comparison are shown with the

simulated beads. Furthermore, the beads are compared in more detail in Figure 3.21.
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3.4 Adhesive joining flows

(a) t = 0.111 s

(b) t = 0.333 s

Figure 3.19: Adhesive bead visualized for α = 0.5 and injection cells (solid cubes) for

extrusion simulation with dnom = 3.5mm, uapp = 150mm/s and θt = 0.

The comparison includes the three-dimensional bead geometries as well as cross section

curves. Overall, a good agreement with the experimental adhesive beads is found for

the simulations. For the tilt angles studied, the effect on the bead profile is relatively

small. A small asymmetry appears as the tilt angle increases, which is observed both

in the simulations and the experimental data.

The next case simulated is the extrusion of adhesive onto a car fender with a robot-

carried adhesive nozzle. In contrast to the flat plate case, this application involves a

complex product geometry and a nozzle path obtained from a robot program. The mo-

tion involves varying application direction, application distance and movement velocity.

In Figure 3.22 snapshots from the simulation are shown. A particularly interesting area

is shown in detail in Figure 3.23. In this area, the robot decelerates to accurately follow

the path. Thus, the local amount of adhesive is large and a minor buckling-like effect

occurs.

Also for this case, a 3D-scanned adhesive bead is available for comparison. A

comparison between the experimental and simulated beads is given in Figure 3.24.
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(a) θt = 0 . (b) θt = 10◦. (c) θt = 20◦. (d) θt = 30◦.

Figure 3.20: 3D-scanned (red) and simulated (blue) adhesive beads on plate for different

tilt angles, experiments courtesy of RISE IVF.

(a) θt = 0 . (b) θt = 30◦.

Figure 3.21: Comparison between simulated and scanned adhesive beads, scanned bead

(red) with cross section (black), simulated bead (blue) with cross section (blue), exper-

iments courtesy of RISE IVF.
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3.4 Adhesive joining flows

(a) From above.

(b) Side view. (c) Straight section.

Figure 3.22: Simulated adhesive bead on car fender visualized for α = 0.5.

(a) t = 0.11 s (b) t = 0.12 s

(c) t = 0.13 s (d) t = 0.14 s

Figure 3.23: Progress of adhesive extrusion on car fender visualized for α = 0.5 and

injection cells (solid cubes at the top).
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Due to differences between the nominal fender geometry used for the simulations and

the scanned data, the simulated bead has been slightly separated in the figures to

enable side-by-side comparison. Good agreement is found between the simulated and

experimental adhesive beads. Some volume differences are visible in the first part of

the bead. This is likely due to the flow rate in the experiments being higher than the

nominal value, possibly attributed to the pre-pressure imposed in the nozzle to initiate

flow.

A more detailed comparison is shown in Figure 3.25. In the area where the nozzle

decelerates the simulation agrees well with the scanned data. This includes the local

increase in adhesive volume as well as the buckling-like effects. In the straight section

with near-constant nozzle speed, the agreement is excellent. This is the area where the

uncertainties in differences between the nominal conditions and the experiments are

typically the smallest.

3.4.2 Joining operations

The adhesive extrusion is followed by a joining operation. This typically involves parts

assembly, where the adhesive is squeezed between solid parts, as well as additional steps

e.g. screw fastening, riveting or hemming.

In hemming, illustrated in Figure 3.26, two solid parts are first assembled with an

adhesive. One part is then folded around the other. At this point spring-back may

occur, where the structure recovers a part of the deformation, potentially reducing the

join quality.

A conceptual study of the adhesive flow during joining is performed for viscoelastic

fluids squeezed between two solids, as shown in Figure 3.27. The upper solid moves

with constant velocity V and the lower solid is fixed. The gap between the solids, with

initial size h0, is initially filled with a viscoelastic fluid and the remainder of the domain

with air. A particular focus in the study is the load exerted on the solids, which is of

interest in applications, e.g. due to stress limitations in the products or the production

equipment. Moreover, accurate load prediction is crucial in FSI applications.

Simulations are performed for the squeeze flow where the upper solid moves down-

wards, as in Figure 3.27, as well as for the reverse squeeze flow where the solid moves

upwards. The flows are characterized by the viscosity ratio β = 1/9, Re = ρV h0/µ =

0.0009 and Wi ∈ [0.01, 100], varied through λ. In Figure 3.28 the simulation of an
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3.4 Adhesive joining flows

(a) Overview.

(b) Early part.

(c) Later part.

Figure 3.24: Comparison overview between simulated (blue) and scanned (gray) adhe-

sive bead on car fender, experiments courtesy of RISE IVF.
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(a) Low-velocity section.

(b) Straight section.

Figure 3.25: Comparison overview between simulated (blue) and scanned (gray) adhe-

sive bead on car fender, experiments courtesy of RISE IVF.

(a) Start (b) Parts assembly (c) Pre-hem

(d) Final hem (e) Springback

Figure 3.26: Hemming process.
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h(t)

V

x

y

L = 10h0 6h0
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Figure 3.27: Schematic of the squeezing flow between two plates. The gray area between

the plates is initially filled with the viscoelastic fluid.

Oldroyd-B fluid with Wi = 1 is shown. The dimensionless time t∗ is defined as

t∗ = h0/V . The viscoelastic fluid is squeezed out from the gap and exhibits swelling.

This is expected, since the viscoelastic fluid emerges from a constrained flow, similar

to the flows discussed in Section 3.3.
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(b) t∗ = 0.2

Figure 3.28: Snapshots of squeeze flow simulation with the Oldroyd-B model for Wi = 1

with the viscoelastic fluid (green) and the air (white) as visualized for α = 0.5.

In Figure 3.29 the corresponding reverse squeeze flow simulation is shown. The

volume increase in the gap causes forces the viscoelastic fluid to flow inwards the gap.

In the context of hemming, the result demonstrates the potential impact spring-back

may have on the adhesive joint.
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Figure 3.29: Snapshots of reverse squeeze flow simulation with the Oldroyd-B model for

Wi = 1 with the viscoelastic fluid (green) and the air (white) as visualized for α = 0.5.

The computed loads on the upper plate, i.e. the integrated stresses over the solid

surface, are shown in Figure 3.30 for the complete range of Wi considered. The loads

are normalized by WT = 2µV L3/(3h30). For the squeeze flow, the theoretical asymp-

totic loads for Wi → 0 and Wi → ∞ are included, corresponding to Newtonian fluids

with viscosities µ+ η and η, respectively. The loads for the squeeze flow agree with the

theoretical predictions and with similar numerical observations reported in the litera-

ture by Debbaut (2001) and Phan-Thien et al. (1985). The reverse squeeze flow loads

show similar trends in terms of the spread for different Wi and the initial transients,

which occur on the order of a relaxation time. After the initial transient, the loads

decrease with time.

As a next step, the hemming process is studied numerically for a test coupon ge-

ometry, with simulated adhesive bead geometries as input. So far, all solid objects in

the simulations have been rigid objects. However, due to the nature of the hemming

process, the deformation of sheet metal parts is included in the simulations. The de-

formation is therefore computed using the in-house FEM-based structural mechanics

solver LaStFEM. In this work, one-way coupled FSI simulations are used. Thus, solids

act on the fluid through immersed boundary conditions, while the fluid forces do not

act on the solids.

A geometry designed to be representative for the hemming process is used, shown

in Figure 3.31, for which a two-dimensional cross section is simulated. The process

consists of a parts assembly step, a pre-hemming step and a final hemming step. The
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Figure 3.30: Computed loads for the Oldroyd-B model and asymptotic loads (dashed)

for Wi → 0 and Wi → ∞.

hemming tools are modeled by rigid objects which drive the deformation of the sheet

metal parts, which in turn drives the viscoelastic adhesive flow. The initial state of

the two-dimensional case is shown in Figure 3.32. During the parts assembly the inner

structure moves downward with velocity 10mm/s until the gap between the sheets is

0.25mm thick. The tools performing the hemming move with 50mm/s velocity. The

adhesive bead has been extruded with dnom = 3mm.

(a) Overview. (b) Zoom.

Figure 3.31: Hemming case 3D-geometry (a) overview and (b) zoomed view of cross

section used for simulation.

61



3. RESULTS AND DISCUSSION

−5 0 5 10 15 20 25

x [mm]

0

5

10

y
[m

m
]

Figure 3.32: Hemming case with sheet metal parts (gray), rigid tools (blue) and initial

adhesive geometry (green).

Figure 3.33 shows the results of a hemming simulation. In this particular simulation,

the adhesive bead is initially positioned with its center 4.5mm from the flange, i.e. the

vertical part of the outer structure. The results visualize how the deformation of the

sheet metal parts drive the adhesive flow, including in the thin gaps, indicating the

complexity the numerical simulation.

In Figure 3.34 the results of the hemming simulations for respective bead place-

ments 4.5mm and 6mm from the flange are compared to experimental results. The

experiments have been performed for the same bead diameter and placements. The

experimental results consist of photographs from above, displaying the squeeze-out of

adhesive outside the joint. To clarify the comparison, the squeeze-out zone has been

highlighted in the figures. In the simulations, the effect of the bead placement on the

adhesive distribution in the joint is clear. As expected, a bead placement closer to the

flange results in a larger amount of adhesive being squeezed out. The same observation

can be made from the experiments. While a quantitative comparison between the sim-

ulation and the experiments is difficult, they are in reasonable qualitative agreement

as they show the same trend. A more thorough comparison to experimental results is

planned to be conducted in the near future. However, at this time the results are an

indication that the numerical method is capable to simulate hemming flows.
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(f) t = 685ms.

Figure 3.33: Hemming simulation with adhesive placed 4.5mm from flange.
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(a) Initial bead 4.5mm from flange.
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(b) Initial bead 6mm from flange.

Figure 3.34: Comparison between simulation (top) and experimental hemming (bot-

tom) with squeeze-out zone highlighted (red box), experiments courtesy of RISE IVF.
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Chapter 4

Conclusions

Viscoelastic flows are important for many industrial processes, which often involve com-

plex geometry, moving objects and free-surface flow. As such, they are challenging to

simulate, which calls for efficient and user-friendly numerical methods. In this thesis,

a new Lagrangian–Eulerian framework for viscoelastic flow has been presented. An

application of particular interest has been the adhesive joining process, including the

adhesive extrusion along a path as well as the subsequent joining step. For this pur-

pose, the numerical framework includes an injection model to model the inflow of the

viscoelastic adhesive from a nozzle moving along an arbitrary path.

Two versions of the Lagrangian method to solve the viscoelastic constitutive equa-

tions have been proposed, denoted the forwards-tracking and the backwards-tracking

method, respectively. The latter was developed as an improvement of the former, en-

hancing the overall robustness as well as the support for refined computational grids

and free-surface flow.

The proposed framework has been validated for relevant benchmarks of viscoelastic

single-phase as well as free-surface flow. The results have been found to be in good

agreement with available analytic, numerical and experimental data from the literature.

Furthermore, the computational performance aspects of the proposed framework have

been investigated by comparing computational costs for different implementations of

the Lagrangian algorithm to calculate the viscoelastic stress. An important conclusion

was that, due to the parallel properties of the Lagrangian constitutive equation, a

substantial increase in computational speed was gained by GPU-acceleration of the

Lagrangian stress algorithm. Furthermore, it was noted that the backwards-tracking

method inherently constitute a further improvement of robustness and computational
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cost compared to the forwards-tracking method. This follows from the structured

arrangement of the Lagrangian stress solution.

Adhesive beads simulated with different extrusion angles were compared to 3D-

scanned experimental beads. The results were found to be in very good agreement with

the experimental data. Furthermore, the adhesive extrusion onto an industrial product

part along a robot path was simulated. It is noted that, to the best of the authors

knowledge, such combination of a product geometry, nozzle path as well as complex

fluid rheology has not previously been reported. The ability to perform such simulations

is attributed to the unique combination of the immersed boundary octree framework,

the coupling between the Lagrangian and Eulerian solution fields, the treatment of the

viscoelastic stress at fluid interfaces and the novel injection model. Also for this case,

good agreement with 3D-scanned experimental data was observed.

Following the adhesive extrusion, the subsequent joining through hemming was

simulated, in which the adhesive geometries were initialized from adhesive extrusion

simulations. As such, the simulations demonstrated the important connection between

the simulations of the different steps in the joining process. Specifically, this connection

can be taken into account with the current numerical framework. Furthermore, the

results of the hemming simulations were found to be in qualitative agreement with the

available experimental results.

The outlook on future research of the Lagrangian–Eulerian framework includes fur-

ther case studies as well as introduction of new applications. For adhesive joining flows,

an important future development is to enable simulation of two-way coupled fluid-

structure interaction. This is important to capture e.g. spring-back effects in hemming

applications. Furthermore, additional injection models can be introduced. In a perfor-

mance context, a GPU-accelerated implementation of the backwards-tracking method

constitutes a natural step to explore and improve the performance of the algorithm.

In summary, the results in this thesis have shown that the Lagrangian–Eulerian

approach in the presented framework is feasible for the considered flows and suitable

for the intended applications, including industrial adhesive joining flows. Thus, the

results enable future research and development of numerical tools for applications with

viscoelastic flow. The framework will be available for research project partners. More-

over, the adhesive extrusion simulation tool is already available for industrial end-users.
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The simulation technology developed within the scope of this thesis may therefore aid

virtual processes in manufacturing industry already in the near future.

67



4. CONCLUSIONS

68



References

Afonso, A.M., Pinho, F.T. & Alves, M.A. (2012). The kernel-conformation con-

stitutive laws. Journal of Non-Newtonian Fluid Mechanics, 167-168, 30–37. 18

Alves, M., Pinho, F. & Oliveira, P. (2001). The flow of viscoelastic fluids past

a cylinder: finite-volume high-resolution methods. Journal of Non-Newtonian Fluid

Mechanics, 97, 207 – 232. 1, 40

Alves, M., Oliveira, P. & Pinho, F. (2021). Numerical methods for viscoelastic

fluid flows. Annual Review of Fluid Mechanics, 53, 509–541. 1, 17, 18, 19

Alves, M.A., Oliveira, P.J. & Pinho, F.T. (2003). Benchmark solutions for the

flow of Oldroyd-B and PTT fluids in planar contractions. Journal of Non-Newtonian

Fluid Mechanics, 110, 45 – 75. 1, 2, 19

Andersson, T., Nowak, D., Johnson, T., Mark, A., Edelvik, F. & Küfer,
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Digital Factory , 231–251, Springer-Verlag, Berlin. 6

Fattal, R. & Kupferman, R. (2004). Constitutive laws for the matrix-logarithm

of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 123, 281 –

285. 17

Fattal, R. & Kupferman, R. (2005). Time-dependent simulation of viscoelastic

flows at high weissenberg number using the log-conformation representation. Journal

of Non-Newtonian Fluid Mechanics, 126, 23 – 37. 17

Gallez, X., Halin, P., Lielens, G., Keunings, R. & Legat, V. (1999). The

adaptive lagrangian particle method for macroscopic and micro–macro computations

of time-dependent viscoelastic flows. Computer Methods in Applied Mechanics and

Engineering , 180, 345 – 364. 2, 19
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Oishi, C., Martins, F., Tomé, M., Cuminato, J. & McKee, S. (2011). Numerical

solution of the extended pom-pom model for viscoelastic free surface flows. Journal

of Non-Newtonian Fluid Mechanics, 166, 165 – 179. 2, 46
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