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Prosthetic embodiment: systematic review 
on definitions, measures, and experimental 
paradigms
Jan Zbinden1,2†, Eva Lendaro1,2† and Max Ortiz‑Catalan1,2,3,4*  

Abstract 

The term embodiment has become omnipresent within prosthetics research and is often used as a metric of the 
progress made in prosthetic technologies, as well as a hallmark for user acceptance. However, despite the frequent 
use of the term, the concept of prosthetic embodiment is often left undefined or described incongruently, sometimes 
even within the same article. This terminological ambiguity complicates the comparison of studies using embodi‑
ment as a metric of success, which in turn hinders the advancement of prosthetics research. To resolve these termino‑
logical ambiguities, we systematically reviewed the used definitions of embodiment in the prosthetics literature. We 
performed a thematic analysis of the definitions and found that embodiment is often conceptualized in either of two 
frameworks based on body representations or experimental phenomenology. We concluded that treating prosthetic 
embodiment within an experimental phenomenological framework as the combination of ownership and agency 
allows for embodiment to be a quantifiable metric for use in translational research. To provide a common reference 
and guidance on how to best assess ownership and agency, we conducted a second systematic review, analyz‑
ing experiments and measures involving ownership and agency. Together, we highlight a pragmatic definition of 
prosthetic embodiment as the combination of ownership and agency, and in an accompanying article, we provide a 
perspective on a multi‑dimensional framework for prosthetic embodiment. Here, we concluded by providing recom‑
mendations on metrics that allow for outcome comparisons between studies, thereby creating a common reference 
for further discussions within prosthetics research.
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Introduction
Throughout history, state-of-the-art technology has 
been purposed to develop prostheses that restore func-
tional independence in circumscribed tasks, for example 
by emulating the function of specific tools to facilitate 
the reintegration of people with amputations into soci-
ety [1, 2]. Recent technological progress has produced 
prostheses with increasingly faithful volitional control 

[2, 3] and sensory feedback [4, 5]. The implementation 
of closed-loop control in a clinically viable form [6, 7] 
has made the objective of developing neuroprostheses 
capable of replacing lost extremities seem more attain-
able. Consequently, the concept of prosthetic embodi-
ment has become a central theme in prosthetics research 
[8], not only when evaluating psychosocial outcomes of 
prosthesis use and user experience [9–11], but also as a 
quantitative metric in peripheral nerve stimulation stud-
ies [12–14].

In addition, by restoring the sensorimotor loop and 
allowing for the systematic modulation of efferent 
and (re)afferent signals, neuroprosthetics offers the 
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opportunity to investigate the rules underlying bodily 
awareness. Not surprisingly, prosthetics has become 
the object of a broader research interest spanning dif-
ferent disciplines, from philosophy [15, 16] to social 
[17] and cognitive sciences [18–20]. Although engag-
ing with similar research questions, such as what it 
means for an artificial limb to become an object of 
self-recognition, different scientific fields naturally for-
malize research questions using field-specific terminol-
ogy and by building on previous concepts that do not 
clearly map across different research areas. For exam-
ple, beyond its use in the prosthetics field, the concept 
of embodiment has also been employed in philosophy 
to discuss how one experiences one’s self [21, 22], and 
in neuroscience when investigating how the brain rep-
resents the body in health [23, 24] and disease [25].

Owing to this cross-influence, the concept of embod-
iment has been popularized within the prosthetics and 
neural engineering literature without precision as to its 
meaning. The lack of shared understanding of the word 
can cause confusion in the research community and 
complicate comparisons of studies that use embodi-
ment as a metric of success, without agreeing on how 
to measure it.

In this article, we first systematically reviewed the lit-
erature on prosthetics to analyze the concept of embodi-
ment. In particular, we conducted a thematic analysis of 
the definition of embodiment which provided the nec-
essary context to understand and discuss embodiment 
within prosthetics. The thematic analysis revealed that 
a common approach was to define embodiment with 
respect to the subjective experience resulting from using 
a prosthetic limb. We favor considering embodiment fol-
lowing this approach because subjective experiences can 
be studied scientifically using psychophysical or experi-
mental phenomenological methods. Psychophysics is 
commonly associated with stimuli and perception, but 
the concept of empirically measuring and correlating 
brain states and sensory experience can also be applied 
to volition and action [26]. Therefore, in a psychophysi-
cal, or experimental phenomenological framework, 
embodiment can be divided into the sense of ownership 
and agency, which makes it quantifiable, thus providing 
operable outcome measures within artificial limb devel-
opment. In an accompanying perspective article to this 
review [8], we propose a multi-dimensional framework 
for prosthetic embodiment furthering this discussion. 
Here, we concluded by performing a second systematic 
review, analyzing the experimental paradigms and their 
employed measures to assess ownership and agency, 
which then led us to propose a series of recommenda-
tions of how to measure these phenomena in clinical 
practice and translational research.

Methods
Search strategy
In this review we conducted two systematic searches 
of the literature. The first search dealt with the main 
research question of how embodiment is defined across 
the prosthetic literature. The need for the second system-
atic search emerged from the thematic analysis of the def-
inition of embodiment and answered the question of how 
agency and ownership are assessed within prosthetics.

Both systematic searches were performed using 
three electronic databases, namely Scopus, Pubmed 
and Web of Science. The first search used the following 
search keys respectively: TITLE-ABS-KEY(embodiment) 
AND TITLE-ABS-KEY(artificial lim* OR prosthet*), 
(embodiment[Title/Abstract]) AND ((artificial lim*[Text 
Word] OR prosthet*)[Text Word]) and TS = (embodiment 
AND (artificial lim* OR prosthet*)) AND AK = (embodi-
ment OR prosthet*) AND AB = (embodiment). The search 
was carried out on October 19, 2021, and no chronologi-
cal constraints were set.

The second search was performed on October 26, 2021, 
using the search keys: TITLE-ABS-KEY ((ownership OR 
agency) AND (artificial AND lim* OR prosthet*)) AND 
(LIMIT-TO (SUBJAREA, "ENGI") OR LIMIT-TO (SUB-
JAREA, "MEDI")), (ownership[Title/Abstract] OR agency 
[Title/Abstract]) AND (artificial lim*[Text Word] OR 
prosthet*[Text Word]), and TS = ((ownership OR agency) 
AND (artificial lim* OR prostet*)) AND AK = ((owner-
ship OR agency) AND (artificial lim* OR prosthet*)) 
AND AB = ((ownership OR agency) AND (artificial lim* 
OR prosthet*)).

Selection criteria
Due to the heterogeneity of the studies employing the 
concept of prosthetic embodiment it was not possible to 
establish a clear list of eligibility criteria for inclusion in 
the first systematic review. The results of the search in the 
three databases were checked for doubles and merged. 
All the titles were then screened, and studies clearly not 
related to the field of prosthetics were removed from the 
results. All abstracts of the accepted titles were then read 
and again, the studies not relevant to the research ques-
tions were discarded. Studies with accepted abstracts 
were then read in full length and used for the subsequent 
thematic analysis.

For the second systematic review, the search results 
were first checked for duplicates and then merged. The 
titles had to be related to prosthetics, ownership, or 
agency and the abstract further needed to be in English 
and describe ownership or agency being measured to 
meet the inclusion criteria. Then the previously obtained 
list of accepted publications on embodiment was merged 
into the ownership and agency search. Duplicates, 
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reviews, book chapters, studies not relevant for pros-
thetics, and studies without measures were removed. 
From the remaining studies, the employed experimen-
tal paradigm, the used measures, and information about 
the study population were extracted and aggregated in a 
table.

The review of experiments included all paradigms listed 
in said table. For the review of measures, only measures 
performed in experiments including participants with 
amputation were considered. Another inclusion crit-
erium was suitability for clinical practice, i.e., the meas-
ure needed to provide an indication of the magnitude of 
ownership or agency in an individual participant. This 
for example makes neural correlates derived from fMRI 
studies using mass univariate analysis generally unsuit-
able as the results are valid at a group-level and do not 
provide an indication of the magnitude of agency or own-
ership in the single subject. Lastly, only measures differ-
entiating between ownership and agency were included.

Thematic analysis
Thematic analysis was used to identify recurrent themes 
in the way embodiment is defined in the literature on 
prosthetics. This analysis aimed at identifying common-
alities running through all the selected articles. We fol-
lowed an inductive approach: repeated rounds of reading 
and paraphrasing/coding of the excerpts from all selected 
articles allowed us to derive the themes from the text 
itself rather than from prior theory or research. In prac-
tice, we followed the step-by-step procedure prescribed 
by Braun and Clarke [27]. We first familiarized ourselves 
with the content of the articles and identified the parts 
of the text expressing their adopted interpretation or 
definition of embodiment and possibly how they were 
assessing it. We then extracted the text relating to the 
definition of embodiment and reported the exact words 
of the authors in a grid, where every row represents a 
different paper. The quoted text was reported all in the 
same column and if more than one conceptualization of 
embodiment was found in a single paper, it was added in 
a separate row dedicated to the same paper. Once in the 
grid, all the excerpts of the text were coded in adjacent 
columns. Briefly, assigning a code consists essentially in 
examining the quoted text and labelling it with a word 
or short phrase in order to capture its essence and sum-
marize its content [28]. Not only does coding reduce 
the text to its main features but it also highlights differ-
ences and similarities across different conceptualizations 
of embodiment, thus enabling the subsequent step: the 
search of themes. The process of identifying themes can 
be thought of as an investigation of patterns of common-
ality where the first-order codes are better characterized 
with second-order codes that can then be grouped under 

potential thematic headings. Once grouped under the 
themes, first-order codes were re-examined for consist-
ency. This process provided both a clear illustration of 
each theme and some indication of its prevalence in the 
examined literature. The result of the thematic analysis 
is the definition of what each theme is about and what 
aspects of the definition it captures, in the form of an 
analytic narrative that goes beyond the mere description 
of text. The thematic analysis is presented in the results.

Results
Thematic analysis of the definition of embodiment 
in prosthetics
The systematic search carried out across the three cho-
sen databases resulted in 245 unique articles (PubMed 
(n = 95), Scopus (n = 199) and Web of Science (n = 57)). 
Screening of titles and abstracts reduced the list to 107 
papers included for further thematic analysis. Full-
text reading led to 3 additional articles being removed 
because not accessible, while 15 articles that came across 
through further reading were deemed relevant to the 
research question and manually included. This resulted 
in a final list of 119 accepted articles. The full selection 
process is documented in Additional file 1.

From the reviewed literature, it emerges that within the 
prosthetics field several different definitions have been 
adopted evidencing a clear lack of consensus. Table  1 
reports a non-exhaustive list of publications that make 
use of the concept of embodiment. The table includes 
the definition of embodiment identified in the article and 
shows the coding process conducted under the thematic 
analysis. The complete list of publications and coding is 
available in Additional file 2.

Several publications make use of the concept of 
embodiment without defining it (34 out of 120 articles 
analyzed, e.g. [34–38], etc.). Further, different views on 
embodiment are sometimes presented within the same 
article (e.g. [39–41], etc.) so that in the remaining 86 arti-
cles, 125 definitions of embodiment were identified and 
extracted. Of these definitions, some were implied by 
the context and not expressively given (e.g. “we assessed 
the integration of the device into the body schema […] 
through measurements of prosthesis embodiment” [42], 
or “prostheses must promote true embodiment so that 
they can actually be perceived as part of the body rather 
than a “simple” tool”[43], etc.). Yet, regardless of whether 
implicit or explicit, taken together, definitions can be 
reconducted to two main recurring themes: embodiment 
is either 1) described in terms of the process that leads 
to integration of a foreign object into the pre-existent 
neural infrastructure supporting the body (e.g. “body 
representations”, “body schema”, etc.) and exploitation of 
those resources or 2) described in terms of its subjective 
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experiential correlate (i.e. experimental phenomenology). 
A detailed analysis of the two themes is presented in the 
following section.

Definitions based on body representations
Throughout the prosthetic literature, embodiment is fre-
quently described as a foreign object becoming part of 
the native infrastructure that supports perception, action, 
and ultimately self-awareness. The concept has been 
often worded in terms of integration or incorporation 
in the body representation, which at times is unspeci-
fied (“a robotic hand is incorporated into one’s body rep-
resentation”, [44]) and other times is specified as “body 
schema” (“the incorporation of a prosthesis into one’s body 
schema”, [45]) or “body image” (“prosthetics like rubber 
hands are incorporated into the body image itself”, [46]). A 
variation of this way of expressing such integration is to 
regard embodiment as exploitation of the same (neural) 
resources that normally support the biological limb (“E 
[an object] is fully embodied if and only if all its properties 
are processed in the same way as the properties of one’s 
body”, [22]). Roughly 40% (49 out of 125) definitions ana-
lyzed have been found to belong to this theme.

The embodiment framework based on body repre-
sentations has its origin in a long history of neurologi-
cal and neuropsychological investigations and posits the 
existence of one (or many) representation(s) of the body. 
Although it is popular to contextualize the construct of 
prosthetic embodiment within the body representation 
framework, there is currently no consensus on how to 
categorize body representations.

For example, even though the dyadic taxonomy of 
body schema and body image is prominent in the litera-
ture [21], the relationship between these two types of 

representations has a history of ambiguity [47] and is still 
debated [48]. There is, however, converging consensus on 
certain aspects of the body schema and body image cat-
egorization. Specifically, the body schema is understood 
as the action-guiding sensorimotor representation [49]; it 
is highly plastic and can be updated during action [50] as 
it contains information on body parts needed for online 
action control [51]. Conversely, non-action-related per-
ceptual and conceptual representations are included in 
the body image [49], which encompasses the emotion-, 
thought-, and belief-related representations of our body 
[21]. Generally, a persistent representation of the body 
structure is stored within the body image [51]. Alterna-
tives to the dyadic body image/body schema categori-
zation have also been proposed: refer to Schwoebel and 
Coslett [52] for an example of a triadic body representa-
tion model and to Longo [53] for an overview of six types 
of body representation.

Not only is there still a debate on the nature and func-
tion of body representations, but also it has been shown 
that handheld tools can also modify and become part of 
the body representations [54], thus making it harder to 
define the special way in which prostheses are embodied.

Definitions based on experimental phenomenology
Another common way in which prosthetic embodiment, 
found in roughly 56% of the definitions (71 out of 125) 
considered in this analysis, has been defined is through 
the description of the subjective experience of an artifi-
cial limb perceived as if it was the biological one, which 
has also been widely used as an outcome in several 
qualitative studies [9–11, 55]. However, embodiment is 
a complex and multifaceted experience that is hard to 
fully capture due to the challenges of using language to 

Table 1 Examples of definitions of embodiment used within the field of prosthetics and their subsequent coding and categorization 
into themes

The definitions are presented in chronological order of publication

Definition Code Theme

Perceptual embodiment of the prosthetic limb (the perceptual aware‑
ness of the prosthesis in relation to the body) into the body schema. 
[29]

Experience of inclusion in the body schema Mixed (Phenomenology 
and Body representa‑
tions)

Embodiment is the process by which patients with limb loss come to 
accept their peripheral device as a natural extension of self. [30]

Experience of the artificial limb as part of the self Phenomenology

At the implicit level of body representations, an object is said to be 
embodied if some of its properties—or all of them—are processed in 
the same way as the properties of biological body parts. [31]

Exploitation of neural resources normally devoted 
to representation of body parts

Body representation

Embodiment can also be associated with a large range of subjective 
explicit feelings, including feelings of bodily ownership, feelings of 
bodily control, of bodily integrity, affective feelings, and so forth. [31]

Subcomponents of the experience of embodiment, 
also experiences

Phenomenology

The incorporation of a prosthesis into one’s body schema. [32] Inclusion in the body schema Body representation

Embodiment is the percept that something not originally belonging to 
the self becomes part of the body. [33]

Experiencing an external object as part of the body Phenomenology
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describe, interpret, or assess, sensory experiences [56]. 
An endeavor that by itself feeds into a larger body of epis-
temological inquiry on how to properly account for the 
linguistic representation of our sensory perception and of 
the way we interact with the environment [57].

Attempts to operationalize the phenomenological 
notion of embodiment have led to its decomposition 
into subcomponents of this experience, which are easier 
to univocally describe and measure [58, 59]. Such sub-
components, representing cognitive proxies, include the 
sense of agency (hereinafter referred to as agency) and the 
sense of ownership (hereinafter referred to as ownership).

Other authors have suggested additional subcompo-
nents of embodiment, for example, Longo et  al. [58] 
studied the location of the embodied object respective 
to the location of the experience sensory feedback, and 
argued that embodiment could arise from spatial-rep-
resentational mechanisms, or (sense of ) location. As we 
discuss in an accompanying article to this review [8], 
ownership and agency can be mediated by certain basic 
principles, one of which considers spatial constraints. 
For example, misalignment between the biological 
hand and the object to be embodied can reduce per-
ceived ownership [60–62]. Similarly, angular deviations 
between observed movement and the actual movement 
can decrease agency [63]. Thus, in this article, we con-
sider all spatial-representational mechanisms as media-
tors of ownership and agency, instead of a separate 

subcomponent of embodiment. This decision is further 
supported by Bekrater-Bodmann’s psychometric char-
acterization of embodiment [59], where only ownership 
and agency fulfilled the significance threshold of the 
principal axis factoring. A spatial-representational sub-
component was relevant only when specifically target-
ing a three-factor solution.

Ownership is the sense that parts of our own body 
belong to ourselves. If our body is moving, ownership 
is also the perception that it is our body that is mov-
ing. On the other hand, agency is the understanding 
that we are the initiator of the action and in control of 
the movement (volition). Ownership and agency are 
aspects of self-awareness [64].

Understandings of embodiment as integration in 
body representation or as bodily aspects of human 
subjectivity are two sides of the same coin and some of 
the definitions that we have analyzed (roughly 4%, or 5 
out of 125) reflect this falling under a mix of the two 
themes (e.g., “the individuals’ feeling that a virtual or 
robotic limb is integrated in their own body scheme” 
[65]).

Theories of the emergence of ownership and agency 
also capture this link. For example, in a model for own-
ership (see Fig. 1) put forward by Tsakiris [66], parts of 
the afferent sensory feedback related to the prosthesis 
are consecutively compared in a three-step comparator 
process.

Fig. 1 Neurocognitive model of the emergence of ownership: First the visual resemblance of the prosthesis is compared to the persistent 
representation of how a biological limb should look like in the body model. Successively, the postural and anatomical feedback of the prosthesis 
properties are compared to the current estimated postural state of the body, stored in the body schema. The last step is the sensory integration 
of the remaining afferent feedback. If there is consistency in all three comparator stages, ownership arises, and it is later used to update the body 
representation
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Similarly, the emergence of agency has also been 
described with a popular comparator model (see Fig. 2) 
proposing that a prediction model is implemented in the 
motor representation of one’s body [67, 68]. For a sum-
mary of alternative emergence theories of ownership and 
agency see Braun et al. [69].

Experiments investigating ownership and agency
The systematic search carried out across the three cho-
sen databases resulted in 772 articles (PubMed (n = 117), 
Scopus (n = 331) and Web of Science (n = 274)). Removal 
of duplicates (n = 126) and removal of papers with non-
suitable titles (n = 512) and abstracts (n = 26) reduced 
the list to 84 papers. All publications from the previous 
embodiment search were added (n = 126), and the dupli-
cates were removed (n = 20). Full-text reading aimed at 
identifying measures of ownership or agency led to a final 
list of 98 accepted articles. The full selection process is 
documented in Additional file 3.

The reviewed literature features three main experimen-
tal approaches used to investigate ownership and agency: 
experiments based on the rubber hand illusion (RHI) 
(n = 61), interviews (n = 9), and experiments with pros-
thetics in the loop (n = 28) (see Additional file 4).

Rubber hand illusion paradigm
The most frequently used paradigm to study ownership 
and agency was the RHI, based on Botvinick and Cohens 
seminal work [73]. In their original RHI experiment, a 
rubber hand is placed in full view of a study participant. 
The participant’s corresponding hand is hidden from 
view. Two brushes are used to stroke and stimulate both 

the rubber- and the participant’s hand. Keeping the real 
hand immobile excludes agentic experiences and puts the 
focus on afferent signals. A well-established result of the 
RHI experiment is that synchronous visual and tactile 
stimuli applied in congruent locations elicit an illusory 
sensation of ownership towards the rubber hand. Asyn-
chronous stimuli however do not lead to the emergence 
of ownership [74]. Worthy of notice is that about a third 
of the population is immune to the illusion or at most 
experience a weak illusion [60, 75–77].

Ehrsson et al. were the first to expand their ownership 
research to include participants with amputation [78, 79]. 
In their experiment, they provided tactile stimulation on 
the area of the residual limb that mapped to a digit on 
their phantom hand. In participants where such phan-
tom maps could not be produced, the distal stump was 
stimulated. In a similar experiment, D’Alonzo et al. used 
a vibrotactile device or a brush to stimulate locations on 
the residual limb that refer to the digits of the hand, while 
brushing a rubber hand [80]. On average, stimulation 
with the brush led to equally high ownership ratings as in 
the original RHI condition, and to slightly lower ratings 
in the vibrotactile condition. Marasco et al. expanded on 
the paradigm by exchanging the brush stimulation with a 
pressure actuator in their RHI experiment with two tar-
get reinnervated participants with trans-humeral ampu-
tation [81]. Both reported ownership in the condition 
where the visual feedback was both spatial and tempo-
rally congruent with the percept caused by the pressure 
actuation on the reinnervated skin.

Recent studies investigated direct nerve stimulation as 
an alternative to elicit the RHI. On two participants with 

Fig. 2 Comparator model of the emergence of agency: When a motor command is generated, an efference copy is sent to the internal prediction 
model. If the predicted state is congruent with the reafferent feedback of the actual body movement triggered by the motor command, agency 
arises. The dashed section is an addition to the commonly reported comparator model [70, 71] proposed by Martel et al. [72]. They reason that even 
though the comparator model was initially proposed as a theory of motor learning, it is highly complementary in respect to body representation as 
the internal model interacts with the body schema and the sense of agency
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trans-radial amputation, Rognini et al. used intrafascicu-
lar electrodes to administer neurotactile simulation while 
providing visual feedback of the percept location via a 
head-mounted display [14]. Both participants reported 
ownership towards the virtual prosthesis. In an experi-
ment in four participants with transhumeral amputa-
tion who were implanted with a neuromusculoskeletal 
prostheses [6], our group used synchronous tapping and 
peripheral nerve stimulation to administer the RHI with 
the prosthesis connected to the participant’s body [77]. 
Despite referring to their prosthesis as part of their body 
in daily life [10], none of the participants reported own-
ership over their prosthesis using congruent visuo-tactile 
stimulation. However, none of the participants reported 
ownership during the original RHI experiment in their 
contralateral hand either, and therefore a potential expla-
nation might be that these participants are part of a non-
negligible subgroup of people not responding to the RHI 
at all.

Previous studies with able-bodied participants [74] 
extended the passive RHI paradigm to incorporate an 
active motor control task to study agency alongside own-
ership. Page et  al. were the first to use the active RHI 
paradigm with a participant with upper-limb amputa-
tion [12]. Utah Slanted Electrode Arrays were implanted 
into one participant. Using these electrodes, neural 
stimulation could elicit sensory percepts that matched 
the location of the sensors in the participant’s prosthetic 
hand. Like the original RHI setup, a barrier was placed 
between the residual limb and the prosthesis. In different 
conditions, the participant either got to control the pros-
thesis without sensory feedback, an investigator manu-
ally pressed on the sensors in the hand with the control 
turned off, or the participant controlled the prosthesis 
in closed-loop with sensory feedback. In all three con-
ditions increased ownership and agency compared to a 
purely visual condition were reported, respectively.

Interviews and questionnaires
Questionnaires and interviews, mostly semi-structured 
ones, were another common paradigm. Participants were 
interviewed in written from [20, 59, 82], over phone [83], 
and face-to-face [10, 11, 83–86]. However, most of the 
interviews investigated a more general experience of liv-
ing with an upper-limb amputation and an artificial limb 
(e.g., environmental aspects [11], sensory feedback [85], 
phantom-limb experience [82], and home-use [10, 86]. 
Nevertheless, participants reported ownership [20, 82], 
agency [85], or both [10, 86] over their prostheses during 
these interviews.

Two recent publications chose to have a stronger focus 
on ownership and agency in their interviews. Sturma 
et al. explicitly inquired about the participant’s ownership 

and agency towards their prosthesis after having under-
gone bionic reconstruction after a brachial plexus injury 
[84]. And Bekrater-Bodmann let 118 participants with 
lower-limb amputation fill in a questionnaire with com-
mon questions aiming to inquire about ownership and 
agency to create the first validated questionnaire for 
assessing ownership and agency in prosthetic users [59].

Prosthetics in the loop
This paradigm category aggregates multiple different, 
and mostly novel approaches to investigate ownership 
and agency—with the main common denominator that 
the prosthesis is in focus. Of all the experiments in this 
category including participants with amputation (n = 18), 
the most common paradigm (n = 6) to study ownership 
and/or agency was based on functional tests. Participants 
with upper-limb amputation carried out the box and 
blocks test and the Southampton Hand Assessment Pro-
cedure (SHAP) [13], performed a Virtual Egg Test (VET) 
[35], or discriminated between objects of different sizes 
and compliances [34]. For participants with lower-limb 
amputation, the functional tests included overground 
walking, stair tasks, and obstacle avoidance tasks [42, 87, 
88]. In all instances, any ownership and/or agency meas-
urement was performed post-hoc to the functional tests. 
In a similar post-hoc manner, ownership and agency were 
assessed after home-use of a prosthetic system [9, 89].

Recently, several studies proposed paradigms that 
explicitly focus on investigating ownership and agency 
for prosthetics, instead of them being a secondary ad-hoc 
research question. One such experiment, targeting own-
ership over a prosthesis, is the Prosthesis Incorporation 
(PIC) assessment [90]. The PIC is based on the cross-
model congruency paradigm, which tests the ability of 
the study participants to ignore one form of feedback in 
favor of another form of feedback. In an experiment by 
Marasco and colleagues, two prosthetic users underwent 
targeted motor and sensory reinnervation [91]. The par-
ticipants received tactile stimulation on the reinnervated 
skin either congruent or incongruent to visual feedback 
indicating the stimulation location while grasping an 
object. If the visual feedback location is congruent with 
the tactile feedback location, participants discerned the 
location of a stimulation faster compared to when they 
received incongruent feedback.

Marasco et  al. also proposed an experiment with a 
focus on agency over a prosthetic limb, based on the 
Libet clock experiment [92]. Prior to the experiment, 
the nerve endings in the residual limb of participants 
with upper-limb amputation were surgically redirected 
to reinnervate the skin and muscles on the upper arm 
[93]. Vibrating the reinnervated residual muscle at 90 Hz 
in different locations, the authors induced kinesthetic 
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percepts of digit flexion and extension. For the experi-
ment, the participants were presented with an electro-
myography-controlled virtual prosthetic hand and told to 
touch a virtual ball. Touching the ball resulted in a stim-
ulation corresponding to a cylinder-grip percept while 
playing a tone with random delay. The participants were 
asked to estimate the time delay. In conditions where 
intent and kinesthetic and visual feedback were congru-
ent, the participants estimated shorter time delays com-
pared to incongruent conditions.

Other noteworthy experiments to investigate owner-
ship and agency study communicative gestures executed 
with the prosthesis [94], compare postural sway when the 
prosthesis is either donned or doffed [40], and investigate 
how one’s own prosthesis is represented in the brain by 
comparing pictures of one’s own prosthesis to the pros-
thesis of others [41, 95].

Measures of ownership and agency in prosthetics
This section summarizes the measures used in the above-
described experiments (see Fig.  3 and Table  2). Both 
ownership and agency can be distinguished between the 

pre-reflective feeling of the experience and the a poste-
riori judgment of the experience (see for example Syn-
ofzik et al., who argue for a distinction between a feeling 
of ownership and agency and their judgments [71]). Sub-
sequentially, agency and ownership can be measured 
explicitly and implicitly—a distinction we use to struc-
ture the following section.

Explicit ownership and agency measures
The main measure to assess explicit ownership and 
explicit agency has been questionnaires. And often the 
same questionnaire inquiries about both explicit owner-
ship and explicit agency—making a separation between 
explicit ownership and agency measures unpractical.

The only questionnaire that investigates only one of 
them, namely ownership, was the original rubber hand 
illusion (RHI) questionnaire, introduced together with 
the RHI experiment itself [73]. Conventionally, three 
questions inquiring into the causation and location of the 
stimulus as well as the association of the rubber hand to 
one’s body have been used to assess explicit ownership. 
Commonly, the answers are rated on a 7-point Likert 

Fig. 3 Illustration of the ownership and agency measures: a Explicit ownership and agency are measured by administrating a questionnaire. b 
The proprioceptive drift measures the distance between where e.g., a rubber hand that the participant experiences ownership for is perceived 
compared to where the phantom hand is perceived. c The skin temperature measure aims to capture a skin temperature change due to increased 
assessed using e.g., a thermal camera. d The galvanic skin response measures increase in sweating in case e.g., a rubber hand that the participant 
experiences ownership for is under threat. e In the crossmodal effect, the time difference between congruent and incongruent feedback is assessed 
to implicitly measure ownership. f A tactile distance perception task implicitly evaluates ownership by administering sensory stimulation while 
flashing a visual cue at different distances away from the percept location. g Applied force is measured to implicitly assess ownership in the sensory 
attenuation task, where force perception depends on whether the touch is self‑administered or externally administered. h The normalization of 
the phantom limb to e.g., match the prosthesis was proposed to implicitly evaluate ownership over the prosthesis. i In the intentional binding task, 
implicit agency is assessed by estimating sensory feedback time delay after either voluntary or non‑voluntary movements triggered the sensory 
feedback
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scale. The RHI paradigm was later adapted to include a 
moving hand [74] and consequently, the questionnaire 
was expanded to include questions assessing explicit 
agency. Most commonly, such combined questionnaires 
are based on Longo et  al.’s [58] work, where a psycho-
metric analysis (i.e., principal component analysis) was 
performed to identify the latent factor structure under-
lying the RHI experience in non-amputated participants. 
Recently, several new questionnaires have been proposed 
aimed to generally assess explicit ownership and explicit 
agency in prosthetics instead of only within the RHI 
paradigm. Graczyk et  al. developed the Patient Experi-
ence Measure (PEM), covering a wide range of com-
mon experiences as a prosthetic user [9]. The focus of 
the PEM lies on explicit ownership and the consequent 
impact on body image, as well as questions on the agentic 
experience in terms of self-efficacy and efficiency during 
prosthetic use. A similar questionnaire was developed 
by Gouzien et al. [31]. They used four categories (quan-
tity of use, functional use, aesthetic use, and psychologi-
cal use) to infer a bodily integration score. Furthermore, 
Bekrater-Bodmann and colleagues recently developed 
and validated the Prosthesis Embodiment Scale for 
Lower Limb Amputees (PEmbS-LLA) [59], as well as the 
Prosthesis Embodiment Scale for Upper Limb Amputees 
(PEmbS-ULA) [96], both focus on explicit ownership, 
explicit agency, and anatomical plausibility.

The use of the questionnaire has also been subject to 
criticism: As the questionnaire forces the participants to 
provide a retrospective judgment of the experiment, it 
has been questioned whether the reports correspond to 
the actual vividness of the experience, or rather on how 
confidently they judged the experience to be [22]. It was 
also shown that preconditioning by phrasing influences 
the measurement outcome: RHI study participants rated 

e.g. the feeling that the rubber hand is part of their body 
higher compared to the belief that the rubber hand is part 
of their body [97].

Aiming for a measure with less bias than question-
naires, Chancel and Ehrsson [98] recently introduced 
a two-alternative forced-choice psychophysics task to 
assess explicit ownership. However, this approach has 
not yet been tested with participants with amputation.

Implicit ownership measures
The most used measure to assess implicit ownership is 
the so-called proprioceptive drift. During the RHI with 
able-bodied participants, the sensed hand position can 
shift towards a rubber hand. This shift is measured via 
a pointing task where the participant indicates the per-
ceived location of e.g., the index finger on a ruler before 
and after the experiment. In experiments with partici-
pants with upper-limb amputation, the location shift of 
their perceived phantom is evaluated instead [78–80]. 
Despite the difference in proprioceptive drift between the 
synchronous and asynchronous RHI condition generally 
being a reliable measure of the RHI, proprioceptive drift 
as a measure of ownership has been criticized. Rohde 
et  al. [99] observed that prolonged visuo-tactile asyn-
chrony affected the perception of the hand location in 
general and thus concluded that the absence of proprio-
ceptive drift in the asynchronous RHI condition is caused 
by the asynchronous stimulation itself. Further, it was 
shown that external manipulation of a study participants 
hand position affected the reported proprioceptive drift, 
but not the reported ownership over a rubber hand [100].

Skin temperature of the stimulated arm, measured 
via thermistors or a laser thermometer, was reported 
to decrease during a RHI experiment with able-bodied 
participants [101]. Based on these findings, the authors 

Table 2 Overview of ownership and agency measures extracted from the literature research

Only measures performed in at least one study including participants with amputation and only measures explicitly related to either ownership or agency were 
included

AB, able-bodied; LAnP, participant with limb amputation not wearing a prosthesis, and LAwP, participant with limb amputation wearing a prosthesis)

Measure Measured modality Study population

Questionnaires (Ownership) Explicit ownership AB (n = 55), LAnP (n = 9), LAwP (n = 25)

Proprioceptive drift Implicit ownership AB (n = 30), LAnP (n = 4), LAwP (n = 1)

Temperature Implicit ownership AB (n = 4), LAnP (n = 1)

Galvanic skin response Implicit ownership AB (n = 12), LAnP (n = 2)

Cross modal congruency Implicit ownership AB(n = 2), LAwP (n = 1)

Tactile distance perception Implicit ownership LAwP (n = 2)

Sensory attenuation Implicit ownership AB (n = 2), LAwP (n = 1)

Phantom‑limb length Implicit ownership LAwP (n = 3)

Questionnaires (Agency) Explicit agency AB (n = 17), LAnP (n = 1), LAwP (n = 11)

Intentional binding Implicit agency AB (n = 2), LAnP (n = 1), LAwP (n = 1)
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suggested that the body downregulates metabolic efforts 
in the hand as the sense of ownership shifts away from 
one’s own biological limb, making skin temperature 
changes another measure for implicit ownership. Con-
versely, an increase in temperature in the usually colder 
residual limb compared to the contralateral limb was 
reported for one participant with trans-humeral ampu-
tation [81]. Here it was proposed that temperature nor-
malization was due to the perceived ownership over the 
rubber hand. Consistent skin temperature changes dur-
ing the RHI have, however, been difficult to reproduce 
and the correlation of temperature change to ownership 
has been questioned [102, 103].

An increase in psychologically-induced sweating was 
measured when a limb with strong ownership association 
within the peripersonal space was exposed to a threat 
in both able-bodied participants [104] and participants 
with upper-limb amputation [78, 80]. Thus, changes in 
skin conductance levels, determined with galvanic skin 
response sensors, were suggested as yet another implicit 
ownership measure.

The crossmodal congruency effect (CCE) is a further 
option for measuring implicit ownership. In a typical 
crossmodal congruency task for assessing upper-limb 
implicit ownership, touch feedback to two locations 
on the hand [105, 106] or on the skin of a reinnervated 
residual limb [91] are provided together with two visual 
distracters. The visual distractors light up either congru-
ent or incongruent with respect to the perceived touch 
location. Participants generally indicate the location of 
the touch feedback faster when the stimulation and vis-
ual distractor location coincide. The indication time dif-
ference between congruent and incongruent feedback is 
the CCE. The CCE is known to depend on the distance 
between the tactile and visual stimuli and can thus be 
used to investigate multisensory interactions with respect 
to peripersonal space which is closely linked to owner-
ship [107].

Like in a crossmodal congruency task, implicit own-
ership can be investigated via peripersonal space inte-
gration doing a tactile distance perception task. For this 
measure, participants react as fast as possible to a sen-
sory stimulus while seeing a visual distractor at different 
distances of the perceived stimulus [33, 108]. A reaction 
time vs. distance profile like able-bodied performance 
while wearing the prosthesis compared to receiving the 
feedback on the stump suggested that the peripersonal 
space increased to include the prosthesis.

Sensory attenuation, or the decrease of perceived 
intensity of a sensation caused by self-generated move-
ment [109], was reported to be determined by owner-
ship [110]. Sensory attenuation can be assessed by a 
force-matching task, where participants receive either a 

self-administered or external, yet known, force stimulus 
and then they are subsequently prompted to generate the 
same perceived force by e.g., pressing their index finger 
against a force sensor. Fritsch et al. showed that sensory 
attenuation can also be elicited in upper-limb prosthetic 
users when they touch their foot with their prosthesis 
[96]. They further reported increased sensory attenua-
tion with higher self-reported explicit ownership over 
the prosthesis, thereby positioning sensory attenuation as 
another implicit ownership measure.

One implicit ownership measure is exclusive for study 
participants experiencing a phantom limb due to ampu-
tation. Namely, measuring phantom-limb length, where 
the perceived length of the phantom is measured before 
and after the intervention. The effect has been investi-
gated with the RHI [14, 35] and in follow-up tests after 
prosthetic home use [9] in participants with upper-limb 
amputation and has been shown to correlate with explicit 
ownership over the prosthesis. Estimating actual limb 
length instead of phantom-limb length did, however, not 
result in conclusive correlates for ownership [39].

Implicit agency measures
The main measure used to evaluate implicit agency is 
intentional binding as initially explored within the Libet 
clock paradigm [111]. Participants of this experiment 
pressed a button which resulted in auditory feedback. 
If the movement was executed voluntarily, participants 
perceived the time interval between their action and the 
result of their action to be shorter than when the move-
ment was executed involuntarily—the two cues are tem-
porally bound together in consciousness. The original 
time estimation method, where participants read times of 
a clock, was later replaced by a direct interval estimation 
procedure in which participants simply report the per-
ceived interval (e.g., in ms) [112]. This measure can read-
ily be incorporated in experiments including prosthetic 
users, where voluntary prosthetic movements can be 
decoded from e.g., myoelectric signals, and involuntary 
movements can easily be executed by sending external 
motor commands to the prosthesis (instead of having to 
use transcranial magnetic stimulation [111]). The illusion 
of involuntary movement can also be elicited by a pros-
thetic system that can provide proprioceptive feedback 
[92].

Discussion
Towards a working definition of prosthetic embodiment
The plethora of terms and definitions surrounding 
embodiment stands as a major reason for misunderstand-
ing and complications in the comparisons of studies that 
use embodiment as a metric of success within prosthet-
ics. From the analysis of the definitions of embodiment 
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used within the prosthetic literature, two recurrent 
themes emerged: embodiment can be understood as 
grounded in body representations or phenomenology.

Prosthetic embodiment defined within both the body 
representation and the phenomenological framework 
is dependent on, and thus interconnected via, the indi-
vidual experiences of ownership and agency. When it 
comes to research on prosthetics, where embodiment is 
used as a metric of success, considering embodiment in 
the context of body representations is problematic. For 
example, without clear agreement on what type of body 
representation (e.g., body image, body schema, etc.) is 
relevant for the incorporation of an artificial limb, differ-
ent routes for verifying successful embodiment might be 
pursued depending on the criteria needed to satisfy the 
specific definition adopted, thus arriving at unclear or 
contrasting results. The question of whether the prosthe-
sis is embodied is then set back on a level that is challeng-
ing to prove or falsify. Similarly, views of embodiment as 
“the processing of the properties of an object in the same 
way as the properties of one’s body” [22] or by paraphras-
ing as “the successful allocation of brain resources, origi-
nally devoted to controlling one’s own body, to represent 
and operate external objects” [113] set the problem at a 
higher level of complexity, which requires the additional 
determination of how neural resources are normally 
deployed when experiencing awareness of one’s own 
limb.

For the practical purposes of assessing whether an arti-
ficial limb is embodied, measures more directly based on 
how the user relates to the device are more amenable. 
Ownership and agency, cognitive proxies of the experi-
ence of embodiment, lend themselves well to a working 
definition because they limit the scope of the investiga-
tion to specific aspects of the experience.

Experiments and measures for assessing prosthetic 
development
Suggested measures for the RHI paradigm
The RHI experiment has a long-standing history as the 
gold-standard experiment for studying ownership. For 
participants with upper-limb amputation, it has been 
successfully demonstrated that different sensory feed-
back strategies (sensory substitution [80], targeted sen-
sory reinnervation [81], and direct nerve stimulation 
[12, 14]) also lead to increased ownership over a rubber 
hand or prosthesis within the RHI paradigm. We, there-
fore, deem the RHI experiment a suitable approach to 
investigate ownership, specifically for benchmarking 
different sensory feedback strategies when a closed-
loop prosthetic system is not available. Especially in a 
non-agentic RHI setup where confounding variables 
potentially affecting ownership (such as algorithms for 

decoding motor volition or the proficiency in using a 
prosthetic device) are excluded.

As measures of explicit ownership for RHI experi-
ments evaluating sensory feedback strategies, we 
suggest using an adaptation of the standard RHI ques-
tionnaire on a 7-point Likert scale (e.g., [78]) to allow 
for comparison to previous works. Furthermore, cer-
tain control questions (for example, referring to an 
additional limb or perceived location of a sensation) 
are prone to misinterpretation, especially in the case 
of participants with a phantom limb, and should there-
fore be omitted. It has even been pointed out that the 
use of the RHI control questions assessing suggestibil-
ity is lacking empirical support [114]. Since the actual 
control condition in the RHI is asynchronous stimula-
tion, the control question could therefore be completely 
omitted, making the questionnaire easier to administer 
and its result more relevant.

As support for the explicit ownership measure within 
the RHI paradigm, we suggest using the cross-modal 
congruency effect, as it reflects the spatial imprecision 
of percepts generally present with current neuro stimu-
lation approaches in its scoring. We specifically suggest 
using the adjusted CCE score specifically proposed for 
assessing advanced bionic feedback systems as it stand-
ardizes scores across participants and features a bench-
mark for comparison to the obtained results [90].

Proprioceptive drift can be used as another measure 
for implicit ownership in prosthetics, but only if the full 
phantom-limb movement is characterized and studied 
in detail. Since phantom limbs can be frozen in place, be 
perceived in anatomically impossible angles, or not be 
present at all, great care needs to be taken in comparing 
proprioceptive drift results with results from able-bodied 
experiments.

As for other implicit ownership measures tradition-
ally used within the RHI paradigm, we suggest caution. 
The galvanic skin response to a threat to the rubber hand, 
while correlating with explicit ownership with partici-
pants with upper-limb amputation [78, 80], has yet to 
demonstrate enough resolution to allow for comparison 
between different sensory feedback strategies. Further, as 
Niederhuber et al. pointed out, the threat could be per-
ceived towards the phantom limb instead of the pros-
thesis in case of spatial overlap [115]. Decrease in skin 
temperature during the RHI suffers in turn from repro-
ducibility issues and was shown to not always correlate 
with ownership [102, 103].

Generally, for any RHI experiment with participants 
with amputation, we advocate to always have a condition 
where the participant has the prosthesis donned as they 
would during daily use and, if possible, a comparison to 
the contralateral limb.
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Suggested measures for experiments with prosthetics 
in the loop
Using a donned prosthesis blurs the line between the 
RHI paradigm and recent experiments with prosthet-
ics in the loop to assess ownership. Especially when the 
prosthesis allows for voluntary execution of movements. 
Thus, instead of adding a dynamic element to the RHI 
as was done with able-bodied participants, we recom-
mend using the dynamic Prosthesis Incorporation (PIC) 
assessment based on the CCE measurements instead 
[91]. Only such a closed-loop approach can determine if 
the investigated sensory feedback approaches are viable 
for home-use, or if the prosthetic system is limited by 
e.g., computational constraints. That is, multi-sensory 
integration (constraints from temporal binding windows 
[116, 117]) is a time-sensitive process, and thus, all the 
signal- and control processing must occur below human 
perception thresholds.

To assess implicit agency, we back the use of the inten-
tional binding measure. Intentional binding has a long-
standing history of reliably determining if movements 
were executed voluntarily. It already has been shown to 
correlate with explicit agency when proprioceptive feed-
back, a crucial component of the reafferent feedback nec-
essary for agency to emerge, was added to a closed-loop 
prosthetic task [92]. We anticipate a similar correlation 
when comparing different prosthetic control algorithms, 
making intentional binding a useful measure both for the 
development of agency-related sensory feedback strate-
gies, as well as for prosthetic control strategies.

In either case, measuring explicit ownership or explicit 
agency, the use of a questionnaire will help to capture the 
individual experience of the participant. Furthermore, 
having both the employed explicit and implicit meas-
ures agree with each other, provides for stronger support 
of inferences and conclusions. With a prosthesis in the 
loop, we suggest questionnaires designed explicitly for 

prosthetic use [9, 31]. Particularly the PembS developed 
by Bekrater-Bodmann and colleagues, as the question-
naire has been validated and specifically distinguishes 
between explicit ownership and explicit agency [59].

Such a questionnaire can also be employed during 
home-use trials, where participants tested novel algo-
rithms for sensory feedback or control in their home 
environment. Here we advocate taking the temporal-
ity of both ownership and agency into account and sug-
gest administering the questionnaire multiple times to 
obtain a more robust result [10]. The subjective longitu-
dinal results of each participant can then be compared to 
determine the efficacy of the tested algorithm.

Need for further standardization of experimental results
Currently, multiple measure outcomes suffer from the 
lack of standardization, complicating comparison across 
participants and research groups. This is not surprising as 
the population of people with amputation and their used 
prosthetic system is highly heterogenic. We, therefore, 
propose a list of measures and experiments for specific 
applications to facilitate comparison between research 
groups (see Table  3). In general, as the prosthetic field 
aims to fully restore both sensation and control after 
limb loss, we suggest to used able-bodied performance 
as a comparison for measure scores whenever possible, 
as used by e.g. Marasco et  al. [91]. Further, validation 
of measures, as done by e.g., Bekrater-Bodmann and 
colleagues [59] is another important step in measure 
standardization and comparability. We thus encourage 
other authors to incorporate and thereby further vali-
date recently proposed implicit ownership measures like 
phantom-limb length changes [14, 35], sensory attenu-
ation [96], and tactile distance perception [33]. These 
measures, being accessible and low cost in their admin-
istration, would be valuable additions to the ownership 
measurement toolkit.

Table 3 Suggested measures and experiments for common evaluations in prosthetics to improve comparability between research 
groups

Application Experiment Measures

Evaluate sensory feedback strategy when closed‑loop 
prosthetic system is not available

RHI Explicit ownership: Adapted RHI questionnaire [78] only 
containing ownership question on 7‑point Likert scale
Implicit ownership: adjusted CCE score[90]

Evaluate sensory feedback strategy when closed‑loop 
prosthetic system is available

(dynamic) Prosthesis 
Incorporation (PIC) 
assessment

Explicit ownership: PembS [59, 96] omitting agency questions 
if not dynamic version of PIC
Implicit ownership: adjusted CCE score [90]

Evaluate control strategies Adapted Libet clock Explicit agency: PembS [59, 96], omitting ownership ques‑
tions if no sensory feedback is provided
Implicit agency: Intentional binding using a direct time 
interval estimation [92]

Evaluate novel sensory or control algorithms during daily 
life

Interview Explicit ownership and eplicit agency: Administer PembS [59, 
96] at regular time intervals
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Conclusions
In this article, we analyzed the different definitions of 
embodiment used within the prosthetics field. As a 
result, we identified two common categories within 
the definitions of prosthetic embodiment: embodi-
ment grounded in body representations or experimen-
tal phenomenology. The latter allowed for a subdivision 
of prosthetic embodiment into ownership and agency, 
which lent itself to a pragmatic definition that allows 
the otherwise elusive construct of embodiment to be 
measured, and therefore we consider it as the preferred 
definition in the field of prosthetics. This is further jus-
tified in an accompanying article to this review where 
we introduce a multi-dimensional framework for pros-
thetic embodiment.

Here, we also offered a summary of different owner-
ship and agency experiments and provided an overview 
of ownership and agency measures conducted with 
participants with amputation and prosthetic users. We 
compiled and discussed recommendations for both the 
measures and experiments with the objective to facili-
tate new studies on ownership, agency, and embodi-
ment within the field of prosthetics.

This article offers a framework highlighting a prag-
matic definition of prosthetic embodiment and sug-
gested practices for experiments within the prosthetics 
field, and thereby creates a common reference for fur-
ther discussion on advancing prosthetics research.
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